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Abstract

With the rapid developments of renewable energy sources, the uncertainty of the power supply will bring new challenges
to scheduling problems, and conventional scheduling strategies may lose their effectiveness. The current general scheduling
strategies need to model the uncertainty of the environment, while it is difficult to achieve a high degree of accuracy in the
power system with high penetration rate of new energy, which will directly affect the scheduling result. In response to this
problem, this paper studies the economic dispatch of power systems based on deep deterministic policy gradient (DDPG),which
avoids the uncertainty modeling of the environment in principle. Combined with the basic economic dispatch model, this paper
has defined a learning mode of the algorithm and built an algorithm framework of economic dispatch of power system based
on DDPG. The results of the experiment show that proposed algorithm is highly adaptable to random fluctuation of renewable
energy.
© 2022 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

China has put forward the dual carbon target of carbon neutrality and carbon peak. With the realization of the dual
carbon target, there will be a high percentage of renewable energy and power electronics and a trend of large-scale
interconnection of new energy sources such as photovoltaics and wind power [1]. Compared with the deterministic
traditional thermal power generation which obeys the power generation strategy arrangement, photovoltaic, wind
power and other renewable energy power sources exhibit randomness, volatility, and uncertainty. To deal with the
uncertainty problem brought by the power supply side, the traditional deterministic scheduling strategy is viable
with reserving enough conventional generator sets when new energy accounts for a small proportion. However,
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according to China’s “3060” carbon peak target, the percentage of non-fossil energy consumption needs to exceed
30% by 2030, when the traditional deterministic scheduling strategy will lose its original effectiveness. At that
time, economic cost defects and security loopholes of conventional strategy will be highlighted. Therefore, how to
complete the economic dispatch of the power system will be an important issue in an environment with uncertainties.

The first problem that mainstream researches have encountered is modeling uncertainty on the power supply side.
Based on the uncertainty theory, Ref. [2] uses interval analysis for wind power and photovoltaic forecasts, combined
with normal distribution, and proposes a normal uncertainty distribution to describe the output forecast errors of
wind power and photovoltaics, but the wind power error forecast does not obey the normal distribution [3]. Ref. [4]
believes that the probabilistic characterization of wind turbine output originates from the wind speed that obeys the
Weibull distribution, but the conversion process from the prediction error of wind speed to the wind turbine output
prediction error will magnify the error. At present, there are still few related researches on the prediction error of
photovoltaic power output. Ref. [5], based on Copula theory, estimates the conditional prediction error distribution
of photovoltaic power generation output, but the accuracy is still limited by the model.

Considering the uncertainty of wind and solar output, to solve economic dispatch problems, the first idea is
using a deterministic scheduling model. The deterministic scheduling model formulates a power generation plan
based on the determined wind and solar output forecast curves and reserves enough reserve capacity to deal with
the uncertainty. Reserve capacity can be provided by conventional generator sets, demand response [6], electric
vehicles [7], and energy storage [8]. Another way of thinking is to use the uncertainty scheduling model, which
considers the power characteristics of the intermittent power supply by modeling the probability of uncertainty.
Ref. [9] and Ref. [10] apply scene methods to realize the environmental differentiation of power output, and complete
the description of the random output of the power supply through the feature identification of the scenes. Ref. [11],
which takes the rolling correction of wind power and photovoltaic forecast errors as the premise, restricts the reserve
capacity of conventional units and evaluates its confidence level. The core point of using the uncertainty scheduling
model is to model the uncertainty, while the modeling under the background of complex randomness is very difficult
and a high accuracy is always hard to reach.

Different from the methods mentioned above, this paper adopts a deep reinforcement learning method to
avoid modeling environmental uncertainty, which is an environment interactive learning method with a clear goal
orientation. Based on the Q-learning algorithm, whose action space and state space are discrete, Ref. [12] and
Ref. [13] respectively proposed a microgrid scheduling method that considers integrated energy and a method of
using energy storage capacity to compensate for wind power forecast errors. Ref. [14] uses deep convolutional
neural network (CNN) to approximate its state space based on a Deep Q network algorithm, but its actions are still
all discrete. Compared with discrete action space, the continuity of action space of DDPG will achieve economic
dispatch with better effects and higher accuracy, which is used in this paper. But the research of applying DDPG to
economic dispatch of power system is rather little. Ref. [15] realizes optimal dispatch of integrated electricity-gas
with soft actor-critic deep reinforcement learning, with the result being satisfactory.

Above all, this paper uses a DDPG algorithm, which is able to avoid modeling uncertainty of environment and
achieve precise actions, to realize economic dispatching of power system with renewables.

2. Basic model of economic dispatch

2.1. Objective function

The economic dispatch of the power system should fully consider the time sequence correlation between the
various dispatch periods. On the condition of ensuring safety and stability, this paper will adjust the output and
reserve capacity of the generator set to reduce the phenomenon of wind abandonment, abandonment of light, and
load shedding. The objective function should be set to minimize the total cost of scheduling:

min E{) _ Fg + Fr. + Fs.}. (1)
teT

where Fg, is the power generation cost of the conventional generator sets, Fg, is the reserve cost, and Fg, is the
random cost.
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(1) Power generation cost of conventional generator sets. The power generation of conventional generator sets
is the sum of generating costs of each generator set during the dispatch period:

N
2
Fg:= Y ai+biPcii+ciPcis. (@)
i=1
where a;, b;, ¢; are the cost coefficients corresponding to the ith unit, and N conventional units are considered in
the model.
(2) Reserve cost. The reserve cost is the cost incurred by the system’s pre-spinning reserve:

N
Fri =Y (kyUis +kpDi,), 3)
i=1
U;: and D;; are the upward reserve capacity and the downward reserve capacity of the ith generator, respectively.
ky and kp are the corresponding cost coefficients.

(3) Random cost. The random cost is caused by the forecast error of photovoltaic and wind power output. The
power difference caused by the forecast error can be made up by the spinning reserve, but when the reserve margin
is exceeded, it will lead to load shedding or abandonment of wind and solar power. Then random cost can be
expressed as:

Fs,=(cuPus+cpPp)+ (cLPri+caPay), “4)

where Py, Pp, P, Pa, are respectively the upward reserve power, the downward reserve power, the total power
of the removed load, and the total power of wind and light curtailment. cy, cp, ¢, c4 are the corresponding cost
coefficients.

It is worth noting that in this paper, all renewable energy outputs and loads in the environment is equivalent to
random variables P}; Ve Pv{;T , and PE ,» which correspond to photovoltaic, wind power, and load power, respectively.
We do not care about the distribution of these random variables, but realize the agent’s self-adaptation to the random
variables by continuous iterative learning.

2.2. Restrictions

The constraints in this article are taken from the conventional economic dispatch model. In a scheduling period
t, the following constraints below should be satisfied.
(1) Power constraint:
N
Ppy:+ Pwr, + Z PG = P, )]
i=1
where Ppy,, Pwr,, Pc.i:, Pr,. are the outputs of photovoltaic, wind power, the ith conventional generator set and
load in the model, respectively.
(2) Output constraints:

PG imin < Pgir < PGimaxs (6)

where Pg i min, PG.imin» Pc.iy are the lower limit, the upper limit, and the output value of the generator unit,
respectively.
(3) Climbing constraints:
Pir— Pgii—1 < Su.i

; )

PG i1 — Pgii—1 < Sp,i
where sy ; and sp ; respectively represent the upward and downward ramp rate limits of the corresponding unit.
(4) Reserve constraints:

0=<Ui; < Pgimax— Pgi:

, ®)

0=<D;; < Psi:— Psimn

which means the reserve capacity of a conventional generator set is constrained by its current output value and
output limit.
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3. Dynamic economic dispatch method based on DDPG
3.1. Initial definition of algorithm

Within the framework of deep reinforcement learning, the interaction between the agent and the environment
can be described by Markov Decision Process (MDP). MDP contains 5 elements, namely state, action, reward,
state transition probability and discount factor, forming a five-tuple (S, A, R, P, y). In order to make the algorithm
applicable in economic dispatch, it is necessary to define elements below with reference to the economic dispatch
model.

(1) Define the state space

The state space will determine the environment perception content of the agent. For conventional generator sets,
the status should include the output value, upward reserve capacity, and downward reserve capacity of all generator
sets, which can be expressed as:

S¢ = (PG,1, Pgr---Pgn, Uy, Up---Us, Dy, D2-~D3)_ ©)

For random photovoltaic output, wind power output, and load, not only the real-time value can be considered, but
also the first derivative and second derivative can be introduced in consideration of the time series correlation:

Su = (Ppv. Pwr, P, Ppy.ar, Pwr.ai. Prai. Ppv.az, Pwr.az, Praz) - (10)
Then this state space with (3N+9) dimensions can finally be expressed as:
S ={S¢, Sm}. 1D

(2) Define the action space

The decision-making actions of the agent are the output of the algorithm which will change the state of
environment with probability P. The controllable actions considered in this paper include output value, upward
reserve, and downward reserve of all conventional generator sets, with a dimension of 3N. The action space is
represented as:

A={Ap1,Apr-++ , Apn.Aui. Aus-- . Aus, Api. Apa -+ Apsl, (12)

where Ap;, Ay, Ap, respectively represent the decision-making action values of the ith unit output, upward
standby, and downward standby.

(3) Define the reward

According to the economic dispatch objective function, the agent will obtain rewards by changing the state of
the environment during the interaction process with the environment. The instant reward is defined as:

R = —0.05(Fg + Fg + Fs). (13)

(4) Set the discount factor y
The larger the discount factor, the more sensitive the algorithm is to future decision-making effects. Setting a
larger discount factor can enhance the agent’s foreseeability in the scheduling process. This paper sets y to 0.85.

3.2. Training method

The DDPG algorithm is in “Actor-Critic” mode. After sensing the state of the environment, the Actor will output
actions according to the current policy. The Actor includes an online policy network and a target policy network.
Critic, which includes an online Q network and a target Q network, will use value Q to evaluate the correctness
of decision-making actions. DDPG completes training by updating the parameters of the neural networks, and the
update methods of online networks and target networks are gradient updating strategy and soft updating strategy
respectively.

(1) Update online Q network:

0% «— 02 +agps- V0 (s.,al0?), (14

where 69 is the network parameter of the update online Q network, a¢ is corresponding learning rate, and § is
temporal difference error.
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(2) Update online policy network:
0" < 0" +a,-V,0 (s,a |eQ)|a=M(W) V.0 (s0"), (15)
where 6 is the network parameter of the online policy network, and «,, is learning rate.
(3) Update target network:
02 « 0% + (1 —1)0¢
0" < " 4 (1 — 7)o"
where t determines the network update speed in soft update mode, which is generally far less than 1. The soft

update mode causes the target network to be updated very slowly, but it also makes learning more stable and easier
to converge.

(16)

3.3. Model framework

Online policy network observes state j, and then takes actions according to the policy. After that, the environment
will return to the next state (j 4+ 1) and the rewards obtained from this action. The target policy network also selects
the virtual optimal action according to the state (j + 1) and feeds it to the target Q network to calculate the target
Q value. Enter the target Q value, which is y;, then the online Q network will calculate the temporal difference
error and complete the gradient update of its network parameter #¢. Under the supervision of the online Q network,
the online policy network will also complete the update of the policy, that is, the gradient update of its parameter
6*. Finally, the soft update of the target Q network and target policy network is completed according to < and 6#
respectively.

It is worth noting that the framework uses an empirical playback mechanism to break the temporal correlation
of training samples (see Fig. 1).

Enviroment Actor Critic

Optimizer

olicy gradient q 8
update g Tp ﬁ.t. o update §° Tpohcy gradient

gradient w.rt. 0°

online policy network [EPERAKIN online Q network
—_—
e 0°

l soft a=u(s;) l

update
0°

(s/’nﬂsm )

target policy network (s,

|

storage (S, 2G5 TS50 )

: ~experience replay
sampling strategy . memmor}? ‘

Fig. 1. Model framework.

4. Case studies

This paper is based on the IEEE 30-node system to verify the effectiveness and economy of the above method
in dynamic economic dispatch. The new energy and load data refer to the data of North Hebei Power Grid, whose
length is 357 days and interval is 15 min. As we take 100 MW as the power reference value, the total load in the
system is 3.7 p.u., the rated output of photovoltaic and wind power is 0.418 p.u. and 0.521 p.u., the number of
conventional generator sets is 6, and the relevant parameters of G|~Gg [16] (see Table 1).

According to the above settings, the dimension of the state space of the DDPG algorithm of this example is 27,
and the dimension of the action space is 18.
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Table 1. Conventional generator parameters.

Uit Poimn/PU.  Poim/PU.  @/G/N)  bi/S/MW ) ¢/S/(MW2 h)  Di(pu./h) Ui(p.u./h)
G 0.45 2.00 786.80 38.5397 0.1524 0.5 0.5

Gy 0.30 1.00 945.70 46.2678 0.1058 0.3 0.3

G3 0.15 0.60 1050.10 40.1591 0.0280 0.15 0.2

Gy 0.15 0.80 1244.00 38.3055 0.0354 0.2 0.15

Gs 0.20 0.40 1658.60 36.3278 0.0211 0.15 0.15

Gg 0.10 0.4 1356.70 38.2704 0.0179 0.15 0.15

4.1. Training process

In this case, we define the length of a dispatch period t is 24 h. When we are training, one day’s data will be
randomly selected as training data in each dispatch period, which means a training cycle will complete 96 iterations,
corresponding to 96 sets of empirical data. And the experience data will be stored in the experience replay memory
finally. Each group of experience includes the corresponding state, action, reward, and the next state after the
action. Then the update mechanism will randomly extract the experience from it for the parameter update of the
neural network. When the number of training scheduling periods reaches 2 x 10°, the algorithm basically completes
convergence, and the rewards obtained by the agent in each scheduling period are basically close to the optimal
value.

4.2. Dynamic scheduling results

After the training, this case will randomly select one day’s data in the non-training database as test data. Under
the framework of the algorithm in this paper, the trained agent seems to complete the perception of the current
environment through test data and make the most valuable actions within its cognitive range. One is to adjust the
output of generators, and the other is to adjust the upward and downward reserve capacity to avoid severe penalties
caused by abandoning wind, abandoning light, and load shedding.

A — Load
mmm Conventional generators
50 = Wind power

Photovoltaic
4.0

Power/p.u.

00:00 06:00 18:00 24:00
Dispatch period t

Fig. 2. Daily dispatch results.

Fig. 2 shows the results of dynamic economic dispatch on one day. It was concluded that the dispatch output
of conventional generator sets can effectively adapt to the power fluctuations of wind power and photovoltaics and
automatically track the trend of load changes.

Fig. 3 shows the adjustment of the reserve capacity by the agent. Only at four points A, B, C, D, the wind and
solar abandonment phenomenon caused by the sharp decrease of the power shortage occurred.

4.3. Comparative analysis

Model predictive control (MPL) is commonly used optimization method in deterministic dispatching, which
does not describe the uncertainty of environment. In this method, the current predictive value is used to roll out
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Power shortage
Upward reserve
Donward reserve

Power/p.u.

>
00:00 06:00 18:00 24:00

Dispatch period t

Fig. 3. Power balance result.

the optimal control strategy based on a predictive model. However, MPL relies so much on the predicted value
that the unavoidable error of renewables forecast make it impossible to achieve the optimal effect at the source.
Q-learning, the same as DDPG, can not only adapt to uncertainty of environment, but also avoid probabilistic
modeling of environment. But its discretized action space makes it far inferior to DDPG in action selectivity. Below
is a dispatching cost comparison of the three different methods (see Table 2).

Table 2. Dispatching cost comparison.

Method Action cost/$ Uncertain cost/$ Total cost/$
DDPG 625213 31687 656900
Q-learning 656139 42042 698181
Model prediction 662872 43929 706801

As a new generation of artificial intelligence algorithm, DDPG has great advantages in the accuracy of actions
and the adaptability of the environment, which is also reflected in economic analysis. Compared with Q-learning
and the model prediction method mentioned above, its action costs and uncertain costs are less. Action cost refers
to the cost incurred by the agent adjusting outputs and reserve capacities of generators during the dispatch process,
which is determined by the role of the agent for DDPG. The uncertain cost is caused by uncertainty of power
system, including the startup cost of up and down standby, and the cost of abandoning wind, abandoning light, and
load shedding.

5. Concluding remarks

Aiming at the system with high penetration rate of renewable energy, this paper proposes an adaptive uncertain
dynamic economic dispatch method based on DDPG. On the basis of the economic dispatch model, this paper has
completed the initial definition of the DDPG algorithm, and built the overall framework of the algorithm, finally
developed the agent’s ability to complete the dynamic economic dispatch of power system.

The algorithm adapts to random fluctuations of photovoltaic, wind power, and load after training, and can
accurately control generator output and reserve capacity. These experimental results show that DDPG has better
forecasting and control capabilities, which can be directly verified by its lowest dispatch cost.

The DDPG algorithm used in this article, which avoids the probabilistic modeling of complex environments in
principle, implements the efficient update of the strategy in the “Actor-Critic” mode and introduces neural networks
to ensure accurate actions by avoiding the discretization of the state space and the action space, are also worth
considering in other optimization problems of the power system.
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