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Bayesian Learning-Based Multi-Objective
Distribution Power Network Reconfiguration

Tianwei Zhong, Hai-Tao Zhang , Senior Member, IEEE, Yuanzheng Li , Member, IEEE, Lan Liu,
and Renzhi Lu, Member, IEEE

Abstract—This article proposes a scheme aiming at solving the
reconfiguration problem of distribution power network (DPN)
with high wind power penetrations. The virtue of the presented
scheme lies in balancing the voltage stability and the absorption
rate of wind energy. First, the DPN reconfiguration is formulated
as a multi-objective optimization problem, where a curtailment
strategy is introduced with the assistance of the secure operations
of DPN. Thereby, the absorption rate of the generated wind
power is maximized and voltage stability level is improved as
well. Meanwhile, a modified multi-objective Bayesian learning-
based evolutionary algorithm is applied to yield a Pareto front,
which is a tradeoff between absorption rate and voltage stability.
Afterwards, A technique for order preference by similarity to an
ideal solution (TOPSIS) is adopted to determine the dispatching
solution by similarity to an ideal solution. Finally, numerical case
studies are conducted on a modified IEEE-33 bus system to verify
the effectiveness of the proposed scheme.

Index Terms—Wind power, distribution power network recon-
figuration, multi-objective optimization, Bayesian learning.
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DPN Distribution power network
DPNR Distribution power network reconfiguration
HV Hyper-volume index
MD Mean distance to reference point index
MMOBOA Modified multi-objective Bayesian

optimization algorithm
MOBOA Multi-objective Bayesian optimization algo-

rithm
MOP Multi-objective optimization problem
SP Spacing index
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TOPSIS Technique for order preference by similarity to
an ideal solution

MMOBOA Parameters

A Additional archive
G(V, E) Bayesian network, a directed acyclic graph. V

and E are vertices and edges in G
N Non-dominated archive
M Maximum iteration limit
MA Capacity of A
N Number of particles in population
n(∗) The number of corresponding samples
NA Number of solutions in A
nvi , cπi Number of possible values for vi and πi, i= 1,

2, . . . , n
vi, πi Vertex i and parent vertices of vertex i for the

Bayesian network, i = 1, 2, . . . , n

Power System Constants

r0 The reference point for MD and HV index
εpf Tolerance of Newton-Raphson algorithm
K Number of samples generated by scenario

reduction
n Number of tie switches
NB, NE Number of buses and branches of DPN

Power System Variables

S Samples generated by scenario reduction
A Node-branch incidence matrix of DPNs
x, u States and control signal of DPNR
ξr, ρr Scenario r and corresponding possibility in S,

r = 1, 2, . . . , K
C, V Objectives of DPNR: curtailment of wind

power and voltage deviation
Gij, Bij Conductance and Susceptance between buses i

and j, i, j = 1, 2, . . . , NB

Hi The neighbors of bus i, i = 1, 2, . . . , NB

Ik Current through branch k, k = 1, 2, . . . , NE

Imax
k Upper limit of Ik, k = 1, 2, . . . , NE

Pξr , Qξr Wind active and reactive output in ξr, r = 1,
2, . . . , K

Pi, Qi Injected active and reactive at bus i, i = 1,
2, . . . , NB

PLi, QLi Active and reactive demand at bus i, i = 1,
2, . . . , NB
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Vi, θi Voltage amplitude and angle at bus i, i = 1,
2, . . . , NB

Vmin
i , Vmax

i Lower and upper limit of Vi, i = 1, 2, . . . , NB

I. INTRODUCTION

D ISTRIBUTION power network reconfiguration (DPNR)
plays an essential role in distribution power networks

(DPNs). The optimization of the inter-bus connections is ben-
eficial to reduce power loss, and to enhance efficiency as
well [1]–[3]. In recent decades, distributed generations (DGs)
such as wind turbines and solar panels are widely deployed
in DPNs, which contributes to both resource conservation and
environmental protection. According to World Wind Energy
Association (WWEA) [4], the capacity of wind power has
reached 539291MW in 2018. In some western countries, e.g.,
Denmark, wind power takes an extremely high proportion,
i.e., more than 40%. Thanks to the advanced grid connection
techniques, a growing number of DGs have been embedded to
DPNs [5] to improve the operational efficiency, and thereby
to substantially reduce the operational cost of power grids.

Unfortunately, uncertainties of renewable energy have
brought new challenges to the operation of DPNs [6]. To
apply DPNR with integrated DGs, it is necessary to take these
uncertainties into account [7], [8].

For instance, in [9], the power output of wind turbines is
divided into several states, where each has its corresponding
probability and hence could be used to calculate the objec-
tives for DPNR process. As a milestone, [10] builds up a
stochastic power output model of DGs. Therein, wind speed
could be regarded as a probabilistic variable, and by this
means, power loss has been considered in the objective func-
tion as well where Monte Carlo method could be adopted to
maximize wind power absorption. Analogously, [11] estab-
lishes a scenario-based model, by which the mixed integer
linear programming is utilized to minimize the reconfigura-
tion costs. In this way, both power loss and voltage stability
are improved. Along this research line, [12] uses a sce-
nario reduction technique to deal with the stochastic issues
in the scenario-based model, which effectively reduces the
computation cost.

The above mentioned efforts have been devoted to deal
with uncertainties generated by renewable energy, which show
promising potential to reduce the adverse influences of the
uncertainties in power grids. Along this research line, there
are some works on the stochastic DPNR model [2], [13]–
[15]. Specifically, [2] applies DPNR for congestion manage-
ment with high penetration of distributed energy resources.
Meanwhile, [2] contributes to both line loss reduction and
voltage amplitude restraint which lead to low congestion
management costs. Analogously, [13] considers wind power
generators and thereby proposes a DPNR model to optimize
energy loss, generation cost, emission and voltage deviation.
Then, the four objectives are converted into a single one by an
interactive fuzzy method. In this way, adaptive particle swarm
optimization (APSO) is adopted, which show effectiveness
of solving the single optimization problem. However, the

quantitative relationship among these objectives has not been
considered in APSO. Along this research line, [14] takes
switching cost into consideration to prevent too many recon-
figurations. However, too much curtailment still might be
encountered in such schemes.

All of the above works consider the stochastic character-
istic in the DPNR model. However, high renewable energy
penetration may lead to intensified voltage instability [15],
[16], which might cause a great damage to normal operations
of DPNs. Therefore, it is necessary to guarantee voltage stabil-
ity when higher wind power is introduced as well. These years
have witnessed some efforts devoted to pursuing both voltage
stability and high wind power penetrations. For instance, [17]
claims that high wind power penetrations leads to overvoltage.
As a remedy, curtailment is applied to assure voltage stability.
In this way, [18] establishes a stochastic DPNR model and
reconfigures the voltage stability as an optimization problem.
Meanwhile, a modified particle swarm optimization (PSO)
algorithm is adopted to optimize the network topology, which
substantially improves the voltage stability.

Evidently, renewable energy is expected to be absorbed as
much as possible [19] in current smart grids. Some research
works have investigated high absorption rate-guaranteeing
methodologies. For instance, [20] has enhanced the hosting
capacity of DPNs so as to increase the absorption rate of
renewable energy by DPNR. However, a large absorption rate
of renewable energy would inevitably lead to poor voltage sta-
bility [15], [16]. A question is thus naturally inspired: what
is the quantitative relationship between absorption rate and
voltage stability? Till date, such dilemma has not been thor-
oughly studied, and thus has been left a challenging mission
for renewable energy.

To this end, this article aims at establishing a multi-objective
stochastic DPNR model, which balances the high absorption
rate and voltage stability. Therein, we manifest the uncertainty
of wind power by various samples via a scenario reduction
method [12], [21], [22]. Then, we develop a modified multi-
objective Bayesian optimization algorithm (MMOBOA) to
address this problem. Accordingly, a Pareto front is achieved,
which concretely quantifies the relationship between wind
power absorption and voltage stability.

In summary, the contribution of this article is three-fold.
1) Propose a gradual curtailment strategy to estimate the

absorption rate of DPNs.
2) Establish a multi-objective stochastic DPNR model to

enhance the absorption rate of the high-renewable pen-
etrated DPNs whereas maintaining the voltage stability.

3) Develop an MMOBOA to solve the stochastic DPNR
problem, which achieves a high convergence rate using
small population, compared with some existing main-
stream evolutionary algorithms together with mixed
integer programming.

The remainder of this article is organized as follows.
Section II gives preliminaries and introduces the main
problem. The multi-objective stochastic DPNR model is built
up as well. Afterwards, MMOBOA is proposed in Section III
with technical analysis. In Section IV, numerical simula-
tions are conducted on benchmark systems to verify the
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effectiveness of the proposed scheme. Finally, conclusion is
drawn in Section V.

II. PROBLEM FORMULATIONS

A. DPNR Model

First, the constrained optimization problem of DPNR is
formulated as,

minu F(x, u,S) (1a)

s.t. det(A) = ±1, (1b)

Vmin
i ≤ Vi ≤ Vmax

i , (1c)

|Ik| ≤ Imax
k , (1d)

Pi = Vi�j∈HiVj(Gij cos(θi − θj)+ Bij sin(θi − θj)), (1e)

Qi = Vi�j∈HiVj(Gij sin(θi − θj)− Bij cos(θi − θj)), (1f)

Pi = Pξr − PLi, (1g)

Qi = Qξr − QLi, (1h)

where F is the objective function considering both wind
power absorption and voltage deviation, x = [V1, . . . , VNB ,
θ1, . . . , θNB ]T denotes the system state, NB is the number of
buses, Vi and θi represent the magnitude and the angle of the
voltage at bus i, respectively. u = [u1, u2, . . . , un]T is the con-
trol variable, i.e., the set of tie switches for DPNR [23]–[25],
and S is the set of wind power samples obtained by a sce-
nario reduction method [21], [22] elaborated in Appendix A.
Here, Eq. (1b) is the topology constraint. Eqs. (1c) and (1d)
are the security constraints, whereas Eqs. (1e) and (1f) the
power flow equations. Essentially, constraint (1b) implies
that all the buses are connected with the root bus and no
loops are allowable in the topology. Since wind generators
are adopted here with a constant power factor, a group of
DGs can be regarded as a PQ bus. Thus, the relationship
between the injected power and the demand power are repre-
sented by Eqs. (1g) and (1h). Challengingly, the optimization
problem (1) is non-convex [26], [27].

The curtailment of wind power could enhance the voltage
stability of DNPs [17]. Nevertheless, an excess of curtail-
ment leads to waste of energy resource. Therefore, in order
to enhance the absorption rate of wind energy, [28] introduces
a method to estimate the limit of curtailment. However, this
limit varies with different scales of wind power, which is thus
still arduous to be suitably picked. To solve this dilemma, we
propose a gradual curtailment strategy with the assistance of
secure operations of DPNs.

More precisely, the gradual curtailment procedure hap-
pens once some of the constraints (1b)-(1f) are activated.
To better understand the gradual curtailment procedure, we
exhibit the evolution of absorption γ along increasing scale
α of maximum wind power absorption in Fig. 1. Initially,
γ ascends linearly with increasing α, implying that no wind
power is curtailed. Upon surpassing a threshold of 1.02, some
constraint(s) in (1b)-(1f) are violated, which activates the cur-
tailment. Hence, the gradual curtailment procedure is applied
here. Taking Pξi = γ0 as an example, system states could
be obtained via Eqs. (1e)–(1h). However, it is found that γ0
is no longer feasible upon the violation of the constraints.

Fig. 1. The evolution of the absorption rate γ with increasing scale α of
the wind power penetrates. Here, α = 1 corresponds to 30% load demand.
Unshaded and shaded regions denote inactivated and activated constraints,
respectively.

Consequently, γ0 is curtailed to γ1 and hence some violation
of constraints will be alleviated. In this way, γ1 will iteratively
decrease to γ2, and then to γ3, · · · , and finally to γn until
all the constraints in (1b)-(1f) are fulfilled. For instance, it is
observed that n = 4 in Fig. 1. Once the gradual curtailment
procedure terminates, the DPN is under the state of minimum
curtailment and the objectives could be calculated as follows.

B. Objective Functions

Firstly, to enhance the absorption rate, it is essential to
search for topologies with smaller curtailment. Taking the
uncertainty of wind power into account, the network topology
optimization problem could be formulated as

min
u

C(x, u, S) =
K∑

i=1

ρiCi, (2)

where ρi, Ci, K denote probability of scenario i, curtailment
of wind power in scenario i and the number of remained
scenarios, respectively.

Then, proper bus voltage is indispensable for secure opera-
tions in DPNs. Overvoltage and undervoltage are both harmful
for the voltage stability, which necessitates the constraints on
the voltage amplitudes. With the assistance of the voltage devi-
ation estimation scheme [18], [29], we use a voltage observer
formulated in (3) via the voltage derivation expectation of the
DPNs. Therein, the uncertainties of wind power are addressed
as below,

min
u

V(x, u, S) =
K∑

i=1

ρi
1

NB

NB∑

j=1

|Vj − Vref|, (3)

where Vref denotes the reference value.
In addition, frequent switching is adverse to the tie switches,

and total switching times is thus applied to estimate the
operational cost [24] formulated as

min
u

L(x, u, S) = n(u ∪ u0)− n(u0), (4)

where n(·) denotes the elements number of the set, and u0
the initial tie switches set. Thus, a stochastic multi-objective
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Fig. 2. Pareto solutions.

optimization (MOP) problem is formulated as below

min
u

[C(x, u, S);V(x, u, S);L(x, u, S)]

s.t. (1b)–(1h),
(5)

which synthetically considers wind power absorption rate,
voltage stability and operational cost, and thus becomes the
main objective pursued by the present study.

III. THE OPTIMIZATION ALGORITHM FOR DPNR

A. Pareto Solutions for an MOP

As introduced in [30], an MOP as formulation (5) could be
generally formulated as

min
u

F(u),

s.t. h(u) ≤ 0, (6)

g(u) = 0,

where Fi = [Fi
1, Fi

2, . . . , Fi
n]T, Fj = [Fj

1, Fj
2, . . . , Fj

n]T denote
objectives of feasible solutions ui = [ui

1, ui
2, . . . , ui

m]T and
uj = [uj

1, uj
2, . . . , uj

m]T, respectively. To solve such a problem,
multi-objective evolutionary computation algorithms are gen-
erally used. Conventionally, it could be converted into a
single-objective optimization problem via some weighted sum
method [31]. However, those methods do not work for the
proposed DPNR model (1a)–(1h). On one hand, the weights
selection are case by case, which are not easy to obtain. On
the other hand, (5) is non-convex, which is arduous to find an
analytic solution.

As a remedy, the method of non-dominated solutions and
Pareto set have been introduced into the evolutionary algo-
rithms, which is listed as follows.
• Domination: If ∀k, Fi

k ≤ Fj
k and ∃l, Fi

l < Fj
l , uj is said to

be dominated by ui, i.e., ui 	 uj. Moreover, ui is a non-
dominated solution if it is not be dominated by others.
For instance, in Fig. 2, solutions inside the dashed box
are dominated while the ones outside non-dominated;

• Pareto set: The Pareto set is composed of non-dominated
solutions as U = {u1, u2, . . . , uN};

• Pareto front: The multiple objectives of the Pareto set
consist of the Pareto front as P = {F1, F2, . . . , FN}.

B. Multi-Objective Bayesian Optimization Algorithm

Meanwhile, multi-objective Bayesian optimization algo-
rithm (MOBOA), a new multi-objective evolutionary compu-
tation algorithm, has also adopted non-dominated solutions to
solve the MOP [32].

Fig. 3. Process of MOBOA.

The iteration procedure of MOBOA is illustrated in Fig. 3,
where MOBOA uses a population U = {u1, u2, . . . , uN0}, i.e.,
N0 candidate solutions to iteratively search for non-dominated
solutions. Afterwards, all the non-dominated solutions are
preserved in a non-dominated archive, denoted by N . Then,
MOBOA applies a Bayesian network G = {V, E} to esti-
mate the joint probabilistic distribution of these non-dominated
solutions [33]. Note that a vertex in V represents one dimen-
sion of u and an edge in E denotes the dependent two
dimensions. Therein, K2 Algorithm [34] is used here to deter-
mine whether there is an edge between two vertices, which
use the metric formulated as follows,

Gain(vi, πi) =
cπi∏

j=1


(nvi)


(nvi + n(π
j
i ))

nvi∏

k=1


(1+ n(vk
i , π

j
i )), (7)

where vi and πi denote vertex i in V and the parent vertices of
vi, respectively; nvi is the number of possible values for vi, and
cπi represents that πi has cπi possible values. In addition, n(·)
stands for the number of corresponding samples in N . If the
existence of an edge leads to a larger gain, it is kept; otherwise,
it will be removed from E. More specific information about
K2 Algorithm could be referred to Appendix B. In this way,
a Bayesian network encodes a joint probability distribution as
below.

p(u) ≈ p(N ,G) =
n∏

i=1

p(vi|πi), (8)

where p is probability of vertex vi with parent vertex πi.
Thereby, a new population is generated by hierarchically
sampling the obtained Bayesian network. Specifically, the
parent-free vertices are firstly handled, whose values are ran-
domly generated. Afterwards, their child vertices could get the
values according to the conditional probabilities. Once all the
vertices are visited, a new sample is obtained.

C. Modified Multi-Objective Bayesian Optimization
Algorithm

To better approximates the real distribution, N is required
to capture adequate samples. To this end, MOBOA use a pop-
ulation with large N0. For instance, [32] uses a population
with hundreds particles, which however takes huge computa-
tion cost. The key challenge thus becomes obtaining sufficient
samples just upon small population.

Traditionally, MOBOA obtains the Bayesian networks fit-
ting non-dominated archive N as Eq. 8. However, N is
updated with iterations, where repeated solutions and newly
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Fig. 4. The detailed procedure of MMOBOA.

dominated solutions would be removed from N . Note that,
these solutions however contribute little to establish the
Bayesian network. Therefore, it is necessary to make full use
of the information in these solutions to generated sufficient
samples.

To fully utilize the information in these solutions of the
original MOBOA, we design an additional archive A to pre-
serve such solutions, namely, MMOBOA. Naturally, A has
a limited capacity, denoted by MA. When N is obtained in
each iteration, the number of non-dominated solutions in A,
denoted as NA, is assessed and A is updated according to the
following rules,
• NA is less than MA, then A← A ∪N ;
• Otherwise, NA − MA dominated solutions are removed

from A. Then, A← A ∪N .
Thereafter, MMOBOA applies a Bayesian network to estimate
the joint probabilistic distribution of solutions in A formulated
as follows,

p(u) ≈ p(A,G) =
n∏

i=1

p(vi|πi). (9)

The process of MMOBOA is illustrated in Fig. 4.
Analogously, MMOBOA uses a population U = {u1,
u2, . . . , uN} to search for non-dominated solutions, in which
N � N0. Non-dominated solutions selected from the popu-
lation are preserved in non-dominated archive N . Then, the
additional archive A keeps a copy of N . Meanwhile, the
number of solutions in A is checked via above two rules.
Afterwards, a Bayesian network encodes the joint probability
distribution of A and the new population is also sampled from
obtained Bayesian network. Repeat the above process until the
maximum iteration is reached. Finally, the non-dominate solu-
tions in N make up the approximate Pareto set. It is observed
from Fig. 4 that solutions are only removed from A when
the maximum capacity is reached. Thus, some feasible solu-
tions might have multiple copies in A. In this way, one could
get adequate samples to establish Bayesian networks upon
acceptable computation.

To apply MMOBOA to the DPNR model (1a)–(1h), the
calculation of objectives is necessary. Note that all the objec-
tives are computed under the state of minimum curtailment

Algorithm 1 Gradual Curtailment
• Initialize curtailment Ci = 0;
• Step 1: If Pξi > 0, go to step 2. Otherwise, go to step 7;
• Step 2: Substitute Pξi and Qξi into Eqs. (1g) and (1h),

respectively. Calculate actual injected active power P∗i
and reactive power Q∗i ;

• Step 3: Replace Pi and Qi with P∗i and Q∗i in Eqs.
(1e)-(1f), respectively. Solve the power flow equations
via Newton-Raphson algorithm and obtain the values of
system states x;

• Step 4: Substitute x into Eqs. (1e)-(1f) and obtain
calculated injected power Ps

i and Qs
i , respectively;

• Step 5: If the values of |Ps
i − P∗i | and |Qs

i − Q∗i | are
both smaller than given tolerance εpf and x fulfills con-
straints (1c)-(1d), go to step 7. Otherwise, curtail active
wind power and a new integrated power output P′ξi

is
yielded;

• Step 6: Update Ci = Ci + (Pξr − P′ξr
), Pξr = P′ξr

and
return to step 1;

• Step 7: If the values of |Ps
i − P∗i | and |Qs

i − Q∗i | are
both smaller than given tolerance εpf and solution x meet
constraints (1c)-(1d), Ci = inf. Otherwise, keep Ci.

Algorithm 2 Solve Proposed DPNR Model With MMOBOA
• Step 1: Load buses and branches data of the DPN.

Set the tolerance of Newton-Raphson algorithm εpf and
maximum iteration times is M;

• Step 2: Generate K wind power samples S via scenario
reduction elaborated in Appendix A;

• Step 3: Randomly initialize U = {u1, u2, · · · , uN}. Set
N = NULL, A = NULL and m = 1;

• Step 4: Set j = 1;
• Step 5: Change the topology of DPN by open the tie

switches in uj;
• Step 6: For each sample in S, apply gradual curtailment

via Algorithm 1. Calculate expectations of curtailment of
wind power and voltage deviation via Eqs. (2) and (3),
respectively;

• Step 7: Set j = j+ 1. If j = N, go to step 8. Otherwise,
go to step 5;

• Step 8: Selected Pareto solutions as Appendix B and
update N . Update A = A ∪ N and check the number
of solutions in A via the above two rules;

• Step 9: Establish G fitting A via K2 Algorithm [34].
Sample N new solutions {u1, u2, · · · , uN} from obtained
G and replace U with them;

• Step 10: Set m = m + 1. If m reaches M,go to step 11
Otherwise, go to step 4;

• Step 11: Apply the technique for order preference by
similarity to an ideal solution (TOPSIS) [35] to choose
solution from N . The selected one is the final dispatching
solution.

detailed in Algorithm 1. After terminates at the minimum
curtailment, the objectives could be accordingly calculated
as (2) (3) and (4), respectively.
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Fig. 5. Modified IEEE-33 system.

The procedure of DPNR is detailed as Algorithm 2. Initially,
it can be observed that a scenario-reduction method is used
to generate various wind power samples. Then, we adopt
the method proposed in [24] to randomly initialize the pop-
ulation, where each particle represents a candidate solution.
Specifically, for each fundamental loop of DPNs, the tie switch
is randomly picked, whose corresponding branch is thus dis-
connected. Meanwhile, the non-dominated archive N and the
additional archive A are initialized. In each iteration, each par-
ticle is used to calculate curtailment of wind power and voltage
deviation. Afterwards, N and A are updated. Then, a Bayesian
network G is used to estimate the joint probabilistic distribu-
tion of A via K2 Algorithm. At the end of each iteration, a new
population is sampled from G. If iteration times reaches the
threshold, the process of MMOBOA terminates and the Pareto
set, i.e., N is obtained in the final iteration. It is noteworthy
that we use technique for order preference by similarity to an
ideal solution (TOPSIS) [35] to make the final decision, which
is the dispatching solution of the proposed stochastic DPNR
model.

IV. CASE STUDIES

A. Simulation Settings

We conduct case studies on a modified IEEE-33 system [10]
shown in Fig. 5, which consists of 33 buses and 37 branches.
Therein, each wind turbine is assumed to have an identical
dynamics, i.e., double-fed induction generator with a constant
power factor. Specifically, its rated power is 17.5 KW, and
the cut-in, rated, cut-out speeds are 4 m/s, 12.5 m/s and 20
m/s, respectively. The number of wind power samples after
the scenario reduction is set as 30.

To demonstrate the merit of the proposed MMOBOA, we
have applied four mainstream optimization algorithms sum-
marized in [36] to the DPNR model as well for comparison.
These closely-related algorithms include multi-objective parti-
cle swarm optimization (MOPSO), multi-objective evolution-
ary algorithm based on decomposition (MOEA/D), strength
Pareto evolutionary algorithm II (SPEA-II) and non-dominated
sorting genetic algorithm II (NSGA-II). Specifically, the per-
formances of these five algorithms are compared in 30 inde-
pendent runs. As for Newton-Raphson algorithm carried out

TABLE I
THE PREDICTED WIND SPEEDS AND NUMBER OF WIND TURBINES

AT EACH BUS

by the software of MATPOWER [37], εpf is set as 10−6

(p.u.). In addition, we identically set the size of population
N as 30 and the number of maximum iteration M as 300.
Regarding MMOBOA, the capacity MA of the additional
archive A is 1000, so as to accommodate sufficient historical
non-dominated solutions.

As for the metric comparison of the these evolutionary algo-
rithms, we use four indices, i.e., the hyper-volume (HV), the
mean distance (MD), the spacing (SP) index and the scale of
Pareto front [38], [39]. More precisely, HV is the volume cov-
ered by the non-dominated solutions when the reference point
is given, which is an index to assess both the convergence
and the diversity of obtained Pareto fronts. MD represents the
mean Euclidian distance between Pareto front and the refer-
ence point, which represents the convergence of algorithms. SP
is adopted to estimate diversity whereas searching efficiency
index is quantified by the number of solutions with respect
to Pareto set (NSPS). Moreover, HV, MD and SP indices are,
respectively, calculated by Eqs. (10a)-(10c),

HV(N , r0) = ∪NN
i=1 Vol(F(ui), r0), (10a)

MD(N , r0) = 1

N

N∑

i=1

‖F(ui)− r0)‖2, (10b)

Spacing(N ) = 1

N − 1

N−1∑

i=1

‖F(ui)− F(ui+1)‖2, (10c)

where r0 is the reference point, NN is the number of solutions
in N , and Vol(·) is the volume between two points. Therefore,
a greater NSPS value indicates superior searching ability of
the algorithms, larger HV and MD values imply a better con-
vergent Parent front, whereas a smaller SP value corresponds
to a well-distributed Pareto front. Accordingly, a good solu-
tion selection is a compromise between a quick convergent
rate and a nicely-distributed Pareto front.

In addition, mixed integer programming (MIP) is commonly
used to handle with DPNR models. Especially, it has the
merit that local optimal solution is guaranteed [40]. Therefore,
MIP is also applied to proposed DPNR model. Therein, the
weighted sum method is used to combine the objectives and
the weights are all equal. Specifically, it is implemented in
GAMS and the MINLP solver SBB is used to solve the model.

As shown as Fig. 5, the voltage amplitude [Vmin
i , Vmax

i ]
defined in Eq. (1) is supposed to maintain within the scope of
[0.9, 1.1]. In addition, wind turbines are supposed to install on
the buses 13, 21, 24 and 31. The predicted wind speeds at each
bus and corresponding number of wind turbines are listed in
Tab I. Note that each bus is connected with 10 wind turbines.
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Fig. 6. The best Pareto fronts distribution obtained by MMOBOA.

TABLE II
THE OBJECTIVE FUNCTIONS OF INITIAL STATE AND DPNR

Moreover, the standard deviation of wind speed prediction
error is set to 8% of corresponding forecasted speed.

B. Simulation Results and Analysis

The best Pareto fonts obtained by MMOBOA are shown
Fig. 6. Upon obtaining sufficient solutions, TOPSIS is applied
for decision making. As shown in Fig. 6, solution M with
coordinate (0.0091, 0.0292, 4) is selected. In order to ver-
ify the performance of solution M, we make comparison
with the extreme cases, i.e., the solution P (0, 0.0520, 4),
Q (0.0209, 0.0159, 6) and R (0.0147, 0.0323, 0), respectively.
Therein, the curtailment of solution P is 0, which maximizes
the absorption rate of wind power. However, the large expec-
tation of voltage deviation could lead to voltage instability.
On the contrary, solution Q has the merit of minimizing the
voltage deviation, which is however at the cost of a small
share of wind power. Moreover, solution R minimizes the num-
ber of switching. Thereby, the topology of the DPN remains
unchanged. As a remedy, solution M considers absorption rate,
voltage stability and number of switching, which is a suitable
tradeoff among these three objectives.

In order to investigate the performance of DPNR, Table II
lists two objective functions of the initial states and DPNR. It
is observed that the curtailment of wind power is 147kW under
the initial state case, which is much larger than that of DPNR.
Meanwhile, the voltage deviation has been decreased from
0.0323 to 0.0292. Therefore, DPNR increases the absorption
rate of wind power whereas keeping the voltage stable, which
is desirable in real applications.

Moreover, Fig. 7 shows the system states and corresponding
variations. It is observed that no constraints (including the
most important voltage security constraint) are violated, which
verified the effectiveness of proposed stochastic DPNR model.

Fig. 7. The evolution of system states, i.e., Voltage amplitude, voltage angle
and line current, along increasing number of buses.

Fig. 8. The variation of system states corresponding to wind power
absorption.

To show the relationships among above system states and wind
power curtailment, we choose the states with large variance,
i.e., voltage amplitude of bus 23, voltage angle of bus 23 and
line current at line 1. Fig. 8 demonstrates their variation as
wind power absorption increases. It is observed that all of the
selected states have nonlinear relationships with wind power
absorption for the complexity of power flow equations.

To further verify the effectiveness of the stochastic DPNR
model, we further conduct DPNR and MMOBOA with fixed
forecasted wind speed. Fig. 9 shows the voltage deviation of
33 buses corresponding to 30 wind power samples. Recall
that the voltage amplitude Vi should be keep in the scope of
[0.9, 1.1]. If only considering forecasted wind speed, the volt-
age deviation will grow larger, which always leads to unstable
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Fig. 9. Voltage deviation comparison between the routine DPNR and
the present stochastic DPNR over dispatching solutions corresponding to
30 remained wind power samples. Smaller voltage deviation (lighter color)
indicate superior voltage stability.

TABLE III
THREE PARETO FRONTS’ DISTRIBUTION COMPARISON OF THE

FIVE ALGORITHMS

voltages. Specifically, the voltage deviation of bus 30 is 0.1,
which is about to violate the secure constraints. In comparison,
by using the present stochastic DPNR, one obtains more stable
voltage, whose amplitudes keep larger than 0.92. Therefore,
the uncertainties of wind speed should be taken into account
when establishing DPNR.

C. Comparison With Other Evolutionary Algorithms

To compare MMOBOA with other four algorithms (i.e.,
MOPSO, MOEA/D, SPEA-II and NSGA-II), Table III lists
the mean distances between Pareto set and panels as well
as the SP index, where the minimal values are marked bold.
Remarkably, MMOBOA almost keep the closest distances to
all the x − z, x − y, y − z planes (just a little bit higher than
MOEA/D to y− z plan), which indicates it has lower curtail-
ment of wind power and lower voltage deviation. Meanwhile,

TABLE IV
HV, MD AND NSPS COMPARISON OF THE FIVE ALGORITHMS

Fig. 10. HV evolution comparison of the five algorithms (i.e., MMOBOA,
MOPSO, MOEA/D, SPEA-II and NSGA-II) along increasing iterations.

lower SP indicates these solutions are more evenly distributed.
Therefore, MMOBOA beats other algorithms in searching for
evenly distributed solutions.

To quantify the Pareto fronts of the algorithms under inves-
tigation, the reference point r0 is set to (1.2, 0.15, 10), which
could also be replaced by other points. The comparison of
three indicators is listed in Table IV. More precisely, regard-
ing HV, MMOBOA has the largest value which indicates it
converges to the Pareto front most quickly. Meanwhile, high
MD of MMOBOA implies more convergent Pareto optimal
solutions. MMOBOA obtains 35 solutions, which is close to
MOPSO and is larger than that of other approaches. Thus, the
searching superiority of MMOBOA is verified.

We compare the HV evolution of the five algorithms over
30 independent runs in Fig. 10. It is observed that MMOBOA
obtain the best nondominated solution distribution as it finally
gets the largest HV value. Moreover, MMOBOA obtains these
solutions within 250 iterations whereas MOPSO within 270,
MOEA/D within 10, SPEA-II within 290 and NSGA-II within
300, respectively. Although MOEA/D converges to the approx-
imate Pareto front more quickly, the obtained solutions are
unacceptable as they are much less convergent. Regarding
the objective of achieving learning stability via small popu-
lation size N scenarios, the merit of using additional archive
in MMOBOA is thus verified.

To further show the virtue of the proposed MMOBOA,
we compare its optimal solutions of three objectives with
a mainstream algorithm MIP in Tab V. It is observed that
MMOBOA outperforms MIP as the objectives of the former
are closer to those of the latter under a same initial state. This
implies that MIP is more likely to be trapped in local optima.
Moreover, to obtain the Pareto front, MIP needs to handle vari-
ous combinations of weights, which requires multiple runs. As
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TABLE V
THE OBJECTIVE FUNCTIONS OF DISPATCH SOLUTIONS OBTAINED BY

MMOBOA AND MIP

Fig. 11. Modified IEEE-69 system.

TABLE VI
THE OBJECTIVE FUNCTIONS OF INITIAL STATE AND DPNR FOR THE

MODIFIED IEEE-69 SYSTEM

the dimension of objectives grows, the possible combinations
increases exponentially. Thus, if high absorption rate is pur-
sued as the present study, MMOBOA should be the better
choice. However, if it suffices to get a feasible solution, MIP
is more preferable, as it finds such a solution more quickly
than MMOBOA (3s VS 65s).

D. Scaling Test: Simulations on a Large System

To show the generality of the present scheme, we con-
duct numerical simulations on a larger benchmark system, i.e.,
a modified IEEE-69 system consisting of 69 buses and 73
branches as shown in Fig. 11. The wind turbines are installed
on the buses 4, 28, 36, 47, 51 and 53 with corresponding pre-
dicted wind speeds of 11.5 , 6.8, 7.1, 9.2, 8.3 and 9.5 m/s,
respectively. Other parameters are set the same as those of
IEEE-33 system.

The objectives under a prescribed initial state and DPNR
are listed in Tab VI. It surfaces that both the absorption rate
and voltage stability are enhanced via two switching opera-
tions. From the efficiency point of view, MMOBOA completes

300 iterations with 145 seconds. Compared to 65 seconds of
IEEE-33 system with 33 buses and 37 branches, the calcula-
tion efficiency of MMOBOA keeps high as well. Thus, the
generality of the proposed model is verified.

V. CONCLUSION

This article proposes a stochastic DPNR model which com-
promises absorption rate of wind power and voltage stability.
Thereby, a Bayesian learning-based evolutionary algorithm,
i.e., MMOBOA, is developed to search for the optimal Pareto
fronts. Case studies conducted on modified IEEE-33 and
IEEE-69 systems manifest that, the proposed scheme guaran-
tees high penetration rate of wind power and maintains stable
voltage. Moreover, the superiority of the present MMOBOA
in terms of searching for Pareto set is intensified for smaller
sized population.

APPENDIX A
SCENARIO REDUCTION FOR GENERATING WIND

POWER SCENARIOS

Wind speed is calculated through forecasted speed and
prediction error [41]. Prediction error is supposed to obey
Gaussian distribution, which has expectation 0 and standard
deviation σ . Wind speed can be formulated as follows.

v = vref + verr, verr ∼ N(0, σ 2), (11)

where vref is the forecasted speed and verr denotes the corre-
sponding prediction error.

Once wind speed is obtained, the output of wind turbines
can be calculated through the following equation [42].

P =

⎧
⎪⎪⎨

⎪⎪⎩

0, v < vin,

(a+ bv3), vin ≤ v < vra,

Pra, vra ≤ v < vout,

0, v ≥ vout,

(12)

where a = Prav3
in

v3
ra−v3

in
, b = Pra

v3
ra−v3

in
. vin, vout, vra are cut-in, cut-

out and rated speeds, respectively, and Pra is the rated active
power output.

When wind turbines connect with DPNs, the influence of
reactive output can not be ignored either. Here, we adopt
wind turbines with constant power factor cos ϕ. Thus, the
corresponding reactive power could be evaluated as Q =
P
√

1−cos2 ϕ

cos ϕ
.

In [9]–[11], Monte Carlo methods are applied to generat-
ing wind power scenarios. Analogously, this article adopts
Latin hypercube sampling with Cholesky decomposition
(LHS-CD) [43]. More precisely, N initial scenarios S0 =
{ξ1, ξ2, . . . , ξN} are generated according to the wind power
model. For each scenario ξi, it is composed of the wind power
output Pξi , Qξi and their corresponding probability ρi. To
avoid the heavy calculation burden on large initial scenarios
number N, scenario reduction is used [21], [22]. We picks
K representative scenarios S = {ξ1, ξ2, . . . , ξK}, in which
K � N.

Algorithm 3 shows the procedure of K2 Algorithm, which
is used to obtain the edges of a Bayesian network. Here, A
denotes the database.
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Algorithm 3 K2 Algorithm
• Step 1: Initialize the edge set E = NULL. Input database

D, a set V with n vertices;
• Step 2: Set i = 1;
• Step 3: Initialize the parent set and the candidate parent

set as πi = NULL and zi = V , respectively;
• Step 4: Calculate Gainold;
• Step 5: Select the vertex vj that maximizes Gain(vi, πi ∪
{vj});

• Step 6: Calculate Gainnew(vi, πi ∪ {vj});
• Step 7: If Gainnew > Gainold, set Gainold = Gainnew ,

zi = zi − {vj}, E = E ∪ {vj → vi} and πi = πi ∪ {vj}, and
then go to step 8. Otherwise, go to step 9;

• Step 8: If zi = NULL, go to step 8. Otherwise, go to step
5;

• Step 9: Set i = i + 1. If i > n, go to step 9. Otherwise,
go to step 3;

• Step 10: Output the edge set E.
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