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Analysis of Frequency Dynamics in Power Grid: A
Bayesian Structure Learning Approach

Hannan Ma and Husheng Li

Abstract—The oscillation of frequency in power grid is studied
in this paper. The possibility association of frequencies measured
at different locations are modeled by a Bayesian network with the
logical structure learned using Bayesian structure learning and
real measurements in the U.S. power grid. Frequency data analysis
and the detection of incorrect frequency measurements (caused
by equipment error or malicious attack) are performed over the
logical Bayesian network structure. Such application of Bayesian
network is a powerful mathematical tool in computational intelli-
gence. Without the physical power network topology information,
a two-branch search-and-score structure learning algorithm with
-1 regulation is proposed to learn the logical structure, achieving
around 97% correct prediction rate for future frequency and 92%
detection rate for false frequency data with 2% false alarm rate.
The tool of epidemic propagation over this logical network is also
exploited to analyze the propagation of frequency changes. Using
the Kolmogorov-Smirnov test, such logical structure is demon-
strated to be well approximated by the Small World network
model. And the propagation of frequency changes is demonstrated
to be described by the Susceptible-Infectious-Susceptible (SIS)
model quite well. The Bayesian structure obtained from the real
measurement is statistically validated using a 5-fold training data
and the Pearson system.

Index Terms—Artificial intelligence, dynamics, frequency esti-
mation, inference mechanisms, security.

I. INTRODUCTION

M ODERN electricity power infrastructure is vulnerable
against many forms of natural or malicious physical

events nowadays [1]. It is required in the U.S. power grid that
the frequency deviation from the standard 60 Hz be within 0.2
Hz. A significant frequency deviation may cause system insta-
bility or may damage electronic devices. As a consequence, the
dynamics of frequency become one of the most important met-
rics in power grids [8]. Hence it becomes the key task to anal-
ysis the frequency dynamics and to understand the propagation
of frequency oscillation.
System dynamics could be fully modeled using Swing

Equation [2], but it requires physical topology information and
detailed system parameter which are sometimes unavailable to
the public. Furthermore, such methods are too complicated to
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gain insights in large scale power network. Most of past works
are based on complicated modeling of physical components in
power system. To name a few, [9] used nonlinear system theory
to predict the periodic fluctuation of power system voltage
flickers. In [10], [11], statistical methods were applied for long
time frequency change rate estimation and dynamic stability
analysis using Kalman filter.
In a sharp contrast, our study is a data driven method and

uses a mathematical phenomenological model. Instead of fo-
cusing on the physical topology of power system, in this paper
we focus on how to obtain and apply a logical network struc-
ture. We adopt a data driven method and apply the Bayesian net-
work, a powerful mathematical model in computational intelli-
gence and machine learning [5]. Using the structure learning
algorithm with real frequency measurements we obtain a logical
structure for the frequency dynamics. Such Bayesian network
structure is then used to predict the future frequency and de-
tect possible false data. We also apply the epidemic propagation
theory in social networks [3], [4], to show this logical structure
could model the spread of significant frequency changes over
the power network.
In the last decade, Bayesian network has been applied in fault

diagnosis and reliability assessment of power grids, e.g., in [12],
[13]. Different from them, we focused on learning the Bayesian
network for a large number of power network nodes and under-
standing how such structure is related to the power network dy-
namics. There are also studies using complex networks in power
systems. Critical nodes in complex networks are analyzed to
study the vulnerability, e.g., in [14], [15]. Although the topology
also plays an important role in our model, we are more focused
on analyzing the dynamics over the learnt topology. [16] pre-
sented an excellent study on dynamics of cascading failures in
power network using topology analysis and a method similar
to structure learning. The difference of our paper is that we are
more data driven and more focused on frequency dynamics with
epidemic model instead of cascading link failure. Note that [17]
analyzing human brain MRI images had a similar procedure of
this paper, but with less discussion on structure learning, pre-
diction and further application. Although Bayesian network is
related to soft computing, artificial intelligence and data mining,
the application of Bayesian network is more of a computational
intelligence case. The application of Bayesian network in neu-
roscience and bioinformatics have long been enlisted into the
scope of the Journal of Computational Intelligence in Bioinfor-
matics, the Computational Intelligence and Neuroscience pub-
lished by Hindawi, and the book Innovations in Bayesian Ne-
towrks: Theory and Applications is one of Springer’s “studies
in Computational Intelligence” books.
Using frequency measurements in the Frequency Monitoring

Network (FNET) [6] with Frequency Disturbance Recorders
(FDRs) shown in Fig. 1, we obtained the logic structure using
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Fig. 1. The locations of FDRs in North America.

Bayesian Structure Learning (BSL) [5], with each node repre-
sents the frequency at a FDR and each edge models the pos-
sibility association between two FDRs. The K-2 algorithm [7]
is a popular BSL algorithm which uses a predetermined order
for nodes and finds directed edges in a sequential manner. We
will show that the K-2 algorithm tends to generate many un-
necessary edges in modeling the power network, resulting in
over learning [5]. Hence, we propose an iterative BSL algo-
rithm with an -1 regulation to remove the over-learned edges,
which attains a significant performance gain and does not re-
quire a predetermined order. The resulting structure is validated
using 5-folds in training data.
Based on the Bayesian network structure learned from the

data, we carried out the following two tasks for analyzing the
frequency dynamics in power grids:
• The short-term future frequencies are predicted based on
current measurements and the Bayesian network structure.
The correct rate of prediction is shown to be around 97%.
We also tested the performance of detecting false data
caused by sensor malfunction or intentional attack using
the Bayesian network structure. The detection rate is
shown to be 92% with a 2% false alarm rate.

• We model the propagation of frequency fluctuation as
the spread of epidemic disease and show the logical
structure describes the frequency dynamics. The Kol-
mogorov-Smirnov (K-S) test shows that this Bayesian
structure can be approximated by a Small World network
model [3]. Then we describe the frequency change prop-
agation using Susceptible-Infectious-Susceptible (SIS)
model [4] in a Small World network. The validity of
the model is well demonstrated using numerical results
showing that both the SIS model and the logical network
are consistent with the frequency measurement data.

In summary, our main contribution is using Bayesian network
structure learning to obtain a representation of the logical struc-
ture of frequency dynamics in power grid, which is used to pre-
dict future frequency, detect attacks, and model frequency dy-
namics.
The remainder of this paper is organized as follows. A brief

introduction to Bayesian network is given in Section II. The

Fig. 2. A Bayesian network to model frequency dynamics in power grid.

Fig. 3. The Bayesian network to infer the state of node F1.

proposed learning algorithm is then explained in Section III
(a brief introduction to conventional K-2 structure learning al-
gorithm is in Appendix). Then the Bayesian network structure
learned from the proposed algorithm and real measurements is
in Section IV. The structure is then applied for frequency pre-
diction and detection in Sections V, VI. The application in epi-
demic propagation modeling is in Section VII. The conclusions
are drawn in Section VIII.

II. INTRODUCTION TO BAYESIAN NETWORK

We use Bayesian network to model the frequency dynamics
in power grid in both spacial and time domains. Details about
Bayesian network could be found in [5].
For locations in the power grid, the frequency measure-

ment of each FDR at one time slot is modeled as a random vari-
able and represented by a node in Bayesian network. The
possibility associations among frequency measurements at dif-
ferent sampling times at different locations are represented by
directed edges between nodes. For example, the Bayesian net-
work shown in Fig. 2 is a directed acyclic graph consisting of
10 nodes (with over two different time slots) and di-
rected edges. Focusing on that represents the frequency
for node at time , we denote by its
parent nodes that directly point to . A subgraph of Fig. 2
shown in Fig. 3 could be used to infer the frequency value of

. Fig. 3 shows that is dependent on its parents and
is conditionally independent of non-parent nodes and .
Mathematically, given the values of the parents, we have

(1)

Furthermore, the joint distribution could be factorized into the
product of conditional probability distributions (CPDs) which
are the parameters of the Bayesian network, i.e.,

(2)

With such a Bayesian network structure and the corresponding
CPDs, we can accomplish the following tasks:
• Frequency Prediction: With frequency measurements at
time as , probabilities of future frequencies at

could be inferred by decision rule:

(3)
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• False Data Detection: the frequency prediction is of
high accuracy. If there is a large gap between the received
measurement and the prediction , we can claim
that there is probably something wrong in the received fre-
quency report.

• Modeling the Frequency Dynamics: If considering
the propagation of frequency fluctuations as epidemic
spreading over a social network, then we prove such social
network is the logical Bayesian network structure. This
gives insights on frequency dynamics in power grids.

These applications will be studied in Sections V, VI, and VII.

III. TWO-BRANCH ITERATIVE STRUCTURE LEARNING
ALGORITHM

In this section we propose a novel structure learning algo-
rithm that iteratively searches in two directions among all the
nodes to look for the best parents. A brief introduction to the
conventional K-2 algorithm is given in Appendix I for self-con-
tainedness. Readers unfamiliar with the K-2 algorithm can read
the Appendix to understand the basic principles of the algo-
rithm, which helps to understand the discussion in this section.
Readers that are only interested in the applications and conclu-
sions in power grid can skip this section.
The new algorithm has the following features:
• The algorithm adopts random ordered inputs. Hence we
do not need to find an optimal order or bear the risk
caused by sup-optimal ordering, which is also discussed
in Appendix I.

• A two-branch iterative algorithm is proposed to enlarge the
candidate parents searching space, with mutual informa-
tion is used to optimize the searching space in order to con-
trol the added computational complexity. In this balanced
way more nodes that are highly probable to be parents are
included in the searching space to describe the cause-effect
possibility associations.

• An -1 regulation [23] is applied to constrain on the struc-
ture complexity and to eliminate the possibility of over
learning the structure.

We expand the searching space of potential parents for to
all other nodes for a random input order, which is given by

(4)

This enlarges the searching space but increases computational
complexity. To optimize it and reduce complexity, candidate
nodes in and are sorted by their mutual information
based on the Minimum Description Length principle [18]:

(5)

where or and all the terms in (5) are needed to
compute the Cooper-Herskovits (CH) score function (13) (the
definition of the CH score function can be found in Appendix I);
therefore the only extra thing to do is computing (5) and sorting.
A threshold is set manually so that all nodes have at least
MaxParent number of candidate parents: nodes and are
claimed to be independent if , and independent
nodes are excluded from .
For each , the algorithm scans each . One more

parent is added to after each scan until adding any more
edges cannot increase the score or the maximum number of par-

ents has been reached. If any cycle is formed, we
break the edge that produces the least score. If no more edges to
add or no cycle detected, the algorithm gives the structure
which is the connection matrix if having
edge .
The proposed algorithm conducts a two-way scan in input

nodes, namely a forward branch scanning from to and
a backward branch scanning backwards. As shown in Fig. 4,
after the random order is generated by an interleaver, in the for-
ward branch after scanning node we have with structure
information among nodes in known and connections for
nodes in remain unknown. At the same time, in the back-
ward branch, is scanned yielding with struc-
ture information for nodes , which is useful

for the forwarding branch. Meanwhile, information in re-
garding nodes in is useful for the backward branch.
Hence both branches could share structure information after
scanning each node and merge the structure information from
both branches by Boolean algebra conjunction or binary logic
and: . The pseudo code is in Algo-
rithm 1 with all symbols defined in previous and in Appendix I.
This iterative algorithm learns the correct Bayesian network for
ALARM data-set-3 [7], a benchmark testing problem for BSL
algorithms, consisting 37 nodes and 46 edges. It also yields an
average of 8.39% gain in the total score over the conventional
K-2 algorithm, which implies more accuracy in the structure
could be achieved by the proposed algorithm.

Algorithm 1 Pseudo Code for Two-Branch Iterative
Algorithm

Input: Randomly ordered Nodes , training data
Output: network structure
for do
for all nodes , forward branch do
initialization Parent set ;
while got updated do
initialization ;
while do
for all candidate parent nodes do
temporary parents ;
get structure where

;
score on ;

end for
if The score is enhanced then
Accept new parents and update parent

;
;

end if
end while
Break cycles if any;
Do similar step in the backward branch, merge

end while
end for
Decide whether the iteration should be terminated;

end for

-1 Regulation has been applied in structure learning
[23]–[25] in order to control the size and degree of the obtained
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Fig. 4. Structure for the iterative two-stage algorithm.

structure and to resolve the over learning problem. In the
proposed two-branch algorithm, the local structure learning on
is to find to maximize the -1 regulated CH function:

(6)

where in (13), both defined in
Appendix I. Here we use logarithm to make the final score to
be sum of all local scores; and we apply numerical algorithm
in [25] to solve this optimization problem.

IV. BAYESIAN STRUCTURE LEARNING RESULTS

The proposed two-branch BSL algorithm with -1 regula-
tion is applied on real frequency measurements. We compare
the logical structure learned by three different BSL algorithms:
the conventional K-2 algorithm that runs 500 random input or-
ders and choose the structure with highest score; the iterative
BSL algorithm without using the -1 regulation, which is es-
sentially the two-branch iterative version of K-2; and the itera-
tive BSL with -1 regulation. We demonstrate that the iterative
BSL with -1 regulation achieves the best performance. The re-
sulting structure will be applied in the next two sections for ana-
lyzing the frequencies in power grids. FNET provides real time
frequency measurements, collected from FDRs located
across North America around the same time every day averaged
over one week and quantized into 7 levels with edges 59.9 Hz,
59.95 Hz, 59.99 Hz, 60.01 Hz, 60.05 Hz, 60.1 Hz . The sam-
pling interval is 100 ms. The Bayesian network is trained using
8000 training samples with and 5-fold val-
idation. Another 1000 samples collected after training data are
then used to test prediction performance.
The structures of conventional K-2 algorithm failed the cross

validation. Fig. 5 has the highest score among 500 random or-
ders. Compared with Fig. 7 we observe it lacks several impor-
tant edges. Compared with FDR map Fig. 1, the node in Mani-
toba Canada is wrongly isolated.
The structure of iterative K-2 algorithm without -1 regula-

tion is in Fig. 6. Compared with the -1 regulated version in
Fig. 7, it is obvious that without constraints on structure com-
plexity the greedy nature of the K-2 algorithm over learned
the structure. With -1 regulation, we can observe from the
structure in Fig. 7 that the western and eastern America power
grid components are roughly separated. The structure is over-
laid onto the map of North America shown in Fig. 8. According

Fig. 5. Structure learned from conventional -2 algorithm.

Fig. 6. Structure learned from iterative version of -2 algorithm without L-1
regulation.

Fig. 7. Structure learned from regulation algorithm.

to the dynamic clustered interconnection units from FNET [6],
the eastern and western U.S. interconnection units are clustered
and separated. FDR#693 in Quebec, Canada, is in Quebec unit
according to FNET and is isolated in the structure. FDR#676
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Fig. 8. Structure learned by the two-stage algorithm with the -1 regulation
overlaid with the map of North America.

TABLE I
COMPARISON OF DEGREE FOR STRUCTURE COMPLEXITY

around Manitoba, Canada, is included in the eastern intercon-
nection units according to FNET. The structure successfully re-
covered these relationships. This consistency between the struc-
ture learning and the power grid topology demonstrates that the
structure learned with the proposed iterative two-branch algo-
rithm with regulation is more reliable.
The degrees for selected typical nodes with high, low and

average degrees are listed in Table I for comparison.We observe
that the -1 regulation removes many unnecessary edges in the
learned structure.

V. APPLICATION 1: FREQUENCY PREDICTION

We apply inference over the learned logical structure to pre-
dict the short-term future frequencies, using Belief Propaga-
tion [5] and decision rule (3). With the Bayesian network sim-
ilar to Fig. 2 showing both spatial and temporal relationships,
given the current measurement at time , we predict the quan-
tized frequency level for the next measurement at time
by computing and choose the
one yielding such highest probability as the prediction .
We define is unpredictable if

is less than 0.6 since the belief on the value of
is vague.
Simulation shows the structure obtained from the conven-

tional K2 achieves an Average Prediction Error (APE), which is
the frequency to approximate the probability of inference error

, is 5.428% while our
proposed learning algorithm with the -1 regulation achieves
an APE of 3.280%. It is reliable to predict frequency in the fu-
ture 3 minutes given past 5 minutes’ observation This means
that we can predict the frequency in the near future (in the order
of hundreds of milliseconds in our experiment) with high accu-
racy. Our proposed learning algorithm achieves a 39% relative
performance gain over the traditional learning algorithm. The
APE and Predictable Rate for typical

TABLE II
COMPARISON: PREDICTION RATE AND SENSITIVITY

TABLE III
COMPARISON: FREQUENCY PREDICTABLE RATE

nodes with low or high degree centrality are listed in Tables II
and III respectively, with sensitivity listed in parenthesis. Sensi-
tivity is computed in the same manner as [17], [20] as the worst
case error rate for all other possible parents value on each node,
and high sensitivity reflects more robustness and reliability of
the logical structure. We observe that our proposed learning al-
gorithm outperforms the traditional ones in APE, PR and sensi-
tivity, which further demonstrates its validity.

VI. APPLICATION 2: FALSE DATA DETECTION

The resulting Bayesian network structure also demonstrates
that the frequencies at different locations of the power grid are
statistically correlated. This information redundancy can be ap-
plied to detect mistakes in the frequency reports, similarly to the
error detection in channel coding. In particular it can be used to
detect possible false data attack that modifies the values of the
frequency measurement reports.
We assume that some FDRs are under attack and are sending

fake frequency data which is uniformly drawn from the 7 quan-
tization levels.1 This also happens when the FDR is malfunc-
tioning. Given FDRs, we do not know which nodes are reli-
able and which are under attack. Our strategy for detecting pos-
sible attacks is to use all past observations (containing unidenti-
fied error measurements) as evidence, and predict the measure-
ments of other FDRs using decision rule (3). We predict the fre-
quency of one FDR and then compare it with the report. If the
FDR is predictable and a large gap is detected, we claim that
the report is unreliable and the FDR is under attack or is mal-
functioning. Case of detection is when the prediction equals real
frequency for malfunctioned FDR, and false alarm is the case
when prediction is wrong by a large gap for normal functioned
FDR.
In our experiment for nodes, we randomly set 5% of

them under attack. We define a large gap between the prediction
(P) and the report (R) using relative Euclidean distance with
threshold : %.
The performance of the false data detection can be character-

ized by Receiver Operation Characteristic (ROC) curves [30]
in which both the detection and false alarm rates are plotted for

1There could be many other types of attack. We consider only one for sim-
plicity.
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Fig. 9. ROC curve of frequency attack detection.

different detection threshold , as shown in Fig. 9. We ob-
serve that the proposed learning algorithm with the -1 regula-
tion has the best performance among all three algorithms. Given
threshold set to %, the proposed algorithm can
achieve a very good detection rate of false data 92% with a rea-
sonable false alarm rate 2%.

VII. APPLICATION 3: EPIDEMIC PROPAGATION MODEL

In this section we will model the frequency fluctuation as an
epidemic propagation over the network structure learned from
real frequency measurements. In particular, we choose the SIS
epidemic propagation model [3] and use the following two ap-
proaches to show that the logical structure models the frequency
dynamic well using the SIS model:
• Direct model fitting: We optimize the parameter and di-
rectly fit the SIS state transition model and its differential
equation to the frequency data;

• Network structure oriented fitting: Starting from the logical
Bayesian structure, we derive the frequency dynamics.

These two approaches will be studied in the following two sub-
sections.

A. Direct Model Fitting

To study the frequency oscillation, we use a segment of mea-
surements with a sudden change of frequencies in the FNET,
different from the training or the testing data used previously
in learning. One minute observation of 33 FDRs located in the
eastern America during a generator trip event are plotted in
Fig. 11 with frequency against observation time, where the time
unit is 100 ms. Same as before, a logical structure is learned
from 300 data samples with sampling rate 200 ms during this
one minute time with two-fold validation, and the rest 300 sam-
ples are used to test prediction rate. In this way we achieve an
average correct rate of 92.67% with average sensitivity 77.3%.
Note that it is not applaudable to use the first 300 sample to train
as these training samples do not represent the whole frequency
dynamic behavior. Fig. 10 shows the frequency reading distri-
butions of previous 10 k normal working data in (a) and gener-
ator trip data in (b). This shows that the prediction performance
is good for both low and high frequency deviation. SIS model

Fig. 10. Frequency measurement distributions.

defines two population types: susceptible people (S) defined as
people that could be infected by the disease, and infected people
(I) defined as people that are infected by the disease. Susceptible
people contact their friends in the social network with a contact
rate and could become sick; meanwhile infected people re-
cover with a rate and become susceptible again.
Eventually all frequencies become higher. Thus using a fre-

quency threshold Hz we define two states for each
FDR node, as susceptible nodes if its frequency
and as infected nodes if . The SIS model could
therefore be described using the differential equations.2:

(7)

(8)

where and are the fractions of susceptible and infected nodes,
defined as and with

.
Given the data in Fig. 11, parameters and are optimized in

the sense of minimizing the mean square error of between
the one from the real data and the one generated by SIS model.
The best parameters are given by .
Fig. 12 shows that the SIS model in (7), (8) approximate the
FNET frequency data quite well.

B. SIS Model: Network Structure Oriented Fitting

In this subsection, we only consider the skeleton of previously
obtained Bayesian network (an undirected graph with the same
connection). In the previous logical structure for these
FDR nodes, there are edges. We consider the degree
of an arbitrary node as a random variable . Then we has
degree samples and could focus on the degree
distribution.
1) Small World and Scale Free Networks: We consider two

popular models for complex networks: the SmallWorld network

2For simplicity, here we use the simple model for homogeneous networks
in the analysis, similar to [31], [32] Actually the Bayesian network structure
obtained in the paper is heterogeneous. A rigorous modeling for heterogeneous
networks can be found in [4], [3], which will be adopted in our future work.
Anyway, our numerical results show that the simple homogeneous network can
also well approximate the real dynamics in power grids.
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Fig. 11. A sudden frequency change in the U.S. power network.

Fig. 12. Optimized SISmodel data by direct model fit comparedwith the FNET
frequency data.

model [26] and Scale Free network [3], [27], which are distin-
guished by their degree distributions:
• The Small World model’s degree has discrete poisson dis-
tribution with probability mass function (pmf) as:

(9)

with parameter and cumulative distribution function
(CDF) . Given degree data it is easy
to verify the Maximum Likelihood Estimation (MLE) of
parameter is :

(10)

where is number of degree samples.
• The Scale Free model’s degree has discrete power law dis-
tribution [4] with pmf given by

(11)

with the parameter and corresponding CDF being ,
where is a normalizing constant depending on
both the parameter and degree sample data . In our
case we ignore any isolated nodes in our structure; hence

Fig. 13. Degree distribution of the Bayesian network learned from learning
algorithm with regulation.

we have . The MLE of parameter could be
numerically obtained by solving:

(12)

2) Kolmogorov-Smirnov Test: For the logical structure
learned from data, its degree distribution is shown in Fig. 13.
We use the MLE to estimate parameters obtained from the
Bayesian network and carry out the following two hypothesis
testings and for its degree’s CDF :
• : follows the Poisson distribution ;
• : does not follow the Poisson distribution

;
• : follows the power law distribution ;
• : does not follow the power law distribution

.

Then, we apply the Kolmogorov-Smirnov (K-S) test
(Appendix II). Given the empirical cumulative distribution
function (CDF) obtained from the degree data , and a
target CDF , with parameters estimated from the degree
data, the null hypothesis is that the data has the target CDF
and the alternative hypothesis is that the data does not have the
target CDF. The results of the K-S test on hypothesis and

are:
• For Small World model, there is no evidence to reject null
hypothesis with p-value 0.0635 and MLE . Both
CDFs are plotted in Fig. 14 to show the similarity.

• For Scale Free model, the null hypothesis is rejected.
This numerical result shows that the hypothesis is accepted;
i.e., the degree of the Bayesian network topology satisfies a
Poisson distribution, or equivalently, the Bayesian structure can
be approximated by a Small World network.
Note that we need to verify that the conclusion of the K-S

test is valid. The K-S test is proved to be effective for a large
sample number . Here we have . To decide whether
this value is large enough for a significant K-S test result, we
conduct another hypothesis testing to validate the K-S test with
sample size . To that end, we have used the discrete
Pearson system [28], [29], in which a CDF having the same first
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Fig. 14. Degree distribution of Small World model fits to the degree distribu-
tion of structure learnt from data.

Fig. 15. Time evolution of as a function of time: Direct model fit SIS model,
Small World network based SIS model and real measurements.

four moments as the empirical distribution is generated and then
compared with the original empirical distribution. The mathe-
matical details could be found in Appendix III. Eventually, the
Pearson system demonstrated that the sample number 207 is sta-
tistically valid.
3) Small World Model Fitting: Under the Small World

model’s Poisson degree distribution, we have
[3], [31] (recall that and are the parameters of the SIS
model). Fitting the Small World model into the skeleton of
the logical structure learned from the frequency data, we have

. Note that in the di-
rect model fitting method we have and

, which is consistent. Thus, based on the Small
World model parameter, we use
(we use the same obtained from the direct model fitting), ob-
tain the corresponding SIS model, plot the number of infected
nodes in Fig. 15. We can see that Small World network
based SIS model can approximate the time evolution of the
frequency oscillation very well. It is similar to but better than
the result obtained from the direct model fitting during the
period when frequencies changes among nodes.

The reason for this observation might be that, for the direct
model fitting, the majority of data points to fit the number of
infected nodes are those corresponding to the stationary state of
the observed event when all nodes are infected, as well as the
stationary state before the spread of epidemic when all nodes are
susceptible. Meanwhile, the Small World structure model fitting
focuses more on the transient behavior or the state transition
dynamics of the change in the number of infected nodes, which
is the time interval of more interests. As shown in Fig. 15, the
Small World network structure oriented model fitting fits better
in that time interval. This demonstrates that the learned logic
structure represents the structure of frequency dynamics very
well.

VIII. CONCLUSION

In this paper we have studied the frequency dynamic in
power networks, using the proposed iterative Bayesian struc-
ture learning algorithm with -1 regulation to learn the logical
structure. It has achieved a high frequency prediction accuracy
and a good performance for detecting false data. By consid-
ering the frequency oscillation as epidemic propagation and
the power network as a social network, we have numerically
proved that the learned logic network can be well approximated
by the Small World network structure model to describe the
frequency dynamic. The logical network topology, instead of
the physical one, has been obtained from the structure learning
using the FNET frequency measurement data. This proposed
approach has good performance in accuracy and sensitivity, and
does not rely on topology information. Therefore our approach
is practically useful in frequency dynamic analysis with good
rate of prediction a few hundred milliseconds ahead of time
when the grid is working normally or suffering frequency
oscillation. However, our approach requires centralized data
collection and the structure learning can not support real-time
given limited computing resource.
Our future work includes:
• We will test our framework using more measurements and
heterogeneous epidemic models as stated in previous foot-
note.

• Structure updating and distributed structure learning will
be studied to make our approach support real-time com-
puting to better fit practical use requirements.

• The stationary distribution of the epidemic model will be
studied for more insights on frequency dynamics.

APPENDIX I
INTRODUCTION TO K-2 STRUCTURE LEARNING ALGORITHM

A. K-2 Algorithm and Cooper-Herskovits Function

K2 algorithm [7] is widely used in structure learning. It
greedily learns the Bayesian newtork with edge matrix

, by searching for the maximum possible number of par-
ents for each node in . The selection of the
parent nodes should maximize the score function
within some searching space. Therefore such algorithms are
also called search-and-score algorithms [18]. The score is the
Cooper-Herskovits (CH) function [7]. Under the assumption
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that searching on each node is independent, the resulting struc-
ture is I-equivalent [5] to the most probable Bayesian network
given training data :

(13)

where has distinct values; is the fre-
quency count of with being ’s number
of unique instantiation and for each .

is the number of all possible values can
take due to parents . All statistics are counted in .

B. Training Data and Cross Validation

Cross validation of the learning result helps to prevent over
learning caused by the lack of sufficient samples. Each node
comes with frequency measurements of equal length

as . The training data should be sufficient
long and exclusive with testing data. Details of a -fold
cross validation can be found in [5]. We not only need to learn
the structure due to the spatial correlation, but also the struc-
ture due to the correlation in the time domain, or the cause-ef-
fect relationship between two different sample slots. These two
structures are learned separately using different sets of training
and testing data. The Bayesian network in Fig. 2 is learned
using training data for node and
for node . The remaining testing data is used for valida-
tion by checking the inference accuracy in frequency predic-
tion. The structure corresponding to time in Fig. 3 is learned
using the training data for each node to obtain the
spatial causality between nodes. The structure corresponding to
node at time in Fig. 3 is learned using the time shifted
training data to see whose frequency
at time could influence ’s frequency in the next time slot.

C. Ordering Input in K2 Algorithm

The K2 algorithm requires an ordered input with a set of po-
tential parents for node . Thus,
implies or must proceed . This ordering ensures
the graph to be acyclic. However, it requires prior information
or other techniques such as Conditional Independence (CI) test
[19] to decide an order. Suboptimal ordering incurs inaccuracy
in structure learning [21]. As an example in Fig. 16, which is the
simplified case for the example given in Fig. 1 of [22], we sup-
pose the best structure is Fig. 16(2), where and are condi-
tionally independent given node .When is the input
order, this structure could be recovered. That is to say, when
searching the parents for node , both nodes and are con-
sidered. However, with input order , when searching
parents for node , only node is considered; then it is possible
to result in the structure in Fig. 16(1), which is not I-equivalent
to Fig. 16(2). This motivates us to propose the algorithm that
handles random orders.

Fig. 16. Illustration of inaccuracy due to random sequences of input nodes.

APPENDIX II
INTRODUCTION TO KOLMOGOROV-SMIRNOV TEST

K-S statistic is widely used in K-S test as a measure of
distance between empirical distribution functions (EDFs) and
target CDF. EDF for i.i.d. observations is:

(14)

Then, the K-S statistic for target CDF and EDF is

(15)

The reason we use K-S statistic as a measure of distance is due
to the Glivenko-antelli theorem [29] which shows that con-
verges to 0 almost surely as if the samples comes
from distribution .
The Kolmogorov Theorem [29] shows that as

converges to the Kolmogorov distribution [29]. For
p-value , the null hypothesis that empirical distribution
follows the target distribution is rejected if

with being the critical value of the Kolmogorov distri-
bution , and vice versa. Thus, we pro-
vide both the hypothesis testing results and the corresponding
p-value as K-S test results,.

APPENDIX III
PEARSON SYSTEM

The Pearson system [29] is a family of continuous distribu-
tions built in a systematical way. [28] extended the Pearson
system to the discrete case. Concisely speaking, essentially the
Pearson system uses a series of classical statistical methods
(such as Gaussian distribution and beta distribution). It adjusts
their locations and scales their distribution shapes to generate
a family of distributions that fit the first four standardized mo-
ments of the given target distribution. The resulting PDF is de-
scribed by a difference equation.
Given instances sampled from the empirical distribution

of node degrees with CDF , the Pearson system computes
another samples that are drawn from a discrete distribution
with CDF , which has the same first four moments as those
of . Using tools in Matlab, we can obtain that satisfies the
following equation:

(16)

Therefore, the target CDF and empirical CDF should
pass the K-S test. This provides us a way to validate the K-S test
by using hypothesis testing :
• : follows the Pearson system CDF ;
• : does not follow the Pearson system CDF .
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The K-S test on the above hypotheses shows that the null hy-
pothesis is accepted with -value 0.0107. This verifies that

is sufficiently large to be statistically valid.
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