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a b s t r a c t

In this paper, the energy management of a microgrid including wind turbine, PhotoVoltaic (PV) modules,
Combined Heat and Power (CHP) systems, fuel cells, power only units, heat only unit, Plug-in Electric
Vehicles (PEVs), and thermal energy storage resources for supplying electrical and thermal loads is
presented. For achieving a better management on demand side, both price-based and incentive-based
Demand Response Programs (DRPs) have been used and their impacts on reducing the operational
cost of microgrid in both grid-connected and island modes have been investigated. Also, the uncertainty
of price, load, wind speed and solar radiation are taken into account in order to obtain more realistic
results. By discretization of Probability Distribution Function (PDF) of each uncertain parameter, a set of
scenarios is generated. Then, using a scenario reduction method based on mixed-integer linear opti-
mization, the set of reduced scenarios is obtained. Two-stage stochastic programming approach is used
to minimize the operational cost in microgrid energy management. The proposed method for microgrid
energy management has been evaluated in three modes: grid-connected, grid-connected with DRPs, and
island mode with DRPs.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

With increasing electricity consumption in recent years, some
components like generation cost, emission, reliability and quality of
electrical energy have gained more importance. Microgrids are
structures that can improve all the above-mentioned components
in supplying electrical loads. A microgrid consists of Distributed
Generations (DGs), energy storages and loads (electrical and ther-
mal) which can operate in grid-connected and island modes. The
microgrid normally operates connected to the main grid but when
some disturbances such as outage occur in the upstream network,
the microgrid disconnects from main grid and goes to the island
mode and functions autonomously. As a result, the reliability of the
energy supply will be increased. The cost of generation and

emission should also be considered in energy generation. Conse-
quently, there is a need for an energy management system that can
determine the contribution of each resource in supplying the
consumer energy. Studies that are carried out in the eld of
microgrid energy management can be categorized from various
perspectives such as type of DER resources, formulation of the
energy management problem, uncertainty, solving method, and
various types of consumption management methods. In Table 1,
some of the references are categorized according to the above-
mentioned perspectives.

In fact, DGs are energy resources with low capacities that are
usually connected to distribution networks and also close to the
consumers. This proximity of DG to consumer has some benets
such as loss reduction, decreasing transmission costs, increasing
quality, and so on. The aforementioned resources are divided into
two broad categories, namely renewable and traditional. Further-
more, Energy storage systems can also be used as a microgrid
resource and play a signicant role in energy management and
dynamic issues related to microgrids. The energy storage systems
can also be divided into two general categories, thermal and elec-
trical. Studies have used different types of DG resources and storage
systems to supply thermal and electrical loads. In Ref. [1],

* Corresponding author.
E-mail addresses: alireza_soltani@elec.iust.ac.ir (A. SoltaniNejad Farsangi), sh_

hadayeghparast@vu.iust.ac.ir (S. Hadayeghparast), m.mehdinejad1369@gmail.com
(M. Mehdinejad), hashayanfar@gmail.com, hashayanfar@iust.ac.ir (H. Shayanfar).

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier .com/locate/energy

https://doi.org/10.1016/j.energy.2018.06.136
0360-5442/© 2018 Elsevier Ltd. All rights reserved.

Energy 160 (2018) 257e274



Nomenclature
Sets
t Set of time periods, ranging from 1 to 24
j Set of fuel cell units, ranging from 1 to Nfc

i Set of CHP units, ranging from 1 to Nchp

v Set of PEVs, ranging from 1 to Nv

q Set of power only units, ranging from 1 to Npo

q Set of scenarios, ranging from 1 to Nq

z Set of blocks related to operational cost of power only units
Scenario-Dependent Parameters
sort;q Solar radiation at hour t and scenario q

TCt;q
Solar cell temperature at hour t and scenario q (C)

Vw
t;q Wind speed at hour t and scenario q (m/s)

Pricegridt;q
Energy market price at hour t and scenario q ($/kWh)

Ploadt;q
Total electrical load at hour t and scenario q (kW)

PDemand
t;q

Total electrical load after load shifting at hour t and scenario q (kW)

Pwind
t;q

Output power of wind turbine at hour t and scenario q (kW)

Ppvt;q Output power of PV modules at hour t and scenario q (kW)

Input Parameters
CHP
Nchp Number of CHP units

lNG Price of natural gas ($/kWh)

hchp Efciency of CHP units (%)

Cchp;u
i

Startup cost of CHP unit i ($)

Cchp;d
i

Shutdown cost of CHP unit i ($)

bgain Excess heat of CHP unit i at shutdown time (kWth h)

bloss Heats loss of CHP unit i at startup time (kWth h)
Power Only
PMAX
q;z

Rated power of block z related to operational cost of power only unit q (kW)

Rupq Ramp up rate of power only unit q (kW/h)

Rdown
q

Ramp down rate of power only unit q (kW/h)

MUTq Minimum Up Time of power only unit q (h)
MDTq Minimum Down Time of power only unit q (h)
Npo Number of power only units

Nb Number of blocks related to operational cost of power only unit

lpoq;z
The price of power of power only unit q at block z ($/kWh)

Heat Only

lho The price of power of heat only unit ($/kWth h)

Tho;max Rated power of heat only unit (kWth)

Fuel Cell

Capfc;h2;min
j

Minimum hydrogen storage capacity of fuel cell unit j (kg)

Capfc;h2;max
j

Maximum hydrogen storage capacity of fuel cell unit j (kg)

Hfc;dch;max
j

Maximum hydrogen discharge rate of fuel cell j (kg/h)

Pfcj;max
Maximum output power of fuel cell unit j (kW)

Pfcj;min
Minimum output power of fuel cell unit j (kW)

hfc;stj
Hydrogen storage efciency of fuel cell unit j (%)

Nfc Number of fuel cell units

Cfc;pump
j

Hydrogen pumping cost of fuel cell unit j ($/kWh)

Cfc;u
j

Startup cost of fuel cell unit j ($)

Cfc;d
j

Shutdown cost of fuel cell unit j ($)

PV
ATt Ambient temperature at hour t (C)
NOT Nominal operating temperature of solar cell (C)
FF Fill factor of PV module
IMPP Current at maximum power point of PV module (A)
Isc Short circuit current of PV module (A)
Ki Current temperature coefcient of PV module (A/CÞ
Kv Voltage temperature coefcient of PV module (V/CÞ
Wind Turbine
Vci Cut-in speed (m/s)
Vr Rated speed (m/s)
Vco Cut-out speed (m/s)
pr Nominal power of wind-turbine (kW)
Demand Response
Bupt Maximum participation factor for increasing demand in price-based DRP (%)

Bdown
t

Maximum participation factor for decreasing demand in price-based DRP (%)
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(continued )

bІ;bІІ;bІІІ Price of load readiness at rst, second and third level of incentive-based DRP ($/kWh)

aІ;aІІ ;aІІІ Maximum participation percentage of electrical loads at rst, second and third level of incentive-based DRP (%)

belc Price of load curtailment ($/kWh)

bens Price of ENS ($/kWh)
PEV
hcv Charging efciency of PEV v (%)

hdv Discharging Efciency of PEV v (%)

E0v Initial level of energy in PEV v (kWh)

SOCMin
v

Minimum state of charge in PEV v (kWh)

SOCMax
v

Maximum state of charge in PEV v (kWh)

Uv Efciency of The PEV v (kW/km)

PcMin
v

Minimum charging rate of PEV v (kW/h)

PcMax
v

Maximum charging rate of PEV v (kW/h)

PdMin
v

Minimum discharging rate of PEV v (kW/h)

PdMax
v

Maximum discharging rate of PEV v (kW/h)

Heat Buffer Tank
Bmin Minimum level of energy in heat buffer tank (kWth)
Bmax Maximum level of energy in heat buffer tank (kWth)

Tb;c;max Maximum charging rate of heat buffer tank (kWth/h)

Tb;d;max Maximum discharging rate of heat buffer tank (kWth/h)

hb;c Charging efciency of heat buffer tank (%)

hb;d Discharging efciency of heat buffer tank (%)

Variables
CHP

Pchpt;i
Electrical output power of CHP unit i at time t (kW)

Tchp
t;i

Thermal output power of CHP unit i at time t (kW)

Ichpt;i
Spinning state of CHP unit i at time t

SUchp
t;i , SDchp

t;i
Start-up and shut-down states of CHP unit i at time t

Power Only
Ppot;q;z;q Output power of Power only unit q at time t, block zand scenario q (kW)

Upo
t;q;q

Spinning state of Power only unit q at time t and scenario q

Heat Only
Tho
t

Thermal output power of heat only unit at time t (kWth)

Fuel Cell

Pfc;et;j
Electrical output power of fuel cell unit j at time t (kW)

Pfc;ht;j
Equivalent electrical power of hydrogen generated by fuel cell unit j at time t (kW)

Tfc
t;j

Thermal output power of fuel cell unit j at time t (kWth)

TERfct;j
Thermal to electrical power ratio of fuel cell unit j at time t

PLRt;j Electrical output power to rated power of fuel cell unit j ratio at time t

hfct;j
Efciency of fuel cell unit j at time t

Hfc;dch
t;j

Amount of discharging hydrogen in fuel cell unit j at time t (kg)

H2fct;j
Amount of hydrogen stored in fuel cell unit j at time t (kg)

Ifct;j
Commitment state of the fuel cell unit j at time t

SUfc
t;j , SDfc

t;j
Start-up and shut-down states of fuel cell unit j at time t

Hfc;h
t;j

The amount of produced hydrogen of fuel cell j at time t (kg)

Demand Response
PDemand
t;q

Electrical load after the implementation of price-based DRP at time t and scenario q (kW)

DRupt;q Amount of load increased by implementation of price-based DRP at time t and scenario q (kW)

DRdown
t;q

Amount of load decreased by implementation of price-based DRP at time t and scenario q (kW)

Pelr;Іt;q , Pelr;ІІt;q , Pelr;ІІІt;q
Committed Electrical load at rst, second and third level of incentive-based DRP at hour t and scenario q (kW)

COSTelr
t;q

Cost of load readiness at time t and scenario q ($)

Pelct;q
Amount of load curtailment at time t and scenario q (kW)

COSTelc
t;q

Cost of load curtailment at time t and scenario q ($)

Penst;q Amount of ENS at time t and scenario q (kW)

COSTens
t;q Cost of ENS at time t and scenario q (kW)

PEV
SOCt;v;q State of charge of PEV v at time t and scenario q (kWh)
Pcvt;v;q Amount of charging power of PEV v at time t and scenario q (kW)
Pdvt;v;q Amount of discharging power of PEV v at time t and scenario q (kW)
Uct;v;q Charging state of PEV v at time t and scenario q

Udt;v;q Discharging state of PEV v at time t and scenario q

Heat Buffer Tank

(continued on next page)
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renewable DGs, which include wind turbine and PV, with fuel cells
and power only units have been used to supply electrical load, but
thermal load has not been considered. Considering the benets of
CHP systems such as reducing emission and increasing energy ef-
ciency, the use of these resources can play a signicant role in
reducing cost and emission. In Ref. [2], CHP has been applied to
generate thermal and electrical power, but the energy storage de-
vices have not been used. The Feasible Operating Region (FOR) of
CHP is also considered in Ref. [3], and the power generation cost of
CHP is linearly modeled in the total cost function. Added to that,
both thermal and electrical energy storage devices are also utilized.
In Ref. [4 and 5], in addition to considering FOR of CHP, cost of
power generation is modeled as a nonlinear relationship of the
electrical and thermal output power of CHP in the cost function.

In the process of implementing the energymanagement system,
a number of input parameters do not have a certain amount and
consequently demonstrate a probable behavior. Considering the
aforesaid uncertainties can increase the applicability of obtained
solutions under real operating conditions. The number of uncertain
parameters is different in each reference, depending on the prob-
lem statement and the assumptions. A stochastic framework is
proposed in Ref. [6] that examines the impact of load, market price,
PV and wind turbine generation uncertainties on optimal opera-
tional management of microgrids. Initially, using PDF of each un-
certain parameter and the roulette wheel mechanism, several
scenarios are generated. Then, in the process of scenario reduction,
scenarios that are more probable and similar are selected. For
modeling the uncertainty existing in the market price, wind speed,
and solar radiation, a scenario-based approach has been used in
Ref. [2].

Scenario generation and reduction techniques are employed in
Ref. [7] to investigate the effect of wind power uncertainty on
system operation. Given the fact that the microgrid is connected to
upstream network through which power sales and purchase take
place, electricity price in the upstream network can also be
modeled as an uncertain parameter that references [3] and [6] have
taken into account this uncertainty. Many methods of uncertainty
modeling attempt to treat the behavior of an uncertain parameter
as a set of scenarios.

As the number of uncertain parameters grows, the number of
generated scenarios and the time spent on calculations also in-
creases. As a result, scenario reduction technique has gained
popularity and since then several methods have been proposed in
this regard. A scenario reduction algorithm based on probability
distance is proposed in Ref. [8], that attempts to select the closest
set of reduced scenarios that have probabilistic behavior close to
the initial set. A number of references use an optimization method
for the selection process of scenarios. An optimal scenario-
reduction algorithm (OSCAR) is presented in Ref. [9] which is
formulated as a mixed-integer linear optimization problem. This
method not only reduces the probability distance between the set
of previous scenarios and the new set, but also decreases the dif-
ference between the best and worst possible output from the initial
set of scenarios versus the reduced set of scenarios. In
deterministic-unlike stochastic-modeling, certainty of data is a

basic assumption. Some studies such as [4,5,10e12,16] have used
deterministic modeling to formulate the management of microgrid
resources.

Demand response is a change in the normal electrical power
consumption pattern of consumers. DRPs fall into two broad cate-
gories, namely price-based and incentive-based. Therefore,
changes in the pattern of electricity consumption are the responses
that are given to changes in the electricity price or the incentives in
order to encourage the consumers to reduce power consumption at
times when the wholesale market prices are high. In Refs. [3,12], an
energy management is introduced that can supply consumers with
thermal and electrical loads at minimum cost. To this end, a price-
based DRP has been used. In Ref. [13], an incentive-based DRP has
been proposed in which the load curtailment is considered as a
virtual generation unit. In Ref. [14] based on the communication
between smart loads and the microgrid agent, information such as
load priority is given to the microgrid agent. Based on load infor-
mation, e.g., priority, power supply to loads is determined by
microgrid agent. Based on the priority of loads and in peak hours,
low priority loads are curtailed, medium-priority loads are shifted
to off-peak hours, and high priority loads are fully supplied. In
Ref. [15], demand side announces its load curtailment bidding and
microgrid central controller applies the accepted contracts for vir-
tual generation in order to supply loads during peak hours. How-
ever, the majority of studies have not considered both price- and
incentive-based DRPs in the energy management of microgrids
and also their impact on system operation.

There are many approaches to solve the microgrid energy
management problem. These methods can be divided into two
general categories, namely mathematical and heuristic. There are
some mathematical methods that are used in scheduling microgrid
resources such as linear programming [16], nonlinear program-
ming [10] and mixed-integer linear programming [17] and [18].
Heuristic methods like Cuckoo Optimization Algorithm [5], Particle
Swarm Optimization (PSO) [1], Whale Optimization Method [4],
Adaptive Modied Firey Algorithm (AMFA) [6], Binary coding
Gravitational Search Algorithm (BGSA) [7] and q-PSO [19] have also
been used to solve the problem of microgrid energy management.

In the present study, the microgrid energy management is
employed while considering various types of DERs and DRPs in
order to supply consumers with thermal and electrical loads at
minimum cost. As demonstrated in Table 1, the present study in
comparison to other studies has used various types of DERs in the
microgrid energy management. The aforementioned resources
include renewable resources of wind turbine and PVmodules, non-
renewable resources such as CHP units, fuel cells, heat buffer tank,
power only units, heat only unit, and PEVs. For modeling the
technical constraints of CHP units, both convex and non-convex
FORs have been considered. The majority of studies have not
considered both price- and incentive-based DRPs in the energy
management of microgrid, but in this study, both price- and
incentive-based DRPs along with modeling the cost of load readi-
ness have been used with the purpose of consumption manage-
ment. A two-stage stochastic objective function has been used to
minimize the operational cost of microgrid. Furthermore, the

(continued )

Bt Amount of energy stored in heat buffer tank (kWth h)

Tb;c
t

Charging power of heat buffer tank (kWth)

Tb;d
t

Discharging power of heat buffer tank (kWth)

Grid

Peqlt;q
Served electrical load at time t and scenario q (kW)

PGt;q Exchanged power with grid at time t and scenario q (kW)
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uncertainty of market price, electrical load, wind speed and solar
radiation is taken into account in order to obtain more realistic
results. By using the PDF of uncertain parameters and dividing
them, a set of scenarios has been generated. Then, a scenario-
reduction method based on optimization is exploited to reduce
the number of scenarios. Fig. 1 illustrates the structure of the
microgrid discussed in this paper.

The contributions of this paper are summarized as follows:

 The energy management of a microgrid, which includes elec-
trical and thermal loads, with the aim of reducing the opera-
tional cost.

 The application of DERs of wind turbine, PV modules, CHP sys-
tems, fuel cells, power only units, heat only unit, heat buffer
tank, and PEVs in the microgrid energy management. Besides,
implementing both price-based and incentive-based DRPs.

 The uncertainty of market price, electrical load, wind speed and
solar radiation are taken into account, and scenarios are
generated by discretization of PDFs of each uncertain parameter.

 The application of a scenario reductionmethod based onmixed-
integer linear optimization to reduce the number of scenarios.

 Evaluation of the proposed energy management method by
investigating and comparing the results of three case studies:
grid-connected, grid-connected with DRPs, and island mode
with DRPs.

This paper is organized as follows: section 'Mathematical model'
gives the mathematical model of DGs, DRPs, PEV, thermal energy
storage and objective function. Section 'Scenario generation and
reduction' describes the methods of generating scenarios and
reducing them. Section 'Case study' investigates three cases of grid-
connected, grid-connected with DRPs and island mode with DRPs,
to evaluate the effectiveness of the proposed method for microgrid
energy management. Finally, section 'Conclusion' gives the
conclusion of this paper.

2. Mathematical model

In this section, the mathematical model of objective function
along with operational constraints of microgrid and DERs are
presented.

2.1. DG

DG includes traditional generation units such as gas micro-
turbines and non-traditional generation units like PV modules and
wind turbines. Unlike traditional dispatchable units, the generation
capacity of renewable units are intermittent and dependent on
environmental conditions, so the output power of these units is
uncertain. In this study, traditional units of CHP, power only, heat
only, and fuel cell as well as renewable energy units of wind turbine
and PV modules are utilized.

2.1.1. CHP systems
CHP units are used to generate electrical and thermal power. The

electrical and thermal output power of CHP are dependent on each
other and form a closed curve called FOR on the CHP's power-heat
coordinate system. In this study, both rst and second type CHP
systems are investigated with convex and non-convex FORs,
respectively (Fig. 2) [3].

The operational constraints of CHP units are taken from Ref. [3].
Relations (1) and (2) investigate the conditions in which the
placement of CHP's operating point in the FOR region would be
possible.

Pchp;min

Tchp


 Ichp  Pchp  Pchp;max


Tchp


 Ichp (1)

Tchp;min

Pchp


 Ichp  Tchp  Tchp;max


Pchp


 Ichp (2)

Relations (1) and (2) can be expanded as the set of relations
(3)e(7) for the rst type CHP which has a convex FOR. According to
Fig. 2 (a), relation (3) illustrates the area below the AB line. Re-
lations (4) and (5) model the upper areas of the BC and CD lines,
respectively. Relations (6) and (7) also describe the generation
limits of electrical and thermal output power.

Pchpt;i  Pchpi;A 
Pchpi;A  Pchpi;B

Tchpi;A  Tchp
i;B



Tchpt;i  Tchp

i;A


 0 (3)

Pchpt;i  Pchpi;B 
Pchpi;B  Pchpi;C

Tchpi;B  Tchp
i;C



Tchpt;i  Tchp

i;B


 


1 Ichpt;i


M

(4)

Pchpt;i  Pchpi;C 
Pchpi;C  Pchpi;D

Tchpi;C  Tchp
i;D



Tchpt;i  Tchp

i;C


 


1 Ichpt;i


M

(5)

0  Pchpt;i  Pchpi;A  Ichpt;i (6)

0  Tchpt;i  Tchp
i;B  Ichpt;i (7)

The generation limit of electrical and thermal power in the
second type of CHP is demonstrated in Relations (8)e(16). The
second type of CHP possess a non-convex FOR, so it must be split
into two separate regions and also write distinct relations for each
of them, as shown in Fig. 2 (b). As a result, two binary variables X1;t
and X2;t are used that specify the position of CHP's operating point.
Therefore, the operating point can be placed in either of the two
areas depending onwhether the CHP is on or off and this condition
is expressed in relation (14). Other relations follow the same trait as
in rst-type CHP relations.

Pchpt;i  Pchpi;B 
Pchpi;B  Pchpi;C

Tchpi;B  Tchp
i;C



Tchpt;i  Tchp

i;B


 0 (8)

Pchpt;i  Pchpi;C 
Pchpi;C  Pchpi;D

Tchpi;C  Tchp
i;D



Tchpt;i  Tchp

i;C


 0 (9)

Pchpt;i  Pchpi;E 
Pchpi;E  Pchpi;F

Tchpi;E  Tchp
i;F



Tchpt;i  Tchp

i;E


 


1 X1;t


M

(10)

Pchpt;i  Pchpi;D 
Pchpi;D  Pchpi;E

Tchpi;D  Tchp
i;E



Tchpt;i  Tchp

i;D


 


1 X2;t


M

(11)
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0  Pchpt;i  Pchpi;A  Ichpt;i (12)

0  Tchpt;i  Tchpi;B  Ichpt;i (13)

X1;t þ X2;t ¼ Ichpt;i (14)

Tchpt;i  Tchpi;E 

1 X1;t


M (15)

Tchpt;i  Tchpi;E  

1 X2;t


M (16)

The cost of CHP units is linearly modeled as shown in relation
(17). The aforesaid relation consists of three components, namely
fuel cost, start-up and shutdown costs. Fuel cost of CHP units is
obtained from Ref. [20].

COSTchpt ¼
XNchp

i¼1

8
<
:

0
@lNG 

Pchpt;i þ Tchpt;i

hchp

1
Aþ


Cchp;u
i  SUchp

t;i



þ

Cchp;d
i  SDchp

t;i


9
=
; (17)

2.1.2. Power only unit
The operation cost and technical constraints modeling of micro

turbines, which are considered as power only units in this paper,
are described in relations (18)e(26) [21]. Relations (18) and (19)
present the power generation range of power only units. In re-
lations (20) and (21), the limitations of ramp-up and down rates are
expressed, respectively. For modeling the minimum up and down
times of power only units, the auxiliary binary variable Upq;m has
been employed as shown in relations (22)e(25).

0  Ppot;q;z;q  PMAX
q;z  PMAX

q;z1 cq; t; q; z ¼ 2;…:;Nb (18)

0  Ppot;q;1;q  PMAX
q;1 c t; q; q (19)

XNb

z¼1

Ppot;q;z;q 
XNb

z¼1

Ppot1;q;z;q  Rupq  Upo
t;q;q c t; q; q (20)

XNb

z¼1

Ppot1;q;z;q 
XNb

z¼1

Ppot;q;z;q  Rdown
q  Upo

t1;q;q c t; q; q (21)

Upo
t;q;q  Upo

t1;q;q  Upo
tþUpq;m;q;q

c t; q; q;m (22)

Upo
t1;q;q  Upo

t;q;q  1 Upo
tþDnq;m;q;q

c t; q; q;m (23)

Upq;m ¼


m m  MUTq
0 m  MUTq

(24)

Dnq;m ¼


m m  MDTq
0 m  MDTq

(25)

The cost function of the power only units is modeled as a
piecewise linear approximation which is shown in Fig. 3 and pre-
sented in relation (26).Ta
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COSTpot;q ¼
XNpo

q¼1

XNb

z¼1

lpoq;z  Ppot;q;z;q c t; q (26)

2.1.3. Heat only unit
Heat only unit along with fuel cells, CHP units, and heat buffer

tank are utilized for supplying thermal loads. The constraint of
maximum thermal generation by the heat only unit is presented in
relation (27) [3].

0  Thot  Tho;max ct (27)

Operational cost of heat only unit is expressed in relation (28).

COSThot ¼ lho  Thot ct (28)

2.1.4. Fuel cell
The thermal and electrical loads of microgrid consumers are

partly supplied by Proton Exchange Membrane (PEM) fuel cells
(Since these fuel cells can capture and use the by-product heat, they
can also be classied as CHP system). During periods of low thermal
load, the power between zero and the difference between the
maximum capacity and the generated electrical power can be used
to produce hydrogen. The hydrogen produced by the fuel cell is
stored in a hydrogen tank and converted to the electricity in other
time periods to supply electrical load demand in microgrid (of
course, in some references, the produced hydrogen can also be

Fig. 1. Structure of microgrid.

Fig. 2. FOR of CHP units (a) rst type, (b) second type.
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sold) [22]. Also in the modeling, Pfc;ht;j is equivalent electrical power
for generated hydrogen. It should be noted that main fuel is
hydrogen which is produced by natural gas reforming and
hydrogen stored in the hydrogen tank is as a backup fuel [3].

The fuel cell efciency hfct;j is given by the ratio of the electrical
output power to the equivalent input power of fuel, which is shown
in relation (29). Fuel cell efciency is a function of electrical output
power to the maximum output power ratio. This ratio is expressed
by the PLRt;j variable. The electrical and thermal output power of
the fuel cell are dependent on each other. The ratio of thermal to
electrical output power is shown by the TERfct;j variable, which is a
function of PLRt;j and is shown in relation (29). Fig. 4 illustrates
TERfct;j and hfct;j as a function of PLRt;j. Also, Ffc coefcient that is used
in relations (33) and (65) is the conversion factor (kg of hydrogen/
kW of electric power) used to calculate produced hydrogen and
equivalent electric power of discharged hydrogen, in equations (33)
and (65), respectively [22,23].

for PLRt;j0:05

ht;j¼0:272; TERfct;j¼0:68
for PLRt;j0:05
ht;j¼0:9033PLR5t;j2:996PLR4t;jþ3:6503PLR3t;j
2:0704PLR2t;jþ0:4623PLRt;jþ0:3747

TERfct;j¼1:078PLR4t;j1:974PLR3t;jþ1:5PLR2t;j0:282PLRt;j
þ0:6838

(29)

Thermal output power of the fuel cell is calculated by relation
(30).

Tfct;j ¼ TERfct;j 

Pfc;et;j þ Pfc;ht;j


ct; j (30)

Relations (31) and (32) show the electrical output power of fuel
cell and hydrogen tank capacity constraints, respectively. The
amount of produced hydrogen is presented in relation (33). Rela-
tion (34) illustrates the amount of hydrogen stored in tank. The
maximum discharge rate of hydrogen tank is shown in relation
(35).

Pfcj;min  Ifct;j  Pfc;et;j þ Pfc;ht;j  Pfcj;max  Ifct;j ct; j (31)

Capfc;h2;min
j  H2fct;j  Capfc;h2;max

j ct; j (32)

Hfc;h
t;j ¼ Ffc  Pfc;ht;j ct; j (33)

H2fct;j ¼ H2fct1;j þ

hfc;stj  Hfc;h

t;j




Hfc;dch
t;j


cj; t ¼ 2;…;24

(34)

0  Hfc;dch
t;j  Hfc;dch;max

j  Ifct;j cj; t (35)

Operational cost of fuel cell which is shown in relation (36),
includes costs of fuel, hydrogen pumping, startup and shutdown
[3].

COSTfct ¼
XNfc

j¼1

8
<
:

0
@lNG 

Pfc;et;j þ Pfc;ht;j

hfct;j

1
Aþ


Cfc;pump
j  Pfc;ht;j *hfc;st



þ

Cfc;u
j  SUfc

t;j þ Cfc;d
j  SDfc

t;j


9
=
; c t

(36)

2.1.5. Wind turbine
The output power of wind turbine at hour t and scenario q is a

nonlinear function of wind speed which is calculated by relation
(37) [21]. In this relation, Vci is the cut-in speed that the turbine
blades does not begin to rotate at speeds lower than that and the
output power is zero in this condition. At speeds between Vci and
Vr , the output power of wind turbine is a third-order nonlinear
function of wind speed. At speeds higher than Vr , the output power
of wind turbine is maintained at the constant nominal value. At
speeds above Vco, the wind turbine will mechanically stop and the
output power would be zero.

Pwind
t;q ¼

8
>>>>>>>><
>>>>>>>>:

0 Vw
t;q  Vci

pr 
 
Vw
t;q  Vci

Vr  Vco

!3

Vci  Vw
t;q  Vr

pr Vr  Vw
t;q  Vco

0 Vw
t;q  Vco

c t; q (37)

Fig. 3. Piecewise linear approximation of power only unit's cost function.

Fig. 4. Operating curve of fuel cell.
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2.1.6. PV module
Relations (38)e(42) are used to calculate the output power of

the PV modules. The output power depends on the solar radiation,
ambient temperature of the area, and the characteristics of the
module itself [24].

TCt;q
¼ ATt þ sort;q 


NOT  20

0:8


c t; q (38)

Ipvt;q ¼ sort;q 
h
Isc þ Ki 


TCt;q

 25
i

c t; q (39)

Vpv
t;q ¼ Voc  Kv  TCt;q

c t; q (40)

Ppvt;q


sort;q


¼ Npv  FF  Vpv

t;q  Ipvt;q c t; q (41)

FF ¼ VMPP  IMPP

Voc  Isc
(42)

2.2. Demand response

In DRPs, consumers change their normal consumption patterns
in line with market price or incentive tariffs. Therefore, DRPs can be
divided into two broad categories: price- and incentive-based.

In price-based programs, consumers change the amount of their
consumption and shift it to another time depending on the elec-
tricity price. Since the peak demand and price usually occur over
same time intervals, this program makes the consumption curve
smoother.

Relations (43) and (44) demonstrate a price-based DRP inwhich
DRupt;q and DRdown

t;q indicate the load shifting at hour t and scenario q.
Relation (44) shows the constraint of supplying total load within
24 hours. Relations (45) and (46) show the minimum and
maximum amount of load shifting at each hour [25].

PDemand
t;q ¼ Ploadt;q þ DRupt;q  DRdown

t;q c t; q (43)

XT

t¼1

DRupt;q ¼
XT

t¼1

DRdown
t;q cq (44)

0  DRupt;q  Ploadt;q  Bupt c t; q (45)

0  DRdown
t;q  Ploadt;q  Bdown

t c t; q (46)

In the second type of DRP, a contract will be signed by customers
that the system reliability is not critical for them. When the
microgrid goes to the island mode by disturbances in upstream
network, the electrical load of these costumers will be curtailed and
in exchange they will receive incentives. The cost of incentive-
based DRPs falls into two categories. First, the cost of load readi-
ness which acts like a reserve and can be treated via single- or
multi-level contracts. Second, the cost of load curtailment which is
paid to the consumer if the load is curtailed.

Relation (47) shows the cost of load readiness which is prepared
through a three-level contract. Relations (48)e(50) represent the
constraints of each level of the contract.

COSTelrt;q ¼ bІ  Pelr;Іt;q þ bІІ  Pelr;ІІt;q þ bІІІ  Pelr;ІІІt;q ct; q (47)

0  Pelr;Іt;q  aІ  PDemand
t;q ct; q (48)

0  Pelr;ІІt;q  aІІ  PDemand
t;q ct; q (49)

0  Pelr;ІІІt;q  aІІІ  PDemand
t;q ct; q (50)

Relation (51) shows the cost of load curtailment. It is mentioned
in the contract (relation (52)) that the amount of load curtailment
should not exceed the agreed amount.

COSTelct;q ¼ belc  Pelct;q ct; q (51)

Pelct;q  Pelr;Іt;q þ Pelr;ІІt;q þ Pelr;ІІІt;q ct; q (52)

If the condition of relation (52) is not satised and the load
curtailment exceeds the expected amount, then the cost of energy
not supplied (ENS) is paid to the costumer. The aforementioned
cost is calculated in relation (53).

COSTenst;q ¼ Penst;q  bens ct; q (53)

2.3. PEV

The operation modeling of PEVs is presented in relations
(54)e(60) [26]. The initial charge of the PEV is illustrated in relation
(54). Relation (55) demonstrates the amount of energy in PEV v
based on the charged and discharged power at time t and also the
stored energy in the previous interval. The relations (56)e(60)
demonstrate the operational constraints of PEVs. Relation (57)
shows the amount of power that is used to move PEV v at time t.
Here, DDt;v is the amount of movement that every vehicle experi-
ences per hour. As presented in (60), it is assumed that each PEV is
either in charging ðUct;v;q ¼ 1 and Udt;v;q ¼ 0Þ/discharging sate
ðUct;v;q ¼ 0 and Udt;v;q ¼ 1Þ or traveling state ðUct;v;q þ Uct;v;q ¼ 0Þ.

SOCt0;v;q ¼ E0v ct; q; v (54)

SOCt;v;q ¼ SOCt1;v;q þ hcv  Pcvt;v;q 
Pdvt;v;q
hdv

 Ptrt;v c q; v; t

¼ 2;3;…; T

(55)

SOCMin
v  SOCt;v;q  SOCMax

v ct; q; v (56)

Ptrt;v ¼ DDt;v*UV ct; v (57)

PcMin
v  Uct;v;q  Pct;v;q  PcMax

v  Uct;v;q ct ; q; v (58)

PdMin
v  Udt;v;q  Pdt;v;q  PdMax

v  Udt;v;q ct; q; v (59)

Uct;v;q þ Udt;v;q  1 c t ; q; v (60)

2.4. Thermal energy storage

Physical constraints of heat buffer tank are given in relations
(61)e(63) [27]. Relation (61) shows the constraint imposed on the
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minimum and maximum thermal energy stored in the tank.
Moreover, relations (62) and (63) determine the maximum
charging and discharging rates of heat buffer tank, respectively.

Bmin  Bt  Bmax ct (61)

0  Tb;ct  Tb;c;max ct (62)

0  Tb;dt  Tb;d;max ct (63)

2.5. Power balance

Generated and consumed power at hour t and scenario q should
be equal. The power balance constraint is given in relation (64) and
expanded in relation (65):

Peqlt;q ¼ PDemand
t;q 


Pelct;q þ Penst;q


ct; q (64)

PGt;q þ
XNchp

i¼1

Pchpt;i þ
XNfc

j¼1

0
@Pfc;et;j þ

Hfc;dch
t;j

Ffc

1
Aþ

XNpo

q¼1

XNb

z¼1

Ppot;q;z;q þ Pwind
t;q

þ PPVt;q þ
XNv

v¼1

Pdt;v;q 
XNv

v¼1

Pct;v;q

¼ Peqlt;q ct; q

(65)

In the above-mentioned relation, PGt;q is the power which is
exchanged with the upstream network and it can be either positive
or negative. In other words, with respect to the price and demand in
each hour, an amount of power is being sold/bought to/from the
upstream network.

Total generated thermal power in microgrid can be formulated
as relation (66). Although transmission loss of individual units is
negligible, since there are multiple CHP units in microgrid, trans-
mission losses should be taken into account.

Tt ¼
XNchp

i¼1


hTri


 Tchp

t;i þ Tho
t þ

XNfc

j¼1

Tfct;j ct (66)

If the start-up and shutdown losses of CHP units are displayed
by bloss and bgain, then the amount of generated Thermal power in
the microgrid is formulated as relation (67).

Tt ¼ Tt  bloss  SUchp
t;i þ bgain  SDchp

t;i ct; i (67)

Relation (68) shows the amount of thermal energy stored in
heat buffer tank (standby efciency of the thermal energy storage is
assumed to be 100%) [27]. The thermal power balance constraint is
also given in relation (69).

Bt ¼ Bt1 þ hb;c  Tb;ct  Tb;dt

hb;d
ct (68)

Tt þ Tb;d
t  Tb;c

t ¼ Tloadt ct (69)

2.6. Objective function

Operational cost can be employed as one of the main objective

functions in microgrid operational planning. It is assumed that
microgrid operator is also the owner of microgrid. The purpose of
microgrid energy management is to determine the amount of po-
wer generated by the controlled units in the presence of uncon-
trolled units in a way that besides complying with the operational
constraints, the operational cost is also minimized. It is noteworthy
that carbon price is not included in the fuel costs and hence the
operation cost. For modeling the cost function, a two-stage sto-
chastic programming has been used as shown in relation (70).

Min COST ¼
X24

t¼1


COSTchpt þ COSTfct þ COSThot


þ
XNq

q¼1

rq


X24

t¼1


COSTpot;q þ COSTelrt;q þ COSTelct;q þ COSTenst;q þ PGt;q

 lemt;q



(70)

Stochastic programming technique is a framework for modeling
optimization problems that involve uncertainty. This technique in
contrast to deterministic methods usually generates more realistic
answers and directly covers the deciencies of deterministic
models.

Two-stage stochastic programming models are one type of
stochastic programming models. The most important feature of
these models is the classication of decision variables into two
groups. First, the decision maker takes some action in the rst
stage, after which a random event occurs, affecting the outcome of
the rst-stage decision. Then, a recourse decision will be made in
the second stage that compensates for any undesirable effects that
might have been experienced as a result of the rst-stage decision.

In the proposed method of this study for microgrid energy
management, the decision-making variables of the rst stage that
are present in relation (70) are as follows: the output power of CHP
units, fuel cells, and heat only unit. Once the weather conditions,
electrical load demand, and market price are determined, the
decision-making variables of the second stage, including the
amount of generated power by power only units, demand response
resources, and buying/selling power from/to the energy market are
selected in a way that the total operational cost (objective function)
is minimized.

3. Scenario generation and reduction

3.1. The method of scenario generation

The majority of models that are similar to real world issues have
some parameters that are uncertain in some extent. Wind speed,
solar radiation, market price and load are among the uncertain
parameters in the scheduling of microgrids. For considering the
uncertainty in the proposed model, the scenario-based approach
has been employed. The purpose of this method is to determine the
optimal solution of the programming problem that has uncertain
parameters at the time of decision, but their probability distribu-
tion is known based on historical data. Then, the PDF is divided into
several sections and for each uncertain parameter, a nite number
of scenarios with a certain probability is obtained. Therefore, all
stochastic parameters will depend on a nite set of scenarios. In the
next sections, the following steps are going to be taken in order to
generate scenarios as described.

3.1.1. Generating PDF for uncertain parameters
In most studies, the Weibull PDF has been used for wind speed
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as shown in relation (71) [24]. Here k is the shape index and c the
scale index. By the use of mean m and standard deviation d values of
wind speed, the shape index and scale index will be calculated.

PDFðvÞ ¼ k
c

v
c

k1
exp



v
c

k
k ¼


d

m

1:086

; c ¼ m

G

1þ 1

k



(71)

Beta PDF is selected for the solar radiation, which is shown in
relation (72) [24]. The variables a and b are beta distribution pa-
rameters that are calculated according to relation (72) and with
respect to the mean value and standard deviation of the solar
radiation.

PDFðsorÞ¼

8
>><
>>:

GðaþbÞ
GðaÞGðbÞsora1ð1sorÞðb1Þ 0sor1;a0;b0

0;otherwise

b¼ð1mÞ

mð1þmÞ

s2
1


;a¼mb

1m

(72)

For modeling the uncertain parameters of load and market
price, the normal PDF is used which is shown in relation (73) [24].
In this function, m and d are the mean and the standard deviation
values of the uncertain parameters, respectively.

PDFðxÞ ¼ 1
s

ffiffiffiffiffiffi
2p

p exp

 
 ðx mÞ2

2s2

!
(73)

3.1.2. Scenario generation
Each uncertain parameter can have innite values and since it is

difcult and practically impossible to decide on an optimization
problem with innite inputs, then the PDF of each parameter must
be divided into some nite sections. For instance, Fig. 5 shows the
discretization of normal distribution function, which is divided into
seven sections.

The probability and the corresponding value of each scenario nx
related to the uncertain parameter x are respectively represented
by rx;nx

and cx;nx
and are derived from relations (74) and (75).

rx;nx
¼

Zxend;nx

xstart;nx

PDFðxÞdx nx ¼ 1;…:;Nx (74)

cx;nx
¼ 1

rx;nx



0
B@

Zxend;nx

xstart;nx

x PDFðxÞdx

1
CA nx ¼ 1;…:;Nx (75)

Now, for each uncertain parameter, a set of scenarios and cor-
responding probabilities is obtained. Therefore, the total number of
scenarios is calculated according to the multiplication principle
from relation (76) and each of them forms a scenario vector.

Assuming that the stochastic parameters are independent of
each other, the probability of each scenario vector is obtained by
multiplying the occurrence probability of its uncertain parameters,
as shown is relation (77).

Nq ¼
Y

x
Nx (76)

rq ¼
Y

x
rx;q q ¼ 1;…:;Nq (77)

3.2. Scenario reduction

In this study, the PDF of each uncertain parameter is divided into
seven areas and for each parameter seven scenarios have been
dened. Therefore, the number of obtained scenarios in one hour
will be ð7Þ4 ¼ 2401 and calculating this number of scenarios will be
really time-consuming. By using the scenario reduction methods,
the initial set of scenarios can be reduced to an equivalent set which
has the same probable behavior as the initial set.

The method used in reducing the scenarios is a mixed-integer
linear optimization and its objective function is the number of
new scenarios. By solving this program, the minimum number of
scenario vectors that are similar to the initial set will be obtained.

For determining reduced scenario set, a criterion is used which
is as follows: the total probability of new scenario vectors that
include the scenario cx;nx

with the probability rx;nx
must be equal to

the probability value of the scenario cx;nx
[28].

Fig. 5. Discretization of PDF.
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min f ¼
XN1

n1¼1

XN2

n2¼1

XN3

n3¼1

XN4

n4¼1

wn1;n2;n3;n4

s:t

(78)

XN2

n2¼1

XN3

n3¼1

XN4

n4¼1

rsðn1;n2;n3;n4Þ ¼ r1;n1
n1 ¼ 1;2;…:;N1 (79)

XN1

n1¼1

XN3

n3¼1

XN4

n4¼1

rsðn1;n2;n3;n4Þ ¼ r2;n2
n2 ¼ 1;2;…:;N2 (80)

XN1

n1¼1

XN2

n2¼1

XN4

n4¼1

rsðn1;n2;n3;n4Þ ¼ r3;n3
n3 ¼ 1;2;…:;N3 (81)

XN1

n1¼1

XN2

n2¼1

XN3

n3¼1

rsðn1;n2;n3;n4Þ ¼ r4;n4
n4 ¼ 1;2;…:;N4 (82)

XN1

n1¼1

XN2

n2¼1

XN3

n3¼1

XN4

n4¼1

rsðn1;n2;n3;n4Þ ¼ 1 c n1;n2;n3;n4 (83)

rsðn1;n2;n3;n4Þ  wn1;n2;n3;n4 c n1;n2;n3;n4 (84)

0  rsðn1;n2;n3;n4Þ  1 c n1;n2;n3;n4 (85)

wn1 ;n2 ;n3 ;n4 2f0;1g (86)

In the above-mentioned relations,wn1;n2;n3;n4 is a binary variable
that species whether the scenario vector with variables
n1; n2; n3 and n4 should be selected or not. rsðn1;n2;n3;n4Þ is the
probability of new scenario vectors. Solving the above-mentioned
optimization problem will lead to the minimum number of sce-
nario vectors and their probabilities.

4. Case study

In this paper, three cases are investigated:

Case 1: grid-connected mode without DRPs.
Case 2: grid-connected mode with implementing DRPs,
considering maximum possible load shifting up to 10 and 20%.
Case 3: island mode with different types of DRPs, considering
maximum possible load shifting up to 10%.

Table 2 shows the average values of the market price, electrical
and thermal loads, solar radiation, wind speed and ambient tem-
perature for a 24-hour period. The price of the electricity market is
based on the Hourly Ontario Energy Price (HOEP) for August 2016
[29]. Input data for electrical and thermal loads are also adapted
from Ref. [30]. The hourly solar radiation is according to the
monthly average of data in Ref. [31] for each hour. The data for wind
speed and ambient temperature are available in Ref. [32]. The price,
load, wind speed, and solar radiation scenarios are shown in Fig. 6.
Tables 3e10 show the parameters of DGs, thermal energy storage,
PEVs, and DRPs. The travel pattern of PEVs is taken from Ref. [26].
The number of PEVs in Ref. [26] is ten, but in this paper, it is
increased from ten to twenty considering the same travel pattern
for the next ten PEVs. Also, the required technical input data for the
PEVs are provided in Table 3 [26]. The characteristics of the power
only units are presented in Table 4 [21]. The data for fuel cells and
the hydrogen tanks are given in Table 5 [22]. Table 6 provides
operational parameters of CHP units that are taken fromRef. [3] and
have been modied according to the problem requirements. Wind
turbine and PV modules parameters are shown in Tables 7 and 8
and have been taken from Refs. [21] and [24], respectively. The
parameters of heat buffer tank are presented in Table 9 [27]. The
parameters of DRPs are provided in Table 10, which are taken from
Refs. [24] and [25], and are adjusted in line with electricity market
price. The obtained model is solved by mathematical methods and
GAMS Toolbox. For solving the MINLP problem, ALPHAECP solver
has been employed.

Table 2
Forecasted daily market price, electrical and thermal load, solar radiation, wind speed and ambient temperature.

Hour Market price ($/MWh) Electrical load (kW) Thermal load (kWth) Solar radiation (kW/m2) Wind speed (m/s) Temperature (C)

1 55.911 666.36 893.6 0 10.5 24.7
2 49.592 552.96 859.6 0 13.5 24.5
3 50.047 534.6 844.1 0 14.9 24.3
4 43.933 533.52 843.2 0 15.6 24.4
5 47.752 629.64 1002.4 0 19.5 24.5
6 68.417 1000.08 1108.8 0.0052 20.6 26.5
7 111.56 1693.44 1199.4 0.0154 14.4 27.5
8 155.334 1748.52 1219.2 0.1377 14.1 28
9 128.59 1470.96 1119.6 0.2984 11.3 28.5
10 99.887 1331.64 986.4 0.4605 9.7 28.8
11 93.784 1260.36 920.1 0.5913 7 29
12 89.092 1148.04 928.4 0.6446 5.9 29.7
13 87.284 1086.48 900.8 0.6807 8.9 29.8
14 81.725 1050.84 928.4 0.6427 9.5 30
15 79.337 1091.88 878.8 0.6139 10.4 29.8
16 82.987 1246.32 1003.2 0.548 8.8 29.5
17 101.716 1488.24 1022.4 0.4475 7.1 29
18 156.565 1826.28 1112.8 0.2689 8.3 27.7
19 201.701 2216.16 1149.6 0.0829 9.9 26.5
20 202.224 2239.92 1189.2 0 7.5 24.8
21 172.936 2095.2 1092.1 0 8.8 25
22 108.075 1806.84 938.4 0 9.8 24.8
23 74.69 1299.24 930.6 0 9.2 24.6
24 68.505 869.4 904.3 0 8.4 24.8
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4.1. Case 1

In this case, it is assumed that the microgrid is connected to grid
and exchanges power with the upstream network. The total oper-
ational cost is $4143.1562. Fig. 7 shows the power generation of the
units, the amount of power exchange with the network, the
amount of charging and discharging of PEVs and electrical load
demand. Fig. 7 is symmetric and as a result electrical power balance
can be obviously observed. Due to the limited capacity of the heat
only unit in supplying the thermal load, the operating point of the
CHP and fuel cell units will be in a way that the thermal power

balance constraint is present. The electrical load is low from 1 to 5
a.m. and the power of wind turbine is high. Therefore, the power
only units remain inactive and CHP and fuel cell units are used to
supply electrical and thermal loads. PEVs are charged according to
their accessibility from 2 to 5 a.m., when the price is in the lowest
possible rate. At 3 a.m., since the electrical and thermal output
power of the CHP and fuel cell are dependent on each other, the
sum of their electrical output power plus wind turbine power in
these hours is greater than the amount of electrical load. Even
though the market price is not high at this time, the additional
power is sold to the market. In the upcoming hours, due to reduced
power generation of wind turbines and the increased electricity
consumption in contrast to the time-period from 1 to 5 a.m., it is
observed that power only units are remained active. CHP and fuel
cell units also increase their output power. Due to the increased
consumption of electricity and the shortage of generation capacity
at 7 and 8 o'clock, power is purchased from the market. It is
noteworthy that PEVs are discharged at these hours to reduce the
electricity purchased at peak prices. The low price of the market
from 2 to 4 p.m. provides the opportunity to buy electricity from
the market. The time-periods from 2 to 6 a.m. are similar to 2e6
p.m. in terms of the low market price and it's a suitable time for

Fig. 6. Scenarios of (a) market price, (b) Electrical load, (c) wind speed and (d) solar
radiation.

Table 3
Parameters of PEVs.

Parameters Values Unit Parameters Values Units

SOCMin
v

1 kWh PdMax
v

12.5 kW

SOCMax
v

25 kWh hcv 90 %

PcMax
v

0 kW hdv 93 %

PcMax
v

12.5 kW Uv 0.1666 kW/km

PdMax
v

0 kW Nv 20 e

Table 4
Parameters of power only units.

Parameters First unit Second unit Third unit Units

Maximum output power 135 160 180 kW
Minimum output power 0 0 0 kW
lpo1

0.03 0.036 0.039 $/kWh

lpo2
0.037 0.04 0.045 $/kWh

lpo3
0.044 0.049 0.054 $/kWh

PMAX
1

50 100 135 kW

PMAX
2

70 110 160 kW

PMAX
3

90 135 180 kW

MUTq 2 2 2 hour
MDTq 2 2 2 hour

Rupq 80 90 100 kW/h

Rdown
q

80 90 100 kW/h

Table 5
Parameters of fuel cell units.

Parameters First fuel cell Second fuel cell Units

Pfcmin
25 34 kW

Pfcmax
250 200 kW

Capfc;h2;min
j

0.2 0.2 Kg

Capfc;h2;max
j

14 16 Kg

Cfc;pump
j

0.012 0.012 $/kW

Hfc;dch;max
t;j

2.3 2.8 Kg/h

Cfc;u
j

2 2 $

Cfc;d
j

1 1 $
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charging the PEVs. Figs. 8 and 9 show charge, discharge, and SOC of
PEVs over a 24-hour period. Regarding the increasing load from 6 to
10 p.m., it is necessary to purchase electricity from the market for
supplying the total load. PEVs are also discharged at peak prices. By

the reducing of electrical load from 11 to 12 p.m., the power gen-
eration of the units will also be reduced. Considering the low price
of the market, the electricity will be purchased from the market. In
general, the power exchange with network is done for two reasons:
to achieve power balance and to reduce the operational cost.

4.2. Case 2

In this case, microgrid is connected to the upstream network
and its scheduling is done separately through considering the DRP
in two modes with maximum possible load shifting up to 10 and
20%. Fig. 10 shows the new load curve after running the DRPs.

Increasing the maximum percentage of demand that can be
shifted from peak periods to off-peak periods makes the load curve
smoother. Fig. 11(a) and (b), indicate the generated power of the
units, the amount of exchanged power with the network, the
amount of charging and discharging power of PEVs and the elec-
trical load demand in the presence of DRP with maximum amount
of 10 and 20% load shifting, respectively. By shifting the load from
time periods of 7e9 a.m. and 6e10 p.m. (high demand and price
periods) to the time periods of 1e6 a.m., 10 a.m. to 6 p.m., and
11e12 p.m. (low demand and price periods), the amount of power
purchased from the market will be reduced at peak hours. As a
result, the operational cost will also be lower than the results ob-
tained in case 1. Operational cost of microgrid with 10 and 20% load
shifting equals $4019.8743 and $3896.6596, respectively. The re-
sults show that the implementation of DRP withmaximum amount
of 10 and 20% load shifting has reduced the total cost as much as
$123.2819 and $246.4966, respectively, compared to case 1.

4.3. Case 3

In this case, the microgrid is disconnected from the main grid. In
addition to the priced-based DRP with maximum amount of 10%
load shifting, the load curtailment with a three-level contract is also
employed. When the microgrid is disconnected from the main grid,
supplying the total load due to the capacity limitations of the
generation units during peak load periods will not be possible;
hence the electrical load should be curtailed. Load curtailment in-
creases the operational cost. As an alternative, shifting the loads
frompeak hours to off-peak hours reduces the load curtailment and
also the costs.

As it is shown in Fig. 12, the load is shifted from 7e8 a.m. and
5e10 p.m. to 1e6 a.m., 10 a.m. to 4 p.m., and 11e12 p.m. . Applying
the load shifting technique for supplying the entire load in the
time-period of 5e10 p.m. is not enough, so it is necessary to use
load curtailment. Initially, the rst level of contract will be
employed which imposes less expenses. Due to the capacity limi-
tations of level one and the increasing load, the second and third
levels of the contract will also be used. Also, PEVs are discharged
during the periods of high demand and charged at off-peak hours
for reducing the operational cost.

Table 6
Parameters of CHP units.

Parameters First CHP Second CHP Units

hchp 75 75 %

Cchp;u
i

2 1.8 $

Cchp;d
i

1 1 $

hTri
97 97 %

FOR points A B C D A B C D E F
P 263 195 45 56 P 142 142 120 40 48 48 kW
T 0 210 120 0 T 0 35 118 69 11 0 kWth

Table 7
Parameters of wind turbine.

Parameters value Unit

pr 300 kW
Vci 2 m/s
Vr 14 m/s
Vco 25 m/s

Table 8
Parameters of PV modules.

Parameters value Unit

NOT 43 ðCOÞ
IMPP 4.76 ðAÞ
VMPP 17.32 ðVÞ
Npv 320 e

Ki 0.00122 ðA=CO Þ
Kv 0.0144 ðV=CO Þ
Isc 5.32 ðAÞ
Voc 21.98 ðVÞ

Table 9
Parameters of heat buffer tank.

Parameters value Unit

Bmin 0 kWth h
Bmax 1000 kWth h

Tb;c;max 20 kWth

Tb;c;min 20 kWth

hb;c 95 %

hb;d 93 %

Table 10
Parameters of DRPs.

Parameters value Unit

Price-based DRP Bupt 10e20 %

Bdown
t

10e20 %

load readiness contract bІ 0.115 $/kWh

bІІ 0.125 $/kWh

bІІІ 0.14 $/kWh

aІ 7 %

aІІ 11 %

aІІІ 15 %
Load curtailment belc 2.88 $/kWh

ENS bens 4 $/kWh
aens 1 %
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Fig. 7. Generated and consumed electrical power in 24-hour period for case 1.

Fig. 8. Charging and discharging power of PEVs for case 1.

Fig. 9. SOC of PEVs for case 1.
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The operational cost of case 3 is $12287.7137 which has faced a
signicant increase in contrast to grid-connected modes and the
main reason is the high cost of load curtailment. In general, Table 11

demonstrates the operational cost of the microgrid in aforemen-
tioned three cases.

Fig. 10. Electrical load curve before and after implementing price-based DRP.

Fig. 11. Generated and consumed electrical power in 24-hour period for case 2 (a) 10% load shifting, (b) 20% load shifting.
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5. Conclusion

A two-stage stochastic programing was used to minimize the
operational cost of a microgrid that includes the following re-
sources: wind turbine, PV modules, CHP units, power only units,
heat only unit, heat buffer tank and PEVs, to supply electrical and
thermal loads. The uncertainty of the market price, load, wind
speed and solar radiation are considered in the proposed model. In
order to evaluate the proposed model, three cases have been
investigated, namely grid-connected without DRPs, grid connected
with DRPs, and island mode with DRPs. By comparing the opera-
tional cost of the microgrid in grid-connected mode with and
without DRP, It is shown that the operational cost reduces by
$123.2819 and $246.4966, by implementing 10% and 20% load
shifting in case 2, respectively, compared to case 1. Moreover, given
that the microgrid does not have the ability to supply the total load
in island mode, it is necessary to use incentive-based DRP, and also
operational cost increases by $8267.8394 compared to the same
grid connected mode. As future work, following contributions will
be made:

 Enhancing the proposed method to multi-objective economic/
emission operational planning for microgrid energy
management.

 Considering the power network model and reducing trans-
mission losses.
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