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A Machine Learning Approach to Meter Placement
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Abstract—Due to the high-measuring cost, the monitoring of
power quality (PQ) is nontrivial. This paper is aimed at reducing
the cost of PQ monitoring in power network. Using a real-world
PQ dataset, this paper adopts a learn-from-data approach to
obtain a device latent feature model, which captures the device
behavior as a PQ transition function. With the latent feature
model, the power network could be modeled, in analogy, as a
data-driven network, which presents the opportunity to use the
well-investigated network monitoring and data estimation algo-
rithms to solve the network quality monitoring problem in power
grid. Based on this network model, algorithms are proposed to
intelligently place measurement devices on suitable power links to
reduce the uncertainty of PQ estimation on unmonitored power
links. The meter placement algorithms use entropy-based mea-
surements and Bayesian network models to identify the most
suitable power links for PQ meter placement. Evaluation results
on various simulated networks including IEEE distribution test
feeder system show that the meter placement solution is efficient,
and has the potential to significantly reduce the uncertainty of
PQ values on unmonitored power links.

Index  Terms—Bayesian networks (BNs), conditional
entropy (CE), Monte Carlo (MC) simulations, power quality (PQ)
monitoring.

NOMENCLATURE
f(d) Device transition function for a device d.
clgd) Power quality (PQ) of class i at device d.

G Setof ¥ va.

Peies Probability that ¢, will be mapped to ¢, at device d.
d Parent node of a node d.

d Child node of a node d.
d; Inferred device.
d,

o Observed device.
F Conditional transition function of device d,, given d;.
l((ff])t Output link of device d.

Input link of device d.

I. INTRODUCTION

ELECTRICAL power networks are one of the critical
infrastructures of our society. Due to our high dependence
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on electricity, the reliability in electric networks has become a
core research interest in the smart grid area [1]. Reliability
evaluation of power grid, however, is challenging [2]. One
of the most influential factors impacting the reliability and
energy saving of power networks is the PQ delivered to,
and experienced by, critical electric equipment. Poor PQ,
such as voltage sags, may lead to power outage and ser-
vice interruptions. Hence, the monitoring of PQ is a cru-
cial component of assessing and maintaining reliability in
power grid.

Monitoring PQ, however, is not an easy task. Since the
PQ measurement devices [3] are expensive, it is financially
impractical to monitor every segment of a power network. The
overhead of interconnecting these power meters and devel-
oping the power management system further increases the
cost. Therefore, we need to intelligently place PQ meters on
selected power links to reduce the uncertainty of PQ estimation
on unmonitored links in the power grid. The following core
challenge needs to address: given a fixed number of avail-
able power meters, which grid segments should be selected
for monitoring such that PQ can be inferred in the remaining
unmonitored segments of the network.

As the first step to tackle the above challenge, the proba-
bilistic calculation of PQ values on unmonitored links requires
the behavior (latent feature) of each device to be known.
We represent the latent feature of a device as a transi-
tion function which is usually estimated through physical
modeling or through the assessment of historical power mon-
itoring data. Using a real-PQ dataset, we show that histor-
ical data can be used to capture the latent features of a
device.

With devices’ latent features captured, we in the second
step introduce a network model which represents the smart
microgrid as a data-driven network. In analogy, we represent
the electrical components as network nodes, power links as
data links, and flow of power as data flow on the links. This
problem transformation significantly simplifies the complex-
ity of the power network; it also presents the opportunity to
use the well-investigated network monitoring and data esti-
mation algorithms to solve the network quality monitoring
problem.

Finally, we solve the intelligent meter placement problem
by proposing an iterative approach for identifying network
segments suitable for power meter placement. During each
iteration of the algorithm, we identify in a greedy manner the
network segment whose PQ is most unpredictable given the
meters placed so far. We then place the next power meter
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at that location. In summary, this paper makes the following
contributions.
1) A network model for PQ estimation, based on the device
latent features that are learned from a real-world dataset.
2) An intelligent entropy-based algorithm and a Bayesian
network (BN)-based approach to solve the meter place-
ment problem.

II. RELATED WORK

This paper is related to four categories of research and
development: 1) PQ classification; 2) power reliability; 3) PQ
improvement/estimation; and 4) meter placement.

On the first aspect, there are many approaches to the prob-
lem of classifying PQ events. Typically, quality is assigned a
label based on the magnitude and duration of a voltage sag
or swell. Electrical utilities typically report on indices such as
system average root-mean-square (RMS) variation frequency
index which is essentially a count of the number of times the
magnitude and duration fall below a threshold. The IEEE also
has a standard for classifying individual PQ events [4]. We
use a discrete classification system in this paper, similar to
that described in the IEEE Standard [4].

Regarding the second category, the industrial practices for
electric power reliability in networks focus on measures such
as mean time between failure, reliability, and availability as
defined by the IEEE Gold Book [5]. The measures defined
in [5] are theoretical values, measured or calculated for com-
ponents and networks operating under normal conditions. They
serve as methods for comparison but are not intended as pre-
dictive tools for networks that operate in realistic environments
with varying load and PQ. It is known that there exists a
relationship between PQ and the lifetime and performance of
devices [6]. For an effective evaluation of power reliability,
we need to accurately estimate PQ, which motivates the meter
placement, and PQ estimation problems studied in this paper.

There have been recent studies to improve the electric PQ.
In [7], a proactive approach was introduced to identify bad
PQ events before they become a concern to end-users. The
approach determines voltage threshold limits to determine if
a potential voltage problem exists. Another recent study [8]
uses genetic algorithm to estimate the harmonic states of the
power network. The methodology was shown to be effective
for estimating voltage and current state variables. A secondary
control scheme is proposed in [9] to enhance the voltage
quality of sensitive load bus in microgrids. Reference [10]
proposed a transient state estimator to detect losses due to
poor PQ. The estimator was validated on a test system to
detect the presence of voltage sag/dip. Another estimator
was proposed in [11] that improves the power consistency
by identifying angle biases and current scaling errors using
phasor-measurement-based state estimator.

On the fourth aspect, there is a great body of work on the
problem of optimal sensor placement [12]. In the context of
power networks, optimal placement of phasor measurement
units (PMU) has been studied [13]. Reference [14] shows
that adding few extra PMUs could improve the bad data
detection in the network state estimation. A relevant work
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addressing the problem of distribution system state estimation
was proposed [15] to minimize the state estimation errors. The
optimal PMU placement and its communication infrastructure
was designed [16] to address the problem of state estimation.
A procedure finding the optimal trade-offs between PMUs and
metering devices for distribution state estimation was investi-
gated in [17]. Nevertheless, we have not seen any work on
studying optimal meter placement problem in the context of
network-wide PQ estimation. Further, there are three major
differences between the existing PMU placement algorithms
and our algorithm.
1) We focus on distribution networks at the enterprise level
(e.g., a university campus).
2) Our method is data driven and is based on statistical
machine learning method.
3) The existing PMU placement algorithms address the
problem of estimating network states and do not con-
sider PQ estimation explicitly.

III. LATENT FEATURES OF ELECTRIC DEVICES

The objective of this paper is to reduce the cost of PQ mon-
itoring by intelligently placing PQ meters on selected links in
the power network. After deploying limited number of meters,
we should be able to estimate the PQ values on unmonitored
links as accurately as possible. A candidate link for meter
placement is the one whose PQ is the most uncertain. The
challenge here is how to identify the most uncertain links.
Clearly, the PQ values on any power link is dependent on
the physical characteristics of the electric devices. For exam-
ple, the PQ at the output link of a UPS is more predictable
than that of a switch. Hence, we need to know the behav-
ior of each device in the network. We call the behavior of a
device its latent feature or simply a transition function, which
is usually estimated through physical modeling or through the
assessment of historical power monitoring data.

In this section, we first introduce a latent feature model
to capture the behavior of electric devices in the power net-
work. Using a real-PQ dataset, we then demonstrate that the
historical data can be used to capture the latent features of a
device. We use k-fold cross-validation technique to measure
the accuracy of latent features we obtain using our dataset.
Experimental evaluations show that the captured latent features
are consistent. The latent features (or transition functions) are
then used to propose our meter placement algorithms.

A. Latent Feature Model

The latent feature model is basically a mechanism for
capturing and mathematically representing the behavior of a
device. We capture this behavior by monitoring the input and
output links of electric devices and representing it as a tran-
sition function. A transition function f(d) of a device d is the
matrix consisting of real values representing the probabilities
that a PQ input ¢, is mapped to another PQ ¢, at the output
link of a device d. Fig. 1 shows the proposed latent feature
model we use to capture f(d). We use a real-world PQ dataset
collected for a period of over four years to capture the latent
features of various electric devices.
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Fig. 1. Latent feature model of a device d where the two circles represent
the PQ meters at input and output of node d; the matrix inside the node d
represents the transition function of the node.

B. Power Quality Dataset

Our PQ dataset was collected at an enterprise power network
for a period of four years. For privacy and security reasons,
the physical network structure/diagram is omitted. Instead, we
represent the topology/positions of the installed PQ meters via
a graph network as shown in Fig. 2. There are a total of ten
PQ meters (numbered from m to mjg) installed. Each meter
reported the PQ events (sag/swell, transient, etc.) to the data
collection server via Ethernet network. It is important to men-
tion that we currently do not consider transmission network,
but only focus on power distribution network at the enterprise-
level, e.g., university campus. Hence, we collect the PQ dataset
at an enterprise network located at the distribution level. The
network is using a standard three-phase distribution system.
Devices of varying loads are using this network, including
electric vehicles and large motors. Three-phase transformers
with four-wire output are used for 120 V service. Table I shows
the number of events reported by each PQ meter while the
positions of the meters are shown in Fig. 2.

The original PQ events reported by our PQ meters carry
detailed information where some of the reported attributes are
not directly relevant to PQ monitoring. For instance, we have a
large number of branch circuit monitors installed that log every
15 min. Second, due to the detailed information content, the
size of the raw dataset was about 40 GB. In order to simplify
the format and make the dataset concise and easy to analyze,
we transform the reported events into a tabular form consisting
of the PQ attributes we used. As a result, there are about 6000
PQ events recorded in the dataset. Sample events from the
dataset are shown in Table III.

1) Each row in the table represents a PQ event.

2) The magnitude field represents a percentage of the nom-

inal voltage that the sag or swell reached at its maximum
(for instance, the number 84 means that voltage is
sagged to 84% of its nominal value and 147 means that
it swelled up by 47% over its nominal value).

3) The severity field is a calculated statistic that combines

the magnitude, duration and class of an event to provide
a ranking variable.

Using IEEE Standard 1159 [4], we classify the PQ events
based on the fluctuation of the voltage for a predefined
period. There are 14 different PQ classes defined in the stan-
dard, denoted from c; to cy4, respectively. Table IV shows
samples of the events we classify using the IEEE Standard
where the PQ class is shown in the last column of the table.
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Fig. 2. Graph network of PQ meters installed in a power network.

The frequency of events belonging to the IEEE PQ class
(c1—c14) 1s shown in Table II.

C. Capturing the Latent Feature/Transition Function f(d)

Using the real-world PQ dataset, we capture the device

latent feature in three simple steps as follows.

1) Synchronizing the PQ Events: The PQ meters in our data
collection network were configured to report only bad
PQ events. We noticed that, in some cases, there are bad
PQ events reported at some links while nothing reported
by other meters at that time instance. This happens when
a device, for instance a UPS, maps a bad quality to good
quality. In such cases, we assume a nominal PQ value
(PQ class c14) at the monitored but unreported points.

2) Building Frequency Tables: We now put all the PQ
events in a 2-D array M(i,j) of events where the first
dimension of the array represents an event 7 in the time
series while the second dimension represents the cor-
responding event for each device j. We then count the
input to output PQ mappings at each device. This results
in a 14 x 14 frequency table fr(d) for each device d. As
an example, frequency table for device dg is shown in
Table V.

3) Frequency to Probability Mapping: Finally, the tran-
sition function is calculated by dividing every ele-
ment of the frequency table fr(d) by the sum of
the row containing that element, ie., f(d,i,j) =
fr(d, i, j)) Sk, fr(d, i, k). Here, we slightly abuse the
notation by using f(d, i, j) to represent the value at the
intersection of the ith row and the jth column in matrix
f(d). Hence, the transition function is represented with
a matrix. If every element in a row (say ith row) of the
frequency table is a 0, we assume the same probability
(i.e., 1/14) for each element in that row in the transi-
tion function, implying that no knowledge can be learned
from the dataset about the corresponding input event (c;)
on this device, and as such we assume the maximum
uncertainty on its output events to avoid biased esti-
mation. Table VI shows a sample transition function
formulated from Table V.

D. Cross-Validation of f(d)

We use k-fold cross-validation technique to measure the
accuracy of latent features we learned. We partition the dataset
into k random samples of equal size. Out of the k samples,
we use kK — 1 samples to generate a training transition func-
tion and one sample to generate the test transition function.
The cross-validation is repeated k times where each of the

Authorized licensed use limited to: ULAKBIM UASL - SELCUK UNIVERSITESI. Downloaded on December 07,2023 at 07:01:56 UTC from IEEE Xplore. Restrictions apply.



ALI et al.: MACHINE LEARNING APPROACH TO METER PLACEMENT FOR PQ ESTIMATION IN SMART GRID 1555
TABLE 1
FREQUENCY TABLE SHOWING THE NUMBER OF EVENTS GENERATED/REPORTED BY EACH PQ METER
Meter ID 1 2 3 4 5 6 7 8 9 10
No. of Events 1705 | 629 | 756 | 764 | 777 | 282 | 309 181 44 | 657
TABLE II
FREQUENCY TABLE SHOWING THE NUMBER OF EVENTS CLASSIFIED AS IEEE PQ CLASS (¢;)
Power Quality Class c1 co c3 c4 cs5 c6 cr cg Cc9 C10 C11 C12 C13 C14
Number of Events 3056 | 738 1485 | 274 144 | 354 10 11 0 2 8 2 19 1
TABLE III TABLE V
SAMPLE EVENTS FROM THE DATASET COLLECTED SAMPLE FREQUENCY TABLE SHOWING THE NUMBER OF
EVENTS MAPPED FROM INPUT PQ ¢; TO OUTPUT
Event | Node | Duration | Magnitude S it T PQ ¢j AT DEVICE dg
D D (seconds) (volts) eventy ype
119 5 0.02 292 3.19 Transient Output PQ (c;)
338 6 1.002 147 47.1 Swell 1 2 3 4 6 14
763 1 0.07 84.4 1.03 Sag Py 3 P 16 4 P 0 113
2 5 0 0 0 0 0 1
o
TABLE 1V A~ g 8 8 8 8 8 ;2
SAMPLE EVENTS CLASSIFICATION USING IEEE STANDARD 1159 [4] é‘ 12 1 0 0 0 0 0
Nod 5 _ Masmiad = 14 | 47 48 13 24 2 2122
ode uration agmtu (]
D (seconds) (volts) IEEE Event Class
4 0.00065 127 c1 TABLE VI
4 0.00754 146 Cc2 SAMPLE TRANSITION FUNCTION CAPTURED AT DEVICE dj.
8 0.00013 132 cl ROWS AND COLUMNS HAVING ALL VALUES
7 0.049 84 c3 SET TO 0 ARE OMITTED
6 1.002 147 cr
6 0.518 79 c6 Output PQ (c;)
1 0.001 131 a | 2 ST 14
7 0.016 82 €3 ~ 3 | 003 012 003 001 0 081
6 | 710548 30 c12 E 5o 0o 0o 0o 0 1.00
3 0.01664 233 c4 o 6|0 0 0 0 0.14 086
T 710 0 0 0 0 1.00
& 12 1.00 0 0 0 0 0
= 14 | 0.02 002 001 001 O 0.94
k-samples is used exactly once for validation. The k results
re then I I ingl imation for h
a e.t en averaged to produce a single estimation for eac TABLE VII
device. MSES IN ESTIMATED AND EXPECTED PROBABILITIES OF THE
The mean-square error (MSE) is used to measure the vari- TRANSITION FUNCTIONS. STANDARD DEVIATION IN
ation of the validation/test function [represented as f,(d)] PQ VALUES OF THE k-FOLD TEST DATA
from its training function [represented as f;(d)]. The MSE is o e PR T
calculated as Mean Square Error Standard Deviation
14 14 2 10 100 500 2 10 100 500
o o o 2 [ 0008 0012 0023 0027 | 437 4359 499 5.04
mse = ZZ | fo(d, i, ) —fi(d, i, ) | /(i % j). 310012 0014 0028 0032 | 461 451 48 586
i=1 j=1 N 4 0.014 0.017 0.031 0.036 | 465 473 482 504
2 5 0.011 0.013 0.027 0.032 | 471 481 573 577
: . : ‘8 6 0.007 0.010 0.021 0.025 | 262 289 3.07 447
We Vahdate the latent feat.ur.es of all devces on various = 7 | 0024 0019 0024 0026 | 278 343 343 447
sample sizes. The largest training sample size is at k = 2 A 8 | 0017 0015 0021 0025 | 238 257 335 459
where we divide the entire dataset in two subsets of equal size; 9 |0 0.002 0017 0024 | 089 106 1.69 3.89
10 | 0.007 0.01 0.021 0.026 | 3.66 372 405 526

in this case, one subset is used to train the model while the
other is used for validation. At the other extreme, at k = 500,
the dataset is divided into 500 subsets where one of the sub-
sets is used for validation while all other subsets are used for
training.

Table VII shows the MSEs for all devices in the network
with k-fold cross validation, where k is set to be different val-
ues. For each k-fold cross validation test, we also calculated
the standard deviation of the k test results. It can be seen that
when the value of k increases, the MSEs remain relatively sta-
ble with minor changes, but the standard deviation becomes
larger. This is reasonable. When k increases, the number of

samples in the test dataset becomes smaller, and the transi-
tion function built with a small number of samples in the test
dataset becomes less accurate and leads to large variance in the
test results. Nevertheless, the MSEs together with the standard
deviation indicate that the test results with different k values
do not exhibit significant statistical differences, and the small
MSE values suggest that a device behavior (latent feature)
can be captured accurately with historical PQ data from PQ
meters.
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Fig. 3. PQ transition at each device d as a channel.

IV. MICROGRID AS DATA DRIVEN NETWORK

We model the power network as a data-driven network, in
analogy, where we represent the electrical components as net-
work nodes, power links as data links, and the flow of power
as data flow on the links. We assign the PQ on a link at an
instance in time as a discrete class (from ¢ to ¢,). Aligning
with the meters’ sampling interval, the time is slotted, and in
every time slot, we record a PQ class of each link where a
PQ meter is installed.

Moreover, in order to simplify our model, we treat the power
flow through each node as a channel (shown in Fig. 3). The
input and output of this channel at each node comprises n
PQ classes. The probability that a PQ ¢, will be “received”
as ¢, at the output of the channel at each device d is repre-
sented by the symbol ngcy For each device d, we call the

n X n matrix consisting of the probability values pgl)Cx the PQ
transition function, or simply transition function. For a device
(subnet) having multiple inputs/outputs, a PQ transition func-
tion is associated with each input/output pair. We represent the

PQ transition function f(d) of a device d as a matrix as

) @ @

Peile; Peyjey Peyley
) @ @
f(d) — clez e an|CZ (1)
@ @ @
pCllcn pCZlcn o pcnlcn

where pifl)CX is the probability that the input quality c, is

received as ¢y at the output of device d. Note that every row
in the above matrix should sum to 1.

V. INTELLIGENT METER PLACEMENT
A. Bayesian Network-Based Approach

This section describes a BN-based algorithm for select-
ing locations for placing power meters in a power grid. The
approach uses Monte Carlo (MC) sampling and probabilistic
inference approaches to identify locations in the power grid
which exhibit unpredictable PQ events.
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Monte Carlo simulation
draws samples of network state

Simulated state
at metered
locations

Simulated state
at non-metered
locations

Bayesian inference
produces max likelihood
estimation of
predicted states at
non-metered locations

Most poorly predicted non-metered location selected
as location for next meter

Fig. 4. Data flow diagram of meter selection process during a single iteration
of the greedy algorithm.

———— ser 0
¥ %) O

Fig. 5. Power network modeled as a factor graph.

The problem is inherently challenging as the information
received from a power meter flows not only the forward direc-
tion from the root nodes toward the leaf nodes, but also in
reverse or upstream direction toward the root node (utility
main) and back to all other nodes in the network.

To tackle the above challenge, we cast the problem as a
BN and model the power grid using a factor graph. Several
message passing algorithms could be used to help us determine
the optimal meter placement. We chose the belief propagation
or sum-product algorithm [18], since it is well understood and
has been shown to work for general topologies [19] including
tree networks.

1) MC Event Sampling: Given the transition function f(d),
we use an MC method to obtain a set of K samples at each
node d. We first compute a pmf f,(d) for each node d using
its transition function f(d) and the pmf of its parent node d
as fr(d) = f(d) xfx(’d\). Then, at each time slot i € {1...K},
we draw a sample cl@ from f;(d) at each node d. We repeat
this at each node of the tree starting from the root and end-
ing at the leaves. The result is a set of K simulated samples
C; = {cgl) , cl@, el cEN)} for each of the N links in the power
network.

2) Event Inference Using Belief Propagation: The samples
obtained by the MC simulation of PQ propagation contain
consistent sets of PQ values at both metered and nonmetered
locations. We use Bayesian inference to infer the PQ at
nonmetered locations as a function of the simulated values
observed at the metered locations and compare the result-
ing predictions to the simulated value seen at the nonmetered
locations. This process gives a relative indication of the pre-
dictive strength on each link of the network. Fig. 4 shows a
high-level description of this process.

To do the prediction, we first model the power network as
a factor graph (Fig. 5) and then use belief propagation to find
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Algorithm 1: MC Predicted Error Algorithm

Input: The topology T of the power grid; the pmf of the input
feed to first device i.e., fx(0); transition functions f(d);
maximum number of meters M,;,,,; maximum
uncertainty to allow 8;,4y; and the number of
Monte Carlo samples K to draw

Output: L (list of links to be selected for meter placement)

begin

M < 0; Scurr < Smax;

while (M < My,,4x and Scyrr > Smax) do

€< 0,V links [ e T;

/* €; is prediction error at link [ */

foreach (Monte Carlo Sample k) do

L < set of metered links € T

g < set of non-metered links € T

Cy_« predictPowerQuality(L’, L, T);

/* Cy, is the K" set of predicted power quality

values while Cy is the k7' set of sampled values at

all links*/

foreach (link [ € L) do

if ?l(cl) # c,il) then
‘ € «— €+ %; /* add % to predicted error */
end
end

end

selectedLink < max(E).position;
/% & ={e}ie., setof ¢ VI*
L.add(selectedLink);

Scurr < max(&); M < M+ 1;

en

end
function predictPowerQuality(L', L, T) : Cy
begin
init pmf W = {y;},V links [ € T;
U’ <« BeliefPropogation given evidence L
foreach ( link [ € L') do
‘ a cl((l) < max probability power quality class inferred in wl/ ;
en

i =)

end

the inferred values of PQ at the output of each node using the
(simulated) evidence obtained from the power meters. The fac-
tor graph has conditional probability nodes ¢, equality nodes x,
and evidence nodes y. The ¢ nodes represent actual electrical
devices with a known transition function. The x nodes rep-
resent wired connections on our network for which we have
already obtained a set of samples using MC sampling. These
nodes are constrained so that all edges connected to them
are equal. The y nodes represent locations where a power
meter could be placed. The nonmetered nodes are initialized
to a uniform pmf and the metered nodes are set to a trivial
pmf with a probability of 1 at the true PQ event and 0
everywhere else.

For each time slot #;, we infer the maximum likelihood PQ
event that would appear at each node given the current meter
configuration. We then estimate the error rate for each node in
the network. If the inferred event differs from the event given
by the MC sample we add 1/K for that sample. At each round
of the algorithm we greedily choose to place a meter at the
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node with the highest error rate. We terminate the algorithm
when all meters have been placed.

The number of required PQ meters could be determined
based on: 1) the available financial budget; and 2) the desired
estimation accuracy. We consider both aspects. The proposed
algorithms keep placing meters until either the maximum
meter limit is exhausted or the desired estimation accuracy
is achieved. The estimation accuracy is captured by the cer-
tainty of PQ values on network segments (see Algorithm 1
and Fig. 4 for further details).

B. Conditional Entropy-Based Approach

Since, the PQ values on network segments are dependent
on each other, we exploit the idea of conditional entropy (CE)
to propose another new algorithm. Further, this approach is
much faster than the BN-based approach without compromis-
ing the accuracy. The idea here is to install each power meter
under consideration on a network segment i which results in
maximum reduction in overall network entropy. We consider
all possible placement points for every meter to be placed
and choose a link which reduce the network entropy at maxi-
mum. Note that a reduction in network entropy is the sum of
entropy reduction on the underlying link i and all other links
whose entropy is minimized/reduced in effect of meter place-
ment on a segment i. The one time matrix multiplications in
this approach are much faster than our previous requirement
of resampling the network state after every possible meter
placement.

The CE-based algorithm is efficient and scalable to large
scale real-world networks. Both BN and CE approaches are
based on similar concepts of predicting the state of PQ
values at unmonitored links given the current network con-
figuration (positions of meters already placed). The CE-based
approach, which we will call MinEntropy, uses a heuristic to
combine evidence but results in orders of magnitude faster
running time.

1) Methodology: As discussed earlier in this paper, the
uncertainty of PQ values on a link is dependent on the uncer-
tainty of PQ values on other links (parents, children, sibling
nodes, etc.) in the network. Therefore, any new information
about PQ values at a link increase our belief of the PQ values
on other dependent links in the same network. Technically, the
entropy of any link in the network is reduced by an amount
of > 0 by knowing the values of PQ on any other link in
the network. We also know that, the entropy of a link given
another link is always less than or equal to its original entropy
ie., HY | X) < H(Y). Since every link l(()ﬁ)t, if chosen for
meter placement, influences the uncertainty of PQ values on
other links, we consider the CE of all monitored links while
placing power meter at a link 19

out*

Now, the CE of a link /%) (the output link of the inferred

out
device d;) given the meter is being installed on a link lffé”t) (the

output link of the device d,) is calculated using the formula

1
HY X)) =) | p@ D pG1» 1og(p(y | x)>

xeX yey
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where X and Y are the distribution functions of the output
links of d, and d;, respectively. We write the above equation
in terms of our PQ distribution vector fy(d,), device transition
matrix f(d; | d,) as

H(Y | X) = =) (fi(do) x (F @ logf(d))))

where X represents the cross product, the symbol ® represents
the dot or component-wise product (also known as Hadamard
product), and log is a component-wise log operation. Further,
the )  operation is the summation of components of the
resulting vector after ® and then x operations, and F is
the conditional transition function representing f(d; | d,).
Depending on the positions of d, and d;, F is calculated in
one of the three methods as follows.

1) Observed Device d, is a Parent of d;: Here, the con-
ditional transition function f(child | parent) is simply
the product of the normal transition functions of devices
between links 1% and %7, that is

out out »

F=f(d,) x...xf(d).

2) Observed Device d, is a Child of d;: We calculate the
influence of a child device on a parent device. Note that
the parent may not necessarily be the immediate parent.
To calculate the entropy of parent given child using the
general formula of CE, we need to first calculate the
conditional transition function F. We use the concept
of posterior probability (the Bayes theorem) to calculate
F. This function is simply the product of the reverse
transition functions of devices all the way from child to
parent. The reverse transition function f'(d) (consist of
p(parent | child) or p(X | Y)) is calculated as p(X | ¥) =
(pX)p(Y/X))/(p(Y)). In our case, the function f'(d) of
a device d which list p(x | y) in the xth row and yth
column is calculated as

£ r@"
, f@ ;| @
fa=". |ef@] o| .

fo(@d) fi(d)

where ® is the component-wise product, @ is the
component-wise division, and d is the immediate parent
of device d. Finally

F=f'(do) x f'(do) x - x f'(d).

3) Devices d,, d; Belong to Different Subtrees: This is an
interesting case where the devices d, and d; belong to
two different sub-trees rooted by a device d,. In this
case, F is calculated in two steps. First, we calculate
the conditional transition function f(d, | d,) of devices
between links lg‘fl’{) and l(()ﬁ’t) using method 2. We then
calculate the conditional transition function f(d; | d,)
of devices between links 1) and /(% using method 1.

out out
Finally

F=f(di|do) =f(dr|do) xf(di|dy).
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Algorithm 2: MinEntropy Algorithm

Input: The topology T of the power grid; the pmf of the input
feed to first device i.e., fx(0); transition functions f(d);
maximum number of meters M,;,,y; and maximum
uncertainty to allow 84

Output: L (list of devices to be selected for meter placement)

begin

M < 0; Scurr < Smax;

while (M < My,4x and Scyrr > Smax) do

maxReduction < 0;

selectedLink < 0;

foreach (device d in T) do

entReduction < calcNetworkEntropy(d);

if maxReduction < entReduction then
maxReduction < entReduction;
selectedLink < d.outputLink;

end

end

L.add(selectedLink);

updateEntopies(selectedLink);

Scurr < max(E); M <~ M + 1;

en
end

function calcNetworkEntropy(d) : entRed

begin

F <« identityMatrix(n);

/* F is the combined transition function i.e., f(d; | dy) */
do < d; dy < d; d;i < d;

entRed < recursiveConditional(dy, dp, d;, F);

end

function recursiveConditional(dy, dp, d;, F) : entRed
begin
condEnt < - sum ( f(dy) X F ® log(F));
entRed <« entropy(d;) — condEnt;
foreach (immediate child c of d;) do
F < F x f(c); /* child given parent link */
/* for next recursive call, ¢ is the inferred device and
d; is the previous device */
dp < dj; di < c;
if (d; # dp) then
entRed <« entRed +
recursiveConditional(dy, dp, d;, F);
end
end
dy < d;; d; < getParent(d;);
if (d; # —1 and d; # dp) then
F < F x f'(c); /* parent given child link */
entRed <« entRed + recursiveConditional(d,, dp, d;, F);

end

end

2) MinEntropy Algorithm: Algorithm 2 illustrates our
CE-based solution to power meter placement. The idea here
is to install each meter under consideration on a link i of the
network which results in maximum reduction in overall net-
work entropy. We consider all possible placement points for
every meter to be placed and choose a link that reduce the net-
work entropy to a minimum. Note that a reduction in network
entropy is the sum of entropy reduction on the underlying
link 7/ and all other links whose entropy is minimized/reduced
in effect of meter placement on link i.

In order to calculate the network entropy for every candi-
date link lgﬁ”t), we first calculate the entropy of every link

lgﬁ"t) given l((fll]”t). These conditional entropies are efficiently
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Fig. 6. Overview of the meter placement evaluation process.

TABLE VIII
EVENT TYPES

Type | Event Description
1 Good/normal power quality.
2 Below 70% of nominal voltage for more than 0.02 seconds or
below 80% of nominal voltage for more than 0.5 seconds.
3 Below 70% of nominal voltage for more than 0.2 seconds.
Interruption of at least 1 second.
5 Interruption of at least 5 minutes.

calculated by multiplying f(d,) with transition functions of
all devices on the path between links Igu‘{) and l(()‘fl’t We do not
need to explicitly identify the path from lou‘{ to l(()u[ and we
do not need to multiply the same transition functions again
and again. The entropy calculation works in recursive fashion.
Once we calculate the CE for a directly connecting neighbor
of lffﬂ’{ , we then recursively calculate the entropies of neigh-
boring links of that neighbor. Here, it should be noted that:
a) every link trigger the neighboring links except the one who
triggered the link itself. So no infinite recursion takes place
and every link is accessed only once; b) the product of tran-
sition functions calculated from l(()u‘{) to some léfl]kt is used to
calculate the next product; and c) if a link is invoking its
parent link, we use reverse transition function f’(d) of that
device. Otherwise, the normal transition function f(d) is used.
After every meter placement, the link entropies are updated.
The same process is repeated until all PQ meters are
placed.

VI. EVALUATIONS

We evaluate the two algorithms on a set of simulated net-
works. The evaluation process is depicted in Fig. 6 where
each algorithm is given the same network topology to place
a set of M meters. The devices considered include bus,
switch, transformer and UPS. PQ events are assigned a num-
ber from 1 to 5 in order of severity in accordance with [20]
where the lower number represents a clean input. These are
listed in Table VIII along with their descriptions. Table IX
lists transition functions of various electrical components
obtained from a real-world PQ dataset using our latent fea-
ture model. From the same dataset, we learn a prior on the
utility feed of [0.9947 0.005 0.0002 0.00009 0.00001].
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TABLE IX
TRANSITION FUNCTIONS OF VARIOUS ELECTRICAL COMPONENTS
OBTAINED USING OUR LATENT FEATURE MODEL. (a) BUS.
(b) SWITCH. (c) TRANSFORMER. (d) UPS

(2) (b)

Output PQ Output PQ
1 2 3 4 5 1 2 3 4 5
T709 01 0 0 0 T[07 01 01 005 005
€ 2|0 09 01 0 0 € 200 07 01 01 o1
5 3|0 0 09 01 0 5 30 0 07 02 o1
E a4lo o o 09 01|| & 4]0 0o 0o 07 03
slo o 0 o0 1 slo 0o o o0 1
(©) (d)
Output PQ Output PQ
1 2 3 4 5 1 2 3 4 5
7108 015 0 0 0 T 0 0 0 0
€ 2/015 07 015 0 0 € 208 02 0 0 0
z 30 015 07 015 0 5 3/08 0 020 0
B oalo o 015 07 015|| 5 4/08 0 0 02 0
slo o o o0 1 5108 0 0 0 02

The algorithms we propose are generic and could be used for
placing meters in other network configuration. We evaluate
our algorithms on different topologies and network config-
urations including the IEEE 13-node distribution test feeder
network. For the BP algorithm, we collect N = 10000
samples for each device using MC sampling. For each
network configuration, we place M = 5 m in order of
importance.

Fig. 7 shows the meters placed by the two algorithms in var-
ious network topologies. The positions of the meters placed
by both algorithms are essentially similar. The MinEntropy
algorithm achieves much faster results, completing in less
than a second in all cases. On the other hand, the BP takes
a longer time to complete. This is because BP compares
individual samples on all links for every possible placement
while the MinEntropy approach computes the conditional
entropies at nonmetered locations using probability mass
functions instead of using individual samples. Algorithm com-
pletion times for both BP and CE approaches are shown in
Table X.

The meter placements are then passed to the belief propaga-
tion benchmark to compare the accuracy of the two algorithms
in terms of MSE, i.e., the mean error between the estimated
and actual transition functions on unmonitored links. We col-
lect a set of known samples for a given meter configuration
and infer the maximum likelihood PQ event that would appear
at each nonmetered node using belief propagation. We then
estimate the error rate for each node. If the inferred event dif-
fers from the event given by the MC sample, we add 1/N
for that sample. The mean error rate across all nodes is taken
as the final performance metric. As shown in Table X, the
MSEs are very small for both algorithms in all networks
we tested. The BP algorithm gave slightly better estimations
than MinEntropy in some cases at a cost of longer running
times.

We also compare the accuracy of our algorithms in terms
of cost savings. Table XI shows the number of meters
needed by each algorithm where it can be clearly seen that
using our solution to achieve the same accuracy (error rate
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611 684

- 692 675
Sk 5

Fig. 7. Networks used in our experiments. B = bus, S = switch, T = trans-
former, and U = UPS. Ordered dotted circles correspond with the sequence
of meters placed by BP while the solid circles show the meter placed by
MinEntropy. (a) Homogenous line network. (b) Heterogeneous line network.
(c) Homogeneous tree network. (d) Heterogeneous tree network. (e) IEEE
13-node distribution test feeder network.

of < 0.05) can reduce the number of meters by 33%.
Results of the random placement algorithm were obtained
by randomly placing meters until the desired accuracy was
achieved.
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TABLE X
RESULTS FOR EACH NETWORK CONFIGURATION

Network Algorithm Meter Placement Mean |Elapsed Time
Topology g Sequence Error Rate| (seconds)
Line BP 9,5,11,3,7 0.041112 270
homogeneous | MinEnt 9,5,11,7,3 0.041112 0.064
Line BP 5,10,6,3,8 0.040215 281
heterogeneous | MinEnt 49,527 0.064040 0.064
Tree BP 10,15,5,7,6 0.057893 727
homogeneous | MinEnt 5,10,15,3,6 0.056891 0.138
Tree BP 15,10,5,3,13 0.063510 727
heterogeneous | MinEnt 5,10,15,3,6 0.071655 0.138
IEEE 13-Node BP 671,634,645,652,675| 0.052381 302
Test Feeder | MinEnt [671,645,634,611,675| 0.052381 0.138

TABLE XI
NUMBER OF METERS REQUIRED IN VARIOUS NETWORKS TO RESTRICT
THE MEAN ERROR RATE TO 0.05 (5%)

Algorithm Line Line Tree Tree |IEEE 13-Node
Homogen. |Heterogen.|Homogen. |Heterogen.| Test Feeder
BP 5 5 6 6 6
MinEnt 5 6 6 3 3
Random 7 3 g 3 3

VII. CONCLUSION

PQ meters are expensive devices and it is financially infea-
sible to install them on every link in the power network. We
proposed algorithms which intelligently place power meters on
selected power links to reduce the cost of PQ monitoring. We
formulated the problem of selecting suitable meter placements
in power networks such that PQ can be best predicted. Two
approaches were presented, one based on CE and one con-
sidering prediction error. Experiments in various simulation
networks including the IEEE 13-node distribution test feeder
suggested that the CE-based MinEntropy approach is much
faster. Finally, the proposed solutions significantly reduce the
uncertainty of PQ values on unmonitored power links.

REFERENCES

[1] K. Moslehim and R. Kumar, “A reliability perspective of the smart grid,”
IEEE Trans. Smart Grid, vol. 1, no. 1, pp. 57-64, Jun. 2010.

[2] R. Albert, I. Albert, and G. L. Nakarado, “Structural vulnerability of the
North American power grid,” Phys. Rev. E, vol. 69, no. 2, Feb. 2004,
Art. ID 025103.

[3] Schneider-Electric. (Aug. 2013). Smart Meters. [Online]. Available:
http://www.smartmeters.com/tag/schneider-electric.html

[4] IEEE Recommended Practice for Monitoring Electric Power Quality,
IEEE Standard 1159, Jun. 2009.

[5] IEEE Recommended Practice for the Design of Reliable Industrial and
Commercial Power Systems, IEEE Standard 493, 2007.

[6] “ITI (CBEMA) curve application note,” Inf. Technol. Ind. Council,
Washington, DC, USA, Tech. Rep. 3, Oct. 2007.

[71 K. D. McBee and M. G. Simoes, “Utilizing a smart grid monitoring
system to improve voltage quality of customers,” IEEE Trans. Smart
Grid, vol. 3, no. 2, pp. 738-743, Jun. 2012.

[8] C. FE. M. Almeida and N. Kagan, “Harmonic state estimation through
optimal monitoring systems,” IEEE Trans. Smart Grid, vol. 4, no. 1,
pp. 467-478, Mar. 2013.

[9] M. Savaghebi, A. Jalilian, J. C. Vasquez, and J. M. Guerrero, “Secondary

control for voltage quality enhancement in microgrids,” IEEE Trans.

Smart Grid, vol. 3, no. 4, pp. 1893-1902, Dec. 2012.

A. Farzanehrafat and N. R. Watson, “Power quality state estimator

for smart distribution grids,” IEEE Trans. Power Syst., vol. 28, no. 3,

pp.- 2183-2191, Aug. 2013.

[10]

Authorized licensed use limited to: ULAKBIM UASL - SELCUK UNIVERSITESI. Downloaded on December 07,2023 at 07:01:56 UTC from IEEE Xplore. Restrictions apply.



ALI et al.: MACHINE LEARNING APPROACH TO METER PLACEMENT FOR PQ ESTIMATION IN SMART GRID 1561

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

S. G. Ghiocel et al., “Phasor-measurement-based state estimation for
synchrophasor data quality improvement and power transfer interface
monitoring,” IEEE Trans. Power Syst., vol. 29, no. 2, pp. 881-888,
Mar. 2014.

A. Krause and C. Guestrin, “Optimizing sensing: From water to the
Web,” IEEE Comput. Mag., vol. 42, no. 8, pp. 38-45, Aug. 2009.

W. Yuill, A. Edwards, S. Chowdhury, and S. P. Chowdhury, “Optimal
PMU placement: A comprehensive literature review,” in Proc. IEEE
Power Energy Soc. Gen. Meeting, San Diego, CA, USA, Jul. 2011,
pp- 1-8.

J. Chen and A. Abur, “Placement of PMUs to enable bad data detec-
tion in state estimation,” [EEE Trans. Power Syst., vol. 21, no. 4,
pp. 1608-1615, Nov. 2006.

R. Singh, B. C. Pal, R. A. Jabr, and R. B. Vinter, “Meter placement for
distribution system state estimation: An ordinal optimization approach,”
IEEE Trans. Power Syst., vol. 26, no. 4, pp. 2328-2335, Nov. 2011.
M. Shahraeini, M. S. Ghazizadeh, and M. H. Javidi, “Co-optimal
placement of measurement devices and their related communication
infrastructure in wide area measurement systems,” I[EEE Trans. Smart
Grid, vol. 3, no. 2, pp. 684-691, Jun. 2012.

J. Liu et al., “Trade-offs in PMU deployment for state estimation
in active distribution grids,” IEEE Trans. Smart Grid, vol. 3, no. 2,
pp. 915-924, Jun. 2012.

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Francisco, CA, USA: Morgan Kaufmann, 1988.
J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized belief
propagation,” in Proc. Adv. Neural Inf. Process. Syst., Denver, CO, USA,
2001, pp. 689-695.

Analysis of Extremely Reliable Power Delivery Systems: A Proposal
for Development and Application of Security, Quality, Reliability,
and Availability (SQRA) Modeling for Optimizing Power System
Configurations for the Digital Economy, EPRI, Palo Alto, CA,
USA, 2002.

Sardar Ali (S’11) received the B.S. degree from
the Kohat University of Science and Technology
(KUST), Kohat, Pakistan, and the M.S. degree from
the National University of Sciences and Technology
(NUST), Islamabad, Pakistan, in 2006 and 2009,
respectively, both in information technology. He is
currently pursuing the Ph.D. degree in computer sci-
ence from the University of Victoria, Victoria, BC,
Canada.

His current research interests include data anal-
ysis, information monitoring systems, smart micro-

grids, and Internet/network security.

Kui Wa (M’02-SM’07) received the B.Sc. and
M.Sc. degrees from Wuhan University, Wuhan,
China, in 1990 and 1993, respectively, and the Ph.D.
degree from the University of Alberta, Edmonton,
AB, Canada, in 2002, all in computer science.

He joined the Department of Computer Science,
University of Victoria, Victoria, BC, Canada, in
2002, where he is currently a Professor. His cur-
rent research interests include smart grid, network
performance evaluation, and cloud computing.

Kyle Weston received the Diploma degree in
electronics engineering technology from Camosun
College, Victoria, BC, Canada, in 2003; the B.Eng.
degree in electrical engineering from the University
of Victoria, Victoria, in 2006; and the M.Eng. degree
in intelligent systems from McGill University,
Montreal, QC, Canada, in 2010.

He has been with Kinsol Research Inc., Victoria,
for the past five years doing research and develop-
ment for various software inference problems. His
current research interests include computer vision,

machine learning, and digital signal processing.

Dimitri Marinakis received the B.Sc. degree from
the University of Victoria, Victoria, BC, Canada, in
1999, and the Ph.D. degree from McGill University,
Montreal, QC, Canada, in 2009, both in computer
science.

He is currently the Chief Scientific Officer at
Kinsol Research Inc., Victoria. His current research
interests include sensor networks, probabilistic rea-
soning, and machine learning.

Authorized licensed use limited to: ULAKBIM UASL - SELCUK UNIVERSITESI. Downloaded on December 07,2023 at 07:01:56 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


