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Abstract—Smart systems, including smart grid (SG) and
Internet of Things (IoT), have been playing a critical role in
addressing contemporary issues. Taking full advantage of the big
data generated by the smart grid can enhance the system stability
and reliability, increase asset utilization, and offer better
customer experience. To better support the data-driven smart
grid, the machine learning technologies such as cluster analysis
can be applied to process the massive data generated in smart
grid. However, the process of cluster analysis may cause the
disclosure of personal private information. In this paper, to
achieve privacy-preserving cluster analysis in smart grid, we
propose IDPC, a Differentially Private Clustering algorithm
based on the Infinite Gaussian mixture model (IGMM). IDPC
uses a combination of nonparametric Bayesian method and
differential privacy. The nonparametric Bayesian method allows
certain parameters to change along with the data and it is usually
adopted in a clustering algorithm without a fixed number of
clusters. The Laplace mechanism is used in data releasing
process to make IDPC differentially private. We present how
to make the nonparametric Bayesian clustering algorithm
differentially private by adding Laplace noise. By security
analysis and performance evaluation, IDPC is proved to be
privacy-preserving as well as efficient.

Index Terms—Differential privacy, Nonparametric Bayesian
Method, Clustering, Big data, Smart grid.

I. INTRODUCTION

SMART grid, a sensor-embedded smart electricity system

allowing two-way communication between the utility and

customers, is transformed from the traditional grids to achieve

reliable, safe, economical, efficient, and environmentally

friendly use of the grid. With the proliferation of intelligient

devices, the data collected from the smart grid has also grown

exponentially [1], [2]. The analytics of these data is the key to

intelligiently control of the production and distribution of elec-

tricity. As a promising solution, the advanced machine learn-

ing/deep learning (ML/DL) techniques can be applied to smart

grid for data analysis, such as user electricity behavior analysis,

power equipment monitoring and user classification [3]–[5].

However, the vast amount of data generated, processed and

exchanged in smart grid is usually security-critical and pri-

vacy-sensitive, such as user information, power transmission

and distribution data, hence has become the target of various

attacks [6]–[8]. Although these data are of great value, the

processing and analysis of involved sensitive information may

cause leakage of users’ privacy. Therefore, it is critical to

guarantee privacy-preserving data analysis in smart grid. Dif-

ferential privacy is proposed in [9] ensuring the privacy of all

individuals in a dataset. One commonly adopted technique to

achieve differential privacy is to add random noises, which

obey a distribution that satisfies specific conditions, during

data analysis or when publishing analysis results [10], [11].

Clustering is an important method in unsupervised learning.

The main idea of clustering is to divide the dataset into several

clusters according to the similarity between the data points, so

that the similarities of data points in the same cluster are as high

as possible, and the similarities between data points in different

clusters are as low as possible. The algorithms we use for cluster-

ing, such as k-means and Gaussian Mixture modeling, need to

specify the number of clusters in advance. However, in practice,

due to the lack of previous knowledge of the datasets, we cannot

accurately determine the number of clusters. In addition, for

many real-world datasets, the number of clusters is uncertain.

The nonparametric Bayesian method refers to a class of techni-

ques that allows certain parameters to change with the data and it

can be used to perform clustering without a fixed number of clus-

ters. There have been someworks on how to apply nonparametric

Bayesian method in a clustering task [12], [13]. However, there

has been no research about how tomake it privacy preserving.

In our proposed algorithm, we combine the nonparametric

Bayesian method and differential privacy to achieve privacy-

preserving clustering with uncertain number of clusters.

Instead of blindly set the number of clusters, we allow it to

grow as more data are observed. Meanwhile, we make the

nonparametric Bayesian clustering algorithm differentially

private through some mechanisms.
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The contributions of our paper are mainly as follows:

1. We propose IDPC, an IGMM-based differentially pri-

vate clustering algorithm for smart grid. IDPC combines

the nonparametric Bayesian method with differential

privacy to cluster data with non-fixed number of clusters

in a private manner.

2. We propose a method to ensure that the algorithm

satisfies differential privacy through some mecha-

nisms. Specifically, we present how to make the

nonparametric Bayesian clustering algorithm differ-

entially private and show the detailed mechanism of

adding noises.

3. We theoretically analyze the security of proposed algo-

rithm and prove the efficiency through numerical

experiments on two datasets. The experimental results

demonstrate that proposed IDPC can achieve a tradeoff

between privacy and utility.

The rest of this paper is organized as follows. In

section II, we present the related work. Section III gives

some preliminaries. In section IV, our model and its design

goals are stated. Section V shows details of our proposed

IDPC. In section VI, we show the security analysis. In

Section VII, we evaluate the performance of IDPC. In

Section VIII, the paper is concluded.

II. RELATED WORK

With the rapid development of sensing and control technol-

ogies and the wide deployment of sensors, massive data such

as power generation/consumption information and equipment

information is produced in the smart grid [14]. Exploiting big

data technologies to analyze these data to understand the state

of the system can provide a basis for improving the stability

and efficiency of the grid [15], [16]. Cluster analysis, a vital

technology for big data analytics [17], [18], has wide applica-

tions in smart grid, such as user behavior analysis, power man-

agement, and equipment fault detection [19]–[21]. Reference

[19] applied cluster analysis to residential smart meter data to

discover behavior groups, which classified customers based

on their demand and variability. Reference [20] used nodes

and links to represent the buses and power transmission lines,

abstracted the power transmission system into a network, and

then mines the internal structure through hierarchical spectral

clustering.

However, some sensitive information may be involved when

applying advanced ML/DL techniques for data analysis, such

as individual information and electricity usage data. Security

and privacy issues in smart grids have always been a key

research area [6]. There are some existing solutions aiming at

preserving the private information of smart grid users [22]–

[24]. Reference [22] proposed a practical privacy-preserving

data aggregation scheme without using a trusted third party, in

which user’s personal data is masked within a virtual aggrega-

tion area while ensuring that the impact on the aggregation

result is negligible.

There have been many works on data privacy protection for

data analysis, including k-anonymity [25], l-diversity [26],

differential privacy [9], and so on. To tackle with the problem

that an attacker can steal data privacy by correlating back-

ground knowledge and clustering results, reference [27]

applied differential privacy to clustering algorithm and pro-

posed a k-means clustering method DP k-means (Differential

Private k-means) which can cope with any background knowl-

edge. This method realizes privacy preservation by adding

appropriate random noise to the intermediate variables such as

the sum of clustering records and the number of records in the

iterative process of k-means algorithm. There have been many

researches on how to improve the accuracy of differentially

private clustering algorithms, from the perspective of privacy

budget allocation and improving the clustering algorithms

[28], [29]. Several papers (e.g. [30], [31]) have studied related

security issues.

For the purpose of addressing the problem that it is difficult

to determine the number of clusters in some datasets, the non-

parametric Bayesian method has been applied in clustering

algorithm [32], [33]. In nonparametric Bayesian clustering,

we need not to specify the number of clusters to be a fixed

number in advance and it can change along with the data. Ref-

erence [32] used the nonparametric Bayesian method to deter-

mine the quantity of transmitting devices in the primary user

spectrum and identify the primary user emulation attacks.

Nevertheless, existing nonparametric Bayesian clustering

algorithms have not considered that the release of results may

disclose private information in the dataset. In IDPC, we com-

bine the nonparametric Bayesian method and differential pri-

vacy to achieve privacy-preserving nonparametric Bayesian

clustering algorithm.

III. PRELIMINARIES

We introduce the definition of differential privacy and

Dirichlet process in this section.

A. Differential Privacy

Through some mechanisms to change the distribution of

query results, so that an adversary cannot obtain the personal

privacy information by comparing two queries results on

neighboring datasets, and one can realize the differential pri-

vacy protection of the individual privacy information.

Definition 1 " -differential privacy:
If for any two neighboring datasets D and D’, a mechanism

F and any possible output O 2 RangeðF Þ, there exists
PrðF ðDÞ 2 OÞ � e" � PrðF ðD0Þ 2 OÞ (1)

Then, F satisfies " -differential privacy. The neighboring

datasets D and D’ refer to two datasets with one data point dif-

ferent at most. " represents the privacy budget and it denotes

the level of privacy guarantee. The smaller the privacy budget,

the greater the degree of privacy preserving.

B. Dirichlet Process

We first review the definition of the beta distribution and the

Dirichlet distribution. Beta distribution is a conjugate prior to
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the binomial distribution. Given a > 0;b > 0, its probability
density function is

fðx;a;bÞ ¼
xa�1ð1�xÞb�1

Bða;bÞ ; x 2 ½0; 1�
0; else

(
(2)

where

1

Bða;bÞ ¼
Gðaþ bÞ
GðaÞGðbÞ (3)

Gð�Þ is the Gamma function and

GðzÞ ¼
Z 1

0

tz�1e�tdt:

Dirichlet distribution [34] is defined as the distribution on

the K-dimensional probability simplex fv1;v2; . . . ;vKg, withPK
i¼1 vi ¼ 1. Given a1;a2; . . . ;aK > 0, the probability den-

sity function of Dirichlet distribution is

fðv1; . . . ;vK ;a1; . . . ;aKÞ ¼
QK

i¼1
v
ai�1
i

BðaÞ ; vi 2 ½0; 1�
0; else

(
(4)

where

BðaÞ ¼
QK

i¼1 GðaiÞ
GðPK

i¼1 aiÞ
(5)

Definition 2 Dirichlet Process (DP) [35]:

The random distribution G on sample space Q is a Dirichlet

process, if for every finite measurable partition ðA1; A2; . . . ;
AkÞ of Q satisfies

ðGðA1Þ; . . . ; GðAkÞÞ e DirðaHðA1Þ; . . . ;aHðAkÞÞ (6)

and G is written as

G e DP ða; HÞ (7)

H is a base distribution, which can be seen as the expecta-

tion of G, E(G(A)) ¼ H(A); a is the concentration parameter,

which stands for the strength of prior.

IV. MODELS AND GOALS

A. An Overview of Our Model

Fig. 1 shows our system model. In this system, massive

amount of data, such as the electricity usage data generated

from smart home, is transferred to DPC (Data Processing Cen-

ter). And the analysis results obtained in DPC will be returned

to smart grid. The analysis results can then be applied to

increase the efficiency of management in power systems and

enhance the stability and reliability of smart grid.

Nevertheless, in the process of data analysis and result

release, personal private information may be leaked. In IDPC,

we achieve differentially private data analysis by adding ran-

dom noises to the released analysis results to protect the sensi-

tive information.

B. Design Goals

To solve the problem of privacy preservation while cluster-

ing the massive data generated in smart grid, we design our

algorithm with the following two major goals:

1) Privacy preservation: considering a pair of neighboring

datasets, regardless of how much background knowl-

edge an adversary owns, he cannot obtain any specific

information of an individual by accessing the statistical

data of associated dataset or the released analytic

results.

2) Accuracy: considering the tradeoff between the accu-

racy and the degree of privacy preservation, a balance

must be achieved.

Fig. 1. Our Proposed IDPC Algorithm in Smart Grid.
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C. Security Model

In our system, we assume that the DPC is trustful. However,

an adversary has the capability to alter the datasets transmitted

to DPC and has the access to the data analysis results released.

Differential privacy can achieve a strong privacy guarantee by

changing the distribution of query results on datasets through

some mechanisms, such as adding noise to query results, so

that an adversary cannot get specific individual information

by comparing two query results on two neighboring datasets.

V. DESCRIPTION OF OUR SCHEME

We will give the details our scheme in this section. We pro-

posed a differentially private nonparametric Bayesian cluster-

ing algorithm based on infinite Gaussian mixture modeling to

address the issues of uncertain number of clusters and privacy

disclosure in the clustering process. The nonparametric Bayes-

ian method for clustering and its combination with differential

privacy will be explained below.

We assume that a d-dimensional dataset D ¼ f~x1;
~x2; . . . ; ~xNg has N data points. Our proposed algorithm IDPC

mainly consists of two parts. In the first part, we utilize the

nonparametric Bayesian method to cluster the dataset, whose

number of clusters is uncertain or unknown to us. The main

goal of this part is to find the cluster label ~z ¼ fz1;
z2; . . . ; zNg. Specifically, zi ¼ k demonstrates that xi belongs

to kth cluster, and two data points having the same cluster

label belong to the same cluster. The second part is to utilize

the differential privacy to address the issue of privacy disclo-

sure during the releasing process of the clustering results.

A. Our Proposed Algorithm

Clustering is an important method in unsupervised learning.

The algorithms we use to cluster, such as k-means and Gaussian

Mixture modeling, need to specify the number of clusters to be

a fixed number. However, in practice, due to the lack of experi-

ence and background knowledge of the datasets, we usually

cannot determine the number of clusters accurately. Addition-

ally, for many real-world datasets, the number of clusters is

uncertain. Instead of fixing the number of clusters to be discov-

ered, we allow it to grow as more data are observed. The non-

parametric Bayesian method refers to a class of techniques that

allows certain parameters to change with the data.

The proposed algorithm we designed is to address the pri-

vacy issue of the nonparametric Bayesian clustering algo-

rithm. The main idea is to apply nonparametric Bayesian

method to cluster dataset and then apply differential privacy

to the released cluster results so that the results will not dis-

close individual information about the dataset. In the result

releasing process, privacy preservation is realized by adding

random noises to the parameters of released distributions. We

use the nonparametric Bayesian method to solve cluster task

and apply differential privacy to it. The detailed process of

our proposed algorithm is outlined in Algorithm 1. The first

part of the algorithm is to implement the clustering algorithm

in dataset D and obtain cluster label for each data point. The

second part is to estimate the parameters of each Gaussian

distribution (for every cluster) given the data points involved

and add noises to parameters to ensure the released distribu-

tions satisfy differential privacy. Then, the released noisy dis-

tribution estimated from dataset can be utilized to obtain

information about the dataset and predict the cluster label for

new observations without revealing the privacy of raw dataset.

We will discuss these two parts in detail in the following

subsections.

The nonparametric Bayesian method mainly consists of two

parts, generative model and inference model. The generative

model is related to data generation, which gives a hypothesis

about how the observations are generated and from which dis-

tribution. Inference model is used to estimate the associated

parameters given the observations based on the generative

model. Both of them will be discussed in the next two

subsections.

B. Generative Model

In this subsection, we describe two generative model for

nonparametric Bayesian clustering. In our proposed scheme,

we assume that observations are generated from mixture

Gaussian modeling. Next, we will describe the generative

models for fixed number of clusters and non-fixed number of

clusters based on Gaussian mixture modeling, respectively.

The model for fixed number of clusters is an extension of the

model for non-fixed number of clusters.

Algorithm 1: IGMM-based Differentially Private Clustering

Algorithm

Input: d-dimensional dataset D: f~x1; ~x2; . . . ; ~xNg. " : privacy budget.
Output: noisy Gaussian mixture distribution with K components

Assign all data points into one cluster, K ¼ 1.

for iter ¼ 1!T do

for i ¼ 1!N do

Remove ~xi from its current cluster.

for k ¼ 1!K do

Compute probability, pk, of assigning~xi to an existing cluster k.

end for

Compute probability, pKþ1, of assigning ~xi to an unpresented

cluster.

Sample zi according to fp1; p2; . . . ; pKþ1g.
if zi > K then

update K ¼ Kþ1.

end for

end for

for k ¼ 1!K do

Ok ¼ f~xijzi ¼ k; i ¼ 1; . . . ; Ng
Compute vk ¼ 1

N

PN
i¼1 pik, pik stands for the posterior probability

that ~xi belongs to cluster k.
for j ¼ 1!d do

mkj ¼
P

xl2Ok
xljþnoise

jOkjþnoise

end for

Sk ¼ 1
jOk j

P
xl2Ok

ð~xl �~mkÞð~xl �~mkÞT
end for

return noisy Gaussian mixture model

pðxÞ ¼ PK
i¼1 viNð~mi;SiÞ
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1) Fixed Number of Clusters: We first start with the gener-

ative model for fixed number of clusters called finite Gaussian

mixture model (FGMM) [36], then extend it to the generative

model for non-fixed number of clusters named infinite Gauss-

ian mixture model.

We assume that there are K mixture weights to model the

dataset D, and the probability density function is

pðxÞ ¼
XK
i¼1

viNð~mi;SiÞ (8)

where vi is the weight of the ith component in the mixture

model, with

XK
i¼1

vi ¼ 1; 0 � vi � 1 (9)

N is the multivariate Gaussian distribution and its probabil-

ity density function is given as

pð~xj~m;SÞ ¼ 1

ð2pÞ2=djSj1=2
exp � 1

2
ð~x� ~mÞTS�1ð~x� ~mÞ

� �
(10)

The mixture weight vi represents the probability of which

belongs to the ith cluster, i.e., pðzj ¼ iÞ ¼ vi. The parameters

~mi and Si are the mean vector and covariance matrix of the ith

Gaussian mixture, respectively. In FGMM, the mixture

weights are assumed to follow a Dirð ~MÞ distribution and the

parameters of mixture are assumed to follow the base distribu-

tion ~H. Under the above assumptions, we can describe

FGMM as follow. We first create the mixture weights

~v ¼ fv1; v2; . . . ;vKg following a Dirð ~MÞ distribution.

Given the weights, we can generate the cluster label for each

data point following a multinomial distribution. Then we can

know which cluster each data point belongs to, i.e., we can

determine the distribution each data point follows. Given the

distribution, we can then generate random samples.

The inverse Wishart distribution is chosen to be the prior

distribution of the Gaussian distribution [37]. According to

[38], we compute the conjugate prior distribution for mean

vector ~mi and covariance matrix Si with Gaussian inverse

Wishart (GIW) distribution as following

Si e IWy0ðL�1
0 Þ (11)

~mijSi e Nð~m0;Si=k0Þ (12)

where IW is the inverse Wishart distribution, L�1
0 ; y0; ~m0; k0

are the hyperparameters and integrated into ~H. The hyperpara-

meters ~H can be interpreted as following: ~m0 is the prior mean

for ~mi, and k0 indicates confidence about it. L
�1
0 is prior about

Si, and y0 represents the confidence about that. The probabil-
ity density function of the inverse Wishart distribution is

given as

pðSÞ ¼
L�1
�� ��y=2jSj�yþdþ2

2 exp � trðS�1
i L�1Þ
2

� �
2
yd
2 Gdðy=2Þ

(13)

where L is a d� d scale matrix, trð�Þ represents the sum of the

diagonal elements of a matrix, and Gdð�Þ is the multivariate

Gamma function. Then, the conjugate prior probability density

function is written as

pð~mi;SiÞ ¼ GIWð~mi;SijL�1
0 ; y0; ~m0; k0Þ (14)

GIW is defined as

GIWð~mi;Sij~HÞ
e Nð~m0;Si=k0Þ � IWy0ðSijL�1

0 ; y0Þ

¼
jSj�

y0þdþ2
2 exp � k0

2 ð~mi � ~m0Þ2S�1
i � trðS�1

i L�1
0 Þ

2

� �
2
y0d
2 Gdðy0=2Þð2p=k0Þ

d
2 L�1

0

�� ���y0
2 (15)

An important but difficult problem in FGMM is how to

determine the number of clusters. In practice, due to the lack

of experience and background knowledge of the datasets, we

usually cannot determine the number of clusters accurately,

and for many real-world datasets, the number of clusters is

uncertain. Therefore, the FGMM cannot model these datasets.

Instead, the IGMM will be adopted to solve this problem, as

described in the next section.

2) Non-Fixed Number of Clusters: In the FGMM, the

number of clusters is assumed to be a fixed number. However,

in reality, we usually cannot obtain exact knowledge about the

number of clusters. IGMM can be used to solve this problem

by setting K ! 1 in FGMM. In IGMM, we assume that the

number of clusters is infinite but it is a finite number at a cer-

tain time. In the FGMM, we choose Dirichlet distribution as

the prior of mixture weights. However, in the infinite case, we

cannot obtain mixture weights directly by sampling from

Dirichlet distribution. Instead, infinite mixture weights are

sampled by another process named as the stick breaking con-

struction [29] and it is defined as follow. Suppose that there

is a stick with length 1 and we let bkeBetað1;aÞfor k ¼
1; 2; 3 . . . ; which are regarded as fractions for how much we

take away from the remainder of the stick every time. Then

the mixture weights fvkg1k¼1 can be calculated by the length

we take away each time and this process can be written as fol-

low:

v1 ¼ b1;v2 ¼ 1� b1ð Þb2; . . . ;vk ¼ bk

Yk�1

j¼1

1� bj

� �
; . . .

(16)

Then we can obtain the infinite mixture weights withP1
k¼1 vk ¼ 1.
Fig. 2 shows the graphical representation of the infinite

Gaussian mixture modeling and illustrates that how the data

points are generated. In IGMM, the number of clusters is
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uncertain and assumed to be infinite. Each cluster can be

described as a multivariate Gaussian distribution as in the

FGMM, which can be denoted by parameters including the

mean vector ~m and the covariance matrix S, which are inte-

grated into~u in Fig. 2. Different to the finite case, the mixture

weights obtained from the hyperparameter a is calculated by

the stick breaking construction defined above.

C. Inference Model

In this subsection, we describe how we use nonparametric

Bayesian methods to solve the clustering problem, i.e., to

find the cluster label, zi, for each data point in D. Now, our

goal is to find the parameter ~z ¼ fz1; z2; . . . ; zNg given the

observations. Given the prior distributions of other parame-

ters in the generative model, we want to find the joint distri-

bution ~z ¼ fz1; z2; . . . ; zNg and then we can sample from

this distribution to obtain the cluster labels. In our proposed

algorithm, due to the difficulty of deriving the expression of

posterior distribution, Gibbs sampler [39], an efficient

method to generate samples from the univariate distribution,

is adopted to obtain samples following the joint distribution

approximately.

In the process of Gibbs sampler, we need to sample from the

conditional distribution of zi given the other cluster labels~z�i

and ~z�i¼ fz1; � � � zi�1; ziþ1; . . . ; zNg. By applying the Bayes’

rule, we can obtain the posterior distribution of zi as

following:

P ðzi ¼ kj~z�i; ~x;a; ~HÞ
¼ P ðzi ¼ kj~z�i; ~xi;~uk;a; ~HÞ
eP ðzi ¼ kj~z�i;aÞP ð~xijzi ¼ k;~z�i;~uk;a; ~HÞ
eP ðzi ¼ kj~z�i;aÞP ð~xij~z�i;~uk; ~HÞ

(17)

We omit the normalized factor in the formula above. We

can easily find that P ð~xij~z�i;~uk; ~HÞ is the likelihood and

obtain a Gaussian distribution according to our assumption. In

order to determine the expression of posterior distribution of

the cluster label zi, we need to derive the expression of

P ðzi ¼ kj~z�i;aÞ in the above formula.

From the generative model described in the previous sub-

section, we can know that the cluster label for each data point

is generated from the mixture weights. So, we need to inte-

grate ~v and give the prior distribution of cluster labels

pð~zjaÞ ¼
Z
v

pð~zjvÞpðvjaÞdv (18)

where

pð~zj~vÞ ¼
YK
k¼1

v
nk
k (19)

nk is the number of data points involved in the kth cluster.

And

pð~vjaÞ e Dirða=K; a=K; . . . ;a=KÞ

¼ GðaÞ
Gða=KÞK

YK
k¼1

v
a
K�1

k (20)

Hence, we have

pð~zjaÞ ¼ GðaÞ
Gða=KÞK

Z
~v

YK
k¼1

v
nkþa

K�1

j

¼ GðaÞ
GðN þ aÞ

YK
k¼1

Gðnk þ a=KÞ
Gða=KÞ (21)

In order to obtain the conditional prior for a single cluster

label given the others, we keep all but a single cluster label

fixed in the above and we can obtain

pðzi ¼ kj~z�i;aÞ ¼ n�i;k þ a=K

N þ a� 1
(22)

where n�i;k represents the number of data points in the kth

cluster before ~xi are observed. To satisfy the infinite case, we

let K ! 1 and the conditional prior distribution can be writ-

ten as

pðzi ¼ kj~z�i;aÞ ¼
n�i;k

Nþa�1 ; ifn�i;k > 0
a

Nþa�1 ; ifn�i;k ¼ 0

	
(23)

where n�i;k¼0 means that there is no data point assigned to

the kth cluster.

As for another term P ð~xij~z�i;~uk; ~HÞ in formula (17), we

also need to find two expressions as pðzi ¼ kj~z�i;aÞ. Accord-
ing to [38], due to our choice of conjugate prior, we can obtain

the expression of P ð~xij~z�i;~uk; ~HÞ by the multivariate Student-

t distribution. Therefore, we can obtain that

P ð~xij~z�i;~uk; ~HÞ e tyn�dþ1 ~mn;
Lnðkn þ 1Þ

knðyn � dþ 1Þ
� �

(24)

where t represents the multivariate Student-t distribution and

yn � dþ 1 denotes the number of degrees of freedom. The

other parameters are defined as follows:

Fig. 2. Illustration of IGMM.
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~mn ¼ k0

k0 þN
~m0 þ

N

k0 þN
�x

kn ¼ k0 þN

yn ¼ y0 þN

Ln ¼ L0 þ Sþ k0n

k0 þN
ð�x� ~m0Þð�x� ~m0ÞT (25Þ

where �x is the mean of data points in D, d is the dimension of

data point. ~ml; kl;yl;Ll are the updated hyperparameters after

observing a new data point and S is defined as

S ¼
XN
i¼1

ð~xi � �xÞð~xi � �xÞT (26)

For the case that assigning a data point to an unpresented

cluster, we can obtain the expression of pð~xi; ~HÞ as:

pð~xi; ~HÞ e tyo�dþ1 ~m0;
L0ðk0 þ 1Þ

k0ðy0 � dþ 1Þ
� �

(27)

And the probability density function of the multivariate Stu-

dent-t distribution is given as:

tvð~xj~m;LÞ ¼ Gððdþ vÞ=2Þ
Gðv=2Þ

Lj j1=2
ðpyÞd=2

� 1þ ð~x� ~mÞ2L�1

y

" #�ðdþvÞ=2

(28)

where y is the number of degree of freedom, ~m is the mean

vector, and L is a d� d scale matrix.

In conclusion, we obtain posterior distributions for two

cases. The first case is assigning a data point to an existing

cluster and the expression of distribution is written as:

P ðzi ¼ kj~z�i; ~x;a; ~HÞ

en�i;k þ a=K

N þ a� 1
tyn�dþ1 ~mn;

Lnðkn þ 1Þ
knðyn � dþ 1Þ

� �
(29)

Another case is assigning a data point to an unpresented

cluster, in which there is no data point assigned, and the

expression of distribution is written as:

P ðzi 6¼ j; 8j 6¼ i; j~z�i; ~x;a; ~HÞ

e a

N þ a� 1
ty0�dþ1 ~m0;

L0ðk0 þ 1Þ
k0ðy0 � dþ 1Þ

� �
(30)

Fig. 3 shows the process of using nonparametric Bayesian

method to perform clustering algorithm.

D. Adding Noises

In this subsection, we will present how to make the non-

parametric Bayesian clustering algorithm differentially pri-

vate. The basic idea is to derive the sensitivity of the Gaussian

distribution parameters and then to add Laplace noise, so that

the released distribution is guaranteed to be differentially

private. After the first part of our proposed algorithm, we will

obtain cluster labels for each data point and we can estimate

the parameters of the Gaussian distribution for every cluster

given the data points involved. However, releasing the final

distribution directly may cause privacy disclosure. A mali-

cious analyst can mine individual information by analyzing

the released clustering results. In our algorithm IDPC, privacy

preservation is realized by adding noise when computing the

parameters of the released Gaussian distributions. Given the

data points sampled from a multivariate Gaussian distribution,

we need to estimate the mean vector ~m and covariance matrix

S. Their maximum likelihood estimates are written as

~̂m ¼ 1

M

XM
i¼1

~yi ¼ �y (31)

Ŝ¼ 1

M

XM
i¼1

ð~yi � �yÞð~yi � �yÞT (32)

where M is the number of data points sampled from this

Gaussian distribution. Then, we add noises to these two

parameters to prevent privacy leakage to malicious analysts. It

can be seen that the mean vector is involved in the calculation

of the covariance matrix. Therefore, we only add noise to the

calculation process of the mean vector, and then use noisy

mean vector to calculate the covariance matrix.

There are some mechanism to achieve differential privacy,

such as the Laplace mechanism [40] and the Exponential

mechanism. We choose Laplace mechanism to add noise. Lap-

lace mechanism achieve differential privacy by adding a ran-

dom noise generated from Laplace distribution to the result of

g on the dataset D, and it can be written as:

AgðDÞ ¼ gðDÞ þ LapðGSg="Þ (33)

where

Pr½LapðbÞ ¼ x� ¼ 1

2b
e
�jxj

b (34)

Fig. 3. Graphical model representation of IGMM-based clustering algorithm.
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GSg is the global sensitivity of g, which is defined as fol-

lows:

GSg ¼ max gðDÞ � gðD0Þk k1 (35)

where D and D�are neighboring datasets.
In the process of calculating the mean vector of cluster k,

we need to count the number of data points belonging to

this cluster, ck, and the sum of each dimension j, skj. Then,
the jth dimension of mean vector ~mk is calculated by

mkj ¼ skj=ck. We will add noise to ck and skj respectively

to obtain c0k and s0kj. The noisy mean vector is obtained by

m0
kj ¼ s0kj=c

0
k.

Two important tasks of adding noise is to derive the global

sensitivity of the target function and allocate the privacy bud-

get. Next, we will derive the global sensitivity of the mean

vector, which determines the distribution of noises added.

Adding or deleting a point in dataset D will only affect one

cluster of the final result. So, the maximum change of the

number of data points ck is 1, i.e., GSðckÞ ¼ 1. We normalize

the dataset D to ½0; 1�d in advance. Thus, the maximum change

of each dimension skj, caused by adding or deleting a point, is

1, i.e., GSðskjÞ ¼ 1.
According to the Laplace mechanism, to achieve differen-

tial privacy, we should add noise for each mean vector ~mk.

Specifically, add noise Lapð1="0Þ to ck and add noise

Lapð1="jÞ to skj, where
Xd
j¼1

"kj þ "k0 ¼ "k (36)

"k0 and "kj are the privacy budgets allocated to ck and skj,
and "k is the privacy budget allocated to ~mk. Since the range

of data in D is [0,1], "k0 and "kj satisfy "k0 : "kj ¼ 1 : 1. So,
considering (36), we have

"kj ¼ "k0 ¼ "k=ðdþ 1Þ (37)

The noise added to ck and skj is Lapððdþ 1Þ="kÞ. Consider-
ing that the clustering result of D is equal to dividing this data-

set to K disjoint subsets, we just need to make sure that every

calculating process of ~mk satisfies " -differential privacy, then
our algorithm IDPC satisfies " -differential privacy. Therefore,
we can obtain that "1 ¼ "2 ¼ � � � ¼ "K ¼ ". Fig. 4 shows the

main idea of ensuaring our algorithm differentially private

and the mechanism we design.

VI. SECURITY ANALYSIS

In this section, we will present the security analysis of

our proposed algorithm and demonstrate that this algorithm

satisfies " -differential privacy. To analyze the security of

IDPC theoretically, we first give two characteristics of dif-

ferential privacy, including the sequential composition

and the parallel composition. We design our mechanism of

privacy budget allocation according to these two properties.

The sequential composition property can be interpreted

as that n random algorithms are sequentially applied

to the dataset D. Let M1;M2; . . . ;Mn be n random

algorithms, and Mi satisfies "i -differential privacy. Then,

for dataset D, the composition algorithm ft1 ¼ M1ðDÞ;
t2 ¼ M2ðD; t1Þ; . . . ; tn ¼ MnðD; t1; . . . ; tn�1Þg satisfies "
-differential privacy, in which " ¼ Pn

i¼1 "i. The parallel

composition property can be interpreted as that a random

algorithm is applied to the subsect of dataset D respectively.

Suppose a dataset D is divided into disjoint subsets

fD1; D2; . . . ; Dng and a random algorithm A satisfies " -dif-

ferential privacy. Then the parallel operations of M on

fD1; D2; . . . ; Dng satisfy " -differential privacy.

We have discussed how to make nonparametric Bayesian

clustering algorithm differentially private in subsection 5.4,

and differential privacy is achieved by adding Laplace

noises to the mean vectors of each Gaussian distribution in

our proposed algorithm. The clustering result of D is equal

to dividing this dataset into K disjoint subsets. So according

to the parallel combination characteristic, if we let

"1 ¼ "2 ¼ � � � ¼ "K ¼ ", then our proposed algorithm will

satisfy " -differential privacy. In the process of calculating

mean vector ~mk, dþ1 noises will be added to ck and skj.
According to the sequence combination characteristic, we

just need to make the total privacy budget allocated to clus-

ter k equal to "k. Since the global sensitivity of ck and skj
are both 1 under our assumption that the dataset D is nor-

malized to ½0; 1�d, the noise added to ck and skj are

Lapð1="0Þ and Lapð1="jÞ. We can easily obtain that if each

dimension is normalized to [0, 1], the privacy budgets allocated

to ck and skj satisfy "k0 : "kj ¼ 1 : 1. Considering that

Xd
j¼1

"kj þ "k0 ¼ "k (38)

we have "kj ¼ "k0 ¼ "k=dþ 1.

VII. PERFORMANCE EVALUATION

To accomplish privacy-preserving cluster analysis in

smart grid, we presented an IGMM-based differentially

Fig. 4. Graphical model representation of adding noises.
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private clustering (IDPC) algorithm in this paper, which

takes a combination of the nonparametric Bayesian method

and differential privacy. We use the nonparametric Bayes-

ian method to perform clustering algorithm on dataset and

then apply differential privacy to the released clustering

results so that an adversary cannot obtain individual private

information by analyzing clustering results. Specifically,

privacy preservation is achieved by adding noises to the

parameters of the released distributions. In this section, we

implement numerical experiments to illustrate the efficiency

of our algorithm by comparing the Normalized Intra-Cluster

Variance (NICV) of IDPC and non-privacy clustering

algorithm.

A. Description of Datasets

We did the numerical experiment on two datasets, including

Blood and Adult, from the UCI Knowledge Discovery

Archive database. There are 748 data points in dataset Blood

and we choose 4 attributes as our experiment dataset. The

dataset Adult consists of private information of individuals

and has 48842 data points. We choose 5 continuous attributes

as our experiment dataset.

Next, we discuss how we can set the hyperparameters in the

nonparametric Bayesian clustering algorithm, including the

concentration parameter a, and ~m0, k0, L
�1
0 , y0. a stands for

prior belief on the distribution. We can easily find that the

probability of assigning a data point to an unpresented cluster

depends on the value of a and the ratio of a and N. Therefore,

we set a¼ ½N=20� so that the probability of crea‘ting a new

cluster will not be too high or too small. ~m0 represents the ini-

tial mean vector, and k0 is associated with the dispersion of

the clusters and our confidence of ~m0. Generally, we set ~m0 to

be the mean vector of all data points and choose k0 to be 0.5.

Another two hyperparameters, L�1
0 , y0, are associated with

the covariance matrix, which are the parameters of Wishart

distribution. y0 represents our confidence of L0, which

depends on the difference between L0 and the updated covari-

ance matrix. We set L0 to be a diagonal matrix of 0.1 and y0
to be 10.

B. Accuracy

In this subsection, we evaluate our proposed IDPC by compar-

ing the NICV of IDPC with the general nonparametric Bayesian

clustering algorithm without differential privacy. We set differ-

ent total privacy budgets in IDPC to illustrate the influence of

the level of privacy guarantee on accuracy of clustering results.

Figs. 5 and 6 are the analysis results on the two datasets. It can

be seen from the experimental results that our proposed algo-

rithm achieves privacy preservation while having an acceptable

impact on the utility. As for the relationship between accuracy

of proposed algorithm and privacy budgets, the accuracy of our

algorithm approaches the general nonparametric Bayesian clus-

tering algorithm as the privacy budget increases.

VIII. CONCLUSION

To accomplish privacy-preserving cluster analysis in smart

grid, we presented an IGMM-based differentially private cluster-

ing (IDPC) algorithm in this paper, which takes a combination of

the nonparametric Bayesian method and differential privacy. In

IDPC, the nonparametric Bayesianmethod is applied in the clus-

tering algorithm, to allow certain parameters to change with the.

The Laplace mechanism is used in the data releasing process to

make our proposed algorithm differentially private. We pre-

sented how tomake the nonparametric Bayesian clustering algo-

rithm differentially private by adding noises. Finally, we

theoretically analyze the security of proposed algorithm and

prove the efficiency through numerical experiments on two data-

sets. The experimental results demonstrate that our proposed

algorithm can achieve a balance between the privacy and utility.

In future research, we will work on the privacy leakage

issues during the process of the nonparametric Bayesian clus-

tering and how to combine nonparametric Bayesian method

with differential privacy to achieve more optimized nonpara-

metric Bayesian clustering with both high accuracy and pri-

vacy preserving. In addition, we will continue to study the

combination of other machine learning and deep learning

algorithms with differential privacy and optimization of

achieving tradeoff between privacy and utility.

Fig. 5. NICV of our proposed IDPC and Non-privacy on dataset Blood with
different privacy budgets.

Fig. 6. NICV of our proposed IDPC and Non-privacy on dataset Adult with
different privacy budgets.
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