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Abstract—Existing Mixed Integer Non-linear Programming
(MINLP) solution methods and commercially available solvers
lack computational efficiency and robustness in solving
three-phase Distribution Optimal Power Flow (DOPF)
programs, given the large number of continuous and integer
variables encountered in practical sized systems. A heuristic
approach to solve this problem was proposed by the authors, in
which a compromise is made on optimality in order to reduce
the computational burden. In the present work, a Genetic
Algorithm (GA) based method is applied to determine the
optimal solution to the three-phase DOPF problem, and is
compared with the heuristic solution in terms of both
optimality and computational burden. Two distribution feeders,
namely, the IEEE 13-node feeder and a practical feeder from
Hydro One are used for these comparisons. The results show
that the GA-based method yields superior solutions in terms of
optimality but at a rather large computational cost, making it
unsuitable for practical implementation. The heuristic method
is shown to yield solutions reasonably close to the global optima
at a significantly reduced computational burden, demonstrating
that the heuristic solution method has the potential to improve
distribution system operation in practical real-time applications.

Index Terms—Unbalanced distribution systems, real-time
operation, optimal power flow, smart grids, genetic algorithms.

I. Nomenclature
α, β, γ Scalar weights of the objective function components.
ω Set of integer variables considered as continuous.
C Set of controllable capacitor banks.
cap Number of capacitors switched in capacitor banks.
h Hours, h = 1, 2...24.
J, J

′

Objective functions.
K A constant multiplier.
n Set of integer variables.
p Set of phases a, b, c.
Psub Power drawn from substation.
t Set of controllable tap changers.
tap Tap position.
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II. Introduction

THE IMPLEMENTATION of real-time information
systems, Advanced Metering Infrastructure (AMI),

improved communication capabilities, and improved
infrastructure for control systems is envisaged to transform
the existing distribution systems into “Smart Grids” [1].
These Smart Grids, because of environmental concerns and
incentives from regulators, are expected to accommodate
high levels of penetration of Distributed Energy Resources
(DERs) and Plug-in Hybrid Electric Vehicles (PHEVs) [2].
Furthermore, dynamic pricing schemes and incentives from
utilities will encourage the implementation of Energy Hub
Management Systems (EHMSs) at customers’ premises [3],
which can facilitate their participation in utilities’ demand
side management, demand response, and demand control
programs.

Figure 1 presents the schematics of a distribution feeder in
Smart Grids with its various components and features,
illustrating the scope of the present work [4]. In such
environment, real-time information systems will allow
customers access to information such as energy price,
emissions, incentive signals, and weather. These data are
essential components of the customers’ EHMSs to optimize
electricity usage while fully accounting for their preferences.
With AMI and communication technologies, Local
Distribution Companies (LDCs) can gather information on
distribution system status and customers’ load profiles
optimized by their EHMSs. Such an environment in Smart
Grids would allow flexibility in distribution system operation
via coordinated and centralized control of its components
such as Load Tap Changers (LTCs), Switched Capacitors
(SCs), switches, controllable loads, DERs, PHEVs, etc. [5].
Moreover, this infrastructure allows real-time control of
distribution system components with a variety of operational
objectives related to economy, efficiency, reliability,
environmental concerns, etc. [6], which is an improvement
over predominantly existent volt/var control schemes based
on local measurements. A generic three-phase DOPF is at
the core of such centralized optimization-based control for
improved operation of distribution feeders [4].

Accurate and comprehensive modeling of components and
efficient computational methods are critical requirements for
real-time control of distribution feeders. The large number of
nodes, components and measurements encountered in
practical distribution systems lead to significant data
handling requirements and extensive computational burden,
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Fig. 1. Schematic diagram of a distribution system in Smart Grids.

rendering the real-time continuous control of distribution
system components practically impossible [6]. However, a
real-time analysis at 15 to 30 minute intervals at normal
operating conditions, are more manageable from a practical
stand-point [6], [7]. Computational burden in most of the
distribution system analyses is reduced by assuming the
distribution system to be a balanced three-phase system, and
hence considering a single-phase equivalent model [8]–[10].
However, these models are not suitable for precise real-time
operation and control applications, because of existence of
untransposed three-phase feeders, single-phase laterals, and
single-phase loads. A comprehensive three-phase feeder
model with phase specific and voltage dependent load
models need to be considered, as is the case of [4] and this
paper.

In distribution system optimization problems, a distribution
load flow (DLF) [11], [12], and any of the MINLP solution
methods discussed in [13]–[18], can be readily implemented
to solve the three-phase DOPF problems. Although the

computational time for three-phase DLF problems reported
in [11] and [12] are promising for real-time applications,
issues pertaining to computational robustness and burden of
MINLP solution methods are the main challenges for solving
the three-phase DOPF for real-time control purposes, as
discussed in [4]. This complexity increases substantially for
a 24-hour horizon because of the increased number of
variables and presence of inter-temporal constraints. The
commercially available solvers (particularly BARON and
DICOPT) were found to be computationally inefficient in
[4], both in terms of robustness and CPU time, making them
unsuitable for practical applications. The heuristic solution
method proposed in [4] results in a sub-optimal solution in
which a compromise is made between optimality and
computational cost to render the solution process suitable for
real-time applications.

Based on the aforementioned discussions, the main
objectives of the present work can be summarized as follows:
• A GA-based three-phase DOPF solution method is

developed, implemented and tested to evaluate its
performance in terms of the optimal solution and
computational burden based on case studies carried out
on two distribution systems: IEEE 13-node test feeder
and a Hydro One distribution feeder.

• To compare the performance of the GA based method
with the previously proposed heuristic solution method
proposed in [4], in terms of computational burden and
optimality of the solution.

The rest of the paper is organized as follows: Section III
describes the three-phase DOPF model, the heuristic solution
method, and the GA-based solution method. Section IV
presents and discusses the results of the various case studies
carried out for two distribution systems to evaluate the
heuristic method in terms of real-time applications. A
summary of the presented work and the main contributions
of this paper are discussed in Section V.

III. OptimizationModel

A. Distribution System Component Models

In this work, distribution system components such as
conductors/cables, transformers, LTCs, and switches are
modeled using ABCD parameters. Single-phase, two-phase,
three-wire three-phase, and four-wire three-phase conductors
and cables are also represented. Various common distribution
system transformers are modeled, such as single-phase and
three-phase wye grounded-wye grounded, delta-wye
grounded, and open wye-open delta connections.
Single-phase LTCs and wye-connected three-phase LTCs are
modeled with individual phase control and group control
options [4], [19].

Shunt components (loads and capacitors) are modeled for
individual phases separately to represent unbalanced
three-phase loads, since single-phase loads and single phase
capacitors are common in distribution feeders. A polynomial
load model is adopted, where each load is modeled as a mix
of constant impedance, constant current, and constant power
components. Capacitors are modeled as constant impedance
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loads. Capacitor banks are modeled as multiple units of SCs.
Wye-connected and delta-connected loads and capacitors are
represented [4], [19].

B. Three-phase Distribution Optimal Power Flow Model

The developed model is a generic optimization model,
where any objective function can be selected for distribution
system operations. However, to demonstrate its applicability
in distribution system optimal operation, the novel objective
function proposed in [4] is considered in this work as well,
which is a weighted function to minimize energy drawn
from the substation and the number of switching operations
of the LTCs and SCs. This function is defined as follows,
based on the nomenclature defined in Section I:

J = α
∑

h

Psubh +
∑

p

∑
t

βt

24∑
h=2

∣∣∣tapp,t,h − tapp,t,h−1
∣∣∣

+
∑

p

∑
C

γC

24∑
h=2

∣∣∣capp,C,h − capp,C,h−1
∣∣∣ (1)

The parameters α, βt, and γC are the weights attached to energy
drawn from the substation, LTC switchings and SC switchings,
respectively. Selection of these weights depends on the level
of priority attached to these components by the distribution
system operator.

The mathematical models of distribution system
components described in the previous section constitute the
equality constraints of the three-phase DOPF. In addition to
these component models, voltage and current balance
equations at each node and in each phase are additional
equality constraints required in the modeling of three-phase
DOPF. Distribution system operating limits such as voltage
limits, feeder current limits, transformer capacity limits, etc.,
constitute the inequality constraints. The detailed
mathematical modeling of three-phase DOPF is discussed in
[4].

C. Heuristic Solution Method

This heuristic method for solution of the three-phase
DOPF proposed by the authors [4], is based on penalty
functions and local searches to reduce the computational
burden of the solution process. Thus, the three-phase DOPF
with integer variables is transformed into a non-linear
programming (NLP) problem using an additional quadratic
penalty term in the objective function, as in [9], [10]. This
transforms the objective function (1) as follows:

J′ = J +
∑

n

Kn

(
ωn − round(ωn)

)2
(2)

Hence, the quadratic term adds a high penalty to the
objective function for non-integer solutions, and thus drives
the variable ωn towards its closest integer solution
round(ωn). The parameter Kn needs to be carefully selected
to obtain an optimal integer solution to the NLP problem [9],
[10].

Commercially available NLP solvers do not guarantee
reaching a feasible solution of the NLP-DOPF problem

Feasible Region

ωn
X1

X2

Scenario 1
Scenario 2

Penalty Function

Local Search Boundary

round(ωn)

ωn
round(ωn)

Feasible Boundary

Local Search
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Fig. 2. Optimal and infeasible cases encountered in the solution process
based on a quadratic penalty function method.

because of the presence of the discontinuous quadratic
penalty term in (2). In Fig. 2, Scenario 1 depicts a case
when the optimal integer solution X1 is obtained using the
quadratic penalty function; to obtain an optimal integer
solution, both ωn and round(ωn) must lie inside the feasible
region of the optimization problem. It is possible that
round(ωn) may lie outside the feasible region, as depicted in
Scenario 2 in Fig. 2; this could happen, in particular, when
ωn is close to the boundary of the feasible region. To address
this problem, a local search technique is proposed in [4] to
ensure that integer solution X2 is in the feasible space of the
optimization problem.

The proposed three-phase DOPF, with the NLP
approximation and local search procedure, is still
computationally intensive because of the size of the search
space resulting from the 24-hour time-frame. To reduce
computation time, an hourly local search approach is
implemented which reduces the search space substantially. In
this process, mathematical precision is somewhat
compromised for the sake of reducing computational burden.
In practical applications this is a reasonable sub-optimal
approach that allows for the implementation of the proposed
technique in real-time. A detailed flowchart and discussion
of the proposed heuristic solution method is provided in [4].

D. Genetic Algorithm based Solution Method

A GA-based method, similar to the one discussed in [14],
was implemented to solve the three-phase DOPF, so that
comparisons of optimal solutions and associated CPU times
can be made with the heuristic method. Figure 3 depicts a
pseudo-code of the solution method, the parameters and
steps of which are briefly discussed next. The details of a
generic GA-based solution method can be found in [20]. In
Fig. 3, the following are the main parameters:

• Generations (G): The proposed GA-based method is set
for 100 generations.

• Chromosome (X): The controllable variables tap and cap
associated with LTCs and SCs in the three-phase DOPF
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begin

choose individuals of S
choose G, S, CR, MR  
define X, F

rank individuals of S based on F
repeat

create a pool of individuals, based on CR,  for mating 
choose parents based on two random numbers 
apply cross-over operator to reproduce offspring

repeat

evaluate F for offspring
discard unfit offspring

until 

S number of offspring are reproduced
choose best S fit individuals among parents and offspring

generation G is reached

apply mutation operator to offspring based on MR 

solve three-phase DLF for individuals in S
evaluate F for individuals in S

solve three-phase DLF for offspring

until

end

Fig. 3. A pseudo-code illustrating the GA-based solution method for the
three-phase DOPF.

model are integer variables, each variable is represented
by a chromosome which is a 6-bits binary number.

• Population Size (S ): A population size of 25 individuals
are considered, where individuals mean binary values
assigned to the chromosomes representing all tap and
cap variables for 24 hours. To start, 25 individuals that
satisfy the equality and inequality constraints of the
three-phase DOPF are chosen arbitrarily.

• Fitness Function (F): The objective function in (1) is
used to evaluate the fitness of initial population and
offsprings. To avoid infeasible cases, any offspring that
does not satisfy the equality and inequality constraints is
assigned a very high value of F and considered unfit.

• Cross-over and Mutation: A cross-over rate (CR) of 80%
and a mutation rate (MR) of 1% are used. Figure 4 depicts
a two-point cross over (after 2nd and 4th bits) and the
mutation operators employed.

1 1 0 1 0 0 0 1 1 0 1 1

1 1 1 0 0 0 0 1 0 1 1 1

Parent I Parent II

Offspring I

Offspring II

0 1 0 1 1 0

Cross-over

Mutation

Fig. 4. A two-point cross-over and mutation operator in GA.

IV. Case Studies

The three-phase DOPF model, the heuristic method, and the
GA-based method were implemented in GAMS [21], a high-
level optimization modeling tool. Both the heuristic and GA-
based methods require solutions to the three-phase DLF, which
is an NLP problem; for this purpose, commercially available
MINOS solver was used [22].

A. IEEE 13-node Test Feeder

The IEEE 13-node test feeder, as shown in Fig. 5 [23], is
considered first to compare the performance of the heuristic,
and the GA-based methods in solving three-phase DOPF
problems. To demonstrate their applicability in a 24-hour
time-frame, the load data provided in [23] are assumed to be
peak loads and the load profile reported in [24] is used.

The capacitors available in the IEEE-13 node test feeders
are single units with fixed values. Hence, to demonstrate the
applicability of the proposed method considering SCs, the
given capacitor data are modified, assuming that five blocks
of 100 kVar capacitors are connected at node 675 in each
phase, and five blocks of 50 kVar capacitors are connected at
node 611 in phase c. The LTC and the two capacitor banks
are considered to be controllable. In the proposed objective
function (1), equal weights are assigned to the switching
operations of LTC and capacitors and are considered
complementary to the weight attached to the energy drawn
from the substation, i.e.,

β1 = γ1 = γ2 = 1 − α (3)

The GA-based solution method, which uses the complete
MINLP model of the IEEE-13 node test feeder in a 24-hour
timeframe, involves 9,792 continuous and 168 controllable
integer variables. The NLP model used in the heuristic
method requires solutions to 9,960 continuous variables. In
the heuristic solution method, the hourly search technique
narrows down the search space to 192 combinations from
4.72 × 1021, which would have otherwise been required in
case of a 24-hour search.

646 645
632

633 634

650

692 675611 684

652

671

680

RG60

Sub-transmission
system

Fig. 5. IEEE 13-node test feeder [23].
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TABLE I
Simulation results in IEEE 13-node Test Feeder

Heuristic Solution Method GA-based Solution Method % Difference

Case α
Energy No. of Objective Solution Generations Energy No. of Objective Solution in Objective
(MWh) Switchings Function Time (MWh) Switchings Function Time Function

1 1 62.89 30 62.89 4m46s 1 68.88 24 68.88 3m52s 9.53
25 62.20 35 62.20 53m47s -1.09
50 61.81 47 61.81 1h47m32s -1.71
100 61.23 88 61.23 3h44m51s -2.63

2 0.2 67.08 20 29.42 3m39s 1 62.55 73 70.91 3m46s 141.06
25 65.09 42 46.62 53m14s 58.48
50 67.86 26 34.37 1h46m58s 16.85
100 68.18 18 28.04 3h28m36s -4.69

3 0 67.73 12 12.00 3m11s 1 62.93 76 76.00 3m44s 533.33
25 63.75 51 51.00 54m19s 325.00
50 66.81 28 28.00 1h46m32s 133.33
100 67.85 12 12.00 3h28m39s 0.00
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Fig. 6. Comparison of the heuristic and GA-based solution methods in IEEE
13-node test system for α = 1.

First, α is set to 1, which represents minimization of the
energy drawn from the substation. The optimal energy drawn
from the substation obtained using the heuristic method is
62.89 MWh, while in the GA based method, improved
solutions are obtained over the generations, starting from
68.88 MWh after the 1st generation to 61.23 MWh at the
end of the 100th generation. Observe in Fig. 6 that the
GA-based method starts to yield better solutions after the
16th generation compared to the heuristic method, but
requires 39m 17s to complete these 16 generations, which is
not a suitable timeframe for real-time applications. Over the
subsequent generations, the GA based method yields better
solutions as compared to the heuristic method but at rather
large computational cost. For example, after the 50th

generation, the optimal solution is improved by 1.71%, as
compared to the heuristic method, but requires 1h 47m 32s
to arrive at this solution. On the contrary, the heuristic
method yields a reasonable solution in 4m 46s, which is
suitable for real-time applications, and the solution is close
to that obtained from the GA based method, since the
difference in optimality is only 2.63%.

Table I summarizes the results from the simulation cases
considering different value of α. For α = 0.2, which
represents a weighted sum of energy and switching
operations, the GA-based method requires 3h 28m 36s to
arrive at the best solution but the difference in optimal value
is only 4.69%, compared to the heuristic solution. For α = 0,
which represents the minimization of switching operations,
the GA-based method does not yield any solution better than
the one obtained from the heuristic method. These results
show that the solutions are obtained in much less time (not
more than 5m) using the heuristic method, and the solutions
are reasonably close to the GA-based method, since the
differences in optimality are not more than 4.69%. It is to be
noted that the performance of the GA-based method depends
on various factors such as the selection of the initial pool of
population, cross-over rate, mutation rate, stopping criteria,
etc. In general the GA-based method indeed yields a global
optimal solution, but because of the tremendous
computational effort involved, such solutions are not useful
from a practical stand-point, particularly for real-time
operational and control purposes.

B. Hydro One Distribution Feeder

Simulations are also carried out considering a practical
41-node unbalanced distribution feeder, which is part of the
distribution network of Hydro One Inc. [24]. The system
configuration is shown in Fig. 7.

The available load data are considered to be peak loads,
and 24-hour load profiles at each node are defined using the
same procedure used in the previous test system. In this case,
a constant impedance load model is considered, determined
from available active and reactive power demands at nominal
voltage.

The system has three, three-phase transformers and a
single phase transformer. It is assumed that all the
three-phase transformers are equipped with LTCs, and are
the only controllable devices in the network. As in the
previous example, equal weights are attached to the
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TABLE II
Simulation results in Hydro One distribution feeder

Heuristic Solution Method GA-based Solution Method % Difference

Case α
Energy No. of Objective Solution Generations Energy No. of Objective Solution in Objective
(MWh) Switchings Function Time (MWh) Switchings Function Time Function

1 1 286.98 46 286.98 10m5s 1 293.80 123 293.80 5m7s 2.38
25 291.26 164 291.26 1h8m54s 1.49
50 291.03 147 291.03 2h37m51s 1.41
100 283.63 139 283.63 5h17m29s -1.17

2 0.6 293.79 42 193.08 9m4s 1 292.39 136 229.83 5m38s 19.04
25 292.39 136 229.83 1h21m50s 19.04
50 292.03 114 220.82 2h42m22s 14.37
100 292.19 42 192.11 5h34m14s -0.50

3 0 293.99 32 32.00 7m9s 1 292.39 136 136.00 5m50s 325.00
25 293.39 128 128.00 1h27m41s 300.00
50 292.84 57 57.00 2h46m10s 78.13
100 295.67 30 30.00 5h55m57s -6.25
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Fig. 7. Hydro One distribution feeder.

switching operations of LTCs and are assumed to be
complementary to the weight attached to the energy drawn
from substation, as follows:

β1 = β2 = β3 = 1 − α (4)

The complete MINLP model of the Hydro One feeder in a
24-hour timeframe involves 26,784 continuous and 216
controllable integer variables in the GA based method, while
the NLP model used for the heuristic method involves
27,000 continuous variables. By applying the hourly search
technique in the heuristic method, the search space is
narrowed down to 192 combinations from the 4.72 × 1021

required in case of a 24-hour search.
Table II presents the results from the simulation cases

considering different values of α. The heuristic method
requires larger computational times to arrive at the optimal
solution as compared to the IEEE 13-node test feeder;
however, the maximum computational time required is about

10m, which is significantly less compared to the GA-based
method and within a reasonable timeframe for real-time
applications. Also, the optimal solutions obtained using both
the solution methods are reasonably close, with the
differences in optimal values being no more than 6.25%.

The simulation results presented in Tables I and II are
based on an Intel machine with eight 2.83 GHz, 32-bit,
virtual processors, and 3GB memory, running Windows
Server 2003. It can be seen that in all cases, the
computational time required for the heuristic method is such
that the real-time application of the proposed methodology is
feasible considering that non-optimized, “over-the-counter”
software tools are used. Also, despite only yielding
sub-optimal solutions, the results show that the heuristic
solution would certainly improve feeder operation.

V. Conclusions

In this paper, a GA-based solution method is implemented
to determine the optimal solutions of a three-phase DOPF
problem. The previously proposed heuristic method is
compared with the GA results, in terms of both optimality
and computational burden, for two distribution feeders. A
comparison of the two approaches shows that the GA-based
method yields superior solutions in terms of optimality, but
at a large computational cost. The heuristic method is shown
to yield solutions quite close to the global optima at a
significantly reduced computational burden. Despite these
sub-optimal solutions, the results obtained using the heuristic
methods are such that it would certainly improve feeder
operation in Smart Grids, with the solution times that are
suitable for real-time applications.
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