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A B S T R A C T

Present advancements in the power systems paved way for introducing the smart grid (SG). A smart grid is
beneficial to consumers which enables the bi-directional flow of information between the utility and customer.
Demand-side management (DSM) techniques are crucial as load-side management techniques to attain the
better stability of the grid. Home energy management systems (HEMS) play a indispensable part in the DSM.
Countless traditional optimization techniques are utilized to implement HEMS, but the limitations of traditional
Math heuristic methods gave rise to a concept-based optimization techniques called the Meta heuristic
methods. Recent advancements introduced smart optimization techniques powered by Artificial Intelligence
(AI). This article elucidates the applications of AI-based optimization techniques and their advantages over
other methods. Various Machine learning (ML) and Deep Learning (DL) algorithms and their utilization for
HEMS are discussed in brief.
. Introduction

HEMS plays an important role in power flow control in the smart
rid. Main aim of HEMS in SG is to optimize the energy consumption
nd reduce the electricity cost, this mechanism benefits both the user
nd the utility (Zafar et al., 2020; Serban et al., 2020). HEMS in
mart grid broadly consists of three sectors, sensing, communicating
nd controlling. The energy consumption information is sensed and
ommunicated to the controllers for energy optimization. Communi-
ation networks in the smart grid are categorized based on the area
f their operation, Home area network (HAN), neighbourhood area
etwork (NAN) and Wide area network (WAN) (Kumar et al., 2019).
AN network is established in the household territory where different

mart devices are connected together and the energy usage information
s transmitted to the smart meters which are located between central
ontroller of HAN and utility. Smart meters become very important in
he operation of smart grid to track the bidirectional floe of energy.
he energy from consumer to utility through renewable energy sources
RES) and electric vehicles (EV) are tracked through smart meters along
ith energy consumption (Zhang et al., 2019). This data is then sent to

he utility administrator, which helps them make decisions based on the
ystem parameters. According to the communication medium, HAN’s
echnology is classified into two categories. Power Line Communication
PLC) and Ethernet comes under the first category, whereas wireless
etworks like Bluetooth, Wi-Fi, a low-rate personal area and wireless
ellular networks come under the second category. PLC is used for
ndoor power networks (Han et al., 2014b) and communication in
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Energy Management Systems (EMS) (Han et al., 2014a; Aslam et al.,
2018). For operational use of HEMS, integrating Renewable En- energy
sources (RES), Energy Storage Systems (ESS), Electric Vehicles (EV’S)
and power electronic devices are essential in smart homes. For manag-
ing RES, ESS play a crucial role. ESS combination with power electronic
devices ensures the stabilization of power generation and improves the
power quality. Whenever a power imbalance arises, then RES is nec-
essary, and their generation is based on weather conditions. Both RES
and ESS are used during peak demand when there is a power surplus.
On single RES cannot provide a reliable power supply (Ahmad et al.,
2017). Therefore, multiple systems are to be integrated like wind, solar,
biomass etc.,together called hybrid RES systems. Energy generation
from different sources varies across countries. For example, the US gen-
erates about 20% of its energy using RES, whereas India generates 10%
of its energy using RES, the remaining from fossil fuels. Even though
the generation of power through green technologies is increasing,fossil
fuels still play a keen role . The efficient use of electrical energy can
be done by increasing EVs, demand-side management (DSM) solutions
and HEMS. The new SG model enables bidirectional communication
between the utility and user with advanced metering infrastructures
and a wide area network.HEMS helps improve productivity in quality
and capacity by power monitoring and controlling, which capitalizes
on the smart grid. Communication protocols between the consumer
and grid are used to exchange information about energy availability,
which is helpful for HEMS in scheduling the appliances. Optimization
techniques are used to balance the level of user comfort (UC).This paper
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Nomenclature

ACO Ant Colony Optimization
AI Artificial Intelligence
ANN Artificial Neural Network
BBSA Binary Backtracking Search Algorithm
BFA Bacteria Foraging Algorithm
CP convex programming
CPP Critical Peak Pricing
CSA Crow Search algorithm
DER distributed energy sources
DL Deep Learning
DP Dynamic Programming
DR Demand Response
DSM Demand-side management
EDE Enhanced Differential Evolution
ESS Energy Storage Systems
FA Firefly algorithm
GA Genetic Algorithm
GSA Gravitational Search Algorithm
GWO Grey Wolf Optimization
HEMS Home energy management systems
HSA Harmony Search Algorithm
IBP Incentive-Based Program
IBR Inclining block rates
KNN K-Nearest Neighbours
MILP Mixed-integer linear programming
MINLP Mixed-integer non-linear programming
ML Machine learning
MSE Mean Square Error
PAR Peak Average Ratio
PBP Price-Based Program
PLC Power Line Communication
PSO Particle Swarm Optimization
RL Reinforcement Learning
RTP Real-Time Pricing
SG Smart grid
SL Supervised Learning
SVM Support Vector Machine
TOU Time of Use
UC user comfort
USL Unsupervised Learning

discusses the architecture of HEMS in Section 1.1, explaining detail
communication technologies in HEMS.Section 2 briefly explains the DR
programs and their types used in HEMS. Section 3 illustrates optimiza-
tion techniques,uses and their types for scheduling the appliances in
HEMS. Section 4 contains the brief explanation of math-heuristic tech-
niques,its classification and detailed view on literature survey.Section 5
elucidates the meta-heuristic techniques,its types which is discussed
with equations and separate literature surveys.Section 6 exemplifies
machine learning along with its types, theory and literature survey.
Section 7 demonstrates deep learning technique,methods and literature
survey. In Section 8 conclusion is presented.

1.1. Architecture of HEMS

The main components in HEMS are smart controllers, smart meters,
Renewable Energy Sources, Energy storage devices and EVs, as shown

in Fig. 1. The function of a smart controller is Logging, monitoring and
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controlling. It acquires real-time data on energy usage in scheduled and
non-scheduled appliances to perform Demand side management (DSM)
strategies. Another main component is the communication infrastruc-
ture, which transfers wired or wireless data. The essential measuring
component in HEMS is Smart Meter. These smart meters act as bidi-
rectional communication between utility and user. It enables users to
manage the energy based on their requirement, i.e., using distributed
energy sources (DER)N (Petreus et al., 2019; Ma et al., 2014). The
smart meter will enable smart billing for all the users based on different
pricing schemes like Real-Time Pricing (RTP) and Time of Use (TOU).
The main features of the smart meter are:

• To measure the multi-power rates of reactive and active power
usage (Lloret et al., 2016; Arif et al., 2013).

• To increase the reliability of the energy power supply, the smart
meter interacts with DER and HEMS to provide electricity.

Integrating the smart meter with the HEMS will display the end-
user energy consumption based on the user’s comfort. All the home
appliances are classified into non-schedulable and schedulable loads.
Electric vehicles, AC and water heaters are the schedulable loads that
can be turned on and off at any time. These schedulable loads are
classified into interruptible and uninterruptable loads. Utility signals
cannot shift the non-schedulable loads. Demand-response programs
like Critical Peak Pricing (CPP) and TOU pricing are used for home
appliances scheduling based on user comfort. HEMS has distributed
generation sources, and renewable energy sources are a part of it. The
most commonly used RES is PV and wind technologies. The generated
energy from these sources is based on weather conditions that will
affect the stability, reliability and quality. Therefore, Energy Storage
Systems are used as a backup for stabilizing the system. EVs are also
an essential component in HEMS. These will act like both loads as well
as sources. During the peak load conditions, EVs act as a Vehicle to
grid (V2G), and during non-peak time hours, they will act like Grid
to Vehicle (G2V). The smart HEMS has the elements which include, for
monitoring purposes, the use of sensors and microcontrollers. Actuators
and microcontrollers are used to perform an action when the command
receives. A server for data ingestion serves as a gateway for connecting
the other networks, and remote control of data and appliances web
applications are used.

2. Conventional methods

One of the essential elements of the SG is the Demand Response
(DR) programme. Using these programs, some selective loads are lim-
ited to deal with sudden supply events like transmission line outages
during peak hours (Zhao et al., 2013). Mainly these DR programs
are used for industrial and commercial purposes. These programs are
usually implemented using the Incentive-Based(IBP) and Price-Based
Program (PBP). Fig. 2 represents DR program classification.

2.1. Price based program (PBP)

The average price fixed by the utility for user power consumption
is not the same as the full sale price. To avoid this problem, different
pricing mechanisms like Real-Time Pricing (RTP), Peak Time Pricing
(PTP), Time of Use Pricing (TOUP) and Critical Peak Pricing (CPP)
are envisioned. A brief introduction of these pricing schemes is given
below:

Time of Use Pricing (TOUP). These have predetermined rates and pric-
ing periods which are structured in a way that is beneficial for both
user and utility. Customers are made aware of the prices and time of
off-peak and on-peak periods a year in advance since TOUP rates are
forecasted over a specific time frame (e.g., a year). The utilities must
calculate their tariffs and transform their costing periods into rating
periods while developing TOU pricing rates.
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Fig. 1. Architecture of HEMS.
Fig. 2. Classification of DR programes.
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eal Time Pricing (RTP). These rates are not predetermined but are
redicted when they go into effect (e.g., One day ahead). The marginal
ost of supplying electricity is used to calculate real-time rates. As
result, consumers can change their usage time hourly. Real-time

ates improve economic efficiency by giving customers a ‘‘proper price
ignal’’, which represent the marginal costs.

ritical Peak Pricing (CPP). The utility will set the threshold limit
or the user based on the amount of power consumption. The utility
ill charge new rates if the consumer exceeds the power consump-

ion beyond the threshold limit. The new rates are intimated to the
ser beforehand. This scheme helps maintain supply and demand by
onfining the user’s electricity consumption below the threshold limit,
hich will benefit the utility and the user. The fundamental goal of DR

s to keep electricity demand low during peak hours while preventing
ncreased power consumption when price of electricity (POE) is low.
owever, one disadvantage of RTP is, that demand will be high during

ow POE (Zhao et al., 2013), resulting in increased electricity consump-
ion with a more prominent peak to the average ratio that results in
verload or blackout. As a result, RTP is integrated with inclining block

ates (IBR), which improves the power consumption threshold limit
hen combined with POE.Yet, the safety and security of the system are
eglected. A Lagrangian function has been used to improve the robust-
ess of the subgradient technique and ensure reliable convergence (Zhu
t al., 2018) which is unique in getting the optimal local solution. It
emonstrates that RTP can lead customers’ consumption behaviour and
eet the primary goal of peak reduction, which improves the social
3

ommunity’s energy-saving and emission reduction but fails to inte-
rate renewable energy sources. The HEM testing is performed (Elma
t al., 2017) in the Yildiz Technical University Smart Home Laboratory
YTUSHL), a real smart home. A forecasting algorithm is used to
orecast the RES generation. Then the net power is calculated, which is
elpful for proper decision-making using RTP, but this is used only for
hort-term EMS. Shinde et al. (Shinde, 2015) proposed HEMS to reduce
ouseholds’ total consumption below the specified limit by managing
he loads based on user requirements. Users will be notified via SMS
hen the status of their appliance changes, resulting in low cost and
ighly secure architecture for deploying a HEMS. The performance
f HEM operation and each load is analyzed using the intended DR
lgorithm in Kuzlu et al. (2012) which is regulated by the HEM unit.
he average communication time delay between the load controllers
nd HEM unit is measured in milliseconds and rises significantly as
he distance between them increases. The suggested system’s real-world
mplementation will benefit electric power distribution operators by
ssisting them in avoiding distribution transformer overloads caused
y new power-intensive loads such as EVs. Still, the limitation is the
ame as Zhu et al. (2018). In a real-time load profile, consumption data
rom 200 consumers are collected at half-hour intervals (Joseph and
asmin, 2021). The load data from the user/consumers are clustered
sing ensemble clustering as the first stage in developing RTP. Three
lasses of homes are created based on this information and the load
rofile generated by the clustering algorithms. Results demonstrate
TP’s good impact on DR programmes. The operation of the energy
cheduling unit is augmented, depending on the scheduling horizon,
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by a price predictor unit, which forecasts future prices by applying a
weighted average filter to historical prices (Mohsenian-Rad and Leon-
Garcia, 2010). The best price prediction filter coefficients are identified
for each day of the week to reduce household electricity bills assuming
every house with a smart meter.

2.2. Incentive – based program (IBP)

IBP aims to decrease energy consumption at peak- hours, i.e., by
reducing or shifting the load to off-peak hours. In this program, con-
sumers permit the utility to manage their loads during peak hours,
which affects their comfort level. In addition to the fixed/TOU pricing
structure, the programme operator of an IBP gives its clients variable or
fixed financial incentives to limit demand consumption. For incentive-
based DR programmes, in the year 2006, direct load control, curtailable
or interruptible service, demand bidding/buyback programmes, ca-
pacity market programmes and emergency DR programmes were all
classified by the US Department of Energy. Three scenarios are com-
pared regarding the consumers’ daily financial benefits from engaging
in the appropriate pricing method or DR programme (Abrishambaf
et al., 2016). Case 1 is without DR programmes and PV system; Case 2
is with DR method, and Case 3 follows case 2 with 2kw PV installation.
The amount of energy purchased from the generating station is mini-
mized as the customer utilizes their own generated energy. Compared
to case study 1, the user saved 44 per cent on costs but did not show
the effect of Peak Average Ratio(PAR) using the proposed method.

3. Optimization techniques

DR referred as changes in demand-side power consumption from
standard forms of responsible consumption, as well as changes in
electricity pricing or incentives to decrease power use during periods
of high-cost price. To achieve DR, various optimization techniques
based on heuristic approaches are implemented and different case
studies on heuristic approaches are discussed in Sections 4 and 5 .
Optimization is the best strategy for finding solutions to problems
after selecting a constrained objective function. Power consumed in
the residential sector can be decreased by proper scheduling and op-
timizing the power, increasing consumer and supplier benefits. The
objective is to maximize or minimize the power consumption, including
integrating ESS with RES. To meet this objective, optimization tech-
niques are used. A smart grid (SG) is grounded on Advanced Metering
Infrastructure (AMI) and bidirectional or two-way communication. By
conveying power consumption and availability to end-users, the user
can switch between conventional and non-conventional or vice versa
to reduce cost and increase efficiency. It maintains a perfect balance
of dependency availability, efficiency and cost. The multi-objectives
costs minimization, load management, PAR reduction, and peak load.
The optimal solution for these multi-objectives is appliance scheduling,
dynamic pricing, load forecasting, and demand response. Fig. 3 shows
the optimization techniques classification where the techniques are
classified into Mathematical Programming, Heuristic, Meta-Heuristic
and Artificial Intelligence (AI).

4. Math-heuristic techniques

The goal of HEM is to control the user’s power consumption within
a HAN. This is not an easy task, though, because each HAN device
responds differently, and measurements and forecasts are often inac-
curate. Models estimate the appropriate schedule of devices within the
home to simplify the scheduling process; nevertheless, there should be
a balance between complexity and optimality. Three main approaches
are typically used to schedule home energy usage, heuristic methods
like math heuristic and meta heuristic and mathematical optimization
methods. For mathematical techniques,Optimal scheduling is attained
by selecting the organized input values (Petreus et al., 2019).
4

• The simplest form of mathematical optimization is linear pro-
gramming, in which the constraints and objectives are linear
functions.Though they may not accurately represent a household
energy system, they can be solved in polynomial time.

• Quadratic programming (QP) problems are also easy, as the
quadratic objective is the main difference between linear and
quadratic programs. The solution to the optimization problem
depends on the type of objective. If the objective is positive and
definite, the solution will be in polynomial time. If the objective
is indefinite, it is referred to as an NP-hard problem.

• A convex objective function, concave inequality constraints and
linear equality constraints are present in convex programming
(CP) problems. Compared to the previous two, this optimization
problem is more complicated, but if a solution exists, it will
converge.

• Problems with Dynamic Programming (DP) split significant com-
plicated problems into smaller sub-problems and recursively solve
problems by storing solutions to sub-problems. Variables in HEMS
applications are often restricted to discrete values alone.

• Despite being non-linear, Mixed-integer linear programming
problems (MILP)have integer variables and are NP-complete in
complexity. These issues require branch-and-bound algorithms to
solve because they require discontinuities in modelling for extra
flexibility, such as binary variables.

• Mixed-integer non-linear programming (MINLP) and non-linear
programming problems can be challenging to solve, and even if
a solution exists, it does not guarantee accuracy.

Except for Dynamic and Quadratic Programming remaining opti-
mization methods are implemented in HEMS and explained in detail
as shown below: Two scenarios are investigated to validate the per-
formance of the proposed algorithm: with and without the SG (Conejo
et al., 2010). Use of the smart grid model allows the user to acquire
a daily utility that is 15.86% more than that achieved without the
smart grid this however focused mainly on cost minimization without
considering the user comfort. ESTA is a certainty-equivalent control
approach, which means it makes decisions as if the weather and pric-
ing forecasts were certain (Constantopoulos et al., 1991). A real-time
control method is presented utilizing a decision modelling approach
designed for prescribing customer reaction to a fluctuating energy
price in the case of space conditioning use. This technique is proven
to save considerable amounts of money daily at the cost of minor
interior temperature variations around its excellent value. The energy
distribution layer of the home automation system (HAS) employs a
linear programming method, whereas the reactive layer employs a
dynamic programming strategy (Ha et al., 2007). The distributed power
regulation adjusts the distribution of power for each home to maximize
their satisfaction, but PAR performance is not considered. LP aims to
increase the total coefficients of distributed power as much as possible.
The GLPK solver is used to implement this linear programming, which
communicates with the load management system simulator via Java
interface.

The power consumption scheduling mechanism is an LP optimiza-
tion problem to reduce the hourly peak load (Lee and Choi, 2014). This
proposed technique is used for energy conversion from a PHEV to a
home ESS via vehicle to grid (V2G) and optimizing the saved energy
using LP. A 38 per cent reduction in the hourly peak load using the
proposed strategy is shown but does not focus on cost minimization.
The model in Escobosa Pineda (2018) comprises three different types
of loads. The HVAC unit is the primary load, followed by a deferrable
load and a non-interruptible load. The goal is to give a conceptual
decomposition of the optimization issue into computationally tractable
subproblems using the HEM device as an interface with the energy
aggregator through real-time pricing and an economic incentive load
profile. The proposed model predictive control technique reduces con-
sumer discomfort levels subject to peak power, cost, and limitations
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Fig. 3. Optimization methods in HEMS.
sing a limited stochastic optimization that integrates temperature
ensors, thermal dynamics, and the real-time pricing signal. In Jia et al.
2011), the HEM control problem formulates a multi-stage stochastic
rogramming problem. HEM system optimizes the power allocation
ased on the measurements and numerical weather data to reduce
ser discomfort. The online thermal parameter estimates techniques
nd the first-order thermal dynamic model are evaluated using actual
easures. A smart power system with a single energy source and
ultiple load subscribers is considered. The goal of the developed

cheduler is not to modify the amount of energy consumed but to
anage and move it systematically. The optimization issue is convex

nd may be handled centralized using CP techniques like the interior
oint method (IPM) (Yu et al., 2013). This method drastically reduced
he PAR and the total energy cost in the system, but it considers
nly particular appliances and did not focus on discharging batteries.
he single-house problem is formulated as an MINLP problem that
alculates the energy plan for each household user (Mohsenian-Rad
t al., 2010). The problem’s purpose is to reduce the active house-
older’s daily power bill. According to numerical calculations derived
rom actual energy consumption data, the system-wide peak absorption
erformed in a wholly distributed method can be lowered by up to
0% but not focused on user comfort. Based on these models, an
ILP optimization problem for the optimal operating scheduling of

ome energy hubs was developed to reduce demand, the total cost
f electricity and gas, emissions, and peak load of the hubs (Barbato
t al., 2013). These models have been applied to a real household,
ith a discussion of various implementation elements and savings of
p to 20% on energy bills and 50% on peak demand while maintaining
he user’s desired comfort level. The algorithm (Bozchalui et al., 2012)
ivides the time horizon into intervals, planning during each interval’s
tart. The goal is to create a local controller that can react to signals
rom a global controller, allowing global optimizations to be supported.
he results show that device control based on objectives has been
chieved without energy shortages or surpluses while meeting most
eeds. Still, both (Barbato et al., 2013; Bozchalui et al., 2012) PAR and
ntegration with RES are not considered. A novel decision model for en-
rgy household management based on MILP and a heuristic allocation
ethod is proposed in Molderink et al. (2009). The model specifies how

he consumer should change the daily consumption schedule to account
or the aggregator’s signal(s). The scheduling methods used in the
elected methodology (Agnetis et al., 2013) for appliance load control

re inspired by the scheduling strategy used in real-time computer

5

systems. Electrical load scheduling is modelled as an MILP problem that
seeks to reduce overall operational costs while considering capacity
restrictions and appliance operating needs but failed to integrate with
RES. An efficient home load control algorithm for DSM on the side
of load uncertainty where just an estimate of future consumption is
proposed in Costanzo et al. (2012) to reduce consumers’ electricity
payments. The use of real-time pricing in conjunction with IBRs to
balance the home load and achieve a low PAR is examined. This
proposed method is integrated with RES, but user comfort is neglected.

For large-scale residential demand response, a two-layer
communication-based distributed direct load control system is pro-
posed (Samadi et al., 2013). The goal is to distribute the overall
control task among the EMCs of each building. According to numerical
data, the system’s capacity to match a prescribed load consumption
profile with actual demand levels has improved significantly. The
aim of this (Chen et al., 2014) is to present a new way for sizing
optimal providing systems and managing residential energy. The re-
sults provide insight into the evolution of PV systems in the near
and medium-term. Pham et al. (2010) proposes two household load
models for optimizing energy usage in the residential sector network.
When combined with the programming technique, these proposed
models can ease peak load and electricity costs at the same time.
Some algorithmic changes can be made to allow for a more efficient
solution, but a linear software system like Solver will be adequate
for most situations. In Dehnad and Shakouri (2013), optimization
problems that can give schedule plans for home appliance usages are
formulated and numerically simulated to reduce the electricity bill on
the domestic side for time-varying electricity prices. The results show
that optimization under the TOU pricing environment can reduce the
residential electricity compared to the worst-case scenario.

MINLP, non-integer linear programming, CP and MILP are utilized
to minimize cost and energy consumption. These techniques, on either
hand, will not be able to handle many appliances. These methods
are computationally intensive, and user comfort is not adequately
considered. Due to the random nature of human behaviour, these strate-
gies cannot handle many different home appliances with non-linear,
unpredictable and complex energy consumption patterns. The capabil-
ity of mathematical optimization techniques delivers exact solutions,
although they are often time-consuming when dealing with complex
optimization problems. Meta Heuristic optimization techniques are now

usually used to overcome the drawbacks of mathematical optimization.
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5. Meta-heuristic techniques

Heuristic methods are used for problem-solving using practical
methods to obtain the solution for real-time problems. Complexity in
the math heuristic methods leads to the practice of meta heuristic
methods. Meta-heuristic methods are nature-inspired and are genetic
algorithms. Few assumptions in the algorithm make the solution more
accurate. Compared to the math heuristic methods, meta-heuristic
methods are less computational and converge to the optimal solution
in less time. As a result, they are effective methods for resolving
optimization challenges and have the following features:

1. Independent of the objective function’s nature, i.e., they can
solve nonlinear, linear, discrete-time complex, persistent prob-
lems, which is usually impossible with traditional techniques.

2. Nature-inspired approaches efficiently explore and exploit the
search space.

3. Can be fine-tuned to improve their performance, and they can
be employed in complex scenarios as part of a hybrid with other
algorithms.

4. Because such optimization techniques mature faster than tradi-
tional optimization techniques, the computing time for solution
is reduced.

Because heuristic techniques frequently generate a random initial popu-
lation, the solution obtained may be sub-optimal and may vary between
tests to some extent. These algorithms are liable to becoming caught in
a local optimum and failing to generate a viable solution. Typically,
these flaws are addressed by

1. repeating the algorithm and selecting the best solution,
2. fine-tuning the heuristic algorithm parameters to avoid prema-

ture convergence and aid in finding near-optimal solutions with
minimal computational effort.

The multi-objective household appliance schedule optimization prob-
lem is addressed by considering the benefits and resolving the draw-
backs via iterative tuning. Every meta-heuristic technique is based
on the theory inspired by nature, which helps solve the optimization
problem. For example, a Genetic Algorithm (GA) is inspired by the
genetic process of a living organism. Bacteria Foraging Algorithm (BFA)
is on mine chemotactic shifting of virtual bacteria in the problem
hunt space. Grey Wolf Optimization (GWO) population affects the
leadership hierarchy and searching procedure of grey wolves, and
Particle Swarm Optimization (PSO) is based on swarm intelligence.
Other Meta-heuristics algorithms include Enhanced Differential Evo-
lution (EDE) algorithm, Gravitational Search Algorithm (GSA), Ant
Colony Optimization (ACO), Binary Backtracking Search Algorithm
(BBSA) and Harmony Search Algorithm (HSA). Working of algorithms,
their benefits and drawbacks are explained further.

5.1. Differential evolution algorithm (DEA)

This DEA algorithm was proposed by Price and Storn in 1995 (Zafar
et al., 2017). Compared to other optimization approaches, it has several
powerful features, such as simple coding, minimal control parame-
ters, fast convergence, and the ability to solve real-world optimization
problems. Differential evaluation performs two steps for achieving the
optimization, one is a mutation, and the other is recombination. The set
of solutions will undergo evolution called target vector (1). This target
vector will undergo mutation to evolve into a mutant vector, and then
recombination takes place to obtain the trailing vector.

𝑀𝑖 = 𝑋𝑟1 + 𝐶 ∗
(

𝑋𝑟2 −𝑋𝑟3

)

(1)

where 𝑀𝑖 is the mutant vector for the 𝑖𝑡ℎ,variable and 𝑋𝑟1 , 𝑋𝑟1 , 𝑋𝑟1
re the target vectors that are calculated from the solutions r1,r2,r3
here 𝑟1, 𝑟2 and 𝑟3 ∈

{

1, 2, 3,… .𝑁
}

, 𝑁 being the population size.
𝑝 𝑝

6

election of solutions must be random and the population size should
e greater than or equal to 4. C is the scaling factor decided by the user.
ecombination is performed to increase the diversity of the solutions,
ecombination process is performed as shown in (2).

𝑗 =
{

𝑀 𝑗 𝑖𝑓𝑟 ⩽ 𝑃𝑐 𝑜𝑟 𝑗 = 𝛿
𝑋𝑗 𝑖𝑓𝑟 > 𝑃𝑐 𝐴𝑁𝐷 𝑗 ≠ 𝛿

(2)

A random variable 𝑟 and Probability crossover 𝑃𝑐 is defined by the
ser which are between 0 and 1. 𝑇 𝑗 is the 𝑗th trail vector generated by
electing the random variable 𝛿, 𝛿 ∈ {1, 2, 3,… .𝐷} D is the number of
ecision variables. After obtaining all trail vectors for all the solutions,
alues are verified to be within bounding parameters, adjusting them
o be within the upper and lower bound. Later, the fitness function is
valuated, and a greedy search is performed to obtain the population
or the next iteration. A single household with nine appliances is
onsidered, and DE (Storn and Price, 1997) approach is implanted.
ome appliances are classified into three groups, i.e., A, B, and C.
he electricity cost per hour using the algorithms EDE, BFA and HSA
re compared by assigning the load from off-peak hours to on-peak
ours. Due to this load shifting, the tariff paid during on-peak hours
s lesser than the off-peak hours, of which HSA has the low price per
nit, BFA has the high price per unit, and EDE has the low PAR. Based
n multiple performance metrics, two stochastic population-based op-
imization algorithms (DE and EDE) are investigated and assessed in

home with seven smart appliances (Rehman et al., 2017b). These
lgorithms reschedule appliances to lessen the peak energy demand
ours but failed to integrate with RES. Sixteen appliances consisting
f automatic and manual operation, interruptible and non-interruptible
ypes are scheduled by considering each time slot of 12 min, i.e., a
otal of 120-time slots, which is known as Shortest Length of Operation
ime (SLOT) (Tariq et al., 2017). EDE reduces the cost of electricity by
hifting the load from peak to off-peak hours, which also reduces PAR.

.2. Harmony Search Algorithm

HSA is an evolutionary algorithm that imitates the actions of musi-
ians. Memory-based play, random play and pitch adjustment are the
hree main processes of HSA. The problem of residential power load
ontrol is investigated in this study (Rehman et al., 2017a) to lower
he electricity cost for home appliances. Based on electricity usage,
ome appliances are classified into three classes. Two meta-heuristic
lgorithms, Firefly algorithm(FA) and HSA, are used to reduce elec-
ricity costs, load management, and PAR.However, to achieve better
utcomes, a hybrid model of HSA and FA can be implemented using
ES. To evaluate HSA and BAT, MATLAB simulations are used. Eleven
ppliances were categorized into Elastic Appliances, Fixed Appliances,
nd Shiftable Appliances (Farooqi et al., 2017). Their LOT is set, but
hey can operate anytime during the day. The electricity cost is calcu-
ated using the CPP pricing methodology. HSAs have proven overall
ffectiveness compared to BAT. In the similar way Ali et al. (2017)
ivided 7 appliances into three classes. The main aim is to reduce PAR
nd energy consumption using HSA and Crow Search algorithm (CSA).
he results show CSA performs much better than HSA in cost reduction
nd user comfort (UC), while in terms of PAR reduction and UC, HSA
utperforms CSA.

.3. Bacteria Foraging Algorithm (BFA)

BFA’s working architecture is based on poor foraging methods
Passino, 2002). Because of the algorithm’s statistics, the cell swarmed
tochastically and collectively towards an ideal solution, which is why
FA is adopted. Zahra et al. (2017a) classified the significant ap-
liances into three categories: fixed, elastic and shiftable. The main
im is to schedule the home appliances using BFA and strawberry
lgorithm(SBA) algorithms. Comparative results show that BFA out-
erforms SBA in elastic and shiftable appliances, but SBA outperforms
FA in fixed appliances. Similarly, the BFA algorithm for HEMS is pro-
osed (Khan et al., 2017) to reduce the overall electricity consumption
nd PAR and considers the scheduling of appliances.
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5.4. Ant Colony Optimization (ACO)

The drawbacks of Swarm intelligence and discrete combinatorial
optimization problems are solved using ACO, a meta-heuristic tech-
nique. It has unique self-organization, self-healing and self-protection
properties. The ACO algorithm is robust, a well-calculated mechanism
and simple to combine with other approaches to perform well when
addressing complex optimization problems. The inspiration for ACO
comes from the behaviour of ants finding food in ant colonies. Finding
a portion of food is an optimization task that should be achieved by
spending the minimum amount of energy. Ants produce the pheromone
chemical to communicate with other ants during this process of finding
the shortest path. This analogy is adapted to solving the optimization
problems for finding the minimization. This optimization technique is
formulated as shown in (3).

𝛥𝜏𝑛𝑖,𝑗 =

{

1
𝑆𝑛

&𝑛𝑡ℎ𝑎𝑛𝑡 𝑜𝑛 𝑒𝑑𝑔𝑒 𝑖, 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

𝛥𝜏𝑛𝑖,𝑗 is the amount of pheromone deposited by the ant while travelling
through the edge i,j. 𝑆𝑛 is the weight of the graph obtained from the
ost matrix. Cost matrix and the pheromone matrix are defined to find
he probabilities of the path. Total amount of pheromone on the path
,j by all the ants in this process can be obtained from (4).

𝑛
𝑖,𝑗 =

𝑚
∑

𝑛=1
𝛥𝜏𝑛𝑖,𝑗 (4)

𝑛 represents total no.of ants. (4) is valid when there is no vaporization
or no loss during the marking of shortest path. If a loss factor 𝜌 is
onsidered in the realtime scenarios that lies between 0 and 1, the (4)
s modified as (5).

𝑛
𝑖,𝑗 = (1 − 𝜌) 𝜏𝑖,𝑗 +

𝑚
∑

𝑛=1
𝛥𝜏𝑛𝑖,𝑗 (5)

fter obtaining the amount of pheromone on the respective paths, a
robability of choosing the path is calculated by using (6).

𝜏𝑖,𝑗
(

1
𝑆𝑛

)

∑

𝜏𝑖,𝑗
(

1
𝑆𝑛

) (6)

The path with the highest probability is chosen as the shortest path to
faster optimization. For power bill calculations, ACO is used to solve
objective functions and combined pricing models, IBR model and TOU
tariff (Rahim et al., 2016a,b; Leo et al., 2021; Imran et al., 2020a).
Based on the results, it is clear that the proposed strategy effectively
minimizes electricity bills and improves PAR while considering user sat-
isfaction. Still, in Rahim et al. (2016a,b) the security issues between the
utility and user should be improved. This (Fatima et al., 2017) is based
on a microgrid connected to a grid using a point of standard coupling
(PCC). The proposed ACO technique has a low PAR by scheduling (with
incentive mechanism and penalty) and high PAR without scheduling
appliances. ACO for HEMS is applied in Ramalingam and Shanmugam
(2021) and is compared with Knapsack. These results show that ACO
effectively minimizes the electricity cost of energy consumption. The
ACO algorithm was proposed and compared with GA (Diwekar and
Gebreslassie, 2016) to minimize the electricity cost and maximize the
UC. The results show that ACO is more efficient than GA.

5.5. Grey Wolf Optimization (GWO)

The GWO algorithm is grounded on the wolf pack hunting paradigm
(Anwar ul Hassan et al., 2017). Wolves have a social hierarchy ad
hunting patterns which decide who and how to down the prey. Wolves
are categorized according to hierarchy as 𝛼 the fittest, 𝛽 second best
and subordinates to 𝛼 then 𝛿 lower grade compared to previous, finally
𝜔 weakest among all. In the optimization problems, the fittest and
best solutions are considered 𝛼. All the solutions are graded according
7

to their performance based on the wolves’ hierarchy. Mathematical
modelling is performed to solve the real-time optimization problems
as shown from (7)–(13).

⃖⃗𝑦𝛼 = |

|

⃖⃖⃗𝑚1. ⃖⃗𝑥𝛼 − ⃖⃗𝑥|
|

(7)

⃖⃗𝑦𝛽 = |

|

|

⃖⃖⃗𝑚2. ⃖⃗𝑥𝛽 − ⃖⃗𝑥||
|

(8)

⃖⃗𝑦𝛿 = |

|

⃖⃖⃗𝑚3. ⃖⃗𝑥𝛿 − ⃖⃗𝑥|
|

(9)

⃖⃗𝑦𝛼 , ⃖⃗𝑦𝛽 , ⃖⃗𝑦𝛿 are the distances of 𝛼, 𝛽, 𝛿 from the prey and ⃖⃗𝑥𝛼 , ⃖⃗𝑥𝛽 , ⃖⃗𝑥𝛿 are
the positions of 𝛼, 𝛽 and 𝛿 respectively. whereas ⃖⃗𝑥 is the position of the
rey or optimal solution in the real world problems. ⃖⃖⃗𝑚1, ⃖⃖⃗𝑚1, ⃖⃖⃗𝑚1 are the
ectors of coefficient matrix ⃖⃖⃖⃗𝑀 .

⃖⃗ 1 = ⃖⃗𝑥𝛼 − ⃖⃗𝑛1.⃖⃗𝑦𝛼 (10)

⃖⃗ 2 = ⃖⃗𝑥𝛽 − ⃖⃗𝑛2.⃖⃗𝑦𝛽 (11)

⃖⃗ 3 = ⃖⃗𝑥𝛿 − ⃖⃗𝑛3.⃖⃗𝑦𝛿 (12)

⃖⃗ (𝑡 + 1) =
⃖⃗𝑥1 + ⃖⃗𝑥2 + ⃖⃗𝑥3

3
(13)

⃖⃗𝑥1, ⃖⃗𝑥2, ⃖⃗𝑥3 are the position change that 𝛼, 𝛽 and 𝛿 must make to approach
the prey, ⃖⃗𝑥 (𝑡 + 1) is the average moment made by all three wolves
to approach the prey.⃖⃗𝑛1, ⃖⃗𝑛2, ⃖⃗𝑛3 are the vectors of coefficient matrix
⃖⃖⃖⃗ , these values are reduced in each iteration generally from 2 to 0,
his reduction is performed to ensure the convergence of the solution.
n the SG with day-ahead pricing (DAP) model (Ghafar et al., 2017;
ahmani et al., 2013; Abdulgader et al., 2017), the GWO technique is
sed in a typical home with 16 appliances. It is then compared to BFA.
n terms of cost reduction, the results suggest that GWO outperforms
FA. The same algorithms are applied to home appliances using CPP
ricing to calculate electricity bills (Molla et al., 2019). Still, GWO
erforms better than BFA with 10% more savings in terms of electricity
ills. In both cases (Ghafar et al., 2017; Molla et al., 2019) GWO takes
ore computational time but provides faster convergence than BFA but

n Anwar ul Hassan et al. (2017), Molla et al. (2019) integration with
ES and user comfort is not considered. The GWO is also applied in
ppliance scheduling and compared with PSO on two models of smart
ome (Jordehi, 2019). GWO has shown more savings compared to PSO
n electricity bills and optimal appliance scheduling but neglected the
AR reduction. GWO and GA algorithms are compared (Naz et al.,
018; Kazemi et al., 2017) to reduce the PAR and cost, which shows
etter results than the proposed algorithm GWO.

.6. Binary Backtracking Search Algorithm(BBS)

BBSA is at the front of the search for the most effective use of
opulations, and it works in the domain to achieve it, with power-
ul exploration abilities (Lin et al., 2015). Weekdays and weekends
ere used as the two scenarios for the DR in Latif et al. (2020).
he predefined objective function of the BBSA and schedule controller

mplementation was to minimize energy usage. The BBSA is compared
ith binary PSO for weekdays to evaluate the accuracy of the HEM

ystem controller, which shows the proposed BBSA outperformed the
inary PSO controller in terms of the overall consumption of energy
ithin the demand limit by minimizing peak loads and scheduling
ousehold appliances during the week while allowing homeowners to
se their appliances as they like. The BBSA is utilized as a scheduling
ontroller to the HEMS for weekdays to calculate the optimal schedule
f household appliances to achieve the best energy savings for every
evice (Ahmed et al., 2017). The results showed off that BBSA schedule
ontroller performs better than BPSO schedule controller in terms of
nergy savings and actively regulating loads while keeping the power
emand of household appliances within the set demand limit. Still,
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both (Latif et al., 2020; Ahmed et al., 2017) failed to integrate with RES
and PAR reduction. GA has given better results in terms of maximizing
UC level, reduction of cost and peak load compared to Binary PSO
(BPSO) in Rahim et al. (2016c), which overcomes all the limitations
from Lin et al. (2015), Latif et al. (2020), Ahmed et al. (2017). These
theories of different optimization techniques are used to solve the
multi-objective problem. In Javaid et al. (2017a), the PSO algorithm
solved the load scheduling problem in smart homes. A HEMS model us-
ing the PSO algorithm is presented (Javaid et al., 2017b) for appliance
scheduling, and the simulation results show that it effectively reduces
power consumption during peak load. Still, integration of RES is not
considered in both (Javaid et al., 2017a,b). A Binary PSO is applied on
HEMS with an optimized controller (Zhou et al., 2014) to minimize the
overall power consumption, and the results show that 35% of the cost
is reduced. Discrete Particle swarm optimization (DPSO) algorithm is
proposed in Christobel et al. (2015) to reduce the computational time,
yielding adequate power consumption. The results show the proposed
DPSO reduces computational time compared to EDF, and the limitation
is similar to Javaid et al. (2017b). For obtaining optimal scheduling
problems and reducing the electricity cost, GA is proposed (Miao et al.,
2012). A real-time HEMS using GA is presented (Rasheed et al., 2016)
to minimize the cost and maximize UC. BFA algorithm for HEMS is
proposed (Ishaq et al., 2017) to reduce the overall electricity consump-
tion, and PAR and appliance scheduling are considered. To reduce
energy cost consumption GWO & WFO are proposed (Khan et al., 2019)
but neglected the appliance scheduling. Hybrid Genetic PSO (HGPSO)
proposed to reduce electricity bills, minimize carbon emissions, ensure
UC, and reduce PAR by neglecting both ESS and EV (Imran et al.,
2020b). Table 1 shows comparative studies of different meta-heuristic
techniques.

Due to premature convergence, the solution’s optimality cannot
be guaranteed. However, heuristic optimization approaches like PSO,
which are widely used, have several limitations: They can easily get
trapped in local minima solutions and have difficulties identifying
optimal control parameters, resulting in inaccurate solutions due to
their high computational cost and slow convergence. Machine learning
technology is predominantly used in the field of HEMS for creating
a smart home. In the smart grid environment, machine learning al-
gorithms are usually applied for a lot of challenges such as energy
management, reliability and prediction.

6. Machine learning (ML) techniques

Artificial Intelligence (AI) is a broader concept of machines being
able to carry out tasks more innovatively. It enables machines to act
like humans by replicating their behaviour and nature (Sarker, 2021).
Machine learning (ML) is an AI subfield that focuses on designing
systems that can learn from making decisions and predictions based
on experience, which is the data in the case of machines (Ray, 2019;
Dhall et al., 2020). These algorithms improve over time when they
expose to new data. ML is classified into Unsupervised, Supervised,
and Reinforced Learning (Rastrollo-Guerrero et al., 2020; Sah, 2020)
as shown in Fig. 4.

1. Supervised Learning (SL): SL is a type of ML in which machines
are trained using well-labelled training data and then used to
predict output (Hastie et al., 2009). Some input data has already
been labelled with the appropriate output, as indicated by the
labelled data. The overview of SL is shown in Fig. 5. The training
data presented to the machines act as a supervisor in supervised
learning, by training the machines to predict the output cor-
rectly. It is based on how a student learns under the supervision
of a teacher.

2. Unsupervised Learning (USL): It is a type of ML in which models
are trained on unlabelled data before being let to act on it
independently without supervision. On the other hand, models
8

Fig. 4. Classification of ML techniques.

Fig. 5. Supervised learning.

Fig. 6. Unsupervised learning.

utilize data to find hidden patterns and insights. It is similar
to the human brain’s ability to learn new things. Unsupervised
learning, unlike SL, cannot be applied to a regression or classifi-
cation problem immediately because there is no output data for
the input (Usama et al., 2019; Yan et al., 2019). As demonstrated
in Fig. 6, USL aims to uncover a dataset’s underlying structure,
categorize data based on similarities, and display the dataset in
a compressed way. Similar to SL, these are classified into two
types: Clustering and Association.

3. Reinforcement Learning (RL) In RL, there are four main parts:
reward, active, agent and environment. As shown in Fig. 7, RL
is a mapping between actions and states to maximize support for
agents and rewards in a dynamic and uncertain world. RL learns
by interacting with the environment, unlike previous algorithms
that learn from external supervisors’ prior knowledge (Liu et al.,

2020a).
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Table 1
Comparison of different Meta heuristic techniques.

Ref Optimization
technique

Aim Achievement Drawbacks

Kumaraguruparan et al.
(2012)

Knapsack Minimize electricity bill Consistency in users energy Users satisfaction, PAR
reduction

Rahim et al. (2015) ACO,Knapsack Cost minimization, Maximize
users comfort

The proposed model achieved
highly efficient

PAR neglected

Mahmood et al. (2016) PSO, Knapsack Cost minimization Load categorization is
improved

users’ comfort is ignored

Talha et al. (2017) GA, PSO schedule appliances Cost is improved and load
balancing problem is solved

Complexity in GA become
more and become slow
convergence

Naseem et al. (2016) GA, WDO, Binary
PSO and BFOA

Cost minimization and PAR
reduction

Within finite time horizon, the
overall cost of system is
minimized

User’s comfort is neglected

Zahra et al. (2017a) GA, BFA Cost minimization and PAR
reduction

Better load management
strategies is provided

User’s comfort is neglected

Rasheed et al. (2016) GA Minimize cost, maximize users
comfort and PAR reduction

Considered Temperature,
capacity limit and waiting
time

Compression with other
techniques is not done

Ansar et al. (2017) BFA, EDE, GA and
WDO

Schedule the appliances and
minimize cost

To obtain optimum scheduling
Optimization process is
implemented

PAR is neglected

Zahra et al. (2017b) BFA Minimize cost, maximize users
comfort and PAR reduction

The load is managed
Efficiently

Ignored Integration of RES

Anwar ul Hassan et al.
(2017)

BFO and GWO To reduce cost of energy
consumption

In particular scenario better
algorithms are determined

Appliance scheduling is
neglected

Rehman et al. (2017b) ACO, EACO Solving continuous and
combinational mixed variable
optimization problems

Efficiency encasement Systems cost and efficiency is
neglected

Fatima et al. (2017) ACO, PSO The forecasting output energy
of wind turbine

The operational efficiency of a
wind form is improved

Neglecting Cost of the system
Fig. 7. Reinforcement learning overview.

6.1. Support vector machine (SVM)

A support vector machine is a machine learning algorithm that
works for classification and regression tasks. Compared to other ML
classification techniques, SVM is capable of producing the most general-
ized yet efficient classification. SVM has a unique feature of classifying
the non-linear separable data points by projecting them into the higher
dimensions to obtain separate plane (Angra and Ahuja, 2017). As
shown in Fig. 8, SVM creates a hyperplane and two parallel planes.
On either side of the hyperplane, the significance of these planes is to
create an extra margin for classifying the samples to generate the gener-
alized solution (Rambabu et al., 2016). The nearest data points passing
through the margin lines are known as support vectors. The more the
distance between margins, the more efficient the classification (Bhavsar
and Panchal, 2012). The hyperplane is selected to satisfy the criteria as
shown in (14).

𝑦𝑖 ∗ 𝜃𝑇 𝑥𝑖 + 𝑏𝑖 ⩾ 1 (14)

𝑦𝑖 =
{

+1 𝜃𝑇 𝑥𝑖 + 𝑏𝑖 ⩾ 1
𝑇 (15)
−1 𝜃 𝑥𝑖 + 𝑏𝑖 < 1

9

Fig. 8. Working of SVM.

𝑦𝑖, is the value of the data point based on the classification, 𝜃𝑇 is the
slope vector, 𝑥𝑖 is the position of the datapoint in the plane and 𝑏𝑖 is the
bias value assigned to the datapoint. The optimization problem defined
to obtain the best possible classification is shown in (15). The slopes
and biases should be changed such that it satisfies (16).

(

𝜃∗, 𝑏∗
)

= 𝑚𝑖𝑛
‖𝜃‖
2

+ 𝑅
𝑛
∑

𝑖=1
𝜁𝑖 (16)

𝑅 is the regularization parameter that decides the maximum number
of misclassified samples allowed in the margin to avoid overfitting, 𝜁𝑖
is the value of the misclassified samples. This optimization technique
can also be extended to solve the regression tasks. In SVM, the learning
problem is converted into an optimization problem of arched quadratic
programming (Mohan et al., 2020), which can theoretically obtain the
globally optimal solution, as shown in Fig. 9. 𝜙 are the vectors
(𝑎𝑖)
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Fig. 9. SVM training model structure.

mapped in the original dimension whereas 𝐾 (𝑎(𝑖), 𝑎(𝑖 + 1)) is the value
obtained when the data point is projected to the higher dimension. The
efficiency of the classification in the higher dimension depends on the
selected kernel performance. The primary goal of Zendehboudi et al.
(2018) is to discuss how to make decisions about load management to
reduce grid load. The house model is a local storage network battery
with an integrated PV system. The parameters Grid, battery SOC,
and day/night/type of load are evaluated. As a result, the controller
can make decisions based on the status of the parameter. The SVM
algorithm is proposed and compared to the Artificial Neural Network
(ANN) algorithm for proper decision-making. The accuracy of SVM
algorithm improves in the proper utilization of RES, reducing the load
on the grid compared to ANN. SVM model named (‘‘influencing factors -
energy demand’’) is developed in Ma et al. (2018) for which the energy
demand data of building from 2000–2014 is used as test samples. The
performance of this model is examined using the squared correlation
coefficient (r2) and Mean Square Error (MSE) using statistical error
tests. The SVM model has been proven by giving the building energy
consumption output equal to statistical data. The operation of IREMS,
which effectively performs switchover between local storage and the
grid to energize the loads, is validated using an SVM classifier and a
laboratory model setup (Arun and Selvan, 2017). The energy savings by
the IREMS are calculated using a load profile for a residential premise,
which turned out to be significant.

6.2. Decision trees

Classification and regression are the most common applications us-
ing machine learning. Decision trees are used to achieve these tasks, but
decision trees are most commonly used for classification and are often
referred to as decision tree classifiers (Hu et al., 2009; Bertsimas et al.,
2017; Alsagheer et al., 2017). The term tree indicates the structure of
the classifier. The dataset is indicated at the top level, called the root
node, nodes in the decision tree classifier indicate the attributes of the
data, and branches connecting the nodes are the decisions taken by the
classifier. The leaf node denotes the final result of the classifier. The
architecture of decision trees is shown in Fig. 10. Steps to be followed

to design a decision tree are:

10
Fig. 10. Structure of Decision tree.

Fig. 11. Classification of ensemble methods.

• Step 1: The first level of the decision tree consists of the root node,
which consists entire dataset, says S.

• Step 2: Aiming the available attributes, the best is selected using
Attribute Selection Measure (ASM).

• Step 3: Data is further divided into subsets, making sure that the
selected attribute has the best value

• Step 4: A node is created in the decision tree with the best value
of the attribute.

• Step 5: Various decision trees are recursively designed using the
subsets of the dataset created in step 3.

• Step 6: Process is repeated until it reaches the final node, where
the lead node is encountered.

6.3. Ensemble methods

Multiple models (commonly referred to as ‘‘weak learners’’) are
trained to tackle the problem and integrated to get better results under-
neath the ensemble learning paradigm of machine learning. The basic
claim is that by combining weak models, more precise and reliable
models are designed.

Advanced ensemble techniques are classified into two categories.
They are homogeneous and heterogeneous ensemble methods. Fig. 11
shows the classification of ensemble methods and their brief explana-
tion is given below:
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Fig. 12. Bagging technique overview.

1. Homogeneous ensemble:
Models of a homogeneous ensemble all use the same base learn-
ing method. Bagging and Boosting are the two popular tech-
niques that generate a great diversity by assigning weights or
sampling to training examples. However, they typically only use
one type of base classifier to create the ensemble.

• Bagging:
The Bagging technique for integrating the outputs of var-
ious models (for example, all decision trees) to create a
more generalized result. If we build all models on the
same data set and then integrate them for a given input,
there is a strong probability that these models will generate
the same output. Bootstrapping is one such strategy. The
subsets (bags) of data are used in the Bagging (or Boot-
strap Aggregating) technique to obtain a good idea of the
distribution (complete set). The size of the bagging subsets
may be smaller than the original set, as shown in Fig. 12.
Bagging’s primary drawback is that it enhances model
accuracy at the expense of interpretability. The inability to
identify which features are to be selected while sampling
is another drawback of Bootstrap Aggregation.

• Boosting:
A set of algorithms known as ‘‘Boosting’’ transforms weak
learners into strong learners. Boosting technique is used
for enhancing the model predictions of any learning al-
gorithm. The basic idea of this technique is by sequen-
tially training the weak learners, each learner is trying to
improve its antecedent and converting them into strong
learners.
Comparing bagging and boosting as shown in Fig. 13, it
can be seen that weak learners in bagging are trained par-
allel using randomization, whereas the learners in boost-
ing are trained sequentially with each learner aiming to
minimize the errors of the learners former to them. For
classification and regression problems, both bagging and
boosting techniques can be used. Boosting has the draw-
back of being sensitive to outliers because every classifier
is required to correct the mistakes made by the previous.
As a result, the technique is overly reliant on outliers.

2. Heterogeneous ensemble :
Decision trees, SVM and ANN comes under the heterogeneous
ensemble, which consists of models having different base learn-
ing algorithms. Similar to boosting, a prominent heterogeneous
ensemble technique is stacking.

• Stacking:
Stacking is a technique that builds a new model by com-
bining predictions from multiple models (for example: K-

Nearest Neighbours (KNN), decision tree, or SVM). On

11
Fig. 13. Comparison of boosting and bagging technique.

the test set, this model is utilized to make predictions.
In contrast, blending is similar to stacking, except it only
makes predictions using a holdout (validation) set from
the train set. To look at it another way, unlike stacking,
the predictions are based solely on the holdout set. The
holdout set and predictions are combined to create a model
that is then tested on the test set.
From Fig. 14, the distinct samples are not taken for training
data to train classifiers. Instead of, training is done for each
classifier individually using the entire set of data. Each
classifier in this process functions independently, allowing
for the use of classifiers with various techniques and hy-
potheses. As an example, training the current model using
a decision tree, a random forest, and a linear regression
classifier and then merging their predictions using SVM.
The advantage of stacking is that it can combine the posi-
tive aspects of several effective models to perform classifi-
cation or regression tasks and produce predictions that per-
form better than any individual. However, when dealing
with large datasets, the computational time will be higher
because each classifier will need to work independently on
the large dataset.

In these Ensemble methods, individual models are combined in this
technique to improve the model’s stability and predictive capability.
As illustrated in Fig. 15, it permits better predictive performance and
combines many ML models into a single predictive model. This method
is based on learning several simple models and combining their output
to produce a final decision (Lutins, 2017). It provides composite pro-
duction with absolute accuracy that exceeds that of individual models.
These methods gain accuracy and robustness by combining data from
numerous modelling approaches (Li et al., 2009). The limitation of this
approach is assigning equal weights to different models even though
some models perform better than others.

Max Voting, Averaging, and Weight averaging are the three ba-
sic/simple ensemble techniques, and the max voting approach is fre-
quently used (Veni and Rani, 2014; Singh, 2018). To develop predic-
tions for each data point, this method utilizes multiple models. The
predictions of each model are counted as a ’vote.’ The final prediction
is based on the majority of the models’ predictions. In averaging, many
predictions are made for each data point, similar to the max voting
technique. The average of all the model predictions are applied to
this technique to make the final prediction. In regression problems,
averaging can be used to make predictions and estimate probabilities
in classification problems. The Weight of each node is also considered

an averaging technique.
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Fig. 14. Stacking technique overview.

Fig. 15. Working of ensemble methods.

. Deep learning (DL)

DL is a subset of ML inspired by the functionality of neurons that
ed to the concept of ANN. It is implemented with the help of deep
eural networks with multiple hidden layers, as shown in Fig. 16.
L collects the data of all the Artificial neurons and adjusts the data
attern (Vargas et al., 2017). DL needs enormous data in terms of
ata interpretation compared to ML. ML will divide the problem into
ifferent parts for the problem-solving approach and solve them indi-
idually with suitable algorithms, whereas DL is end to end solving
pproach (Shrestha and Mahmood, 2019). Based on what it has learned,
L uses algorithms to parse data, learn from data and make informed

ecisions (Zhang et al., 2018; Alzubaidi et al., 2021). Decisions in
L are taken by the training obtained in the layers present in the

tructure of DL. The weights of each node determine the accuracy of
he algorithm.

.1. HEMS with ANN

The ANN-based HEMC presented in Ahmed et al. (2016) used
Feed-Forward neural network type and the Levenberg–Marquardt

lgorithm to train the ANN. Four domestic loads, namely EWH, AC,
12
Fig. 16. Deep learning neural network.

REF, and WM, were simulated considering physical and operating
characteristics. Collecting the demand response data, HEMC is applied
to achieve cost and power optimization. The suggested ANN controller
switches the EWH, AC, REF, and WM, allowing the loads to remain
within the demand limit value. The HEMS presented in Ashenov et al.
(2021) is based on Q-learning and ANN. The system schedules appli-
ance consumption based on its type to reduce overall electricity bills
and discomfort while minimizing overloading. A Load Management
Algorithm (LMA) that functions based on Artificial Neural Network
forecast models is developed on HEMS (Mahapatra and Nayyar, 2019).
The proposed LMA-based HEMS helps increase non-conventional DGS
usage in the household load sector. Using NN and NARX prediction
models, it is demonstrated that the suggested HEMS performs energy
integration. A multi-objective optimization method has been designed
by combining the two specified strategies in order to decrease cost
and maximize the comfort level simultaneously (Rochd et al., 2021).
Electricity costs, prediction data, and customer preferences have all
been considered while controlling power flow. The simulation findings
show that energy management can lead to significant cost reductions.
The growing impact of these savings has a significant effect on PV sys-
tem profitability. Yuce et al. (2016) proposes an intelligent scheduling
system based on ANN and GA. The proposed scheduling methodology
aims to reduce grid energy usage based on weekly generated appliance
schedules.

A Poly Function Approximation (PFA) algorithm with Machine
Learning is proposed (Keerthisinghe et al., 2018) to minimize the
electricity cost. It focused only on scheduling to reduce the grid en-
ergy usage without considering other constraints. Gaussian Process
Regression (GPR) with ML is used to calculate the system parameters,
and it is an efficient tool between the user and utility (Ahmed et al.,
2020). To forecast the energy consumption, a comparison of three ML
algorithms, SVM, K-NN, and ANN (Shapi et al., 2021). SVM is proven
to be better than KNN and ANN. A smart home consists of both thermal
& electrical controlled loads. Still, when DER are integrated, the system
complexity increases because DER’s power varies daily, monthly or
seasonally. Due to this, the user cannot predict how to manage the
load. A short-term power prediction is made using ML algorithms based
on current power use for one week. Foremost power consumption data
has been separated into train and test data sets. Eight ML models are
done and compared based on the data set. Data training calculates
Root Mean Squared Error (RMSR) and Mean Absolute Error (MAE). The
eight models of MAE and RMSR are compared (Din and Marnerides,
2017), and the results show that among all RBF models is the most
suitable machine learning algorithm, but the computation time is more.
In Krishna Prakash and Prasanna Vadana (2017), a residential energy
management system (REMS) had proposed efficiently switching loads
to renewable sources based on its charging–discharging and on-grid
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Table 2
Comparison of ML algorithms.

Ref. Optimization technique Aim Achievement Drawbacks

Shapi et al. (2021) SVM, KNN, ANN To forecast energy
consumption

SVM is more efficient
compared to other two
techniques

More time taken to run
algorithm

Krishna Prakash and
Prasanna Vadana
(2017)

ANN,SVM Automatic switchover of
Appliances

SVM is more efficient
compared to ANN

Comparison is not shown
graphically

Ahmed et al. (2020) Gaussian Process Regression
(GPR) with Machine learning
(ML)

To calculate system
Parameters

Compared to PSO and GA, the
results show ML is effective
tool for designing EMM

Users’ satisfaction and PAR
is ignored

Gariba and Pipaliya
(2016)

Naïve Bayes Classifier To mitigate more energy
consumption

Using this technique, the total
cost of electricity is minimized

This algorithm shows poor
performance in real
systems

Keerthisinghe et al.
(2018)

Poly Function Approximation
(PFA) algorithm with Machine
Learning (ANN)

Cost minimization Compared to MLIP the
proposed techniques show
best results in dynamic
programming

Estimating day ahead
energy demand

Xu et al. (2020) Reinforcement Learning (RL) Controlling appliances Using proposed method
control and decision making
and future challenges in
electrical power system

No other comparison is
done with other methods

Mnih et al. (2015) Deep Reinforcement Learning
(DRL)

To improve energy sharing The proposed method
optimizes energy transactions
across buildings in order to
achieve a net zero energy
balance

No RES is preferred

Rajasekaran et al.
(2017)

ACO and Machine Learning To reduce energy consumption ML is used for analyzing
energy patterns and further
reduce the energy
consumption

Without integration of PV
and EV

Liu et al. (2020b) Double Deep Q-Learning
(DDQL)

Scheduling Appliances This method is more efficient
compared to PSO

Without integration of PV
and EV
Table 3
Comparison of overall techniques.
Technique Advantages Disadvantages

Conventional These techniques are useful since
they will lower overall energy
consumption and have a long-term
impact on the sustainability of the
facility. Using less energy will result
in long-term financial savings,
decreased greenhouse gas emissions,
and environmental sustainability.

Over a longer span of time, they
have little impact on the total
quantity of energy utilized in the
building.In this regard, DSM
programs are riskier since
expected energy price reductions
would result in lower financial
savings and a longer payback
period.

Meta-heuristic Acquiring the solution accurately and
quickly. It is simple to acclimate to
the user’s various preferences.

Generally time-consuming for
resolving complex optimization
matters and analytical methods
suffer from slow convergence.

Math-heuristic Solves large scale linear problems
accurately,give a proper solution that
is especially helpful for difficult
issues and has unique properties like
self-protection and self-organization

computational complexity is high,
sluggish convergence, and
difficulties in selecting the best
control parameters can all lead to
inaccurate results.

Artificial intelligence ML solves the problem by dividing it
into sub-parts, solves these sub-parts
individually and takes less time for
training data. Whereas DL can work
on large amount of data, depends on
larger machines and takes less
execution time for testing data.

ML works on smaller data sets
and are dependent on lower
machines. For testing data, the
execution time will be more.As
DL takes more time for execution
it works on large amount on data.
availability to reduce power consumption through the grid. Using ANN,
SVM, and Machine learning algorithms, automatic switches over had
performed to suggest optimized human-like decisions. A comparison of
ANN and SVM proves that the accuracy is higher in SVM, but user
comfort is neglected with the reduction in PAR. Rajasekaran et al.
(2017) proposes an experimental approach of using NILM technology
by establishing the sub-metering system for each load to estimate its
13
future development using bin packing algorithms. The ML Algorithm
controls the feedback systems to create an energy-efficient smart home
and smart grids, and the limits are similar to Krishna Prakash and
Prasanna Vadana (2017). HEM optimization strategy (Liu et al., 2020b)
is proposed for scheduling appliances using Double Deep Q Learning
(DDQL) and Deep Q Learning (DQL). To ensure discrete decision-
making, price prediction is required for the Optimal Load Management
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method, which can be developed utilizing an RTP algorithm and human
activity prediction. Gariba and Pipaliya (2016) presents a method for
reducing energy usage by combining the Naive Bayes classifier and
Hidden Markov Model to model human behaviour.

In achieving efficient home-based DR, Xu et al. (2020) proposes an
RL-based home energy management, but how the power consumption is
decreased is not shown. RL is applicable for controlling and supporting
appliances in a dynamic environment (Thrun and Littman, 2000; Glavic
et al., 2017). Better results are shown in Mnih et al. (2015) using
Deep reinforcement learning (DRL) with both DL and RL. DL helps in
learning features from a vast amount of data and making RL suitable
for solving many problems. A fully automatic EMS based on RL is pro-
posed (Nguyen et al., 2017) to make the best decisions for customers.
Regarding cost dissatisfaction to control electric drives, deep reinforce-
ment learning was used in HEMS (Vázquez-Canteli et al., 2019). In
HEMS, DRL was applied by integrating ML with simulation and battery
energy storage. For storage scheduling in microgrids (François-Lavet
et al., 2016) with a different types of controllers, Deep Q-learning
was proposed but focused mainly on scheduling by neglecting PAR.
Multi-agent DRL was proposed to improve energy sharing in Prasad
and Dusparic (2019). Two reinforcement learning algorithms (Mocanu
et al., 2018) were applied for optimal control problems in the building
but not concentrated on short-term and long-term stability. Table 2
shows different ML algorithms comparison and the comparison of ML
with Meta-Heuristic Algorithms (see Table 3).

8. Conclusion

This article discussed the evolution of optimization techniques from
math heuristic to Meta heuristic and AI-based optimization. Although
math heuristic techniques can solve large and complex problems, their
inability to include the non-linearity constraints and problems like the
rise of high dimensionality has made them vulnerable to modern prob-
lems. Meta-heuristic methods, also called nature-inspired algorithms,
serve as a better alternative to the math heuristic approaches. Still,
the premature convergence and high optimization time for significant
variable problems lead to incompatibility for many real-life scenarios.
The smart optimization techniques based on AI are the future of op-
timization, as it is capable of parallel processing, pattern recognition
and better decision making. Further, this study can be extended to
implementing Deep Reinforcement Learning in HEMS.
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