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A B S T R A C T   

Energy storage systems (ESSs) are useful devices to ensure the reliable operation of microgrids especially those 
with high penetration of renewable energies. The microgrid operation is highly associated with scheduling of ESS 
units. Therefore, in this paper, a new algorithm for ESS scheduling has been suggested in order to manage MG in 
a reliable manner. Because reliability considering and cost minimization are conflicting objectives in ESS 
scheduling, the multi-objective optimization problem should be solved for optimal scheduling of ESS. Different 
operating strategy have been considered and their impact on ESS scheduling in the microgrid has been inves
tigated. In order to properly consider the uncertainties associated with the multi-objective scheduling problem, 
probabilistic models have been presented for the parameters in the network and they are expressed as mixed 
integer linear programming (MILP) problems. Non-dominated sorting teaching learning-based optimization 
(NSTLBO) algorithm is employed to solve the MO problem. Scheduling plan is performed on both weekly and 
daily horizons in connected/islanding microgrid modes. By implementing this method on a modified 33-bus IEEE 
test system, the results endorse the effectiveness of the proposed scheme for enhancing the reliability of MGs.   

1. Introduction 

Nowadays, new communication technologies enable power systems 
to be improved to smart grids. One of the main components of smart 
grids is microgrids [1]. Microgrids supply their loads using their power 
generation sources or by the power received from the main grid, 
therefore they can provide sustainable and reliable power for the cus
tomers [2]. There are different resources in a microgrid to produce 
power including renewable energies and conventional generation units. 
High penetration of renewable energy sources can make some problems. 
Due to the intermittency of their input power, there is always the pos
sibility that their forecasted power could not be realized. It means that 
there is insufficient power to meet load demand and increases the risk of 
customer interruptions in microgrids, especially in the islanding mode. 
These uncertainties can cause some difficulties in energy management 
and energy planning. Energy storage systems (ESSs) are employed in 
microgrids to overcome this problem. ESSs can save energy and give it 
back to microgrids when it was necessary. 

ESS has multiple applications in microgrids such as load shifting [3], 
energy arbitrage [4], power quality improvement [5], reliability 
enhancement [6–7], cost minimization [8–9], loss reduction [10–11], 

and peak shaving [12]. Their main role in microgrids is energy arbitrage 
and cost minimization. To select the best usage of ESS in a microgrid, 
first, these units must be planned efficiently and optimally. A suitable 
implementation of ESS along with distributed energy resources (DERs) 
could increase the power generation of these intermittent resources. It 
enjoys the advantages of reducing costs and emissions of fossil fuel 
generation and maximizes the economic attractiveness of renewable 
technologies such as wind power and photovoltaics. Scheduling of the 
available resources is essential to achieve optimal performance of the 
grid and successfully satisfy the load requirements, reduce cost and 
emissions, and improve the reliability of MGs. 

Various studies have been performed in the case of scheduling and 
planning of ESSs to enhance microgrid operation and management. 
Reliability evaluation of distribution systems with ESSs was firstly 
addressed to develop a method for modeling ESS units in reliability 
problems [13–14]. Some other research has investigated the optimal 
planning and scheduling of ESS units over the past decade. In [15], the 
authors proposed a model to determine the size of ESS with reliability 
constraints. Authors in [16] developed a tool for assessing different 
factors such as penetration level, operation strategies, and ESS capacities 
on operational reliability of MGs. They assessed the operational reli
ability of microgrids with wind turbines. Authors in [17–18], proposed a 
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stochastic framework to optimize ESS scheduling in microgrids. In this 
framework they optimize ESS scheduling in order to reducing MG cost 
and enhancing reliability. Ref. [19] proposed a protective model control 
for different strategies in microgrids and assessed the reliability of 
microgrids regarding the operation strategy and ESS units. In [20], an 
analytical approach is applied to determining the size, in terms of both 
power and energy capacity, of an ESS in such a way that meet a specified 
reliability target. 

ESS scheduling has attracted much attention for energy management 
in microgrids in recent years. Optimal scheduling strategy broadly 
developed in literature [21–26]. Authors in [21] discussed that ESS 
scheduling in daily and weekly mode can enhance the operation per
formance of microgrid. Reference [22], authors proposed a framework 
which calculate the optimal size of ESS, while determining the optimal 
operation schedule of controllable components in a microgrid. In [23] 
scheduling of energy storage systems is considered in presence of 
renewable energy resources. Authors in [24] suggested a method that 
optimally schedule ESS to minimize operation cost of microgrid. In this 
method load requirements of cold, heat and electricity is satisfied in 
microgrids. In [25], a fundamental model is proposed by authors for 
scheduling of ESS in day-ahead power market. Authors in [26] devel
oped a model of ESS considering economic and environmental per
spectives. In that model, two objective functions were established to 
determine the optimal operation of ESS from the economic and envi
ronmental aspects. In [27] participation of the ESS unit in demand 
management and its application to the reliability evaluation. Authors in 
[28] developed a new reliability contribution function of BESS in wind 
farms. Ref. [29–30] explain some statistical methods 

Increasing cycles and depth of discharge of a battery can cause 
degradation and reduce its lifetime [31]. Consequently, batteries with 
capacities of less than a specific value must be replaced, and this will 
impose huge investment costs on the microgrid. As a result, it’s really 
important to take into account aging costs in the scheduling of ESSs. 
Batteries’ lifetime and cycling have not been formulated explicitly in 
optimal scheduling for ESSs. In [32] an optimal BESS scheduling for MGs 
is proposed to solve the unit commitment problem stochastically, 

considering the aging cost of ESS units and the uncertainties in renew
ables and load. On the other hand, most studies carried out a day-ahead 
scheduling program for scheduling ESS in microgrids [33]. This sched
uling horizon forces ESS units to have the same state of charge (SOC) at 
the start and end of the day even when it has high levels of SOC. This 
process can accelerate the aging of batteries and impose costs on the 
microgrid. Ignoring the aging cost of ESS as well as restricting the 
scheduling horizon to just in daily mode make big challenges. To 
overcome these challenges and problems we proposed a stochastic 
optimal scheduling method that includes degradation of ESS and depth 
of discharge is considered in both daily and weekly mode to optimally 
manage the microgrid. We concentrate on the optimal scheduling of 
ESSs in microgrids by using Teaching-Learning Based Optimization 
(TLBO) algorithm [34]. TLBO is a suitable method for finding optimal 
solutions to such problems since it does not require any 
algorithm-specific parameters. The contributions of this paper can be 
expressed as follows:  

• Proposing a comprehensive model for optimal ESS scheduling, 
including a scheduling framework in a day-ahead and weekly time 
horizon.  

• Modeling the aging cost of ESS units concerning both cycling and 
calendar factors. Dod and number of cycles of ESS are limited to a 
certain value to maximize battery energy throughput and reduce MG 
operation costs.  

• Taking into account intrinsic uncertainty characteristics of all 
microgrid variables, including all uncertainties related to loads, 
electric price, renewable energy (PVs and WTs) outputs, and the 
duration of unscheduled islanding events.  

• Studying microgrids in different operating modes (islanding and 
grid-connected mode) to maintain an appropriate trade-off between 
cost and reliability objective functions by the scheduling of ESS units 
considering the degradation cost of ESS. 

The remainder of this paper is organized as follows: In section 2, the 
formulation of scheduling and planning problems are discussed. The 

Nomenclature 

Pch,t Power injected to ESS 
Pdisc,t Power drawn from ESS 
PWF,t Power output of wind farm 
Vci Cut in speed 
Vr Rated speed 
Vout Cut out Speed 
Gt solar irradiance prediction 
Gstd standard solar irradiance 
ηch Charge efficiency of energy storage system 
ηdch Discharge efficiency of energy storage system 
H Timeslot index in island mode 
δch charge binary indicators of ESSs 
δdch discharge binary indicators of ESSs 
X Vector of optimization variables 
T total number of hours 
Nr total number of renewable energy units 
Ng total number of distributed generating units 
Ns total number of storage units 
Niter Number of interruption 
F(.) Cost-function of distributed generation 
SAvg average SOC 
Li load consumed in load point i 
SOC0 The initial level of SOC (%) 
SOCmax The maximum level of SOC (%) 

SOCmin The minimum level of SOC (%) 
SOC State of charge 
WTG Wind turbine generator 
DER Distributed energy resources 
DG Distributed generator 
MT Microturbine 
ESS Energy storage system 
PV Photovoltaic 
RES Renewable energy Source 
PSmax Maximum import power (kW) 
PSmin Allowable export power (kW) 
En Rated ESS Capacity (kWh) 
WS Wind speed 
DU Diesel Unit 
MTTR Mean Time To Repair 
MTTF Mean Time To Failure 
LOLP loss of load probability 
LOLE Loss of load expectation 
EENS expected energy not supplied 
MCS Monte Carlo Simulation 
DoD Depth of discharge 
PDF Probability distribution Function 
MG Microgrid 
AC Aging Cost 
OC Operation Cost 
TLBO Teaching learning-based optimization  
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proposed model of ESS and Microgrid reliability are explained in this 
section. In section 3 the scheduling optimization problem is broadly 
described and the suggested algorithm is presented. In section 4 the 
algorithm is implemented on the typical test system and simulation re
sults are derived. The conclusions are drawn in section 5. 

2. Problem formulation 

2.1. General architecture of microgrid under study 

The microgrid under study includes loads, local generation re
sources, and energy storage systems. Loads in microgrids also can be 
divided into two main groups: adjustable loads and fixed loads. 
Adjustable loads can be controlled by operators and can be shifted or 
curtailed whole or part of them when it’s necessary from a microgrids 
operator point of view. In contrast, fixed loads cannot be controlled or 
shifted by the operator and he doesn’t have any control over these loads 
and they must be supplied under all conditions. Power generation re
sources in microgrids are classified into two main categories. The first 
group includes dispatchable resources whose output power can be 
controlled by system operators. Microgrid operators can control the 
output of dispatchable resources and the amount of power they 
generate. On the other hand, generated power of non-dispatchable re
sources could not be under control and depended on factors out of 
control. In this paper, photovoltaic cells and wind turbines are consid
ered non-dispatchable power resources and Microturbines acted as dis
patchable ones. A schematic diagram of a typical microgrid under study 
is depicted in Fig. 1. 

Microgrids can operate in two different modes: islanding mode and 
grid-connected mode. In grid-connected mode, ESSs store energy in low- 
price periods and give back that energy to the microgrid during the high- 
price time. In this mode, the microgrid can supply its consumers with 
energy they import from the main grid. Microgrid operation is based on 
the assumption that they must satisfy their load with minimum cost and 
maximum reliability at all times. In disturbances, a microgrid must be 
able to isolate itself from the main grid and meet its load requirements 
with help of its resources. ESSs play an important role in islanding mode 
to satisfy more loads and increase the reliability of microgrids. 

2.2. Microgrid modelling 

In this section, the optimal scheduling of ESSs in microgrids con
strained to reliability requirements is presented. Two objective functions 
are used in this study, where minimizing microgrid costs and Energy not 

supplied are considered to fulfill the economic and reliability re
quirements of microgrids. To have an accurate and acceptable analysis 
of microgrid operation it is necessary to precisely model the problem 
parameters. 

In the proposed method, the uncertainty of network parameters such 
as load, energy price, and the failure rate of microgrid equipment such as 
lines and substations has been considered. First, according to Monte 
Carlo Simulation (MCS), some scenarios have been generated. In each 
scenario, parameter values are selected randomly based on their mean 
and standard deviation values. Then after the generation of sufficient 
scenarios, a proper scenario reduction technique is applied to reduce the 
number of scenarios to acceptable sets. 

2.2.1. ESS modeling 
ESS units, in general, are modeled by their characteristic properties 

such as power and energy capacity, location, charging and discharging 
cycles, and implementation requirements. Their main limitations are 
maximum and minimum state of charge (SOC); charging and discharg
ing efficiency and ESS charging/discharging power limitation. 

The two main parameters of ESSs are rated capacity and rated power. 
Rated power will determine the energy charging/ discharging rate of 
storage energy systems. On the other hand, rated capacity is the amount 
of energy that a storage system can store. High-capacity ESSs are capable 
to store high power but they don’t have efficient charging-discharging 
power. On contrary, low-capacity ESSs have suitable charging/ dis
charging power. State of Charge (SOC) of ESS is expressed as a per
centage of energy that is available at time t Eq (1): 

SOC(t) =
E(t)
En

(1) 

SOC is the state of charge of ESS and it changes during charging/ 
discharging process. The amount of SOC will increase when the ESS 
charging and it will decrease when ESS discharging. Instead of SOC 
sometimes the energy of ESS is expressed as the depth of discharge 
(DOD). It is defined as an amount of energy (charge) that is eliminated at 
a given time. It determines the total amount of charge that can be stored 
in the battery at a certain state and is expressed in Eq. (2). 

DoD(t) = 1 − SOC(t) (2) 

ESS can operate in three different modes: charging, discharging, and 
idle. The SoC of ESS unit during discharging and charging of the battery 
is respectively defined as Eqs. (3) and (4). In Charging mode, SOC of 
battery depends on battery charging efficiency (ηch), battery charging 
power (Pch) and battery self-discharge rate (ζ). 

Fig. 1. the schematic diagram of the structure of Microgrid understudy.  
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SOC(t+Δt) = SOC(t)(1 − ζ) + k.Pdisc
ESS.

Δt
ηdisc.CESS

(3)  

SOC(t+Δt) = SOC(t)(1 − ζ) + k.
(
ηch.P

ch
ESS

)
.

Δt
CESS

(4) 

ESS installation imposes huge costs on microgrids. Therefore, from 
both economic and security viewpoints, an accurate and practical ESS 
cost model would enhance the modeling of system operation. In order to 
schedule ESS operation, it is essential to obtain the exact ESS cost model. 
ESS cost is composed of ESS capital cost and ESS operation cost. Batte
ries don’t use any fuel, thus their operation cost is mainly due to their 
degradation and their aging cost. 

The aging cost of ESS is correlated with its degradation. ESS degra
dation depends on cycling and calendar aging of the battery. The cyclic 
aging comes from the C-rate, temperature, DOD usage, and number of 
cycles, while calendar aging depends on the SOC, temperature, and 
time. The ESS aging cost is dependent on the degradation ratio of the life 
(ηt) and installation cost (IC) as it is shown in Eq. (5): 

ACt = ηt ∗ ICESS (5) 

The aging ratio of battery per cycle can be obtained by the following 
equation and use for aging cost calculation. Aging cost will be added to 
cost minimization problem. [35] 

ηt =
0.5

NCESS
t

(
SSW

t , SAvg
t

) (6) 

In this equation aging ratio is related to number of cycles (NC) which 
is function of both average SOC level and changes of SOC during one 
cycle. 

2.2.2. Wind power modeling 
Generated power of wind turbines is dependent on wind velocity 

modeling of wind power should perform considering its forecast un
certainties. Previous studies have shown that wind speed can be suc
cessfully modeled by Weibull distribution: 

f (v) =
(

k
γ

)(
v
γ

)k− 1

e

(

v
γ

)k

(7) 

When the cut-in wind speed is reached, the turbine starts to produce 
its power. As the wind speed increases, the turbine output will also in
crease. When the wind speed is too high, to protect the turbine, the 
turbine equipment will be automatically removed. Therefore, the output 
power of the turbine can generally be expressed by a piecewise function, 
as shown in Eq. (8). Output power of wind turbines in terms of their 
wind speed is dependent on the wind turbine characteristic curve and is 
given by the following equation: 

p =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0
(
A + B ∗ SWt + C ∗ SW2

t

)
∗ Pr

Pr

0

0 ≤ SWt ≤ Vci
Vci ≤ SWt ≤ Vr
Vr ≤ SWt ≤ Vco

Vco ≤ SWt

(8) 

Where P is generated power of wind turbine and A, B, and C are 
shape parameters of WT. Fig. 2 demonstrates the typical power curve of 
the wind turbine generator. 

A two-state up and down Markov model is used as the probabilistic 
model to demonstrate wind turbines in reliability studies. In this model 
availability of WTG with probability equals 1-qWTS and rated capacity of 
pWTS.rated, or unavailable with probability equals to qWTS. qWTS is defined 
as follows: 

qWTS =
MTTRWTS

MTTFWTS + MTTRWTS
(9)  

2.2.3. Solar power modeling 
The generation of solar power systems depends on solar irradiance 

and solar cells features and ambient temperature. Reference [36] 
compared different probability density distributions with random 
behavior of solar irradiance and result that Beta pdf could be used to 
model the solar irradiance well. Thus, in this paper the beta distribution 
is used to show the uncertainty of solar irradiance as follows: 

f (v) =
(

2v
c2

)

exp
[

−
(v

c

)2
]

(10) 

When solar irradiance is known, generated power of PV cell will 
obtain by the Eq. (11). In this equation, generated power of photovoltaic 
cell (Ppv) is related to forecast solar radiation (Gt) and the certain radi
ation point (Rc). 

Ppv =

⎧
⎨

⎩

ηc

Kc
(Gt)

2 0 < Gt < Rc

ηcGt Gt > Rc

(11) 

As for wind power, the reliability of solar power is modeled with two- 
state markov model: 

qPVS =
MTTRPVS

MTTFPVS + MTTRPVS
(12)  

2.2.4. Load modeling 
Microgrid load consumption is affected by its consumer type and 

depends on the day of the week, the week of the month, and the month 
of the year. The probabilistic behavior of microgrid load is modeled by 
normal distribution function as follows: 

f (x) =
1

σ
̅̅̅̅̅
2π

√ e
− 1

2

(
x− μ

α

)2

(13)  

3. The proposed method 

Some objectives are conflicting and it is necessary to make a trade-off 
between them. Multi-objective algorithms can act efficiently with 
problems with conflicting or mathematically unrelated objective func
tions. In the proposed method first, some scenarios are generated based 
on standard deviation and mean value of equipment and their proba
bility distribution factor as explained in the previous section. Then 
scenarios will reduce to accelerate the speed of the method. 

3.1. Objective functions 

3.1.1. Cost objective function 
The first objective function of the proposed algorithm is cost mini

mization of the microgrid. Microgrid costs consist of operation cost (OC) 
as well as aging cost (AC) and can be formulated as follows: 

minCostt = OC + AC (14)  

Fig. 2. Power output of wind turbine generator.  
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OCs,t =
∑NS

i=1

(
PESSi ∗ costESS,i

)
+

∑NRES

i=1

(
PRES,i ∗ costRES,i

)
+
∑Ndg

i=1
Fdg,i

(
Pdg,i

)
+ Pgrid

∗ costgrid

(15) 

Operation cost includes all the possible scenarios of load and 
renewable energies power output (15). The first term in the operation 
cost function corresponds to the cost of ESS units and the second term 
shows the cost of renewable energy resources. The operation cost of 
dispatchable units is represented in the third term. Finally, the last 
expression models power imported from (exported to) the main grid to 
(from) the microgrid. Therefore the objective function for the cost of the 
microgrid will be as follows: 

minCostt =
∑NS

i=1

(
PSi ∗ costESS,i

)
+

∑NRES

i=1

(
PRES,i ∗ costRES,i

)
+
∑Ndg

i=1
Fdg,i

(
Pdg,i

)

+ Pgrid ∗ costgrid + ACt

(16)  

3.1.2. Reliability objective function 
One of the main purposes of microgrid scheduling is reliability 

enhancement, but it is considered simultaneously with cost minimiza
tion. Energy Not Supplied (ENS) has been chosen as an objective and 
objective function can be obtained by (17): 

ENS =
∑Ninter

i=1
LiPri (17)  

3.2. Constraints 

All variables must be within their boundaries. Constraints of the 
suggested optimization problem are listed as follows: 

3.2.1. ESS constraints 
There are some limitations on the charge and discharge rate of 

storage devices during each time interval, the following equation and 
constraints can be considered: 

Psch
ESS < Psch

ESS,max (18) 

Fig. 3. Flowchart of proposed method.  
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Pdisc
ESS < Pdisc

ESS,max (19)  

SOCmin < SOC(t) < SOCmax (20) 

Eqs. (18) and (19) specify that the charging and discharging rate of 
ESSs don’t exceed their limitations. To have high efficiency, the State of 
Charge of the battery should be in predefined ranges. Constraint (20) 
ensures that the SOC of ESS doesn’t exceed its boundaries. During the 
discharging period, SoC must not go below the SoCmin and in charging 
mode it must not go upper than SOCmax. 

3.2.2. Renewable energy resources constraints 
Output power of renewable energies (PV units and wind turbines) 

are limited by their maximum power that they can produce. Eqs. (21) 
and (22) present PV and wind turbine limitations respectively. 
Constraint in Eq. (21) ensure that PV generated power is lower than PV 
maximum power and Eq. (22) confirm that wind power doesn’t exceed 
its maximum. 

0 < Pi
PV < Pi

PV,max (21)  

0 < Pi
wind < Pi

wind,max (22)  

3.2.3. The balance between load and generation 
It is necessary to exist a balance between load and generation in the 

microgrid and powers generated by microgrid resources can meet the 
demand of microgrid consumers. If resources could not satisfy the load 
in a microgrid, the main grid can provide loads for a microgrid. In the 
grid-connected mode, the microgrid can send or receive electrical en
ergy from the main grid and other microgrids. If available resources in 
the microgrid can’t generate enough power to meet microgrid demands, 
load shedding must be applied to maintain microgrid stability. Load and 
generation balance limitation is expressed in Eq. (23): 

PS + PDG + PRES + PGrid = Pload (23)  

3.3. Dispatchable units’ constraints 

Dispatchable DG units have startup and shutdown times that must be 
considered in the computations. They also have limitations such as Min- 
max capacity and ramp-up rates. Eqs. (24)-(28) demonstrate these 
limitations: 

Pmin
DG < PDG < Pmax

DG (24)  

Pi
DG,t − Pi

DG,t− 1 < URDG (25)  

Pi
DG,t− 1 − Pi

DG,t < DRDG (26)  

SUDG,t > CU
(
IDG,t − IDG,t

)
(27)  

SDDG,t > CD
(
IDG,t − IDG,t

)
(28) 

Eq. (24) ensures that generated power of DG is between its maximum 
and minimum allowable amount. Ramp up and down rate of DG impose 
some restrictions on its operation that expressed in equations(25) and 
(26). Start-up and shot-down costs are calculated based on cost con
stants and their operating time. Eqs. (27)-(28) show these calculations. 

3.4. Optimization method 

The optimization problem described in the previous sections is in 
MINLP format. Here, we employ the TLBO algorithm to obtain optimal 
solutions. TLBO is an effective and fast evolutionary algorithm that is 
inspired by a learning mechanism in a class [37]. In the algorithm, the 
population is assumed to be learners of a class. The general process of 
TLBO is divided into two main phases: teacher phase and learner phase. 

Teacher is considered as best solution obtained so far. Learners can 
enhance their knowledge by either learning from teacher or by learning 
through the interactions between themselves. In teacher phase, a good 
teacher brings up knowledge of students and improves the mean of class 
(Eq. (29)). In learner’s interaction between students in class can enhance 
their knowledge (Eq. (30)). The students can also gain knowledge by 
discussing and interacting with other students. Students can enhance 
their knowledge if the other students have more knowledge about that 
subject. 

Xinew = Xi + r
(
Xbest

i − Tf ∗Mi
)

(29)  

Xinew = Xi + r
(
Xj − Xi

)
(30)  

Xinew = Xi + r
(
Xj − Xi

)
(31) 

There are two approaches to adding reliability to the optimization 
problem: The first approach is to add reliability to the objective function 
that was considered before. The other approach is to use a multi- 
objective optimization problem. In the second approach, we had a 
front of non-dominated solutions instead of a single solution. 

3.5. Operation strategies 

Microgrid operation is scheduled based on different horizons and 
various strategies. In this paper, we develop a method to schedule ESS 
and microgrid in both daily and weekly mode time horizons. The 
scheduling method regarded reliability and cost-driven operating 
strategies.  

A Daily mode: In daily mode, the ESS operate on a daily basis and 
energy output of ESS must be same at the beginning and end of day. 
In other words, net change of energy in ESS in a day must be equal to 
zero. ESS will operate in day-ahead power market and all variables 
must be forecasted for next day.  

B Weekly mode: In weekly mode, energy output of must be same at the 
beginning and end of week. In this strategy, SOC is not forced to be 
same at the end and beginning of each day, and continuity between 
days is acceptable in this mode. Therefore, it can use in operating 
methods which need less charging/discharging cycles. 

In cost-driven operation strategy, overall system operating costs are 
chosen to enhance through energy arbitrage. In this strategy ESS save 
MG extra energy in non-peak hours and fulfill load demand in peak 
hours that market price is higher. 

In reliability-driven mode, it is essential to maintain system ade
quacy level in certain level even in islanding operation. So, the main 
goal of this strategy is satisfying system load demand. 

If ESS is used for reliability enhancing, its SoC must be at higher 
levels. On the other hand, in cost-driven mode ESS can discharge to the 
lower levels to satisfy more loads in peak hour (when price is higher). 
This strategy would lead to the larger amount of Depth of discharge if 
ESS aging cost does not involved in scheduling plan. 

It is assumed that in grid-connected mode, microgrid’s power de
mand can completely supplied by the main grid and therefore there 
would not be any load interruption in that mode and adequacy assess
ment of generating units does not calculate. In contrast, in the islanding 
mode, reliability concerns (adequacy and security) are of high impor
tance. While MG operates in islanding mode ESS activity would become 
more important because main grid can’t supply energy and the whole 
load must be supplied by generation and ESS units in MG. Hence, ESS 
will operate in reliability-driven mode in this situation. 

3.6. The proposed algorithm 

The proposed algorithm is a optimization approach based on 
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Teaching-Learning Based Optimization algorithm. The algorithm for 
solving formulated optimization problem described before is repre
sented as follows: 

In the proposed method charging/discharging status of ESS is 
selected as decision variables. Different scenarios are generated based 
on input data using MCS method. In this section, for each hour fore
casted value of each parameter is calculated by standard deviation and 
mean of that parameter and its probability distribution function. Based 
on the generated scenarios of charging/discharging schedule, a proba
bilistic optimization problem is solved and MG’s operation cost will be 
calculated. In each hour, probabilistic TLBO-based optimization algo
rithm is used to determine charging behavior and SOC of ESS in the 
microgrid. This optimization in the normal operation is performed just 
by cost function. When the optimal scheduling of DERs and power flow 
in different scenarios are obtained, the ENS can be calculated. For 
calculating ENS in each islanding scenario, the amount of energy not 
supplied is calculated. 

4. Case study 

The proposed formulation has been implemented on IEEE 33 bus 
standard test system[38]. The original test system is supplied just with 
the main grid. This test system is modified and add some DGs, RESs, and 
ESSs to become suitable for studying scheduling problem. Fig. 4 dem
onstrates a schematic diagram of this network. Also, a daily time horizon 
consisting of 24-h periods is considered for DM and 168-h for weekly 
mode scheduling. 

A new method based on TLBO has been used for minimizing cost of 
Energy in the microgrids. To test the proposed method we choose a 
standard system to show the performance of the method. In each hour 
SOC of ESS will be determined based on load level and consumer re
quirements. Choosing an operation mode strategy can influence the 
scheduling of Energy Storage system charging/discharging behavior. 
The characteristic of DERs used in the simulation is presented in Table 1. 
It is noteworthy that the output power of PV and WTG in each hour is 
equal to the product of their capacity to its power daily curve, which is 
depicted in Fig. 2. ESS technology used as a test case in this study is 

The FOR of network equipment is assumed to be 0.1 (occ/yr) and the 
failure rate of equipment is 10 days/year. Islanding duration is assumed 
to have normal distribution function with mean of 5 h and standard 
deviation of one hour [38]. It is also assumed that the investment cost of 
ESS is 200,000 $. Finally, the standard deviation of uncertain parame
ters is set at 10% and MCS generates 1000 scenario at first and then 
reduce them to 100 scenarios. 

Forecasted load and renewable energy output for a day and one are 
illustrated in Fig. 5. These data are used in daily and weekly mode 
scheduling. 

The proposed method is coded in MATLAB 2018a software and the 
numerical results are derived as follows: 

4.1. Scheduling results of energy storage systems in the microgrid 

Scheduling of Energy storage has been performed based on the 
proposed method and the results are illustrated in Table 3. For evalu
ating the effectiveness of the proposed method both daily mode (DM) 
and weekly mode (WM). Referring to this table, the highest SOC of ESS is 
at 6:00 and the lowest SOC is at 19:00. 

The charging/discharging process of ESS in weekly mode scheduling 
is shown in Fig. 6 and Fig. 7. The average SoC is higher in WM sched
uling so the average DOD is lower than DM which can help to prevent 
battery wearing out. On two days of week, energy storage capacity stays 
constant and it doesn’t use for all day long because of its operation cost 
(aging cost). 

4.2. Assessing the ability of the proposed method 

The results from the proposed algorithm for reliability and cost data 
are presented in Table 4. The problem solved by TLBO and it is 
compared with other Solvers in order to see the efficiency of proposed 
method. This results confirms the ability of suggested method to deter
mine operation scheduling of ESS in MGs. 

4.3. Evaluating reliability indices of microgrids 

Reliability of microgrids can be calculated based on the proposed 
methodology. To demonstrate the effectiveness of the proposed method 
4 different cases are deployed in the test system. In each scenario, both 
islanding and grid-connected modes are taken into consideration in 168 
h scheduling horizons. 

Case 1: ESS scheduling daily mode-cost minimization 
Case 2: ESS scheduling daily mode-reliability enhancement 
Case 3: ESS scheduling weekly mode-cost minimization 
Case 4: ESS scheduling weekly mode- reliability-driven mode 

The proposed algorithm is all four cases has been performed and the 
obtained results is presented in Fig. 8. 

At first in case 1, between 00:00 and 5:00 in the morning battery will 
be charged because energy price is low. Then between 5 and 17, the 
battery will remain in idle form and energy will import from the main 
grid if the microgrid generation units couldn’t satisfy load. At the end of 
the day, in peak hours between 17 and 00 battery energy is discharged 
because the electric price is high and it’s better to not receive energy 
from the main grid. Case 2 is based on reliability enhancement so ESS Fig. 4. Modified 33 bus system.  

Table 1 
DGs characteristic [17].  

Type Operation cost Min max capacity Ramp Up/down 

MT 51.86 0–0.12 0.06  

Table 2 
The hourly electricity price in the open market [39].  

Hour Price Hour Price 

1 0.033 13 0.215 
2 0.027 14 0.572 
3 0.020 15 0.286 
4 0.017 16 0.279 
5 0.017 17 0.086 
6 0.017 18 0.059 
7 0.033 19 0.050 
8 0.054 20 0.061 
9 0.215 21 0.181 
10 0.572 22 0.077 
11 0.572 23 0.043 
12 0.572 24 0.037  
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will charge at 00 to 5 just like case 1. But in the peak hours, it will not be 
discharged completely because it is necessary to be ready for providing 
load in islanding situations. In case 3 on the first day of ESS charging 
strategy battery is charged in 00:00 and 5:00 like in case 1 and in peak 
hours it will be discharged almost completely but on the 3rd day, 
because the load is not high in comparison with PV and wind, ESS would 
not discharge completely. The scheduling process in case 4 shows fewer 
charge and discharge cycles because operation policy is based on reli
ability and on all days except for day 1 ESS will remain with high SOC 
level. In this case, ESS doesn’t help microgrid economy. 

Operation cost and ENS of each case are illustrated in Figs. 9 and 10 
respectively. One can observe in Fig. 10 that weekly mode scheduling 
has better performance in reliability-driven mode. In case 3 DOD is 
reduced in comparison with case 1. It is due to the fact that in weekly 
mode the condition of equal SOC at the beginning of the day is removed. 
Case 4 has more stable charging state because it is scheduled to be of 
high capacity in peak hours. 

4.4. Effects of different factors on the reliability of microgrid 

4.4.1. Influence of parameters of ESS on reliability 
In order to assess the effect of ESS scheduling on microgrid operation 

and reliability, we analyze ESS parameters on the test system. ESS 

Fig. 5. forecasted value of load and renewable energy for a day (a) and a week (b).  

Table 3 
Scheduling of ESS in DM scheduling strategy.  

hour SoC Hour SoC Hour SoC Hour SoC 

1 0.2 7 0.6 13 0.5 19 0.6 
2 0.4 8 0.5 14 0.6 20 0.6 
3 0.6 9 0.5 15 0.7 21 0.4 
4 0.6 10 0.5 16 0.7 22 0.3 
5 0.6 11 0.5 17 0.75 23 0.2 
6 0.7 12 0.6 18 0.68 24 0  

Fig. 6. Soc scheduling of ESS in a weekly mode (WM).  

Fig. 7. Charging status of ESS in WM.  

Table 4 
Result of different algorithms.  

Solver OC EENS 

PSO 639.5 7.17 
GA 651.5 6.9 
TLBO 602.4 6.84  
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capacity can change its management strategy, therefore figure demon
strates ENS and costs in the operating mode. Higher ESS capacity can 
reduce the operating cost of MG and also decrease its discharge depth of 
it. ESS power is also one of the main parameters for enhancing reliability 
because higher discharge power can be helpful in reliability-driven 
strategy. It can be observed that EENS value is decreasing as ESS ca
pacity and power are reduced. 

4.4.2. Effect of peak load on reliability 
ESS units are designed to help MGs to decrease operation costs by 

delivering power to loads during high-price hours or peak hours. But if 
MG has been forced to work in islanding mode in this period, ESS must 
provide some part of the load if generated power of RESs and DGs cannot 
completely satisfy the load requirement. Excessive discharge of ESS and 
low SOC value may result in load interruption in the microgrid. The 
effect of the peak load of MG on reliability indices is depicted in Fig. 12. 
One can observed that in Fig. 12 EENS grows gradually with increasing 
peak load. 

5. Conclusion 

This paper presented a probabilistic model for optimal scheduling of 
energy storage systems in a microgrid based on MCS simulation in both 
grid-connected and islanding situations and also, modeling the aging 
cost of ESS units concerning both cycling and calendar factors. We first 
investigated the scheduling and reliability problems of MGs and the 
associated constraints. Then we proposed a new technique to schedule 
ESSs in MGs in both daily and weekly modes. This technique is a multi- 
objective optimization problem that minimizes costs and enhances the 
reliability of the microgrid that is solved by the TLBO algorithm. Using 
the simulation conducted on the modified 33 bus test system, it could be 
observed that the reliability scheduling of ESS operation in microgrid 
will help to meet the microgrid requirements more efficiently. Results 
illustrate this point clearly that charging-discharging of ESS can effec
tively reduce the cost of microgrids while it can improve reliability 
performance of the system. The results from daily and weekly mode are 
compared and the advantages and disadvantages of each mode are 
discussed. It is observed that aging cost and reliability can enhance by 
weekly mode scheduling while total cost is better managed in daily 
mode scheduling. A further study could assess the effects of selecting 
other types of ESS to determine differences between weekly and daily 

Fig. 8. ESS SOC of different cases in one week.  

Fig. 9. Operation Cost of scenarios.  

Fig. 10. Energy Not Supplied (ENS) of each cases.  
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mode operating strategies. Also, further studies need to be carried out in 
order to determine the impact of ESS scheduling on more reliability 
indices in microgrid. 
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