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generation.
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A B S T R A C T

The transportation sector is characterized by high emissions of greenhouse gases (GHG) into the atmosphere.
Consequently, electric vehicles (EVs) have been proposed as a revolutionary solution to mitigate GHG emissions
and the dependence on petroleum products, which are fast depleting. EVs are proliferating in many countries
worldwide and the fast adoption of this technology is significantly dependent on the expansion of charging
stations. This study proposes the use of the hybrid genetic algorithm and particle swarm optimization (GA-PSO)
for the optimal allocation of plug-in EV charging stations (PEVCS) into the distribution network with distributed
generation (DG) in high volumes and at selected buses. Photovoltaic (PV) systems with a power factor of 0.95 are
used as DGs. The PVs are penetrated into the distribution network at 60% and six penetration cases are considered
for the optimal placement of the PEVCSs. The optimization problem is formulated as a multi-objective problem
minimizing the active and reactive power losses as well as the voltage deviation index. The IEEE 33 and 69 bus
distribution networks are used as test networks. The simulation was performed using MATLAB and the results
obtained validate the effectiveness of the hybrid GA-PSO. For example, the integration of PEVCSs results in the
minimum bus voltage still within accepted margins. For the IEEE 69 bus network, the resulting minimum voltage
is 0.973 p.u in case 1, 0.982 p.u in case 2, 0.96 p.u in case 3, 0.961 p.u in case 4, 0.954 p.u in case 5, and 0.965 p.u
in case 6. EVs are a sustainable means of significantly mitigating emissions from the transportation sector and
their utilization is essential as the worldwide concern of climate change and a carbon-free society intensifies.
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1. Introduction

Owing to the high greenhouse gas (GHG) emissions from the trans-
portation sector, the adoption of electric vehicles (EVs) is fast increasing
in many countries as a replacement for combustion engine-based vehicles
to reduce the quantity of GHG emitted into the atmosphere [1]. The fast
appropriation of EVs in many countries worldwide also results from the
increasing depletion of petroleum resources in addition to its environ-
mental impacts [2]. Hence, the proliferation of EVs, which are noiseless,
safer, emission-free, and fuel-efficient are underway [3]. The utilization
of EVs in the place of conventional vehicles has environmental benefits
and is also advantageous to the electrical distribution network as EVs can
aid in frequency/voltage support and serve as spinning reverses [4].
However, the misappropriation of EVs in the distribution network can
have a detrimental effect in terms of voltage deviation out of acceptable
limits, power quality degradation, and an increase in power loss [5]. This
adverse effect can be resolved by incorporating distributed generation
(DG) in the distribution network [6]. Photovoltaic (PV) systems are the
most prominent DGs owing to the continuous reduction in the prices of
PV panels and other accessories [7], as well as the availability of energy
from the sunlight [8]. The rate at which PV systems are being installed
worldwide is over 70 GW per year [9]. PV systems can mitigate the
adverse effect of EVs in the distribution network through voltage support
and peak shaving [10].

A major challenge with the adoption of EVs in many communities is
the availability of charging facilities [11]. Three types of EV chargers
exist: Level 1, Level 2, and Level 3 chargers. Among these EV chargers,
Level 3 chargers are the fastest and are usually offboard, followed by
Level 2 and then Level 1, which are both onboard chargers [12]. A Level
3 charger can fully charge an EV in less than an hour, whereas Level 1 and
Level 2 chargers require a longer time [13]. The proliferation of EVs in
the transport sector has led to numerous studies on the strategic place-
ment of EV charging stations (EVCS) in the distribution network. This is
because if the EVCSs in a large scale are not carefully integrated into the
distribution network, they can endanger the power systems because they
have the potential of unbalancing the distribution feeders and increase
current levels and bidirectional flow of current [1]. Furthermore, EVs
that are charged haphazardly may leave the distribution network to incur
power losses and voltage changes that exceed permitted limitations. It is
therefore important to optimally allocated EVCS into the distribution
network to limit these inconveniences. Most studies have been focused
on the use of Heuristic techniques for the optimal allocation of EVCS into
the distribution network to limit the impact of the EVCS. The main
benefit of using heuristic techniques is that they provide immediate an-
swers that are simple to comprehend and put into practice. Also. heuristic
algorithms are useful because they provide quick and workable
short-term answers to scheduling and planning issues. In Ref. [14],
EVCSs were placed in a distribution network having numerous photo-
voltaic systems randomly allocated in the network at a high penetration
level of 60%. The optimization problem was formulated to minimize
power losses and voltage deviation while maximizing the voltage
Fig. 1. Networks under investigation. (
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stability index. The hybrid bacterial foraging optimization and particle
swarm optimization (PSO) (technique was used to solve the optimization
problem. In Ref. [15], an algorithm for the optimal siting and sizing of
EVCSs based on demand response incentive-based programs was pre-
sented using PSO. The objectives of the optimization were to minimize
investment costs, grid losses, and the cost of demand response. Based on
an intelligent algorithm and bi-level programming, the authors in Ref.
[16] optimally allocated DGs and EVCSs in the distribution network. The
objective function was formulated to maximize the annual profit of the
utility company and an improved harmonic particle swarm optimization
algorithm was utilized to solve the objective function. In Ref. [17], the
optimal location for EVCSs combining PV and battery energy storage was
determined using a multi-objective whale optimization algorithm. EVCSs
were optimally allocated in a commercial distribution network with high
penetration of PV panels to increase the PV penetration capability of the
distribution network and decrease the effect of the EVCSs on the network
[18]. PSO was used to solve the optimization problem, thus minimizing
the network voltage deviation and energy loss. Furthermore, EV drivers,
the power grid, operators, vehicles, and traffic flow were considered to
allocate EV fast-charging stations [19]. Notably, instead of statistical
data, which is more scientific and acceptable, the authors used dynamic
real-time data for optimal planning of the EV fast-charging stations. In
Ref. [20], the placement of EVCS in a commercial distribution network
was investigated based on the voltage sensitivity factor of the network.
The authors manually placed the EVCS sequentially on every bus of the
network and analyzed the voltage sensitivity of the system. EVCSs were
placed in the distribution network with capacitors for voltage stability
maintenance and power loss improvement using the genetic algorithm
(GA) [21]. Based on the simulation results, the simultaneous placement
of EVCSs and capacitors decreased the influence of EVCSs on the net-
work's power loss and voltage profile. EVCSs were allocated using a
Pareto dominance-based hybrid CSO and TLBO, minimizing the cost of
the EVCSs, while ensuring sufficient grid stability and the accessibility of
EVCSs to EV users [22].

This study proposes the use of the hybrid genetic algorithm and particle
swarm optimization (GA-PSO) for the optimal allocation of plug-in electric
vehicle charging stations (PEVCS) in the distribution network with DG in
high volumes and suitably placed at selected buses of the network. The
optimization problem is formulated as a multi-objective minimization
problem that minimizes the active and reactive power losses, as well as the
voltage deviation index. The contributions of this study are as follows.

- GA-PSO is used for the allocation of PEVCSs in the distribution
network with DGs in high concentration, in which the PEVCSs are
modeled to be a combination of loads comprising resistive and
reactive parts. EV chargers are modeled at a 0.95 lagging power factor
to address the nonlinearity of the converters used in the design of the
chargers. In previous studies, EV charging points or stations have
been modeled as purely resistive loads, not considering the reactive
power demand of the converters used in the design of the chargers.
a) IEEE 33 node. (b) IEEE 69 node.
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The rest of this manuscript is structured as follows; The methodology
is presented in Section 2. The results and discussions are presented in
Section 3. Finally, Section 4 concludes the paper.

2. Methodology

2.1. Networks under investigation

EVs are powered by direct current from chargers connected to the
grid. They could as well be discharged into the grid. However, this study
focuses on the former. Thus, PEVCSs are seen as direct current loads to
the grid's radial distribution network system (RDNS). This study con-
siders two standard IEEE networks, the IEEE 33 node and 69 node test
distribution networks whose single line diagrams are shown in Fig. 1. The
IEEE 33 node test network is a three-phase balanced network at a voltage
of 12.66 kV. This network was considered because it is balanced (not too
large nor small). The IEEE 69 node test distribution network is also
balanced at a voltage of 12.66 kV similar to the IEEE 33 node network.
However, it is larger and incorporates more connections.

The networks supply both commercial and residential loads, with the
residential loads accounting for 85% of the total load of each network.
Table 1 presents the total power of each network, whereas Table 2
presents the total power demand of the residential loads of each network.
The number of homes in the network must be known to properly estimate
the total EV population in each network.
Table 1
IEEE 33 bus and 69 bus total power demand.

Bus type Active power
P (kW)

Reactive power
Q (kVar)

Apparent power
S (kVA)

IEEE 33 bus 3715 2,300 4,369.35
IEEE 69 bus 3,801.85 2,694.6 4,659.93

Table 2
Residential power demand.

Bus type Active power
P (kW)

Reactive power
Q (kVar)

Apparent power
S (kVA)

IEEE 33 bus 3,157.75 1,955 3,713.9
IEEE 69 bus 3,231.572,5 2,290.41 3,960.9
2.2. Estimation of the number of PEVs and the required number of
charging points

Using Eq. (1) and assuming the power demand of each family is 12.7
kVA, the total number of households in the neighborhood can be esti-
mated to be 293 households for the 33 bus RDNS and 312 households for
the 69 bus RDNS.

nH ¼ STH

SH
(1)

where nH is the number of houses in the neighborhood, STH is the total
apparent power in the study area, and SH is the total apparent power per
residence in the study area.

The number of PEV (nHEV) in the community may be determined
using Eq. (2), assuming the percentage of PEV integration, %PEV is 63%
for IEE 33 bus and 59% for IEE 69 bus networks.
Table 3
Distribution of the charging points of Level 1 and Level 2 type chargers.

Charger CP rating (kW) Number of CPs per PEVCS PEVC

Level 1 11 28 308/1
Level 2 22 25 550/1
Total number of EVCSs and power consumption

3

%EV ¼ nHEV

nH
� 100 (2)
Using Eq. (2), the total number of EVs in the study area is 184.
Seven PEVCSs are strategically located around the radial distribution

network to provide an energy bank for the 184 PEVs. Level 1 and Level 2
chargers are used, each with its unique amount of charging points (CPs),
outlined in Table 3. PEVCSs with constant capacities are employed at a
power factor of 0.95. This has been considered to address the reactive
power consumption by the converters at the charging points.

2.3. Allocation of PEVCSs using the hybrid GA-PSO

2.3.1. Problem formulation
The optimization problem is formulated as a minimization problem

that minimizes active and reactive power losses, as well as the voltage
deviation index. Thus, the multi-objective function is mathematically
expressed as follows:

f ¼ Minff1; f2g (3)

where, f1 and f2 are the total power loss and average voltage deviation
index, respectively.

The mathematical equation that represents the multi-objective func-
tion is shown below.

a. Objective function
i. Active and reactive power loss minimization (f 1)

Eq. (4) is used to obtain the precise branch loss in each network.

PLossðiÞ ¼ Ii2*Ri

QLossðiÞ ¼ Ii2*Xi

�
(4)

where PLossðiÞ and QLossðiÞ are the total active and reactive powers losses,
respectively; Ri and Xi represent the resistance and reactance of the ith

branch, respectively; Ii represents the current flowing through the ith

branch; i represents the branch number.
Therefore, the function for the minimization of the total power loss is

expressed as:

f1 ¼ Min
Xbr
i¼1

�
PlossðiÞ þ QlossðiÞ

�
(5)

where br represents the total number of branches.

ii. Average voltage deviation index (f 2)

Eq. (6) describes the required average voltage deviation index equa-
tion (AVDI). AVDI defines the deviation of all bus voltage magnitudes
about the reference voltage magnitude of 1.00 pu, expressed as follows:

f2 ¼ 1
N

XN
k¼1

½1� Vk�2 (6)

where Vk represents the voltage at bus k, k represents the bus number,
and N represents the overall number of buses.

Consequently, transforming Eqs. (5) and (6) into a minimization
function results in the mathematical formulation of a multi-object func-
tion shown in Eq. (7).
S rating (kW⋅kVar-1) Number of PEVCS Total rating (kW⋅kVar-1)

01.23 3 924/303.70
80.78 4 2,200/723.10

7 3,124/1,026.80
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f ¼ Min ½w1f1 þ w2f2� (7)
wherew1 andw2 are the weights allotted to the respective individual goal
functions.

b. Constraints
i. Equality constraints
- The constraints for power requirement:
Pgrid þ
XNpv

i¼1
Ppvi �

XNl

i¼1
Ploadi �

XNPEVCS

i¼1
PPEVCSi �

Xbr

i¼1
Ploss i ¼ 0 (8)

Qgrid þ
XNpv

i¼1
Qpvi �

XNl

i¼1
Qloadi �

XNPEVCS

i¼1
QPEVCSi �

Xbr

i¼1
Qloss i ¼ 0 (9)

where, Pgrid andQgrid are the grid's active and reactive power respectively.
Ppvi and Qpvi are the active and reactive power from the ith PV system,
respectively. Ploadi andQloadi are the active and reactive power demands at
the ith bus, respectively. PEVCSi and QPEVCSi are the active and reactive
power demand by a single PEVCS, respectively. Plossi and Qlossi are the
active and reactive power loss in the ith branch, respectively. Npv is the
number of PV systems in the distribution network, Nl is the number of
load nodes, NPEVCS is the PEVCSs, and br is the number of branches in the
network.

Vi
min � Vi � Vi

max

0:95 � Vi � 1:05

where Vmin and Vmax are the minimum and maximum voltages at bus i,
respectively.

θi
min � θi � θi

max

Ppvi
min � Ppvi � Ppvi

max

Qpvi
min � Qpvi � Qpvi

max

Ir � Irmax

Si � Simax

ii. Inequality constraints
- Node voltage constraints: The voltage of each bus must fall within
the predefined limits defined by;

- Limits on voltage angles: The voltage angle of each bus must fall
within the predefined limits defined as:

- PV power constraints: The power factor of the PV system is 0.95 and
the maximum permissible bus capacity constitutes the bulk of the PV
system's power limit. The following equation describes the power
limit of the overall PV system;

- Current constraints: The distribution feeder current limit should be
maintained within a rated limit;

- Line loading constraints: The maximum volt-amperes rating of the
distribution line must not be exceeded.

The aforementioned multi-objective optimization problem is solved
using the hybrid GA-PSO technique.

2.3.2. Particle swarm optimization (PSO)
A computational intelligence method for solving issues whose an-

swers can be represented as a point in an n-dimensional solution space
is called particle swarm optimization (PSO). In a decision process, each
individual particle uses two crucial pieces of information. The first is
their experience, in which they observe their own "fitness," and the
4

second is other agents' experiences, in which they are aware of what
their neighbors have done and "emulate" successful neighbors by
approaching them. The particle swarm method is a straightforward
technique and useful in a variety of problem fields. Inspired by Hepp-
ner's research on bird flocking behavior, Kennedy et al. created PSO in
1995 [23].

A population of random solutions is used to populate the PSO. Each
possible solution, known as a particle (agent), is assigned a random
velocity and is flown across the problem space. Each agent has a
memory, which allows it to remember its prior best position (called
Pbest) and the related fitness. There are a number of Pbest in the swarm for
each agent and the agent with the greatest fitness is known as the
swarm's global best (Gbest). In an n-dimensional space, each particle is
considered as a point. Therefore, the ith particle is represented as Xi ¼
ðxi1; xi2; ::: xinÞ and the best position of the ith particle that offers the
greatest fitness value is represented as Pi ¼ ðpi1; pi2; ::: pimÞ. The pop-

ulation's best particle is represented as Pg ¼
�
pg1; pg2; ::: pgn

�
among all

the particles. The velocity of the particle determined by the change in
location for particle i is denoted as Vi ¼ ðvi1;v; ::: vinÞ. The particles are
managed using the equations below (the superscripts indicate
iterations).

vikþ1 ¼ w�vik þ c1 � r1 �
�
Pi � xik

�þ c2 � r2 �
�
Pg � xik

�
(10)

xikþ1 ¼ xik þ vikþ1 (11)

where i ¼ 1; 2; :::; N, N denotes the population size; w denotes inertia
weight; c1 and c2 are two positive constants denoted as the cognitive and
social parameters, respectively; r1 and r are random values uniformly
distributed within the range [0, 1]. At each iteration, Eq. (10) is used to
calculate new velocity of the ith particle, vikþ1, whereas Eq. (11) calculates
the new location of the ith particle, xikþ1 by adding its new velocity, vikþ1

to its existing position, xik.

2.3.3. Genetic algorithm
The search heuristic called a genetic algorithm (GA) was inspired

by Darwin's notion of natural evolution [24]. The fittest individuals
are chosen for reproduction to produce the children of the next gen-
eration, which is how natural selection works. The initial stage of
natural selection is the selection of the population's fittest members.
They have children who inherit their parents' characteristics and
become a part of the next generation. Children born to parents who
are physically fitter will perform better and have a better chance of
surviving. The constant rounds of this process will finally lead to the
emergence of the fittest generation. A search problem can be resolved
using this concept.

We consider a number of potential solutions to a problem and choose
the most appropriate. A GA considers five stages.

- Initial population: The process begins with a group of individuals
known as the population. Genes are a collection of parameters (var-
iables) that characterize an individual. A group of genes make up a
chromosome (solution);

- Fitness function: The fitness function gauges an individual's fitness
level; that is, the capacity of an individual to compete with others.
Each individual receives a fitness rating and based on that, an in-
dividual's likelihood of being chosen for reproduction is determined;

- Selection: Here, the fittest individuals are selected and they can pass
their genes to the following generation. Selection is based on the
fittest scores and individuals with the highest scores are likely to be
selected;

- Crossover: The crucial stage of a GA is crossover. A crossover point is
picked at random from the DNA for each set of parents to mate;
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- Mutation: This aims to maintain diversity in the population and to
avoid a situation of premature convertures;

- Termination: The algorithm is terminated when the population con-
verges, that is, the population stops reproducing offspring of signifi-
cant difference from the later generation.

2.3.4. Hybrid GA-PSO algorithm
According to Ref. [25], most evolutionary approaches use the

following procedure.

Step 1. Generate an initial population at random;

Step 2. Determine the fitness value for each particle based on the best
distance;

Step 3. Fitness values define population reproduction;

Step 4. Stop if optimum solutions are discovered. Otherwise, create a
new generation of population and go to Step 2.

Based on the aforementioned process, PSO and GA have some simi-
larities. Both PSO and GA begin with a randomly generated population.
These techniques employ fitness values to assess the population. Both
modify the population and use random procedures to determine the best
Fig. 2. Hybrid GA-
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solution. However, none of these approaches guarantee success. Particles
in PSO update themselves based on their intrinsic velocity. PSO's
information-sharing method significantly differs from that of GA, which
uses chromosomes for information transfer. In most circumstances, even
in the local version, all the particles in PSO rapidly converge to the
optimal solution when compared with GA. One of the limitations of GA is
that its sampling capacity and efficiency are affected by its limited pop-
ulation size [2]. On the other hand, PSO has the disadvantage of easily
falling into the local optimum in high-dimensional space, hence never
reaching the global optimum [3]. The proposed hybrid GA-PSO design
approach aims to combine the strengths of GA and PSO by merging the
two algorithms, with the optimal solution derived from PSO being
further improved by GA, employing selection, crossover, and mutation
operators. Incorporating PSO in the procedure of GA has the advantage
that the number of evaluated agents at each iteration step is high
compared to GA or PSO alone. Also, PSO compensates the disadvantage
of GA because it has a memory which means that the knowledge of good
solutions is stored compared to GA in which the previous solutions are
discarded once the population changes [4]. By combining these two al-
gorithms, a hybrid GA-PSO gives a low computational cost and fast
convergence [5]. The flowchart of the hybrid GA-PSO is shown in Fig. 2
below.
PSO flowchart.



Table 5
Optimal locations of PEVCSs for each random PV (IEEE 33 bus network).

Charger
type

PEVCS rating
(kW⋅kVar-1)

Case
1

Case
2

Case
3

Case
4

Case
5

Case
6

Level 1 308/101.23 19 19 19 19 13 19
308/101.23 21 20 21 19 19 21
308/101.23 23 20 23 20 26 23

Level 2 550/180.78 2 19 19 19 19 4
550/180.78 19 20 19 19 20 19
550/180.78 20 23 19 21 23 19
550/180.78 23 23 23 24 23 19

Table 6
Optimal locations of PEVCSs for each random PV (IEEE 69 bus network).

Charger
type

PEVCS rating
(kW⋅kVar-1)

Case
1

Case
2

Case
3

Case
4

Case
5

Case
6

Level 1 308/101.23 10 29 29 32 19 30
308/101.23 48 37 38 44 33 35
308/101.23 49 43 46 46 43 38

Level 2 550/180.78 36 39 31 30 30 28
550/180.78 44 41 33 32 30 29
550/180.78 45 43 42 37 31 31
550/180.78 48 47 44 49 34 33
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The pseudo-code of the suggested hybrid GA-PSO algorithm used in
this study is shown in Algorithm 1.

Algorithm 1: Hybrid GA-PSO algorithm
Input:

Population Size, n
Max number of iterations, iMAX

Output:
Global best solution, Xbest

start
Initialize the PSO and GA parameters.
Randomly initialize the positions of n particles Xi ði¼ 1; 2;…::nÞ;
Randomly initialize the velocity of n particles Vi ði¼ 1; 2;…::nÞ;
Set iteration counter k ¼ 0;
Evaluate the fitness of each particle in the search space;
Set personal best position Pbest and global best position Gbest ;
Set best solution, Xbest ;
Do

While number of particles � n
Set and Calculate particle velocity;
Update particle position;
Evaluate the fitness function;
Update personal best position, Pbest ;
Update global best position, Gbest ;
Go to the next particle;

End-while
Update best solution, Xbest according to global best position, Gbest ;
Rank individuals according to the fitness value.
Apply crossover operation on the selected pair using crossover probability;
Apply mutation on offspring using mutation probability;
Evaluate the fitness of the children;
Update the best solution, Xbest ;
Replace some or all of the population with children;
Repair the infeasible of the population to be feasible;
Increment the current iteration, k by 1;

While k < iMAX or a satisfactory solution has been found
return the best solution, Xbest ;

end

The parameters used in the optimization problem are shown in
Table 4.
Table 4
Hybrid GA-PSO parameter values used.

Parameter Symbol Value

Population size Np 30
Number of iterations it 20
Inertia coefficient w 1
Damping ratio of the inertia coefficient wdamp 0,99
Personal acceleration coefficient C1 2
Social acceleration coefficient C2 2
Crossover probability p C 1
Mutation probability mu 0.02
2.4. Simulation

The DGs used in this study are PV systems. To integrate the reactive
power injection capabilities of the voltage source inverters utilized in
grid-connected PV systems, the PV systems are modeled as negative loads
at a power factor of 0.95. The PV systems have a penetration rate of 60%
in each study network. The penetration rate is calculated as the ratio of
the PV-rated power to the active power demand of the loads. Because this
study focuses on the distribution network with PV systems already
installed with no predetermined buses designed to harbor the PV sys-
tems, six cases of randomly allocated PV systems are considered for
optimal PEVCSs placement. For each study network, PEVCSs are opti-
mally placed in each random PV case using the hybrid GA-PSO technique
and the results are recorded. The simulations are performed using
6

MATLAB R2019a platform installed in a 16 GB RAM, 2.6 GHz Intel(R)
core (TM) i7-6600U CPU laptop.

3. Results and discussions

3.1. Optimal location for the PEVCSs

The optimal locations for the PEVCSs in each simulation case are
shown in Tables 5 and 6.
3.2. Network voltage profiles

The network voltage profiles of the IEEE 33 bus and 69 bus net-
works in all 6 simulation cases of random PV distribution are shown in
Figs. 3 and 4, respectively and it can be seen that the random insertion
of PV systems into the distribution network at a penetration level of
60% leads to a general improvement in the voltage profile of the two
radial distribution networks. This is mainly due to the PVs systems
being integrated at load centers where their produced power is
consumed. PEVCSs are allocated by the hybrid GA-PSO such that the
enhanced voltage profiles are not significantly compromised by the
PEVCSs. The GA-PSO algorithm effectively discovers the ideal place-
ments for the PEVCSs that will not significantly alter the network node
voltages because of the increased loads from the PEVCSs in all six
situations of random size and placement of the PV systems. These
simulation results are more accurate than those done [6] where the
minimum voltage can be as low as 0.927 p.u, which is below the 0.95
p.u required minimum voltage during the optimization exercise. This
is a situation that is not experienced by the hybrid GA-PSO proposed in
this study.

3.3. Average voltage deviation index (AVDI)

A node's voltage deviation index (VDI) in a network is the difference
between the node's actual voltage and the reference voltage (1.00 p.u).
The AVDI is the average VDI of all network nodes. The lower the value,
the more stable the network voltage. The AVDI considerably decreased



Fig. 3. Voltage profiles of the IEEE 33 bus network in all simulation cases.
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with 60% PV penetration, from the base case of 0.004,054,794 and
0.001,439,36 in bus 33 and 69, respectively, to a more improved case, as
shown in Figs. 5 and 6. As shown in Fig. 6, the insertion of the PEVCSs
had a little effect on the network's AVDI in all simulated instances, with
marginal variation compared with the results in Ref. [6].
7

3.4. Active and reactive power losses

As shown in Figs. 7 and 8, the adoption of PV systems significantly
decreases the total active power loss from 210.99 kW in the base scenario
for bus 33 and 224.99 kW in the base scenario for bus 69. The total



Fig. 4. Voltage profiles of the IEEE 69 bus network in all simulation cases.
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Fig. 5. Average voltage deviation index (IEEE 33 bus network).

Fig. 6. Average voltage deviation index (IEEE 69 bus network).

Fig. 7. Total power losses (IEEE 33 bus network). (a) Active power. (b) Reactive power.
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Fig. 8. Total power losses (IEEE 69 bus network). (a) Active power. (b) Reactive power.
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reactive power decreases from 143.13 kVar in the base scenario for bus
33 and 102.16 kVar in the base scenario for bus 69. The fall in active and
reactive power losses is mainly because as the PV systems are located at
load centers, they supply a good portion of the power required by the
load, thereby significantly reducing the amount of power flowing in the
network feeders. This in turn lead to power losses being reduced as power
loss is a function of the square of current flowing through the conductors.
In all scenarios, the strategic placement of PEVCSs results in a modest
increase in total active and reactive power losses. Obviously, the PEVCS-
induced active and reactive power losses are still smaller than in the basic
scenario.

3.5. Validation of the results

We compared the proposed hybrid GA-PSO method to place PEVCSs
in the distribution network with arbitrarily sized and sited PV systems
with that achieved when utilizing GA and PSO independently for the
same task. These findings are listed in Tables 7 and 8.
Table 7
Comparison of the results obtained using the proposed GA-PSO (IEEE 33 Bus).

Bus type IEEE 33 bus

Cases Case 1 Case 2 Cas

GA Location of
PEVCS

Level 1 chargers 19, 21, 22 19, 21, 21 17,
Level 2 chargers 19, 19, 20, 23 4, 9, 19, 21 19,

Min voltage 0.971,83 0.957,75 0.9
kWloss 81.944,88 91.495,52 112
kVarloss 58.433,20 60.013,57 85.
AVDI 0.000,32 0.000,59 0.0

PSO Location of
PEVCS

Level 1 chargers 9, 15, 20 3, 16, 19 19,
Level 2 chargers 19, 19, 20, 23 19, 20, 23, 23 2, 1

Min voltage 0.962,46 0.968,37 0.9
kWloss 101.386,59 89.247,05 82.
kVarloss 69.757,75 57.922,95 58.
AVDI 0.000,60 0.000,52 0.0

Hybrid
GA-PSO

Location of
PEVCS

Level 1 chargers 19, 21, 23 19, 20, 20 19,
Level 2 chargers 2, 19, 20, 23 19, 23, 23, 23 19,

Min voltage 0.959,66 0.965,70 0.9
kWloss 80.298,44 109.425,81 92.
kVarloss 54.444,97 71.386,99 65.
AVDI 0.000,75 0.000,30 0.0
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In all six scenarios of PV penetration, the proposed hybrid GA-PSO
approach outperforms the component techniques employed sepa-
rately. First, when PSO is used, the minimum node voltage obtained
after placing the PEVCSs using the hybrid technique is 0.959,7 p.u for
the IEEE 33 bus and 0.954,1 p.u for the IEEE 69 bus for all simulation
cases, which is higher than the minimum node voltage obtained when
using the individual techniques separately. Therefore, placing the
PEVCSs using both hybridization strategies resulted in a superior
network voltage profile. Consequently, a superior AVDI and voltage
stability of the networks can be obtained when the hybrid approach is
utilized than when GA and PSO are used independently. Hence,
employing the hybrid approach to deploy the PEVCSs results in a
network with greater voltage stability.

Furthermore, the power losses caused by the PEVCSs inserted in the
network using the hybrid approach are often smaller than those caused
by the various procedures used independently. The efficiency of the
hybrid GA-PSOwas validated by comparing its findings to those obtained
when GA and PSO were used independently for the deployment of the
e 3 Case 4 Case 5 Case 6 Min values

19, 21 6, 10, 19 4, 19, 19 20, 21, 23
20, 21, 23 2, 3, 19, 20 19, 20, 23, 24 4, 19, 19, 20
65,06 0.961,42 0.969,71 0.961,14 0.957,75
.124,62 76.013,59 87.921,69 94.573,93 76.013,59
449,67 49.861,21 58.394,14 62.723,33 49.861,21
00,45 0.000,63 0.000,47 0.000,45 0.000,32
20, 20 19, 19, 23 4, 20, 22 21, 21, 23
9, 22, 23 19, 19, 23, 23 5, 19, 19 26 19, 19, 20, 23
73,84 0.947,55 0.961,34 0.972,64 0.947,55
685,10 95.836,47 94.498,52 87.929,25 82.685,10
811,66 63.464,23 61.802,18 62.037,18 57.922,95
00,31 0.000,70 0.000,55 0.000,41 0.000,31
21, 23 19, 19, 20 13, 19, 26 19, 21, 23
19, 19, 23 19, 19, 21, 24 19, 20, 23, 23 4, 19, 19, 19
64,74 0.973,34 0.961,37 0.973,56 0.959,66
773,72 89.908,21 92.773,72 75.677,34 75.677,40
039,90 65.673,20 68.542,68 50.306,55 50.306,55
00,318 0.000,28 0.000,51 0.000,22 0.000,22



Table 8
Comparison of the results obtained using the proposed GA-PSO (IEEE 69 Bus).

Bus type IEEE 69 bus

Cases Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Min values

GA Location of PEVCS Level 1 chargers 34, 36, 39 22, 33, 42 32, 42, 44 6, 36, 40 22, 32, 51 7, 33, 45
Level 2 chargers 30, 32, 32, 37 30, 32, 39, 44 23, 36, 39, 47 32, 38, 43, 44 32, 38, 40, 48 32, 34, 46, 63

Min voltage 0.952,94 0.956,92 0.957,84 0.954,24 0.954,53 0.966,18 0.952,94
kWloss 75.909,63 66.774,64 67.533,74 78.802,52 69.399,95 71.475,23 66.774,64
kVarloss 37.126,57 33.817,16 34.115,45 41.168,61 36.812,19 42.962,65 33.817,16
AVDI 0.000,26 0.000,27 0.000,24 0.000,30 0.000,30 0.000,18 0.000,18

PSO Location of PEVCS Level 1 chargers 34, 36, 39 22, 33, 42 32, 42, 44 6, 36, 40 22, 32, 51 7, 33, 45
Level 2 chargers 30, 32, 32, 37 30, 32, 39, 44 23, 36, 39, 47 32, 38, 43, 44 32, 38, 40, 48 32, 34, 46, 63

Min voltage 0.956,24 0.957,43 0.974,68 0.953,32 0.963,20 0.955,33 0.953,32
kWloss 86.739,67 70.990,49 57.532,26 79.228,82 61.867,36 74.169,57 57.532,26
kVarloss 40.052,97 35.563,25 40.318,12 44.464,88 36.597,49 40.239,78 35.563,25
AVDI 0.000,55 0.000,21 0.000,15 0.000,26 0.000,29 0.000,25 0.000,15

Hybrid
GA-PSO

Location of PEVCS Level 1 chargers 10, 48, 49 29, 37, 43 29, 38, 46 32, 44, 46 19, 33, 43 30, 35, 38
Level 2 chargers 36, 44, 45, 48 39, 41, 43, 47 31, 33, 42, 44 30, 32, 37, 49 30, 30, 31, 34 28, 29, 31, 33

Min voltage 0.973,25 0.982,58 0.959,54 0.960,82 0.954,08 0.965,06 0.954,08
kWloss 54.811,03 51.532,31 61.511,61 61.273,29 61.511,61 68.712,88 51.532,31
kVarloss 39.442,54 46.913,61 32.360,71 34.966,24 37.401,21 35.651,60 32.360,71
AVDI 0.000,25 0.000,08 0.000,20 0.000,18 0.000,252 0.000,16 0.000,08
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PEVCSs in the distribution network with arbitrarily sized and sited PV
systems.

Based on the simulation results, the proposed hybrid GA-PSO is a
viable optimization approach for the deployment of PEVCSs in current
distribution networks with randomly dispersed PV systems. The useful-
ness of hybrid GA-PSO for PEVCS installation will be bolstered as dis-
tribution service operators seek to deliver long-term, cost-effective, and
dependable services to customers in the short and long term, while
ensuring acceptable power quality and voltage within bounds. This is
because the algorithm's restrictions are quite similar to the requirement
of the planning horizon.

4. Conclusion

The integration of PEVCSs into the distribution network to service the
increasing number of PEVs in the present transportation sector should be
strategic to reduce the negative impact of PEVCSs on the electrical dis-
tribution network. This study proposed the use of a hybrid GA-PSO,
which combines the strength of both algorithms to increase the speed
of convergence and prevent PSO from being trapped in local minima for
the allocation of PEVCSs.

The optimization problem was defined as a multi-objective optimi-
zation problem that minimizes the average voltage deviation index as
well as active and reactive power losses. The proposedmethod was tested
on two well-known standard IEEE distribution networks, the IEEE 33 and
IEEE 69 bus distribution networks. The simulation was performed using
MATLAB 2019a and the effectiveness of the hybrid GA-PSO in deter-
mining the optimal locations for the PEVCS in both networks was
demonstrated. Slight voltage drops were observed owing to the PEVCS.
Similarly, the increase in power losses owing to the PEVCS was minimal.
For effective planning of PEVCS, the transportation sector and the elec-
tricity utility company should collaborate to effectively PEVCS to service
EV users [26].

The future scope of this study will include the daytime fluctuation of
PV production, EV user driving patterns, distribution network un-
certainties, and EV charging time for the optimal placement of EVCSs in
the distribution network. This will consider the EV battery state of
charge, the EV charging time for the optimal placement of the EVCS, EV
user driving patterns, and distribution network uncertainties. In addi-
tion, the daily temperature variation and solar insolation will be
considered in the modeling of PV systems. These will be used to assess
the robustness and effectiveness of the proposed stochastic GA-PSO
hybrid method [27].
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