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A B S T R A C T   

This paper proposes a new application of Pelican Optimization Algorithm (POA) for optimal Energy Management 
(EM) in Microgrid (MG) considering Demand Response program (DRP). To maximize the MG operator (MGO) 
benefit and to reduce the overall operating cost, including the cost of conventional generator fuel and power 
transaction cost, multi-objective optimization is formulated. To achieve the optimal operation of the MG, a 
Hybrid DRP is proposed, based on Incentive-based Demand response (IDR) to reduce the peak load and to ensure 
MG reliability. Reliability is achieved by applying the Hybrid technique to encourage customers to reduce their 
consumption during peak hours. Applying the conventional IDR (CIDR) for optimal operation leads to customers 
curtailments to be in off-peak hours. Also instead of using predetermined or specifying fixed hours as peak hours, 
the proposed hybrid DR technique is a dynamic technique based on the load profile and the average load value. 
Furthermore, Peak reduction percentage (PRP) was employed to show MG’s reliability enhancement. Two 
distinct MG test systems are examined; the effectiveness of the proposed hybrid dynamic demand response 
(HDDR) with the proposed POA is demonstrated by comparing its simulation results to those of well-known 
metaheuristics and newly developed algorithms. According to HDDR with POA technique results, a total 
reduction in peak hours’ load is about 14.6% in the first test system and 7.6% in the second test system. The 
results indicate that the POA has superiority in solving the EM problem.   

1. Introduction 

1.1. Motivation 

The drastic increase of global energy consumption is the main reason 
of the fast depletion of fossil fuels and increasing greenhouse gas 
emissions. Also, the complete reliance on traditional energy sources to 
meet energy demand is seen an inefficient solution. Therefore, Renew-
able Energy Sources (RES) (such as solar, wind, biomass, geothermal, 
and hydro, etc.) being non-depleting abundant clean sources emerged as 
a potential alternative for fossil fuels powered sources and it has shown a 
mushrooming growth in the last couple of decades. However, the 
intermittent nature of renewable energy resources poses great chal-
lenges on their large scale integration. This paved the road to Microgrid 
as an enabling means for integration more RES through. 

Typical MG is formed by the integration of small-scale Distribution 
Energy Recourses (DERs); typically RESs non-renewable sources, and 
Energy Storage Systems (ESS) with responsive and non-responsive loads 
[1–4]. In MGs with RESs, the demand side is required to have arrange-
ments to cope with the variability and intermittency at the supply side. 
Hence, Demand Side Management (DSM) becomes crucial for enabling 
RES integration. DSM can be defined as a comprehensive method that 
manages the customers demand through various strategies [5]. Also, 
peak load hours last only for few hours in the daily, the peak to average 
ratio of demand in electric power systems is high [6]; in order to supply 
the peak loads, a high increase in the investment should be made, which 
results in an increase in the electricity cost. To solve this challenge also 
DSM should be considered [7]. DSM strategies include Demand 
Response (DR) and Energy efficiency. Energy efficiency is the process of 
reducing energy consumption while performing the same duties or tasks 
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with the same level of quality [8]; whereas DR encourages the customer 
to modify their consumption in response to an incentive payment. 
Further subcategories of DR include Incentive-based DR (IDR) and 
Price-based DR (PDR). In PDR, customer prices are fluctuated according 
to operating hours. For example, high prices at peak, medium for me-
dium consumption, and low prices for the off-peak period, while in the 
IDR, the customer gets an incentive based on the quantity of electricity 
curtailed [9]. IDR is further classified into four groups: load curtailment, 
direct load control, demand bidding, and emergency demand reduction 
[9]. 

1.2. Related Work 

Recently, MGs has gained high popularity; In MG powered by RESs 
with their intermittent nature, the integration of dispatchable energy 
sources powered by fossil fuel helps in enhancing the reliability [10]. To 
get the maximum benefit from MG’s resources, MG resources are 
managed in a way that maximize the utilization of RESs and at the same 
time ensure an acceptable level emission levels. MG energy management 
has recently gained great attention in research [11–17]. The effective-
ness of the DR in solving economic and environmental problems is 
studied in [18,19]. In [20], techno-economic performance comparison 
and optimal sizing for the MG sources considering the DR using Genetic 
algorithm(GA)optimization were studied; where different sizing strate-
gies for residential customers based on time-of-use DR Strategies. In [21] 
optimal scheduling for the MG with utilization of DRP to increasing the 
consumers’ comfort index has been proposed. For lowering the overall 
generation cost in MG, [22] proposed a dynamic control system with 
intelligent controllers depend on the deep reinforcement learning (DRL) 
technique for the optimal operation for each MG independently with 
bottom-up Energy internet(EI) architecture and data-driven strategy. 
Significant effort has been made to regulate the energy consumption of 
an MG by employing the DR to reduce the operating cost [23–26] or to 
maximize the MGO cost [26,27]. In [23], a genetic algorithm is 
embedded with the Energy Management System (EMS) to reduce the 
operating cost. In [24], a Mixed integer linear programming (MILP) is 
used for Multi-Microgrid. The optimal and safe operation of MG using 
multi-stage hierarchical EM is proposed in [25]. Authors in [26] pro-
posed an IDR program to solve a multi-objective problem to reduce the 
cost and environmental effect using an interactive modeling method; the 
IDR model is solved by The Advanced Interactive Multidimensional 
Modelling System (AIMMS). In [27], Particle swarm optimization (PSO) 
is used to maximize the profit of the customers using PDR considering 
fixed and dynamic pricing strategies. Multi-objective problem to maxi-
mize the MGO benefit and reduce the operation cost solved using 
non-linear programming (NLP) using CPLEX in [28]A genetic algorithm 

is used in [29] for economic dispatch for the MG resources with 
considering the DR. 

As mentioned above, the DR strategies have their advantage in 
lowering operational costs, minimizing pollutant emissions, and 
enhancing MGO benefits. The efficiency of the DRP has been proposed in 
the literature using a variety of approaches. Although environmental 
and economic concerns are important gradients of MG’s optimal oper-
ation, peak load constraints must also be addressed. When evaluating 
the optimum energy management problem of an MG, there is an obvious 
requirement to assure system security even at peak time load while as-
suring environmentally friendly and economic operation. Also, during 
peak-demand hours, the generating units with lower emissions amounts 
have already been completely loaded, and those with higher emissions 
must be commissioned. As a result, DRP used to reduce the peak-hours 
load help in reducing the level of emissions [9]. In [30,31], hybrid de-
mand response is proposed to enhance MG reliability, but it used fixed 
incentives or prices during the pre-specified peak period without 
considering the different load profiles for each day. Table 1 illustrates a 
comparative analysis of the relevant literature work. 

The global optimum solution is the most fundamental optimum so-
lution for an optimization problem. The solutions offered by optimiza-
tion algorithms, on the other hand, are not always the same as the global 
optimum. Be a result, the solution achieved by optimization algorithms 
is referred to as quasi-optimal [32]. In addition, there are no meta-
heuristic optimization algorithms capable of solving all optimization 
problems, in accordance with the No-Free-Lunch (NFL) theorem [33]. 
These two reasons motivate the researcher to propose new optimization 
techniques to create better quasi-optimal solutions that are closer to the 
global optimal. Also, these are the main inspiration for us to apply a 
newly developed optimization technique, the newly-developed Pelican 
Optimization Algorithm (POA) [34], to solve the EM problem in MGs . 

1.3. Contribution 

The objective of this paper is to propose an energy management 
strategy using a HDDR strategy, which is proposed to improve the MG’s 
reliability by primarily reducing the peak-load demand. The viability of 
our proposed HDDR technique was determined by comparing the peak 
load percentage (PRP) value to our scheme’s advantages. MG’s EM 
problem is solved by implementing the newly-developed POA [34]. 

Following is a summary of the major contributions of this paper:  

• Implementing a newly proposed technique to reduce the MG’s 
operating cost, increase the MGO benefit and enhance MG’s reli-
ability through peak-load reduction. 

Table 1 
Summary of the relevant literature.  

Reference Formulation DR Peak reduction MGO benefit PV and wind Objective Function Peak reduction technique 

[13] Robust optimization method ✓ ✘ ✘ ✓ single - 
[14] Metaheuristics algorithms ✓ ✘ ✘ ✓ Multi - 
[15] MILP ✓ ✘ ✘ ✓ Multi - 
[16] augmented Epsilon-constraint method ✓ ✘ ✘ ✓ Multi – 
[17] PSO ✘ ✘ ✘ ✓ Multi - 
[19] MILP ✓ ✘ ✘ ✓ Single - 
[20] GA optimization ✓ ✘ ✘ ✓ Multi - 
[21] DRL ✓ ✘ ✘ ✓ Multi - 
[23] GA optimization ✓ ✘ ✘ ✓ single - 
[24] MILP ✓ ✘ ✘ ✓ Single - 
[25] MILP ✓ ✘ ✘ ✓ Single - 
[26] AIMMS ✓ ✘ ✓ ✓ Multi - 
[27] PSO ✓ ✘ ✘ ✓ single - 
[28] NLP ✓ ✘ ✘ ✓ Multi - 
[29] GA optimization ✓ ✘ ✘ PV only Single - 
[30] PSO ✓ ✓ ✓ ✓ Multi Pre-specified 
[31] PSO-Fuzzy ✓ ✓ ✓ ✓ Multi Pre-specified 
Proposed POA ✓ ✓ ✓ ✓ Multi dynamic  
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• Proposing a new technique for peak load reduction, called hybrid 
dynamic demand response (HDDR), which considered conventional 
fixed prices IDR (CIDR) and peak-based variable prices IDR (PIDR) 
based on the load profile and the average load value.  

• Proposing a new application for a recent optimization technique, 
POA, to solve Microgrids’ EM problem considering demand 
response. And Comparing the performance of the proposed HDDR, 
and the results of CIDR. 

• The peak reduction percentage (PRP) factor is employed to demon-
strate the effectiveness of the proposed HDDR technique in 
enhancing the MG reliability. 

1.4. Paper organization 

The remaining parts of this paper are structured as following: Sec-
tion 2 presents the mathematical model for MG with demand response. 
Section 3 presents a formulation of the EM problem. The proposed 
HDDR strategy is dissuaded in section 4 . Section 5 presents the funda-
mentals of the optimization algorithm used to solve the EM. Section 6 
presents the simulation results obtained. The paper is concluded and the 
future work is mentioned in Section 7. 

2. Grid-connected Microgrid overall scheme 

The overall scheme of the proposed Grid-connected MG is shown in 
Figure 1. In this work, MG consists of renewable energy sources such as 
photovoltaic (PV) generator source and wind turbine (WT) generator 
source; conventional diesel Engine (CDE) sources; and consumer with 
demand response (DR) model 

2.1. Modeling Grid-connected Microgrid 

As shown in Figure 1, there is a connection between the main grid 
and the MG, and it is assumed there is a power transaction between 
them. So the power can be either bought or sold to the main grid. 

2.2. Modelling of WT 

Wind power is probabilistic in nature; WT’s generated power de-
pends on the tower height and wind speed. Wind speed at desired hub 
height can be obtained as [35] : 

vhubt = vreft

(
hhub

href

)α

(1) 

Where vreft is the wind speed (hourly) at the reference height href , α is 
the power-law exponent, which usually is in the range between 14 and 17; 
and vhubt is the hourly speed of the wind at the desired hub height hhub. 

The expected output power from WT is calculated as [36]: 

Pw= {

0
v2 − v2

ci

v2
nom − v2

ci
.

Pnom

Pnom

v ≤ vcut− in and v ≥ vcut− out

vcut− in ≤ v ≤ vnom

vnom < v ≤ vcut− out

(2) 

Where Pw and v denoting output power and wind speed; Which is 
based on wind turbine’s rated power (Pnom), vnom the rated 
speed, vcut− out The cut-out wind speed, and vcut− in the cut-in speed. 

2.3. Solar power modelling 

The hourly electric power generated from a PV generator for a given 
area can be given as [37]: 

Pst = ηpvAcIPvt (3) 

Which is based on Ac is the area of PV array, (ηpv) is soalr array ef-
ficiency and it varies with the ambient temperature and incident solar 
irradiation on the PV array IPvt (kW h/m2). 

2.4. Modelling of CDE and load 

CDE is a significant generating source in the MG that the operator 
may adjust flexibly. When the MG cannot meet the load demand from 
RESs, the CDEs serve as a supplementary generation source to meet the 
load. The fuel cost for conventional DEs (Ci(Pit )) is represented by a 
quadratic model as follows [37]: 

Ci(Pit ) = aip2
it + biPit (4) 

Where, aiand biare fuel cost coefficients for any conventional 
generator i. 

In order to solve the MG optimization problem, an accurate model of 
the load is required. Typically, the load is calculated as the total of in-
dividual customer loads. However, in this work, the customers are 
categorized based on their willingness to participate in DRP. 

Figure 1. Grid-Connected MG Scheme with DR model.  
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2.5. Modelling Incentive Demand Response 

If we donate the cost customer incurred as C(θ, x); where θ is the 
customer type which is an indication of his willing to the participation in 
DRP, customer type value varies between 0 and 1 that the customer who 
with the most willing g have this value as 1, and the lower willing 
customer has a value of 0; and x represents the customer power 
curtailment (or reduction) in (KW or MW). The demand response com-
plete model is discussed in the following equations eqs. (5)-((9)) [26]. 

The customer cost function can be expressed as: 

C(θ, x) = k1x2 + k2x
(
1 − θj

)
(5) 

Where k1, and k2 are cost coefficients. 
So the customer’s benefit is mathematically expressed as: 

F1(θ,B, x) = B − C(θ, x) (6) 

Based on Equation (6), the customer will reduce his consumption in 
the case of his benefit function in DR F1 ≥ 0 with B represents total 
incentive that customers will receive for consumption reduction. Also, 
MG benefit can be expressed as: 

F2(θ, λ, x) = λx − B (7) 

Where λ is the cost of power interruption from a particular customer, 
power interruptibility can be calculated from optimal power flow 
analysis [38]. 

Based on Customers’ Contract formulation in [38], if Bj is the 
incentive that customer get, so based on customer cost function (Equa-
tion (5)) so benefit for customer J is computed as: 

Uj = Bj −
(
k1xj

2 + k2xj
(
1 − θj

))
for 1, 2,……J (8) 

Moreover, the whole MGO benefit is calculated as: 

U0 =
∑J

j=1
λjxj − Bj (9)  

3. Formulation of the Energy Management Problem 

As discussed previously, MG in this paper consists of several DG 
types, including CDE, RESs, and loads with a DRP. The main objective of 
the EM in MG is the optimal operation of energy sources in the MG in 
order to distribute the load among the available generating sources in an 
economical manner. For solving Multi-objective optimization problem, 
POA is implemented to select the most optimal power generation from 
the different sources. The following sub-section presents the mathe-
matical formulation of two distinct objective functions with the corre-
sponding constraints. 

3.1. Objective function 

In this paper, the objective function is a multi-objective first objec-
tive as follows: (a) minimizing the operating cost function f1(x), which is 
composed of two components: the CDEs’ generation cost and the cost of 
electricity transactions; and (b) maximizing MG operator benefit f2(x)
by considering the DRP in EM problem.  

a) Operating cost function: 

This objective function mathematical formulation can be described 
as follow: 

minf1(x) = min
∑T

t=1

∑I

i=1
Ci(Pit ) +

∑T

t=1
Cg

(
Pgt

)
(10)  

where Pgt is the amount of transacted power between MG and main grid 
at any time t; power purchasing is based on Locational Marginal Prices 

(LMP’s) (γt) [39] .Therefore, power transactions cost (Cg(Pgt )) can be 
calculated as [26]: 

Cg
(
Pgt

)
=

⎧
⎨

⎩

γt ×
⃒
⃒Pgt

⃒
⃒ From main grid

0 no transaction
− γt ×

⃒
⃒Pgt

⃒
⃒ from MG

⎫
⎬

⎭
(11)    

a) MG operator benefit 

In this paper, the IDR MGO benefit (9) is extended for the whole 
optimization interval T (one day) so it will be more cost-effective. Then 
F2 function is modified so the second objective function is mathemati-
cally expressed as: 

maxf2(x) = max
∑T

t=1

∑J

j=1
λjxj − Bj (12) 

Accordingly, the mathematical model of the objective function for 
MG management based on the weighted sum is expressed as: 

minw

[
∑T

t=1

∑I

i=1
Ci(Pit )+

∑T

t=1
Cg

(
Pgt

)
]

+ (1 − w)

[
∑T

t=1

∑I

i=1
Bj,t − λj,txj,t

]

(13)  

3.2. Constraints 

3.2.1. Power Balance Constraints [26] 

∑I

i=1
Pit + Pgt + Pwt + Pst = Dt −

∑J

j=1
xj,t. (14) 

Where Dt is the initial load demand and xj,t is customer j power 
curtailment at time t. 

3.2.2. Generation constraints [26] 

Pimin ≤ Pit ≤ Pimax (15)  

− DRi ≤ Pit+1 − Pit ≤ URi (16) 

Where URi and DRi are the maximum ramp up and ramp down rates 
for generator i. Pimax Pimin are the maximum and minimum (Pimin ) limits.. 

3.2.3. Power transaction Constraints [26] 

Pgmax ≤ Pgt ≤ Pgmax (17)  

3.2.4. Demand response constraints 
Based on (8), the customer benefit is extended for the complete time 

horizon(one day) to be cost-effective; this constraint is formulated and 
expressed as [26]: 

∑T

t=1
Bj,t −

(
k1xj,t

2 + k2xj.t − k2xj,tθj
)
≥ 0 (18)  

Constraint (19) describes the allowable level of power curtailment for 
customer j as: 

∑T

t=1
xj,t ≤ CMj (19) 

Where CMj is his power curtailment limit. 

∑T

t=1

∑J

j=1
Bj,t ≤ UBL (20) 

Where UBL is the daily MG budget upper limit [26]. 
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4. Proposed Hybrid Dynamic Demand Response Strategy 

4.1. The proposed technique description 

To ensure the MG reliability and enhance the shortcoming of con-
ventional and predetermined IDR programs, which incorporates fixed 

incentive rates, we propose the HDDR technique. This strategy will 
provide system flexibility to maximize the usage of available RES, such 
as wind and solar RESs, which are effective at certain times during the 
day. For this purpose, the PRP is utilized to quantify the particular ad-
vantages of the HDDR strategy’s implementation. The proposed HDDR is 
based on applying either CIDR or PIDR based on the load value at this 
time slot. As shown in Figure 2 the at the time where the demand is more 
than the average value, an incentive demand response program is 
applied; while in the case of peak period (load is higher than the average 
value), a PIDR is applied; where the customer gets a larger payment for 
his curtailment to reduce his consumption at the peak hours period for 
enhancing the reliability of MG. 

And Customer incentive 

yBj = (1+ γ βt)yij min (21) 

With 

βt =
Dt

Dpeak
(22)  

Where yij min is the minimum incentive a customer can receive to ensure 
his benefit, γ is a scaling factor; it is used in this paper as 0.2. From 
Equations (21) and (21), it can be noted that the incentive that cus-
tomers get by HDDR technique during peak hours not only depends on 
the level of curtailment but also on total hourly demand compared to the 
peak load. 

4.2. Peak Load Reduction 

In the literature there are different metrics or indexes to evaluate the 
peak load reduction or shaving. The simplest metric for the peak load 
reduction is the load factor [40,41]. Where only the peak load value is 
compared to the average load value. Another indexes is presented in 
[42]; However the peak hours are assumed to be fixed hours. Peak load 
reduction is the main objective of implementing the HDDR program, 
which offers a larger incentive to the customer during peak periods to 
encourage them to curtail more power during this period. To demon-
strate the efficacy of the proposed technique, we employ a PRP indicator 
that calculates how the load during peak is reduced compared to the 
initial peak load with the implementation of the HDDR program. Not 
only the peak load value, but this indicator is extended to compare the 
total load during peak hours with and without the proposed HDDR. 

Peak Reduction percentage (PRP) can be calculated as: 

Dpeak wo =
∑

Dt peak (23)  

Dpeak w =
∑

Dpeak,t −
∑J

j=1

∑T

t=1
xj,t paek (24)  

PRP =

(
Dpeakwo − Dpeakw

Dpeakwo

)

∗ 100 =

∑J
j=1

∑T
t=1xj,t paek

Dpeakwo

∗ 100 (25) 

Where xj,t paek is the customer j curtailment at any time t in the peak 
period regions. 

5. Solution method 

5.1. Description 

This algorithm, Pelican Optimization Algorithm (POA), is a new 
stochastic nature-inspired optimization technique [32], which is 
considered to have better exploration and exploitation in the searching 
for global optimum [43]. Recently, swarm-inspired algorithms have 
received the greatest traction [44]. POA is inspired by the hunting 
strategy and behavior of pelicans. Pelicans often hunt together in 
groups. The pelicans, after identification of their food source (pray) the 

Figure 2. The proposed HDDR flowchart.  

Figure 3. Initial and final load with IDR and with proposed HDDR.  

Figure 4. Conventional DEs output and power transacted with the grid 
(Test system1). 
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location; dive, then spread their wings to force their pray to move to the 
surface of the water and shallow water so pelicans can attack prays 
easily. The main steps of the POA can be described as follows: 

- Initialization: POA is a population-based algorithm in which every 
pelican member is considered a candidate solution. The optimization 
process is started by randomly initialization to every member in the 
population using the following Equation: 

xi = LB + rand ∗ (UB − LB) i = 1, 2,……,N (26)   

Where N is the number of population members, xi is the value of the 
candidate solution, and rand is a random vector in the interval [0, 1]. 

Then those initial candidates’ solutions are used to evaluate the 
objective function for the given problem. Then objective function vector 
is calculated. 

The behavior of pelicans’ hunting strategy in attacking their food 
source is simulated to update the candidate solution. This process is 
simulated in two phases as follows: 

- Phase 1 Moving towards food source (Exploration phase): This 
phase simulates the strategy of pelicans in scanning the search space 
for food source identification. After identifying their prey, the Peli-
cans start moving toward the prey area. One important feature of 
POA is randomly generating the pray location, increasing explora-
tion power. The new status of the ith pelican candidate solution on 
phase is simulated mathematically as in 0: 

xnew 1
i = {

xi(t) + rand.
(

xp − I.xi
)
, ifF

(
xp
)
≤ F(xi)

xi(t) − rand.
(

xp − I.xi
)
, else (27)   

Where I is a randomly generated vector which has a value of 1 or 2, 
xp is the randomly generated location of prey and F(xp) is the value of its 
objective function. Then an update to the solution based on the new 
position is performed as : 

xi(t+ 1)= {
xnew 1

i , ifF(xnew 1
i ) ≤ F(xi)

xi(t), else
(28) 

Figure 5. For Test system 1: a) Customers’ power curtailment (kW)and b) customer incentive ($).  

Table 2 
cost breakdown for the three optimization techniques (MG test system 1).   

IDR HDDR  
PSO INFO POA PSO INFO POA 

Total 
Conventional 
Power (kW) 

441.93 410.35 433.75 395.93 407.82 410.35 

Total 
Conventional 
Power Cost ($) 

221.25 242.98 256.13 226.12 237.45 242.98 

Total Transferred 
Power (kW) 

52.93 4.17 -13.52 44.386 8.42 4.17 

Total transferred 
power Cost ($) 

264.65 20.88 -67.64 221.93 42.10 20.88 

Total Customer 
Incentive ($) 

313.71 436.92 351.75 409.56 428.71 436.92 

Total Cost ($) 799.62 684.08 594.36 857.61 708.26 700.79  

Table 3 
peak load reduction comparison for MG and MGO MG benefit be test system 1.  

Peak load without DRP(Dpeak wo)(kW) 478 
DRP IDR HDDR 

Technique PSO INFO POA PSO INFO POA 
Peak DR DRP (Dpeak w) (kW) 443.2010 436.9815 424.08 419.2785 415.22 408.2782 
PRP (%) 7.28 8.58 8.9 12.28 13.1 14.6 
MG benefit ($) 15 22 50 10 23 30  
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-Phase 2: Winging on the water surface (exploitation phase): In this 
phase, pelicans start to spread their wings on the water’s surface to 
let pray move upwards. Which help in increasing the ability of local 
search; the new status of the ith pelican candidate solution on phase 
2 is mathematically modelled as: 

xnew 2
i = xi(t) + R. (1 − t/T ).(2.rand − 1)xi(t), (29)   

Where t is the current iteration, T is the maximum number of itera-
tions, and R is a constant equal to 0.2. Then an update to the solution 
based on the new position is performed as 

xi(t+ 1)= {
xnew 2

i , ifF(xnew 2
i ) ≤ F(xi)

xi(t), else
(30)  

Where F(xnew 2
i ) is the objective function value of xnew 2

i candidate so-
lution. 

6. Results 

To validate the feasibility and effectiveness of the proposed HDDR 

program with POA in solving the energy management problem in MG, 
different test systems for grid-connected MG consisting of DG units and 
customers considering DRP is simulated using MATLAB 2021b on 
operating system has the following specification a 2.9-GHz i7 with 8-GB 
of RAM. MG is supplied with PV modules and a WT unit with varied 
ratings in each test system. In addition, CDEs are employed; a typical 
representation of a simulated MG is depicted in Figure 1. MG EM 
problem is solved using the different DRPs in two cases in two different 
MG test systems. The first case uses conventional IDR, while the second 
case, the proposed HDDR, is implemented. The superiority of the pro-
posed HDDR technique using POA in solving the EM problem compared 
to the well-known PSO [45] technique and newly-developed INFO [46] 
technique is proven. 

6.1. Microgrid test system 1 (First case study) 

Based on the grid-Connected MG Scheme shown in Figure 1, the first 
MG test system (case study) is a small MG comprised of one PV and one 
WT generator, three CDE units, and three residential customers with 
DRP. CDEs parameters, initial demand, power interruptibility for each 
customer ((λj,t), and hourly output power values of WT and PV genera-
tors are adopted from Ref. [26]. A day-ahead (24 h) EM problem is 
solved by the proposed technique using conventional IDR is applied to 
the EM problem, and the proposed HDDR program; the initial load and 
load after applying the different techniques are shown in Figure 3., It can 
be noted that in the case of using IDR, as the objective is to maximize the 
MGO benefit, most of the customers’ curtailment happens in times 
where there is no or small sharing from renewable sources; while in the 
second case (HDDR) the total demand is much reduced on the peak 
periods (more than the average) higher than that in out-of-peak periods. 
Using POA, the total demand reduction in the first case is 98.67kWh 
with a peak period load of 478 kWh (above average); 53.91 kWh only is 
curtailed in the peak period, while around 44.67 kWh reduction on load 
consumption in the other periods. For the HDDR case, the total demand 
reduction is 104.37 kWh with 69.72 kWh curtailed during the peak 
period, while only around 34.64 kWh reduction on load consumption in 
the other periods. Due to the implementation of the HDDR, most 
curtailment occurs in the peak period. These results indicate that using 
the HDDR program achieves higher load reduction while the MG reli-
ability is maintained. The optimal scheduling of the CDEs generation in 
addition to the power transacted with the main grid (Pgt ) are depicted 
inFigure 4; before the WT and PV generation period, the load is fed 
either from CDEs or the power is bought from the main grid. While in the 

Figure 6. Initial and final load with IDR and with proposed HDDR.  

Figure 7. Conventional DEs output and power transacted with the grid (Test system1).  
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period where RESs produce their maximum power the MG often sell the 
extra power to the main. Figure 5 displays the power reduction from 
each customer and the incentive they receive; it can be seen that the 
incentive during peak periods is higher than during off-peak periods. 
Cost breakdown comparison using the different techniques is detailed in 
Table 2; the results from this table indicate that the lowest cost is ach-
ieved using the proposed POA technique in the two studied cases (IDR 
and HDDR). Also, Table 3 shows a comparison between the different 
techniques in terms of PRP; POA technique achieved the highest PRP in 
the two studied DRP techniques. Looking to the MGO benefit in Table 3; 
using POA MGO benefit is the largest in the IDR and HDDR. 

6.2. Microgrid test system 2 (second case study) 

Based on the grid-Connected MG Scheme shown in Figure 1 test 
system 2 is a bigger MG comprised of an aggregated model for PV (10 

units) and aggregated WT generators (ten units), ten CDE units, and 
seven aggregated residential customers with DRP. The CDEs parameters, 
customer, customers data, initial demand and power interruptibility for 
each customer ((λj,t) are, and WT and PV output power adopted from 
[26]. The same two cases for MG test system 1 are employed for test 
system 2. Figure 6 shows the initial load and load after applying the 
different techniques of DRP, IDR and HDDR; It can be noted that in the 
case of using HDDR, the total peak hours(more than the average) load is 
much lower than IDR. The total initial peak hours’ load is 23740 MWh; 
Using IDR program, around 1364.09 MWh load is reduced in peak hours 
and 1310.10 MWh in off-peak hours. For HDDR, the customers reduce 
their load consumption by 1819 MWh in peak periods with a higher 
reduction of around 450 MWh compared to the IDR program. So the MG 
reliability is enhanced due to this higher curtailment at peak hours. 

For this test system, the optimal scheduling of the ten CDEs and the 
transaction power (Pgt

) are shown in Figure 7. Applying the HDDR 
program to test system 2, a detailed customer load reduction and 
incentive are indicated in Figure 8. Also, the cost breakdown comparison 
using the different techniques is detailed in Table 4 the results from this 
table indicate that the total cost achieved using POA is lower than PSO 
and slightly lower than the INFO technique. Also, Table 5 shows a 
comparison between the different techniques in terms of PRP; POA 
technique achieved the highest peak reduction percentage in the two 
studied DRP techniques, IDR and the proposed HDDR techniques, with 
5.74% reduction in IDR and 7.66% in HDDR. Also, in this MG test sys-
tem, the MGO benefit is the highest when POA is applied to solve the EM 
problem (Table 5). 

From the results of the two test systems it can be noticed that using 

Figure 8. For Test system 2: a) Customers’ power curtailment (MW)and b) customers incentive($)  

Table 4 
cost breakdown for the three optimization techniques (case study2).   

CIDR HDDR  
PSO INFO POA PSO INFO POA 

Total Conventional Power (MW) 28142 24986 25792 26951 24880 30355 
Total Conventional Power Cost ($) 616430 533410 555460 591220 543840 560000 
Total Transferred Power (MW) 6527.1 8936.1 7960.5 7261.2 9493.2 33267 
Total transferred power Cost ($) 48953 67021 59704 54459 71199 21624 
Total Customer Incentive ($) 94497 13670 14174 142520 117880 149992 
Total Cost ($) 759880 639087 629338 788199 732919 731616  

Table 5 
peak load reduction comparison and MG benefit for MG test system 2.  

Peak load without 
DRP 
(Dpeak wo)(MWh) 

23740 

DRP IDR HDDR 

Technique PSO INFO POA PSO INFO POA 
Peak DR DRP 
(Dpeak w) (MWh) 

23000 22714 22376 22207 22501 21920.72 

PRP (%) 3.1 4.32 5.74 6.45 5.22 7.66 
MG benefit ($) 2200 2000 3000 1800 1750 2025  
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the proposed HDDR with POA optimization technique indicate that a 
greater reduction in customer consumption is achieved in the peak 
period, which helps maintain reliability. 

7. Conclusion 

This paper proposed a new application of a newly developed opti-
mization algorithm, namely POA, to solve multi-objective optimization 
EM for Microgrid, considering a hybrid demand response program. The 
main objective of the EM problem is to reduce the overall operating cost, 
including the generation cost and transaction cost, while maximizing the 
MGO benefit. The HDDR technique is proposed to ensure MG reliability 
at peak hours. The proposed HDDR was developed as a combination of 
IDR and peak-based variable prices IDR (PIDR) programs to encourage 
customers to reduce their consumption during peak hours (above 
average load). HDDR is a dynamic DR program considering the load 
demand profile, and it does not use fixed hours as peak hours. The PIDR 
applied during peak periods was regarded as a function of peak in-
tensity. PRP is employed to assess the superiority of the proposed HDDR 
with POA to reduce the peak load and maintain the reliability of the MG. 
In particular, the performance of the proposed technique was assessed 
by implementing two different MG test systems (systems 1 and 2). 
Comparative results of POA with well-known and newly-developed al-
gorithms demonstrated that employing POA technique help achieved 
the lowest operating cost in the two test system for the two cases (IDR 
and HDDR). Also, the proposed method HDDR with POA achieved su-
perior peak reduction outcomes for the total MG. According to POA’s 
simulation results, using the HDDR reduce the peak load by 14.6% for 
the MG test system 1 and 7.6% for test system 2; in comparison to only 
8.9% and 5.74% reduction by implementing CIDR. Furthermore, using 
the POA technique has achieved higher MG operator benefit with 50$ 
and 30$ in test system 1 and 3000$ and 2025$ for test system 2 using 
CIDR and the proposed HDDR respectively. 

The proposed method can be extended to the probabilistic determi-
nation and to take into account uncertainties in demand, renewable 
energy generation and how it will affect the operation of the EM in MG. 
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