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a b s t r a c t

Thermal performance modelling and performance prediction of a novel all-glass straight-through
evacuated tube collector is analyzed here. A mathematical model of the tube was developed and
incorporated into CFD software for numerical performance simulation. To improve the thermal perfor-
mance prediction of the collector, different artificial neural network (ANN) models were considered. A
comprehensive experimental dataset with more than 200 samples were employed for testing of the
models. Integrating the thermal simulation model with the ANN models by using modelled collector
output as one of the input models, significantly improved the prediction accuracy of the ANN models.
The predictions based on the CFD model alone gave the poorest accuracy compared to the ANN models.
The convolutional neural network (CNN) model proved to be the best ANN model in terms of prediction
accuracy.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Renewable energy is one of the key technologies to mitigate
global warming and energy access [1]. Solar energy is one of the
fastest developing renewable energy sources, and it is widely used
in different applications such as power generation [2], seawater
desalination [3], domestic space heating [4], etc. Solar thermal
applications form an important segment of solar energy utilization.
The key component in such a system is the solar collector, which
absorbs the solar radiation and converts it to heat, which is trans-
ferred to a heat transfer fluid [5]. Common types of solar collectors
include the flat plate collector, evacuated tube collector and com-
pound parabolic collectors [6e9], which make up most of the col-
lector market [10,11]. Recently, the evacuated tube collector has
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gained more interest due to its attractive performance and price
[12e14].

An evacuated tube collector (ETC) typically contains a single-
walled glass evacuated tube or a Dewar-tube [15]. The former in-
cludes a finned tube [16,17] and a U-tube [18,19], while the latter is
composed of inner tube and outer tubes. The Dewar-type of evac-
uated tube collector dominates the market, because of its low cost
and easymanufacturing [20]. The subject of this paper is a new type
of ETC made of an all-glass straight vacuum tube. The heat transfer
fluid at the bottom of the Dewar-tube is difficult to circulate
through convection, and salt precipitating on the tube bottom
hinders heat transfer and water quality will be affected on long
term [21]. The main advantages of all-glass straight through evac-
uated tube over the standard Dewar-tube are both enhancing heat
transfer and improving the water quality. A higher efficiency and
performance also reduce the costs of the heat produced by the ETC
and hence improve its economics.

Though the overall and optical efficiency of all-glass straight
through evacuated tube collector has been found to be better than
that of the traditional Dewar-type ETC [22e25], the understanding
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Nomenclature

ANN Artificial Neural Networks
A gas adaption coefficient
B gas intermolecular interaction coefficient
BP back propagation
C specific heat ( J=ðkg $KÞ )
CNN Convolutional Neural Network
D diameter (m)
Dabs absorber tube diameter (m)
DNI direct normal solar irradiance (W=m2 )
F Darcy resistance coefficient
H convective heat transfer coefficient (W= ðm2 $KÞ )
DH glass thickness (m)
k thermal conductivity (W=ðm $KÞ )
L length (m)
MAE mean absolute error
MLR multiple linear regression
MSE mean square error
Nu Nusselt number
Pa gas pressure
Pr Prandtl number
_Qu gained useful energy (W)
Qloss energy loss (W)
R2 coefficient of determination

Re Reynolds number
RMSE root mean square error
T temperature (K)
W weights
X independent variable in MLR model
Y Dependent variable in MLR

Greek letters
hth thermal efficiency
b undetermined coefficient in MLR
ε emissivity
d molecular diameter
x absorptivity
g adiabatic index
lT mean free distance of molecules
tgla transmissivity of outer glass tube

Subscripts
a ambient
absi inner wall of absorber tube
abs absorber tube
f water
gla outer glass tube
s sky
w inner wall of absorber tube
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of its thermal performance and thermal performance modelling is
still incomplete. The aim of this paper is to develop a mathematical
model enabling thermal simulation and performance estimates of
the all-glass straight through solar vacuum tube collector. For this
purpose, a thermal model of the tube accompanied by CFD software
is employed. To improve the prediction accuracy of the theoretical
model, it is combined with an artificial neural network which is
first of its kind to our best knowledge. Such as combination of
artificial intelligence (AI) and solar thermal technology presents in
broad terms a new research direction.

Artificial neural network (ANN) technology has previously been
applied to solar collector in different context [26e28]. For example,
Delfani et al. [29] employed neural networks to investigate the
performance of a solar collector with nanofluids. Ghritlahre et al.
[30] used three types of neural network models to determine the
performance of unidirectional flow porous bed solar air heaters.
Ghritlahre et al. [31]. also utilized neural network models to esti-
mate the heat transfer from a rough absorber plate to air passing
through the ducts of solar air heater. Liu [32] et al. proposed a
screening method based on machine learning to design evacuated
solar water heater with high heat collection rates. Tommy et al. [33]
used ANN to simulate the performance of flat plate solar collector
with silver/water nanofluid showing good agreement to experi-
mental data. ANN using surface temperature and collector param-
eters as input has been demonstrated [34]. Cetiner et al. [35]
trained a neural network model for a solar concentrator with
experimental data leading to better prediction accuracy. A range of
other studies have been reported including ANN for flat plate solar
collectors [36] and heat pipe solar collectors [37], or, to determine
the exergy efficiency of a solar air heater [38]. Here, we will
investigate the use of three different ANN models in combination
with thermal modelling.

The paper starts by describing the structure of all-glass straight
evacuated tube collector and the experimental set-up, which was
used to verify the theoretical model and performance predications.
Next, the thermal model of the tube is presented. The heat and
2

mass transfer equations of the tube are solved with a CFD software
to yield the outlet temperature from the tube. For the artificial
neural network, three different approaches are tested and their
capability to predict the thermal performance of the tube is
analyzed. Solar radiation intensity, ambient temperature, wind
speed, collector inlet temperature and water flow rate were used as
input to the ANN and the collector output temperature and thermal
efficiency of the tube were the main output from the ANN. More
than 200 experimental datasets were used for training and testing
of the hybrid ANN-model. The results section provides a compre-
hensive comparison of the models against experimental data.

2. Experiment set-up

The all-glass straight through evacuated tube consists of an
absorber tube (inner tube) and a cover glass tube (outer tube)
shown in Fig. 1. Both ends of the inner tube and the outer tube are
fused and sealed. The outer glass tube has excellent sun-light
transmittance, while the outer surface of the inner glass tube is
coated with solar radiation absorbing coating, meaning that the
temperature of the inner tube is much higher than that of the outer
glass tubewhen operating. Therefore, the thermal expansion values
of the two tubes differ widely [6,7,9-11]. The inner glass tube is made
of borosilicate glass, and the outer tube is made of glass with a
higher thermal expansion coefficient, which can resist the thermal
stress caused by the temperature difference. The space between the
two glass layers is a vacuum. The heat transfer fluid flows through
the inner tube to absorb heat. The specific structural parameters of
the tube are given in Table 1 (see Fig. 2).

The experimental rig consists of the tube, supporting steel
frame, pipes and connecting parts, temperature measuring in-
struments, flowmeter, etc. Water is used as the heat transfer me-
dium; thermocouples are used to measure the temperature at the
inlet and outlet of the tube. The sensors are connected to a data
logger (Agilent 34970 A), employing a 10-min recording sequence.
A rotameter is employed for thewater flow rate. The flow rate range



Fig. 1. All-glass straight through solar vacuum tube.

Table 1
Technical parameters of an all-glass straight through evacuated tube.

Parameter Value

Length, L(m) 1.8
Diameter of absorber tube, Dabs(m) 0.047
Diameter of outer glass tube, Dgla (m) 0.058
Glass thickness, DH (m) 0.003
Thermal conductivity of absorber tube, kabs (W= ðmKÞ) 1.2
Specific heat of absorber tube, Cabs (J= ðkg KÞ) 980
Absorptivity of selective coating, xabs 0.96
Transmissivity of outer glass tube, tgla 0.96
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is stable within ±1%. The weather parameters were measured with
a small weather station. Experiments were typically done between
10 a.m. and 4 p.m. on the experimental day. The experimental site
was located in Nanjing, China.
3. Thermal modelling of the tube

3.1. Energy and heat transfer equations

Most of the solar energy absorbed by the tube is transferred to
the inner wall of the tube through heat conduction, and then to the
fluid in the tube by heat convection. The other part of the energy is
transferred to the inner wall of the outer glass tube by radiation and
Fig. 2. Experim
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convection, and then transferred through the outer glass tube by
heat conduction. The outer wall of the outer glass tube loses heat to
the environment by convection to the ambient air and through
radiation to the sky.

Based on steady heat transfer conditions in the evacuated tube,
the energy conservation equation can bewritten as follows [23,24]:

Qtotal ¼ Qu þ Qloss (1)

The thermal efficiency of the absorber tube is defined as:

hth ¼ Qu

Qtotal
(2)

where, Qtotal is the total heat absorbed by the absorber tube, Qu

represents the useful heat, Qloss is the energy loss. The total heat
absorption can further be written as:

Qtotal ¼ L� Dabs � xabs � tgla � DNI (3)

where L is the length of the absorber tube, Dabs is the diameter of
the absorber tube, xabs is the absorptivity of the selective coating on
the surface of the absorber tube, tgla is the transmissivity of the
outer glass tube.

The useful energy is the energy extracted by the water flow
through the absorber tube and is calculated as follows [39,40]:
ental rig.
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Qu ¼ pDabsihf
�
Tabsi � Tf

�
(4)

where hf is the convective heat transfer coefficient between the
absorber tube and water, Dabsi and Tabsi represent the diameter and
temperature of the absorber tube inner wall,Tf is the water
temperature.

The convective heat transfer coefficient hf is defined as:

hf ¼ Nu
kf

Dabsi
(5)

where, kf is the thermal conductivity of water. For the Nusselt
number (Nu) applies the following relations [41e43]:

Laminar flow; Re < 2300; Nu ¼ 4:36 (6)

Turbulent flow,Re >2300

Nu ¼ ðf =8ÞðRe� 1000ÞPrf
1þ 12:7

ffiffiffiffiffiffiffiffi
f =8

p �
Pr2=3f � 1

��Prf
Prw

�0:11

(7)

where,Prf is the Prandtl number at Tf , Prw is the Prandtl number at
the inner wall temperature of the absorber tube, f represents the
Darcy resistance coefficient of flowing in the circular tube, which is
given by [39,40]:

f ¼ 1:82½log 10ðReÞ � 1:64��2 (8)

The heat loss from the surface of the absorber tube is described
as [43e45]:
Qloss ¼ pDabs

26664hag�Tabs � Tgla
�
þ tglaεabss

�
T4abs � T4s

�
þ
�
1� tgla

� s
�
T4abs � T4gla

�
 
1

,
εabs þ

�
1� εgla

�
Dabs

εglaDgla

!
37775 (9)
where s is the Stefan-Boltzmann constant, ha g is the heat transfer
coefficient in the annular vacuum space, Ts is the sky temperature.

The wall temperature of the outer glass tube (Tgla) in steady
state is only slightly higher than the ambient temperature [44] [-]
Fig. 3. Simulation
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[45], and the heat loss can then be presented as [44,45]:

Qloss ¼ pDabshag ðTabs � TaÞ þ εabsspDabs

�
T4abs � T4s

�
(10)

where, ha g is the convective heat transfer coefficient between
absorber tube and outer glass tube,εabs is the emissivity of selective
absorbing coating on the outer wall of the absorber tube, Ts rep-
resents the sky temperature.ha g is calculated from the following
equations [43,46]:

ha g ¼ kstd
Dabs

2 ln
�
Dgls

Dabs

�þ blT

�
Dgla

Dabs
þ 1

�
(11)

b ¼ ð2� aÞ�9gg � 5
�

2a
�
gg þ 1

� (12)

lT ¼
2:33Ⅹ10�20

�
Tabs þ Tgla

2
þ 273:15

�
Pad

(13)

where,kstd is the thermal conductivity coefficient of gas in the
annular space;d is the molecular diameter; b represents the gas
intermolecular interaction coefficient; a is the gas adaption coef-
ficient; g is the adiabatic index;lT represents the mean free dis-
tance of the molecules; Pa is the gas pressure in the annular space.
The annular space between the absorber tube and the outer glass
tube forms a vacuum with pressure <0.013Pa. The convective heat
transfer coefficient from the absorber to the outer glass tube is
0.0001115W=m2K[43,44].
The sky temperature is calculated by the following equation
[43,47,48]:
flow chart.



Fig. 4. Generating the mesh for the simulation of the all-glass straight-through
evacuated tube collector.
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Ts ¼ 0:0552T
3
2
a

(14)

where, Ta is the ambient temperature.
The emissivity of the selective absorbing coating on the outer

wall of absorber tube is [43,47,48]:

εabs ¼ 0:062þ 2� 10�7ðTabs � 273:15Þ2 (15)
Fig. 5. (a) Temperature distribution along the tube. (b) In
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3.2. Numerical CFD model

The energy equations from previous section was implemented
into the computational fluid dynamics (CFD) software ANSYS
Fluent [49e51], but also adds all necessary mass transfer and heat
and mass transfer coupling equations and boundary conditions to
perform a full heat transfer analysis of the tubes. The CFD software
also includes the numerical solver.

Fig. 3 illustrates the steps in the numerical simulation of the
tube. The DESIGNMODELER subprogram is used to build the
physical model of the tube into Fluent, followed by forming the
calculation mesh of model as illustrated in Fig. 4.

In order to simplify the simulation process, several assumptions
were made for the all-glass straight-through evacuated tube:

1) The evacuated tube is at steady-state;
2) The thermal contact resistance between the absorber tube wall

and the working fluid is omitted;
3) The heat loss at the inlet and outlet of the evacuated tube is

ignored;
4) The working fluid is incompressible and its density does not

change with temperature.

The 3-Dmodel based on the steady-state heat transfer equations
let and outlet temperature. Irradiance is 600W=m2.



Fig. 6. (a) Temperature distribution along the tube. (b) Inlet and outlet temperature. Irradiance is 1000 W=m2.
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of the all-glass straight-through evacuated tube collector is pre-
sented in Refs. [43e45] and was implemented into ANSYS Fluent
computational fluid dynamics (CFD) software. A structured hex-
ahedral mesh was generated by a meshing tool in the CFD software.
The pressure and velocity were coupled by the SIMPLE algorithm.
The second order upwind scheme was employed to integrate the
governing equations.

Figs. 5e6 shows temperature distributions obtained through the
numerical simulations using the tube model. The inlet temperature
6

is set to 298 K and mass flow rate to 25 kg/h. Two radiation con-
ditions 600W=m2 and 1000W=m2were considered. The results
show that the temperature difference of the wall surface increases
with the intensity. Under 600W=m2 irradiation, the wall tempera-
ture at the outlet end is only 309 K, while at 1000W=m2 irradiation,
the temperature at the middle part of the wall near the inlet has
reached 309 K, and the temperature at the outlet is higher than that
of 600W=m2 case. The temperature distribution of the cylindrical
tube wall is not uniform, because the heat absorption of the water



B. Du, P.D. Lund and J. Wang Energy 220 (2021) 119713
at the inlet of the tube is stronger, so the difference of the wall
temperature distribution is greater and the temperature gradient is
larger. It is evident that the higher the solar irradiation, the higher
the average temperature at the outlet section and the higher the
average temperature of the water in the tube.
4. Artificial neural network models

There are several artificial neural network (ANN) models avail-
able. As one of the most representative deep learning algorithms is
the convolutional neural network (CNN), which has also been uti-
lized in energy applications. Wang [52] et al. employed CNN, long-
short term memory (LSTM) and a hybrid of these models algo-
rithms to predict photovoltaic power generation. Their results
showed that the hybrid model had the best prediction precision,
followed by the convolutional neural network. For solar radiation
prediction from meteorological data several data-based models
have been used [53]. The K-means radial basis function(RBF) and
gradient boosted regression trees (GRBT), and the CNN model had
the lowest annual average error in this case. CNN based on digital
mapping has been applied to estimate regional solar irradiance
values [54], yielding a lower average error. CNN [55] has been used
for PV fault predictions [55,56]. A LSTM-CNN hybrid model was
employed to estimate photovoltaic power generation [57]. The
hybrid model yields in these studies a better result than the CNN
and LSTM alone.
4.1. Multiple linear regression (MLR)

Multiple linear regression is a statistical method to analyze the
linear relationship between a random variable and multiple vari-
ables [58]. Multiple regression divides the variables investigated
into: dependent variable defined by Y; independent variable
expressed by X1, X2, … The main task of regression analysis is to
determine the relationship between independent variable and
dependent variable: (1) to solve the parameters of a model based
on the measured data; (2) to evaluate whether the regression
model fits the actual data well; (3) to implement prediction using
the model.

The model is set as:

Yi ¼ b0 þ b1X1 þ b2X2 þ/þ bpXp þ εi (16)

N groups of independently observed sample data are
substituted into [Eq. 16]:
Fig. 7. BP neura
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�
yi; xi1; xi2;/; xip

�
i ¼ 1;2;/;n (17)

yi ¼ b0 þ b1xi1 þ b2xi2 þ/þ bpxip þ ei (18)

Let
P ðeiÞ2 ¼ min, to compute the estimated value of b0;/;bp,

that is: b0;/;bp.
The regression equation is expressed as:

byi ¼ b0 þ b1xi1 þ b2xi2 þ/þ bpxip (19)

To introduce [Eq. 19] into
P ðY � bY Þ2, by solving partial deriv-

ative of b0;b1;b2;/;bp, the equations acquired,

x0ðy� xbÞ ¼ 0 (20)

b ¼ ðx0xÞ�1x0y (21)
4.2. Back propagation network

The back propagation (BP) neural network, i.e. the learning
process of the error back-propagation algorithm, consists of two
processes: forward propagation of information and back-
propagation of error [59,60], as shown in Fig. 7.

The neurons in the input layer are responsible for receiving
input information from the outside and transmitting them to the
neurons in the middle layer. The middle layer is the internal in-
formation processing layer, whose duty is information trans-
formation. According to the requirements of the information
variation capability, the middle layer can be designed as a single
hidden layer or multiple hidden layer structure. As illustrated in
Fig. 7, for the ith neuron, x1;x2;/;xj. are the inputs of the neuron,
these inputs are independent variables that have a key impact on
the system model, and w1;w2;/;wj are the connection weights to
adjust the weight ratio of each input.

The last hidden layer transmits the information to each neuron
in the output layer. After further processing, it completes a learning
forward propagation process, and outputs the information pro-
cessing results from the output layer to the outside.

When the actual output is not consistent with the expected
output, the error back-propagation phase is activated. Through the
output layer, the weight of each layer is corrected according to the
error gradient descent, and the error is transmitted back layer by
layer to the hidden layer and to the input layer. The process of the
l network.



Fig. 8. Flow chart of the CNN model.
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information forward propagation and error back-propagation is a
process of adjusting the weights of each layer. It is also the central
process of the neural network learning and training. This process
continues until the error of the network output is reduced to an
acceptable level or the number of learning times is set in advance.
4.3. Convolutional neural network

The hidden layer of convolutional neural network includes a
convolution layer, pooling layer and full connection layer [61,62].
The structure of the CNN model is illustrated in Fig. 8.

The convolution layer is in charge of the feature extraction of
input data. It contains several convolution kernels. Each element of
the convolution kernel corresponds to a weight coefficient kernel
and a bias vector, which is similar to the neuron of a feedforward
neural network. Each neuron in the convolution layer is connected
with several neurons in the region close to each other in the pre-
vious layer. The size of the region depends on the size of the
convolution kernel, also known as the “receptive field”. When the
convolution kernel works, it will scan the input features regularly,
multiple the input features in the receptive field and add the
deviation.

Convolution layer parameters contain the convolution kernel
size, step size and filling. The larger the convolution kernel is, the
more complex the extracted input features are. The convolution
step size defines the distance between the positions of the convo-
lution kernel when it scans the feature image twice. Filling is a
method to increase the size of the feature image by convolution
kernel to counteract the effect of size shrinkage before the feature
graph passes through the convolution kernel. The convolution layer
contains an activation function to help express complex features.

After feature extraction in the convolution layer, the output
feature map will be transferred to the pooling layer for feature
selection and information filtering. The selection of pooling area in
pooling layer is the same as that of convolution kernel scanning
feature map, which is controlled by pool size, step size and filling.

The fully connected layer is located in the last part of convolu-
tional neural network, and only transmits signals to other fully
connected layers. The convolution layer and pooling layer in the
convolutional neural network extract the features of the input data.
The function of the fully connection layer is to nonlinear combine
the features of the extracted features to get the output, that is, the
fully connection layer tries to use the existing high-order features
to complete the learning goal.

A 1-dimensional convolutional neural network is chosen in this
8

present study to implement prediction.
4.4. Normalization

Normalization is a basic function of data mining. Different
evaluation indexes often have different dimensions and dimen-
sional units, which will affect the results of the data analysis [5]. In
order to eliminate the dimensional influence between the in-
dicators, data standardization processing is needed to solve the
comparability between data indicators. After the standardization of
the original data, each index is in the same order of magnitude,
which is suitable for comprehensive comparative evaluation.

The data normalization equation is given as:

Ynorm ¼ Yi �mean
std

(22)

where, mean is the average of training data, std represents the
standard deviation of data.
4.5. Performance evaluation indicators

Root mean square error (RMSE), mean absolute error (MAE) and
coefficient of determination (R2) [63] [-] [64] are employed to
evaluate the prediction accuracy of the three models. These are
defined as follows:

Coefficient of Determination:

R2 ¼ 1�
Xn

i¼1

�
XA;i � XP;i

�2Xn

i¼1
X2
P;i

(23)

Root Mean Square Error:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

�
XA;i � XP;i

�2vuut (24)

Mean Absolute Error:

MAE ¼ 1
n

Xn
i¼1

�
XA;i � XP;i

�
(25)



Fig. 9. Flow chart of the integrated models.

Fig. 10. Comparison of experimental and modelled collector outlet temperature with
CFD, MLR and CFD-MLR.

Fig. 11. Comparison of experimental and modelled collector thermal efficiency with
CFD, MLR and CFD-MLR.
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5. Results and discussion

The MLR, BP and CNN models were utilized to predict the
thermal performance of all-glass straight through solar vacuum
tube. During the experiment, the range of water flow rate was from
20 L/h to 250 L/h, the inlet water temperature was between 25 �C
and 27 �C, and the meteorological parameters were recorded in
9

real-time. 243 experimental datasets in total were used, 70% of
which were adopted for training and 30% for the test. The specific
training and test procedure was the following:

1) A set of hyperparameters of the model is selected, e.g. the
neuron number in the hidden layer of the neural network;
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2) Training data is divided into a training set and a validation set.
The training set is adopted to train the model, and then the
cross-validation set is employed to measure the performance of
the model;

3) The hyperparameters of this model are changed and step 2) is
repeated until all the hyperparameter combinations have been
tested and verified;

4) The model with the smallest error (validation set) is selected
and trained using the whole training data set;

5) In the test data set, the generalization performance of the
optimal model obtained by the above steps is measured.

For cross-validation, the training data set is divided into k sets,
each time k-1 sets are used as the training data and the other one is
adopted as the validation data. For each model, the algorithm is
executed k times. The average error value obtained from the k-
times executions is taken as the error of the model.

Based on the experimental data, the CFD software and thermal
modes were used to calculate the outlet temperature and the
thermal efficiency of the tube (see Fig. 9). The solar radiation in-
tensity, ambient temperature, tube inlet temperature, water flow
rate, wind speed and the theoretical values calculated by the
Fig. 12. Comparison of experimental and modelled collector outlet temperature with
CFD, BP and CFD-BP.

Fig. 13. Comparison of experimental and modelled collector thermal efficiency with
CFD, BP and CFD-BP.

10
models were selected as input parameters for the ANNmodels. The
water outlet temperature and the thermal efficiency of the solar
vacuum tube obtained with and without using the thermal
model þ CFD were then compared to experimental results.
5.1. MLR model

The prediction results of the MLR model are shown in
Figs. 10e11. When the simulated value of the tube outlet temper-
ature was not included as an input parameter, the maximum
forecast error of the outlet temperature reached 1.8 �C and the
maximum error of thermal efficiency reaches 0.034.Whereas when
the simulated outlet temperature was combined with the MLR
model, the difference between the predicted and actual data
dropped to 0.4 �C and 0.025 respectively. However, the error in the
modelled and measured thermal efficiency is still relatively large.
5.2. BP model

A hidden layer based on the Relu [52] function was adopted in
the BPmodel and a linear functionwas utilized for the output layer:



Fig. 14. Comparison of experimental and modelled collector outlet temperature with
CFD, CNN and CFD-CNN.

Fig. 15. Comparison of experimental and modelled collector thermal efficiency with
CFD, CNN and CFD-CNN.
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ReluðxÞ¼maxf0; xg¼
	
x if x � 0
0 if x<0

(26)

The linear function is the activation function inwhich the output
is proportional to the input [65]:

jðvkÞ ¼ cvk (27)

where, c is the slope of the output of the function.
The number of neurons in the hidden layer was chosen as fol-

lows [26]:

H ¼
�
I þ O
2

�
þ

ffiffiffi
T

p
(28)

where I and O are the number of input and output parameters, T
represents the number of training datasets, which gave 16 as the
number of neurons in the hidden layer.

It can be seen from Figs. 12e13 that when the meteorological
data, collector inlet temperature and flow rate only are used in the
input layer of the model, the prediction accuracy of the BP method
is better than that of the mathematical models. The mathematical
11
models are established on the basis of many simplifying assump-
tions, which results in errors in the simulation results of mathe-
matical models, which in turn leads to reduced model accuracy
[65]. Moreover, the performance of an evacuated tube is affected by
several factors, for which reason it is often difficult to precisely
predict the performance with simplified mathematical models.
When the simulated value of collector outlet temperature is added
into the input vector, the difference between the BP network (case
CFD-BP) and the experimental data is further reduced and the
forecast accuracy is improved.
5.3. CNN model

A 1-dimensional convolution neural network is employed here.
In the first convolution, the number of filters is 32 and the kernel
size is 3. in the second convolution, 64 filters are used and the
kernel size is 3. The Relu function is employed as the activation
function in the convolution, and a linear function is used in the
output layer. The predicted values by the CNNmodel are compared
with the experimental data in Figs. 14e15. Most of the deviations in
the collector outlet temperature is within 0.6 �C. The error of the
tube thermal efficiency is between �0.016 and 0.021. When the



Table 2
Inaccuracies of the different models.

Models R2 RMSE MAE

Water outlet temperature Thermal efficiency Water outlet temperature(�C) Thermal efficiency Water outlet temperature(�C) Thermal efficiency

CFD-CNN 0.9971 0.9684 0.0823 0.0044 0.0559 0.0028
CNN 0.9629 0.9548 0.3002 0.0051 0.1693 0.0036
CFD-BP 0.9937 0.9434 0.1209 0.0055 0.0910 0.0038
BP 0.9555 0.9192 0.3305 0.0067 0.2219 0.0043
CFD-MLR 0.9924 0.7443 0.0975 0.0108 0.0564 0.0086
MLR 0.7210 0.6736 0.8436 0.0112 0.6920 0.0080

Fig. 16. Prediction error of collector (a) outlet temperature and (b) thermal efficiency
by the models.
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theoretical modelled collector outlet temperature is used as one of
the input parameters, the forecast performance of CNN is improved,
the deviations in the collector outlet temperature is decreased to
0.2 �C. The error between the thermal efficiency of the tube by the
CNN model and the actual data is reduced to 0.007. This clearly
emphasizes the importance of the modelled collector outlet tem-
perature as input parameter in the CNN method to improve
12
prediction accuracy.
5.4. Comparison of prediction performance of different models

The prediction accuracies of the MLR, BP and CNN models are
summarized in Table 2. The CNNmodel using themodelled value as
one of the input parameters (CFD-CNN) obtained the best R2 and
the lowest RMSE. When predicting the thermal efficiency of the
tube, the forecast precision of the CNN method without the CFD
input (CNN) is slightly better than that of the BP model with the
CFD (BP-CFD). Based on the comparison in Table 2, the prediction
accuracy of the MLR, BP and CNN models are clearly improved
when the modelled value of the collector outlet temperature is
added in the input layer.

The forecast results by the MLR, BP and CNN models are
compared with the experimental data for each sample in Fig. 16,
which confirms the improvement of the prediction accuracy of the
different models when adding the modelled value of collector
outlet temperature in the input. The performance of the CNN and
BP models in terms of the collector outlet temperature and thermal
efficiency prediction is clearly better than that of the modelled
values using the CFD software on the basis of mathematical model.

According to the above comparison, the CFD-CNN model ap-
pears the best followed by the BP model, both of which are better
than the MLR and CFD alone.

Statistical results available from the present literature are shown
in Table 3. Comparing Table 3 to the results of the present work, the
CFD-CNN and CFD-BP models of the present study perform well
and their prediction accuracy is often higher than that of several
other studies in the past.
6. Conclusion

In this paper, the thermal performance modelling and perfor-
mance prediction of an all-glass straight through evacuated tube
collector has been investigated. This new type of ETC has many
benefits over the traditional Dewar-type of ETC
[6,8,9,12e15,19,21e25,45,74]. A mathematical model of the all glass
straight through evacuated tube was developed and incorporated
into CFD software for numerical performance simulation. To
improve the thermal performance prediction of the collector,
different artificial neural network models were analyzed. A
comprehensive experimental dataset with more than 200 samples
were employed for testing of the models.

The results show that integrating the modelled collector outlet
temperature as input to the ANN models clearly improves their
prediction accuracy of all models considered (MLR, BP and CNN).
The collector outlet temperature and thermal efficiency were used
in the comparison, and the accuracy of these both parameters were
improved. Solar radiation intensity, ambient temperature, wind
speed, water flow rate, and collector inlet temperaturewere used as
input in these analyses [30,35,37,38,72,73]. The predictions based



Table 3
Summary of prediction accuracy of solar collector performance found in the literature.

Authors Model type Outlet temperature of heat
transfer fluid

Thermal efficiency

RMSEð�C) R2 RMSE R2

Caner et al. [66] MLP 0:0173avg 0:997avg
MLR 0.0649 0.875

Benli [67] MLP 0:0575avg 0:9919avg
Dickmen et al. [30,68] MLP 0.04763 0.81191

ANFIS 0.06196 0.68167
Shafieian et al. [37] Spring ANN 0.00720 0.98079

ANFIS 0.00335 0.86222
TRN 0.24826 0.8674

Summer ANN 0.00525 0.98974
ANFIS 0.00461 0.94201
TRN 0.21473 0.89965

Autumn ANN 0.01348 0.98903
ANFIS 0.02553 0.95493
TRN 0.33123 0.85703

Winter ANN 0.00531 0.99209
ANFIS 0.02376 0.95547
TRN 0.32865 0.87684

H. Esen et al. [69] WNN 0.05 kg/s air flow rate 0.0058 0.9989 0.0126 0.9992
0.03 kg/s air flow rate 0.0034 0.9994 0.0094 0.9992

Xie et al. [5,70] MLP 0.0075 0.9999
Y. Varol et al. [71] ANN 0.844e0.872

ANFIS 0.879e0.905
H.K. Ghritlahre et al. [72] MLP 0.39699 0.9864 0.01079 0.93537
F.J. Diez et al. [73] MLP 0.0090 0.7443
Present work CFD-CNN 0.0823 0.9971 0.0044 0.9684

CNN 0.3002 0.9629 0.0051 0.9548
CFD-BP 0.1209 0.9937 0.0055 0.9434
BP 0.3305 0.9555 0.0067 0.9192
CFD-MLR 0.0975 0.9924 0.0108 0.7443
MLR 0.8436 0.7210 0.0112 0.6736
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on the CFD model alone gave the poorest accuracy compared to
MLR, BP and CNN methods. The main reason for this is the
simplifying assumptions used for modelling the ETC, also the dif-
ficulty to account for the many factors affecting the performance of
the evacuated tube. Whereas the neural networks can deal with
nonlinear problems [75].

The performance results using BP and CNN methods are better
than those obtained by the MLR model, as MLR is not that good in
dealing with nonlinear problems. For example, for the thermal ef-
ficiency prediction, the R2 of MLR is 43.8% lower and the RMSE is
54.5% higher than with CNN. The CNN model is slightly better than
the BP model and both of them are better than the MLR and CFD
models. The traditional BP algorithm has too many weights and
needs a large amount of calculation, whereas the CNN is less
complex through the receptive field and weight sharing technique,
which also improves the model performance.

The CFD-CNNmodel is the most optimal one among the studied
models to determine the thermal efficiency of the evacuated tube,
due to lowest RMSE (0.0044), lowest MAE (0.0028) and highest
value of R2 (0.9684). The same applies to the water outlet tem-
perature prediction. In overall, the prediction performance of the
models significantly improved by combining the CFD model and
ANN techniques. The accuracy of the model was improved through
the learning function of the neural network, i.e. the model is cor-
rected by the learning deviation between the calculated value from
the mathematical model and the measured data. As the training
process of the neural network aims at minimizing the difference
between the calculated and the measured value, combining the
CFD and the neural network model yield a better prediction.

Future research work may focus on using new types of ANNs
such as recurrent neural networks for performance prediction of
solar thermal energy application systems, and to compare the
13
accuracy with traditional models. To utilize metaheuristic methods,
for example, particle swarm optimization (PSO), genetic algorithms
(GA), grey wolf optimization (GWO), to optimize the ANN structure
and thus improve the performance of ANNs would also be relevant
for future work. Extensions of ANNs, e.g. Adaptive Network-based
Fuzzy Inference System, extreme machine learning (EML) etc.,
usually have a high quality, and applying them for performance
predictions would be interesting.
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