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ABSTRACT Low frequency oscillations (LFOs) occur in a system of interconnected generators connected
by weak interconnection. A power system stabilizer (PSS) is commonly used to improve the capacity of the
power system dampening. Under a variety of operating conditions, traditional PSSs fail to deliver superior
damping. To address this issue, a Farmland Fertility Algorithm (FFA-PSSs controller) was used to solve
an optimization problem for optimal design of PSSs system parameters, and its performance efficiency was
compared to GA and PSO-based PSSs controllers. In addition to PSS, flexible current transmission (FACTS)
devices are widely used. PSSs controllers and FACTS devices are frequently constructed in tandem to
improve the dampening efficiency of the system. In this study, an Interline Power Flow Controller (IPFC)
FACTS device will be added to the PSSs controller to improve the power system’s oscillatory stability. PSSs
optimal design and supplemental controller of power fluctuations for IPFC were conducted out on WSCC
multi-machine test systems using a system linear model. Using time-domain simulations and quantitative
analysis, the proposed IPFC model was compared to the FFA-PSSs controller in terms of performance and
efficiency. The main disadvantage of this technique is the difficulty in designing a dynamic IPFC model
in test systems, as well as the burden of IPFC coordinated PSSs optimization. In both PSSs design using
FFA method and FFA-optimized PSS with IPFC cases, rise in the computational and simulation costs
was found unavoidable. To compensate for these flaws and obtain the research contribution, this paper
proposes a Neuro-Fuzzy Controller (NFC) developed as a damping controller that can take the place of
the two controllers (research objectives three). The application of the NFC substitute the computational and
simulation cost involved in designing multi-machine PSS and IPFC-FACTS systems simultaneously. With
the availability of NFC in SIMULINK, a dynamic model of theWSCC three-machine system was developed
under a variety of operating situations. Quantitative analysis results from the WSCC test system simulation
show that when comparing the proposed NFC model to the IPFC model for the WSCC test system, the
proposed NFC model was found to be 149 percent and 0 percent efficient in terms of the time to settle of
rotor angle respond for G2 and G3, respectively, but 394 percent efficient when compared to the uncontrolled
model. The decreased settling time values ensured the proposed NFC model’s efficacy in damping down
the LFO and achieving superior stability over the two controllers. The proposed NFC model has shown
significant performance improvement in both the transient and steady-state areas than when the system was
design with the two damping controllers.
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INDEX TERMS Low frequency oscillations, power system stabilizers, farmland fertility algorithm, interline power
flow controller, neuro-fuzzy controller.

ABBREVIATIONS
LFO Low Frequency Oscillation.
AVR Automatic Voltage Regulator.
FACTS Flexible AC Transmission Systems.
GA Genetic Algorithm.
NFC Neuro-Fuzzy Controller.
NN Neural Network.
WSCC Western System Coordinated.
SVC Static Var Compensator.
UPFC Unified Power Flow Controller.
SMIB Single Machine Infinite Bus.
STATCOM Static Compensatory.
PID Proportional Integral Derivative.
PIs Performance Indices.
DC Direct Current.
AC Alternating Current.
MBPSS Multi-Band PSS.
VSI Voltage Source Inverter.
PSO Particle Swarm Optimization.
ANFIS Adaptive Neuro-Fuzzy Inference System.
FFA Farmland Fertility Algorithm.
PSS Power System Stabilizer.
IPFC Interline Power flow Controller.
SVD Singular Value Decomposition.
KF Kalman Filter.
TCSC Thyristor Controlled Series Capacitors.
VSC Voltage Source Converters.
IEEE Institute of Electrical and Electronics Engi-

neers.
SSSC Static Synchronous Series Compensator.
POD Power Oscillation Dampers.
MF Membership Function.
EMs Electromechanical modes.
ANN Artificial Neural Network.
FO Fractional-order.
RBF Radial Basis Function.

I. INTRODUCTION
In the past, electrical power systems were relatively local and
simple [1]. Today’s power systems are complex with compli-
cated architecture of the networks of transmission lines that
connect generator to substations and load centers [2]. One of
the outcomes of this linked network is low frequency oscilla-
tions (LFOs) with frequencies ranging from 0.2 to 3 Hz [3].
To better understand the causes of LFOs on power system.
The literature [4] explains that, generators and loads are inter-
connected via a network in a power system, and the generators
are operated in synchronization at a fixed system frequency.
The power change impacts all other generators in the system
if one generators speed deviates from the synchronous speed.
When this occurs, the system maintains synchronous speed
by taking the appropriate control action, such as changing the

exciter or turbine controllers. LFO on the other hand, can
occur if the controller’s settings or the networks status are
insufficient. The high-speed excitation mechanism, in partic-
ular, weakens the damping properties of LFOs (used to min-
imize the loss of synchronizing torque and increase transient
stability). However, for the case of impedance-mismatch as
reported by [5], In power electronics converters with regu-
lated output voltage, negative incremental input impedance
is present, resulting in constant power load behavior. Oscilla-
tions and overvoltage may arise as a result of a large number
of constant power loads in an electrical system, potentially
culminating in a system shutdown. Smaller electrical sys-
tems, such as planes, ships, and microgrids, cannot handle a
large number of loads with negative input impedance. Small-
signal stability is determined by the source to load impedance
ratio at any given interface, as it is for both dc and ac sys-
tems [1], [6].When LFOs occurs, the oscillation continues for
a while and then goes away, or it increases steadily, causing
the system to collapse [3]. A significant fault in the system’s
performance, such as a three-phase short circuit to the ground
or the tripe of a transmission line, might cause the power
system to oscillate [7]. Therefore, if power fluctuations cause
the collapse of a power system, it can be due to the problem of
the stabilization of the angle of the large or small perturbation
rotor of the power system [8]. The oscillation of the power
system is a term used to describe this type of stability. The
North American Power Grid’s oscillations were first noticed
in October 1964 during the north’s network of power testing
links to the Southern Power Grid [9]. Power oscillation at a
frequency of 0.1 Hz was noticed after the connecting line, and
the connecting line was tripped after a time.

Moreover, some cases of power systemfluctuation in trans-
mission network of many countries have been observed and
reported. Examples include: The Great British power grid
experienced power fluctuations on the path from Scotland to
England in the late 1970s and early 1980s.

When power transmission is transferred, these oscillations
are quite high, according to practical experience. The results
of a series of studies conducted in 1980 and 1985 showed
that these fluctuations occur when the power transfer level is
significantly adjusted and the oscillation frequency of these
power fluctuations was 0.5 Hz. The installation of power
system stabilizers (PSSs) in numerous power facilities in
Scotland effectively addressed this issue [10]. Continuous
system fluctuations in Taiwan’s power grid were reported in
1984, the damping of power fluctuations was found effec-
tively improved by successfully installing PSSs in selected
locations [11]. Power oscillations were the direct cause of
the North American WSCC network’s demise on August 10,
1996. (with frequencies between 0.2 and 0.3 Hz). Lines and
generators were expanded with tripping, eventually leading
to the western system coordinated council (WSCC) network
becoming four islands. These effect left over 5.7 million
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consumers in total blackout for nine hours, resulting in sig-
nificant economic losses [12].

The installation of supplementary excitation control, also
known as PSSs, is used to regulate the volatility of power
systems in order to maximize the damping of oscillations
and improve the oscillation sustainability of power sys-
tems [13]. PSSs are a simple, effective, and cost-efficient
technique [14]–[17]. PSSs have been installed inmost electric
power facilities in several countries so far [18]. Installing
PSS, on the other hand, does not necessarily give a convincing
solution to the power system volatility problem [19], [20].
The PSSs creates a positive component of phase torque
with vetting changes in speed on the rotor, thus removing
the negative damping torque effect by providing additional
damping [21], [22]. The system is deemed to be stable and
the power system has good oscillation damping when the
system damping improves fast with a damping ratio larger
than 0.1 and if there is a LFOs for a certain period (sev-
eral seconds to ten seconds) and finally disappears, then
the power system has oscillation power, but the damping of
volatility is weak [23]. Nowadays, the volatility factor of the
weak damping of power system known as electromechani-
cal oscillating modes (EMs). Researchers and power system
engineers are looking for a viable alternative to installing
additional transmission lines for regulating and utilizing the
power system. FACTS (Flexible AC Transmission Systems)
and ESS (Energy Storage Systems) are two new developing
innovations in power system applications that aim to improve
the systems reliability and flexibility [23].

Several PSS may not be able to offer enough damping
for power fluctuation dampening. As a result, power system
engineers and academics are always seeking for novel PSS
alternatives to successfully remove power system volatil-
ity [24]. Furthermore, traditional PSSs are built using fre-
quency domain phase correction techniques and are based
on a linearized model of the power system, which results
in reduced performance and does not ensure good operation
over a larger range of operating circumstances [25]. In order
to enhance power system stability, several optimization tech-
niques have been utilized in the literature to optimize PSS
parameter values [2]. For single machine infinite bus (SMIB)
systems, artificial intelligence (AI) techniques such as neural
networks and fuzzy systems have been suggested, which
has recently been broadened to incorporate multi-machine
power systems [26]. Various tuning approaches have been
offered to alleviate the disadvantages in intelligent systems.
Many heuristic optimization methods, such as particle swarm
optimization (PSO), genetic algorithm (GA), evolutionary
algorithm (EA), have been developed and effectively used
in optimization [26]. However, utilizing traditional PSS to
dampen low frequency power oscillations is still a work
in progress. Other alternative solutions must be revealed in
order to address this problem. However, tuning PSS param-
eter values is a difficult task which possess heavy opti-
mization process and sometimes the PSSs design solution
does not always provide a satisfactory solution [27]. This

can make the PSSs design to be re-designed again and
again.

The FACTS devices, in addition to PSS, are frequently
employed. PSSs controller and FACTS devices are often
designed simultaneously to further improve the system’s
dampening efficiency [28]. An Interline Power Flow Con-
troller (IPFC) FACTS device will be connected to PSSs
controller in this investigation to further increase the oscil-
latory stability of the power system [19]. IPFC stabilizer was
recently developed for the control of LFOs, with less attention
in its implementation. Indeed, IPFC is a new concept adopted
in overcoming and managing specific limitations of power
line flow in multiple-line transmission systems [29], [30].
Although so many FACTS device example unified power
flow controller (UPFC) has been widely developed as oscil-
latory stabilizers, very few entries have addressed IPFC [30].
The primary distinction between FACTS and PSS stabiliza-
tions is that FACTS stabilizations are generally deployed at
the power system’s critical transmission line. For example,
in two-zone connection lines and long power transmission
routes are installed for purposes such as load adjustment
and voltage control [28]. Therefore, in certain cases, FACTS
stabilizations can be easily implemented and effectively elim-
inate the volatility of the power system. For this reason, the
sustained control of power system fluctuations by FACTS has
become the subject of recent research and many researchers
have been following it since the 1980s [31]. These FACTS
stabilizers techniques are usually designed with the coordi-
nation of optimized PSSs on the test systems for effective
damping. The major drawback of this procedure is difficulty
in developing the dynamic IPFC model in the test systems
and involves IPFC coordinated PSSs optimization burden.

PSSs controllers based on artificial intelligence (AI) have
become a popular research topic in recent years. These intel-
ligent controllers have the capacity to learn from the environ-
ment in which they are used to enhance their performance.
The literatures have suggested Fuzzy Logic PSSs (FLPSSs),
which can be type-1 fuzzy (T1FLS), type-2 fuzzy (T2FLS),
or adaptive fuzzy sliding mode PSS, Neural Network PSSs
(NNPSSs), Adaptive Neuro-Fuzzy Inference System PSSs
(ANFIS-PSSs) [32] etc. were proposed in the literatures. For
the FLPSS was found robust and their lower computation
burden. It does, however, have a few bottlenecks, such as
the development of membership functions, rule selection, and
rule construction, which are often handled by trial and error
or by human specialists. As a result, designing it is a difficult
and time-consuming process. In the same way as the FACTS
stabilizers, AI stabilizers techniques are also designed with
the coordination of PSSs on the test systems. Designing the
PSS parameters utilizing a strong optimization process has
shown to be an efficient approach of running the PSS. As a
result, a stabilizer must be developed to replace the usual
optimized PSSs and FACTS, removing the need for system
PSSs design modeling and complexities.

Thus, this paper proposes a stabilizer using Neuro-Fuzzy
Controller (NFC) that can replace the work of PSSs and
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provide superior properties than the conventional PSSs and
FACTS stabilizers in controlling low frequency oscillations
in power system. The main contributions of this paper are:
• A metaheuristic FFA technique is proposed for design-
ing PSSs controller on WSCC IEEE test power sys-
tem. The main contribution is to design dynamic gain
parameters of controller in order to handle the system
uncertainties and to enhance the steady state and tran-
sient performance indices. A considerable contribution
is made in this field to enhance the computational cost
and convergence for ill-conditioned system operating
under multiple working point.

• An eigenvalue placement index was defined for design-
ing the proposed optimal mode feedback and imple-
mented as an optimization problem using FFA. Unlike
the classical mode feedback design techniques which
requires a conditional condition, the proposed method
employs the single value decomposition (SVD) as an
analysis tool to determine the appropriate signals for
use in the feedback design process. Main contribution of
this includes reduced number of parameters of the state
feedback matrix, reduced number of control variables,
reduced the design time and considering several work
points in the design makes the proposed mode feed-
back resistant to permanent changes in the system. The
proposed mode feedback was evaluated on WSCC test
systems.

• Since designing dynamic PSSs control parameters give
rise to heavy optimization process also, developing
dynamic IPFC model in the test systems give rise to
heavy system modelling and involves IPFC coordi-
nated PSSs optimization burden, an efficient robust NFC
damping controller was proposed to substitute the opti-
mized PSSs and optimized IPFC on the systems. Since
PI and PID controllers require a mathematical model
of a plant or are model based controllers, NFC in this
case is a model-free design because it only depends on
expert information and experience. This is an important
feature of this controller. Another significant features is
that, the proposed NFC model does not require a math-
ematical model of the test system to be controlled and is
operated independent of coordination with conventional
optimized PSSs to avoid optimization burden.

This paper is organized: Section II explains the model-
ing of IEEE 9-bus system model equipped with IPFC and
also, the proposed FFA design implementation. Section III
explains the proposed methodology for the NFC design. The
simulation results obtained to validate the PSSs design, IPFC
design and the proposed NFC design on WSCC test system
respectively is discussed in section IV with conclusion and
future scope of this work presented in last section.

II. SYSTEM MODEL STUDIED
This section shows the overall structure and methodology
applied for this work. Figure 1 shows the framework for
overall structure of this study which includes selection of

PSSs for power system applications and selecting the intel-
ligent approach for designing the multi-machine PSSs. FFA
optimization method was a key player in this research. The
three objectives of this study are PSSs design using the
FFA method, FFA optimized PSSs with IPFC and the pro-
posed NFC design using the FFA method respectively. First
the power system nonlinear dynamic equations are modeled
using MATLAB/Simulink software. The dynamic model-
ing has been validated using numerical simulation on IEEE
WSCC three-machine benchmark test power system, has
been selected for numerical simulation. A PSSs has been
designed optimally using FFA optimization method for the
test system. The performance evaluation of the FFA-PSSs
controller was compared with existing search methods of
PSO and GA for PSSs design.

Then, the methodological procedure for obtaining
objectives two which is the dynamic modeling of IPFC will
be studied and developed. Power system nonlinear dynamic
equations equipped with the IPFC device has been imple-
mented in Simulink environment of MATLAB software and
its state Equations have been obtained. FFA-based mode
feedback is proposed and designed as a supplementary con-
troller for the IPFC device in order to increase the system
damping status. In this optimization problem, the objective
function of replacing eigenvalues and preventing their drift
to the right-hand side is studied to improve the electrome-
chanical modes (EMs) damping status for a set of conditions
using the power systems. The performance and efficiency of
the proposed IPFC model was compared with the FFA-PSSs
method. Lastly, the methodology for attaining objectives
three which is the dynamic modeling of NFC was studied
and established in the studied test system. Power system
nonlinear dynamic equations equipped with the NFC device
has been implemented in Simulink environment of MATLAB
software. Then the FFA method was used to determine the
NFC control parameters. Unlike the PSSs and IPFC stabi-
lizers, the NFC damping controller implementation execute
the LFOs control without a linearized mathematical model
of the system as such makes the system less complicated
and cumbersome. The performance and effectiveness of the
proposed NFCmodel was compared with the two controllers.

III. SIMULATION RESULTS AND DISCUSSION OBTAINED
TO VALIDATE PSSs AND IPFC DESIGN ON WSCC TEST
SYSTEM
A. SIMULATION RESULTS OF PSSs USING FFA DESIGN
METHOD
This section explains the objectives one methodological
process for designing the PSSs system for the WSCC
three-machine test system considered in Figure 2. In order
to obtain permanent conditions, the power system of the
Newton-Raphson power distribution program was imple-
mented [112]. To obtain the systems initial conditions, the
power system dynamic equations were solved nonlinearly.
Also, using Simulink, the internal system characteristics of
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FIGURE 1. Chart representing the overall structure of the work.

the state matrix, eigenvalues, rate of system damping, oscil-
lation frequency and the participation coefficients of the state
variables in creating modes were extracted and listed in
Table 1.

Based on the results obtained from Table 1, it can be seen
that modes 1 and 2 are affected by the speed and angle of the
rotor of the second and third generators. Since these modes
are caused by rotor angle of the generator, they are called
electromechanical mode (EM) and since they are caused by
several generators, EM is also called inter-region. Similar
arguments can be made for modes 3 and 4. Modes 1 to 4 have
a damping ratio of less than 0.1 in terms of the sustainability
of low frequency fluctuations are not in a favorable condition

and need compensation and control. The results of transient
simulations also emphasize on it. Therefore, it is mandatory
to add a supplementary controller for this system. Mode
number 12 with an eigenvalue equal to zero has appeared
in the results. This mode is due to the selection of the angle
of the first generator rotor as the reference angle during the
implementation of the simulations in this thesis. To improve
the damping rate of EMs values to more than 0.1, a damping
device called PSS has been installed to the system. Based on
the participation coefficients calculated in Table 1, Generator
No. 2 has the most effect on EMs, so PSS for this generator
is installed. In this study, a speed signal stabilization which
is very common has been used. The frequency conversion
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TABLE 1. EMs parameters obtained from the linearization of WSCC test
system.

FIGURE 2. WSCC system line diagram [33].

function of this system is given in Equation (1).

G(s) = KG
Tws (1+ sT 1) (1+ sT 3)

(1+ sTw) (1+ sT 2) (1+ sT 4)
(1)

The input of which changes are modified is the speed and the
output of the voltage that is added to the simulation. In order
to facilitate the design of the PSS frequency conversion func-
tion is re-written as Equation (2).

G (s) = KG
T1T3
T2T4

s
(
s+ 1

T1

) (
s+ 1

T3

)
(
s+ 1

Tw

) (
s+ 1

T2

) (
s+ 1

T4

) (2)

For this study, the design of PSSs has become an opti-
mization problem and is solved using Farmland Fertility
Algorithm (FFA) evolutionary optimization algorithm. In this
study, the following optimization model is proposed in
Equation (3):

Minimize J

J = max { real (λi)| λi ∈ EMs}

+KP
∑{

real
(
λj
)∣∣ real(λj) > 0

}
(3)

EMs =
{
(λk)| 0 <im (λk)

/
2π< 5

}
(4)

Kmin
G ≤ KG ≤ Kmax

G (5)

Tmini ≤ Ti ≤ Tmaxi (6)

i = 1, · · · , 4 (7)

The first expression in the objective function maximizes the
damping of electromechanical and inter-zone modes while
the second expression prevents the creation of unstablemodes
and prevents the drift of eigenvalues to the right hand of the
complex zone. The KP variable is the participation coeffi-
cient for creating positive values. During this season simu-
lations, the KP variable value is 50 and similar to [34] the
range of optimization parameters for KG is [0.001-50], for
Ti [0.001-1] was designed for the objective function of a
software and simulation was designed using the FFA search
algorithm.

B. FFA FOR PSSs DESIGN
Farmers used the FFA search model to divide their farmed
area into numerous sections and assess the soil quality in each
of these agricultural regions [35]. Each piece of farming area
has a particular soil quality that varies. The quality of soil in
these agricultural fields is improved by introducing a variety
of specific ingredients known as fertilizers. By doing so, the
process can be repeated until it reaches a suitable level of
quality. It’s worth mentioning that the technique for assessing
the quality of the labor process and the recovery results
at each step is developed using local or national memory,
enabling the farmer to select how much repetition and how
much addition is chosen in the best quality [36]. The remain-
ing farm regions solutions, i.e. (the lowest quality section of
the agricultural areas, the present global memory solutions),
are combined with the remainder of the available solutions in
the exploration space to enhance outcomes [37]. After each
agricultural area altered outcomes using global memory and
arbitrary results in the exploration regions, farmers eventually
resolved to combine some soil in each farmland portion in
terms of the ideal achievable results from its local memory.
FFA algorithm is usually broken down into six stages.
Step 1: Population production is determined by the amount

of agricultural land sections and the number of solutions
accessible in each sector. Equation (8) represents the starting
population number.

N = k × n (8)

In Equation (8), N signifies the total population of the search
area in Equation (8). The number of data points in the optimal
problem is denoted by K .
Step 2: After assessing the solutions’ applicability and

determining each agricultural land portion, all possible search
space solutions are adapted.
Step 3: The local and global memories of each section are

modified after the solutions for each segment of farmland are
determined and combined. To calculate some of the best of
each segment’s local memory stores, as well as the best of all
segment’s global memory stores, the quantity of the best local
and global memory with statistical relationships is utilized.
Step 4:More changes will occur to the lowest sections, and

the solution combination is now in the search area.
Step 5: The knowledge stored in local and global memory

is highly suitable to deciding and combining.
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TABLE 2. Settings of the FFA optimized variables.

TABLE 3. GA pseudo algorithm.

TABLE 4. PSO pseudo algorithm.

Step 6: The best solution is to evaluate the various solu-
tions, determine your level of fitness, and keep working
continuously.

The relevant FFA techniques parameters for the algorithm
are described in Table 2. These characteristics let the sought
technique achieve a high rate of convergence and a low
computational load [38]. The search model was terminated
after a certain number of iterations, and it is commendable
to note that the PSS design approach was established and
ran several times until the optimum PSSs characteristics were
determined [39].

FFA with a primary population of 50 and a repeat number
of 100 was executed. Table 3, 4 and 5 shows the three opti-
mization pseudo algorithms for better understanding of their
differences.

TABLE 5. FFA pseudo algorithm.

Figure 3 explains the optimization structure of obtaining
the optimal PSSs parameters using the three optimization
techniques. Table 6 provides the PSSs optimal parameters
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FIGURE 3. GA, PSO and FFA implementation block figure for optimal PSSs
design.

TABLE 6. WSCC GA, PSO and FFA optimal PSSs parameters.

TABLE 7. Parameters obtain from FFA-PSSs design of WSCC test system.

while Table 7 illustrates the system eigenvalues obtained for
the WSCC test system via the FFA method.

To analyze the simulation work of WSCC, the lineariza-
tion of the system from Table 1, first the dynamic model
of power system was developed in MATLAB/Simulink soft-
ware. An optimal method for the PSSs design is proposed
to prevent the drift of eigenvalues to the right during the
design and by increasing the damping of oscillations, the
system will be lowered to a favorable condition in terms
of the sustainability of frequency fluctuations. Based on the
participation coefficients calculated in Table 1, the second
generator was selected as the suitable place for installing
PSS. According to Table 1, the minimum damping for EMs
is 0.0148 for modes 3 and 4. By installing optimal PSS in
the second generator location, this index was impressively
improved to 0.3200 for the desired modes. As can be seen,
this index has improved dramatically.

Figure 4 shows the PSS design convergence index compar-
ing FFA, GA, and PSO. The rate of convergence for the FFA
was determined to be quicker at 41 iterations than the GA and
PSO convergence.

Several potential operating conditions on the test system
were examined to satisfy the research objectives. For the first
objective, there will be two cases considered for the WSCC
test systems. They are:
Case 1: Three-phase symmetric fault at bus 9 were applied

to the system for 100 milliseconds in one second with no
change in system loading.

FIGURE 4. PSSs design convergence index comparing FFA with GA and
PSO [39].

FIGURE 5. Uncontrolled angle of generator 2 and 3 relative to generator 1
for case 1.

FIGURE 6. Uncontrolled generator speed for case 1.

Case 2: For 100 milliseconds in one second, an adjustment
of 5% increments were applied to the third generator excita-
tion voltage reference.
Case 1 Without FFA Controller: The efficiency of FFA-

based PSSs design techniques was compared to PSO and
GA-based PSSs design methods as follows. The uncontrolled
generator 2 rotor angle δ2 relative to δ1 (δ2 − δ1) and the
uncontrolled generator 3 rotor angle δ3 relative to δ1 (δ3−δ1)
is presented in Figure 5 while the uncontrolled speed of the
three generators are displayed in Figure 6. These results are
consequences of no PSSs installed in the systems.
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FIGURE 7. Controlled rotor angle changes for case 1.

FIGURE 8. Controlled changes in the speed of generators for case 1.

Several Using the FFA, GA, and PSO developed PSSs con-
trollers, several time domain simulations were run to evaluate
the power system’s performance.
Case 1 With FFA Controller: The controlled generator 2

rotor angle δ2 relative to δ1 (δ2 − δ1) and the controlled
generator 3 rotor angle δ3 relative to δ1 (δ3− δ1) is presented
in Figure 7 while the controlled speed of the three generators
are displayed in Figure 8. These outcomes are the result of
PSSs FFA-based design method.

The optimization issue was addressed and controller set-
tings were found using the FFAmethod. The FFA-based PSSs
approach decreases low frequency fluctuations and enhances
the damping ratio of local EMs more effectively than the GA
and PSO-based PSSs, according to simulation findings on the
WSCC three-machine power system.
Case 2 Without FFA Controller: The uncontrolled genera-

tor 2 rotor angle δ2 relative to δ1 (δ2 − δ1), the uncontrolled
generator 3 rotor angle δ3 relative to δ1 (δ3 − δ1) and the
uncontrolled speed of the three generators are shown in the
sequence of Figures 9, 10, and 11 respectively.
Case 2 With FFA Controller: Following the FFA-based

PSSs design, controlled generator 2 rotor angle δ2 relative
to δ1 (δ2 − δ1), the controlled generator 3 rotor angle δ3
relative to δ1 (δ3 − δ1) and the controlled speed of the three
generators are illustrated in the sequence of Figures 12, 13,
and 14 respectively.

FIGURE 9. For case 2, Uncontrolled generator 2 angle of relative to
generator 1.

FIGURE 10. For case 2, Uncontrolled generator 3 angle of relative to
generator 1.

FIGURE 11. Uncontrolled generator speed for case 2.

C. QUANTITATIVE PERFORMANCE EVALUATION
COMPARISON FOR PSSs DESIGN
The findings based on the suggested model are compared to
the reference results [40] to demonstrate the efficacy of the
proposed strategy in contrast to previous approaches. PSSs
are used in this reference to enhance the dampening of power
fluctuations for generators 2 and 3. Table 8 compares the
findings of the proposed model with the reference model [40]
in terms of EM damping in a three-machine power system.
In this example, the eigenvalues and minimum damping ratio
in Table 9, which includes the suggested model, and the
literature published models in [40] with the same operating
conditions, were gathered for comparison purposes.
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FIGURE 12. For case 2, the controlled generator 2 angle relative to
generator 1.

FIGURE 13. For case 2, the controlled generator 3 angle relative to
generator 1.

FIGURE 14. Controlled changes in the speed of generators for case 2.

The suggested technique lowers the damping of EMs gen-
erated by generators 2 and 3 from 0.0536 to 0.3200 and
0.0148 to 0.4442, respectively, as shown in Table 4.8.
In other words, compared to the uncontrolled condition,
it enhances damping by 497% and 96.6%, respectively,
and by 17.9% and 127.7%, respectively, compared to the
reference approach [40]. Both the referenced and con-
structed models had higher damping ratios than the uncon-
trolled model. The greater damping ratio value ensured the

TABLE 8. WSCC system PSSs optimized parameters.

TABLE 9. WSCC system EMs and damping ratio comparison.

TABLE 10. WSCC transient action of first generator for case 1.

TABLE 11. WSCC transient action of second generator for case 1.

suggested model’s effectiveness in dampening down the LFO
and achieving superior stability over the conventional model.

In addition, a transient response study for FFA-based PSSs
was performed in comparison to GA and PSO-based PSSs.
When the system is uncontrolled, this analysis compares
the performance of the FFA-based PSSs to the GA and
PSO-based PSSs, as well as the three optimized PSSs tech-
niques. For uncontrolled, PSO, GA-based PSS, and FFA-PSS
conditions, Table 10 examines how the first machine reacts
to a brief disturbance based on system time to settle in sec-
onds and time to rise in seconds. When the FFA-based PSS
design is employed, the rotor speed for G1 is increased by a
whopping 82.68 percent. This improvement is based on the
time it takes for the system to settle in contrast to when it
is uncontrolled. Because G1 is the reference machine, the
rotor angle response of G1 is zero. Table 11 shows that the
time to settle for rotor speed G2 using FFA was improved
by 79.48 percent when compared to when the system is
uncontrolled, while Table 12 shows that the time to settle for
rotor speed G3 using FFA was improved by 79.70 percent
when compared to when the system is uncontrolled.
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TABLE 12. WSCC transient action of third generator for case 1.

D. MODELING AND SIMULATION RESULTS OF IPFC USING
FFA DESIGN METHOD
The primary goal of power distribution control between lines
is to distribute power between lines of the transmission
system on which it is installed. Other functions, such as
dampening power fluctuations in a power system, can be
accomplished utilizing various controls on IPFC at the same
time. The dynamic power system model is determined by
algebraic-differential equations. Generators and their exci-
tation control systems, as well as IPFC, are related to dif-
ferential equations. This section looks at the fourth-order
generator excitation system as well as the first-order gener-
ator excitation system. The mechanical power of generators
is considered to be constant [34], [41]. The DC link voltage of
its inverters is represented by the differential IPFC equations.
Each VSCs are considered as a load, and the line network
is used to obtain the Ynew equivalent admittance matrix.
By absorbing loads in the network as constant impedance
and obtaining load voltage, generator currents and injectable
currents, IPFC branches will be obtained. Assuming that the
generators in the first 1st m are repeatedly in m + 1 to n and
IPFC-related system are also n+1 and n+2. Then the voltage
and current interface will be as follows. IG

IL
IIP

 = YN

 VG
VL
VIP

 , VIP = Vse, IIP = −Ise (9)

By absorbing loads as constant impedance to the admittance
matrix in relationships (10), (11) and (12) the Ynew equivalent
admittance will be obtained as:

M1 = YG − YGLY
−1
L YLG

M2 = YGIP − Y
−1
L YLIP (10)

M3 = YIPG − YIPLY
−1
L YLG

M4 = YIP − YIPLY
−1
L YLIP (11)

Inew = YnewVnew

Ynew =
[
M1 M2
M3 M4

]
Vnew =

[
VG VIP

]T
Inew =

[
IG IIP

]T (12)

The relationship between algebraic equations of the net-
work (new admin matrix) and stator equations is formed by

FIGURE 15. Dynamic IPFC model in multi-machine power system.

defining relationships (13), (14), and (15), and the DAEs
equations of the network are entirely solved.

TM
(
Id + jIq

)
= IG (13)

TM
(
Vd + jVq

)
= VG (14)

TM = diag
[
ej(δ1−

π
2 ) · · · ej(δm−

π
2 )
]

(15)

Figure 15 shows the test system equipped with IPFC device.
Now, by linearization of nonlinear DAEs governing the
system behavior, its state equations are obtained as Equa-
tion (16).

d1x
dt
= A1x + B1u (16)

1y = C1x + D1u (17)

The following is a list of vector-based systemmode variables:

xTIP =
[
Vdc xPI

]
xTpss =

[
xTpss1 x

T
pss2 · · · x

T
pssm

]
xTpssi =

[
xp1 xp2 xp2

]
A proportional-integral controller (PI) is used to change the
voltage of the dc link, hence xPI in the state variables refers to
the PI controller mode. Equation (18) considers the transfer
function for the PSSs as well as the IPFC supplemental
controller in this work. It has five settings that can be changed.
The additional pre-phase controller is given as Equation (18):

G(s) = KG
Tws (1+ sT 1) (1+ sT 3)

(1+ sTw) (1+ sT 2) (1+ sT 4)
(18)

Changes in the generator’s normalized angular velocity are
regarded the local input signal in the PSS transfer function,
and its output is a voltage signal that is added to the genera-
tor’s stimulation. The IPFC supplementary controller is also
considering a similar transfer function. The IPFC controller
input can be considered as a combination of local and remote
inputs, such as real line power changes and generator speed
changes. The output of the supplementary controller can also
be applied to each of the IPFC VSCs’ amplitude and phase
angle inputs.
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FIGURE 16. WSCC system equipped with IPFC control [29].

PSS and POD design have been turned into an optimization
problem in this study, and their parameters were obtained
using FFA. The following is the proposed objective function
for this optimization problem:

J = max { real (λi)| λi ∈ EMs}

+KP
∑{

real
(
λj
)∣∣ real(λj) ≥ 0

}
(19)

where, Kmin
Gpss ≤ KGpss ≤ K

max
Gpss

Tminipss ≤ Tipss ≤ Kmax
ipss

Kmin
Gpod ≤ KGpod ≤ Kmax

Gpod

Tminipod ≤ Tipod ≤ Kmax
ipod

i = 1, · · · , 4

The first statement from the objective function equation
increases the damping of electromechanical and inter-zone
modes, while the second sentence prevents unstable modes
from forming. The KP variable is an integer coefficient value
that is positive and equal to 50. The range of optimization
parameters for KG is considered as [0.001-50] and for Ti as
[0.001-1] for PSS and POD respectively [42].

For numerical simulations, the WSCC multi-machine test
system was chosen. Simulation of time-domain nonlinearity
on the WSCC test system using the IPFC-FFA stabilizer
was executed. To find permanent conditions, the system of
the Newton-Raphson load distribution program was imple-
mented [43]. To obtain the point of operating, nonlinear
equations were solved using Simulink and dynamic equations
were linearized and state equations were extracted. Using
the extracted state equations, eigenvalues and participation
coefficients of all eigenvalues were obtained. EMs in the
system are in accordance with Table 13 which shows the EMs
of the system without power fluctuations.

With the fast and correct altering of the line power flow
with respect to power swings in the system, the system

TABLE 13. EMs of WSCC system without damping power oscillations.

FIGURE 17. FFA implementation block diagram for optimal PSSs and POD
design.

stability margin and damping of critical modes are
increased [44]. Installation of IPFC with flexible opera-
tion and correct series converter control appears to be the
best solution to this problem. It is feasible to balance both
actual and reactive power of several tie lines between two
locations with different lengths using IPFC program [45].
In the power system, the proposed IPFC design is depicted
in Figure 16. The IPFC location is chosen based on both
static and dynamic objective functions study through detailed
load flow and stability analysis [46]. Then, based on the
dynamic objective function evaluation, which includes the
speed difference of generators and active power oscillations
parameters between areas, the best location for stability
increase is chosen [46]. The IPFC series converters are best
located between buses 5 and 6. An IPFC with two branches
is installed in lines 5-7 and 6-9. The control system applied
to IPFC is shown in Figure 16. Generators 1, 2, and 3 are
responsible for the EMs with the lowest damping ratio,
as seen in Table 13. In other words, this system contains a
mix of local and inter-regional EMs. To improve the damping
profile of these EMs, a PSSs was installed in the generator 2
with a POD on the IPFC installed in line 5-7, according to
the existing participation coefficients in Table 13. Similarly,
a PSSs was installed in generator 3 with a POD on the IPFC
installed in line 6-9, according to the existing participation
coefficients Table 13. The good reason for installing the
IPFC between line 6 and 9 is because of simplicity of local
signal availability compared to the distant signal, only the
signal of real power changes passing through line 6-9 is
considered as an entry for POD [30]. The second transducer
angle modulator’s input was supplemented with additional
controller output. The proposed objective function was sim-
ulated using the FFA algorithm with initial population of
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FIGURE 18. For case 1, the controlled angle of generator 2 in relation to
generator 1.

FIGURE 19. For case 1, the controlled angle of generator 3 in relation to
generator 1.

50 and number of 100 repetitions, and the PSS and POD
values were determined simultaneously. Figure 17 explains
the optimization structure of obtaining the optimal PSSs
and POD parameters using the proposed FFA optimization
technique.

Several potential operating conditions on the test system
were examined to satisfy the research objectives. For the
second objective, there will be two cases considered for the
WSCC test systems. They are:
Case 1: The third generator excitation voltage reference

was subjected to small variations of 5% increments for
100 milliseconds in one second.
Case 2: Three-phase symmetric fault at bus 9 were applied

to the system for 100 milliseconds in one second with no
change in system loading.
Case 1 IPFC-FFA-PSS Controller: The controlled genera-

tor 2 rotor angle δ2 relative to δ1 (δ2−δ1), the controlled gen-
erator 3 rotor angle δ3 relative to δ1 (δ3−δ1) and the controlled
speed of the three generators are illustrated in the sequence of
Figures 18, 19, and 20 respectively. These results are the
outcome of the system’s IPFC-based FFA stabilizer being
installed.
Case 2 With IPFC-FFA-PSS Controller: Following the

IPFC-FFA-based PSSs design, controlled generator 2 rotor
angle δ2 relative to δ1 (δ2 − δ1), the controlled generator 3
rotor angle δ3 relative to δ1 (δ3 − δ1) and the controlled

FIGURE 20. Controlled changes in the speed of generators for case 1.

FIGURE 21. For case 2, the controlled angle of generator 2 in relation to
generator 1.

FIGURE 22. For case 2, the controlled angle of generator 3 in relation to
generator 1.

speed of the three generators are illustrated in the sequence of
Figures 21, 22, and 23 respectively. The installation of
an IPFC-based FFA stabilizer on the system yielded these
findings.

The supplemental controller built utilizing FFA was found
capable to regulate low frequency fluctuations, according to
simulation findings obtained for the validation of IPFC-based
FFA stabilizer on the multi-machine test system.

E. QUANTITATIVE PERFORMANCE EVALUATION
COMPARISON FOR IPFC DESIGN
The results from the proposed model are compared to the
reference results to demonstrate the effectiveness of the
proposed technique in contrast to other approaches [47]
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FIGURE 23. Controlled changes in the speed of generators for case 2.

TABLE 14. WSCC system EMs comparison.

considering operating condition case two. Comparing the
results of the proposed model and reference model [47] in
the damping of EMs in the three-machine power system is
listed in Table 14. The eigenvalues in the Table 14 for three
examples, including the proposed model, and the literature
published models in [47] with the identical operating circum-
stances, were gathered in this case for comparative reasons.
The reference model utilized Bees search method to optimize
the PSS with UPFC, SSSC, TCSC, STATCOM and SVC
controls while the proposed model utilized FFA to optimized
PSS with IPFC.

The proposed method reduces the damping of EMs caused
by the generators. The given eigenvalues for all of the
approaches were found on the left half-plane, as shown in the
Table 14. Based on this, it can be observed that the proposed
method is more effective than current methods. IPFC-based
FFA stabilizer was compared with the optimized FFA-based
PSSs and when the system is not controlled. A tran-
sient response analysis was also carried out for the IPFC’s
PSS-based stabilizer in comparison to the optimized one.
The first machine reacts to momentary disturbance based on
the system time to settle in seconds and time to rise in sec-
onds for uncontrolled, FFA-based PSS and IPFC-FFA-PSS
circumstances respectively is shown in Table 15. IPFC-FFA-
PSS design improves rotor speed G1 transient reaction by an
amount of 5.07% and 17.64% respectively. The improvement
is based on time to settle and time to rise in comparison to

TABLE 15. WSCC transient action of first generator for case 2.

TABLE 16. WSCC transient action of second generator for case 2.

TABLE 17. WSCC transient action of third generator for case 2.

when the system is uncontrolled. Similarly, Table 16 shows
the time to settle for rotor speed G2 using the IPFC-FFA
stabilizer was improved by 5.40% compared to when the
system is uncontrolled. Table 17 records an improvement of
13.62% for time to settle of rotor speed G3 using the FACTS
stabilizer.

IPFC method controls magnitude and direction of power
flow. It’s overcome specific limitation of lines, extend the
usable transmission limits, enhance grid reliability. No need
to check the control or visible power system and reduce num-
ber of control variables in the control design problem. The
results of numerical simulations show many advantages for
the IPFC method. IPFC-based FFA stabilizer design reduces
the low frequency fluctuations well and increases the damp-
ing ratio of local electromechanical modes in an effective
way, according to simulation results. The IPFC device damp-
ens the systems LFOs effectively when coordinated with the
optimized PSSs in the system than when there was no coordi-
nation. This is a major drawback of the FACTS stabilizer as
they require a complementary controller. It makes the system
more cumbersome and takes a lot of time to achieve final
solution.

IV. PROPOSED NFC METHODOLOGY
This section contains a demonstration of the proposed con-
troller structure and how it was used in this study. To create
fuzzy IF-THEN rules and explain membership functions for
input and output system parameters, the suggested control
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FIGURE 24. Two-input sugeno type NFC assembly.

model was trained from the start [51]. The back-propagation
method is used to train this structure, which is essentially
a multi-layer NN [13], [33] and [51]. When input-output is
provided for training, the back-propagation algorithm mea-
sures the system’s output and compares it to the preferred
output of the training example to illustrate how the neuro-
fuzzy system operates. From the output to the entry layer, the
error is sent backwards through the device network. When a
mistake is communicated, the activation processes of neurons
are altered. By differentiating the activation functions of the
neurons, the algorithm now calculates the needed changes.
The following section looks at the sugeno type’s fuzzy laws
logical ambiguity [48]:

Rj : If x1,Aj, · · · xn,Ajn then y = fi

= aj0 + k
j
1X1 + k

j
2X2 + k

j
nXn (20)

The input and output variables are x and y, respectively.
Figure 24 shows the diagram assembly of the proposed

controller in use in the control system [49], [51].
The proposed controller structure’s inputs are specified.

The (e) and change in error (1e) inputs of NFC are deter-
mined. Layer-1, also known as the Fuzzification layer, selects
three Gaussian Membership Functions (MFs) for each input.
For Gaussian MF, write the following mathematical expres-
sion [13], [51].

σ 1
j = exp

∣∣∣∣∣
(
xi − mij

)2
2
(
σij
)2

∣∣∣∣∣ (21)

where, σ and m present the standard deviation and mean of
MF. Firing strengths in the layer-2, also called rule layer, are
obtained from membership degrees calculated in the layer-1
as:

σ 2
j = ωi = µAi (e) .µBi (1e) (22)

The normalization layer is the third layer, and it determines
the normalized firing powers for each rule. The output of this
layer is represented by Equation (23).

σ 3
j = ω̄j =

ωj

ω1 + ω2 + · · · + ωj
(23)

FIGURE 25. Proposed NFC design structure using the FFA method.

The defuzzification layer is the fourth layer, and it computes
the rules weighted values for each node as follows:

σ 4
j = ω̄jfj = ω̄j (k1e+ k21e+ k0) (24)

Here, (k1 + k2 + k0) are the parameter sets. The output layer
is labeled layer-5 and is written as follows:

σ 5
j =

(∑
i
ωifi

)
×

(∑
i
ωi

)−1
(25)

The squared error (E) in Equation (26) decreases tracking
error (e) and is expressed as [48], [51]. In order to update the
antecedent and consequent part parameters by backpropaga-
tion algorithm, the squared error (E) in Equation (26) lowers
tracking error (e) and is expressed as [51]:

E =
1
2
e2 (26)

The following equation can be used to update the parameters
of the proposed controller structure if the parameter to be
adapted is determined as ϑ .

ϑ (k) = ϑ (k − 1)+
(
−η

∂E (k)
∂ϑ (k)

)
(27)

The variable η is referred to as the learning rate. The partial
derivative is calculated using the chain rule [13], [51]. The
derivative chain up to the NFC’s output is as follows:

δ1 =
∂E
∂e

∂e
∂V ∗nfcs

∂V ∗nfcs
∂y6

(28)

The FFA algorithm is used to obtain the parameters K1,
K2, and K3 in the proposed controller structure as shown in
Figure 25.

TheNFC scale or control parameters are the names given to
these parameters. As a result, a more powerful controller was
obtained. The proposed controller receives the machine rotor
speed deviation dω as an input for controlling the system
LFOs. The proposed controller generates a reference signal(
Vnfcs

)
. This signal is sent to the excitation system model,

which generates the appropriate signals for dampening the
system’s LFOs.

V. SIMULATION RESULTS AND DISCUSSION OBTAINED
TO VALIDATE THE PROPOSED NFC DESIGN ON WSCC
TEST SYSTEM
To find the WSCC system working point, nonlinear equa-
tions were solved using Simulink, dynamic equations were
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TABLE 18. Parameters obtained from the linearization of WSCC test
system.

TABLE 19. Parameters obtained from NFC of WSCC test system.

linearized, and state equations were extracted. The eigen-
values and participation coefficients of all eigenvalues were
calculated using the extracted state equations. The system’s
EMs are in accordance with Table 18, which characterizes
the system’s EMs without power fluctuations.

The results in Table 18 show that the speed and angle
of the second and third generators’ rotors have an effect on
modes 1 and 2. These modes are known as electromechanical
modes (EM) because they are created by the generator’s rotor
angle, and they are also known as inter-regional modes since
they are caused by many generators. Modes 3 and 4 can be
argued in the same way. Modes 1 to 4 have a damping ratio of
less than 0.1 in terms of low frequency fluctuations long-term
stability, and so require compensation and control. The results
of transient simulations also emphasize on it. As a result,
a supplemental controller for this system is required. Mode
number 12 with an eigenvalue equal to zero has appeared in
the results. This mode is due to the selection of the angle
of the first generator rotor as the reference angle during
the implementation of the simulations in this thesis. NFC
damping controller has been added to the system in order to
increase the damping rate of EMs to a value greater than 0.1.
Generator No. 2 has the greatest effect on EMs, according
to the participation coefficients calculated in Table 18, hence
NFC is installed for this generator. Table 19 illustrates the new
eigenvalues and participation coefficients of all eigenvalues
obtained after the WSCC test system was equipped with the
proposed NFC stabilizer.

From Table 18, the weak modes of the eigenvalues were
increased by a damping ratio greater than 0.1.

FIGURE 26. Controlled generator rotor angle against the first generator
for case 1.

FIGURE 27. Controlled generator speed for case 1.

Several potential operating conditions on the test system
were examined to satisfy the research objectives. For the third
objective, there will be three cases considered for the WSCC
test systems. They are:
Case 1: Three-phase symmetric fault at bus 9 were applied

to the system with no change in the system loading.
Case 2: A symmetrical three-phase fault at bus 9 with a

120% increase in active power on generator 2 and generator 3.
Case 3: A symmetrical three-phase fault at bus 9 with an

80% decrease in active power on generator 2 and generator 3.
Case 1 With NFC Controller: The controlled generator 2

rotor angle δ2 relative to δ1 (δ2 − δ1) and the controlled
generator 3 rotor angle δ3 relative to δ1 (δ3−δ1) is obtainable
in Figure 26 while the controlled speed of the three generators
are displayed in Figure 27. These outcomes are the result of
the NFC stabilizer that was placed in the system.
Case 2 With NFC Controller: A comparative result

between the system with uncontrolled, with FFA-PSS con-
trolled and with the proposed NFC controlled was evalu-
ated. The controlled generator 2 rotor angle δ2 relative to δ1
(δ2−δ1), the controlled generator 3 rotor angle δ3 relative to δ1
(δ3−δ1) are explain in Figures 28 and 29 while the controlled
generator 2 rotor speed ω2 relative to ω1 (ω2 − ω1), the
controlled generator 3 rotor speed ω3 relative to ω1 (ω3−ω1)
are explained in the order of Figures 30 and 31 respectively.
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FIGURE 28. For scenario 2, the rotor angle of generator 2 relative to that
of generator 1.

FIGURE 29. For scenario 2, the rotor angle of generator 3 relative to that
of generator 1.

FIGURE 30. For scenario 2, the rotor speed of generator 2 relative to that
of generator 1.

FIGURE 31. For scenario 2, the rotor speed of generator 3 relative to that
of generator 1.

These design results were obtained after equipping the system
with the proposed NFC stabilizer.
Case 3 With NFC Controller: After installing the NFC

model in the system, a symmetrical three-phase fault for
100milliseconds has been simulated and the results have been

FIGURE 32. For scenario 3, the rotor angle of generator 2 relative to that
of generator 1.

FIGURE 33. For scenario 3, the rotor angle of generator 3 relative to that
of generator 1.

FIGURE 34. For scenario 2, the rotor speed of generator 2 relative to that
of generator 1.

obtained. Comparative results show the controlled genera-
tor 2 rotor angle δ2 relative to δ1 (δ2 − δ1), the controlled
generator 3 rotor angle δ3 relative to δ1 (δ3 − δ1) are explain
in Figures 32 and 33 respectively. The controlled generator 2
rotor speed ω2 relative to ω1 (ω2 − ω1) and the controlled
generator 3 rotor speed ω3 relative to ω1 (ω3 − ω1) are
explained in the order of Figures 34 and 35 respectively.

A. QUANTITATIVE PERFORMANCE EVALUATION
COMPARISON FOR NFC DESIGN
For the three machines, a transient response study was per-
formed for the proposed NFC stabilizer in comparison to
the optimized FFA-based PSSs and when the system is not
controlled. For uncontrolled, FFA-based PSS and NFC con-
ditions, Table 20 examines how the first machine reacts to a
short disruption based on the system time to settle in seconds
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FIGURE 35. For scenario 3, the rotor speed of generator 3 relative to that
of generator 1.

TABLE 20. WSCC transient action of first generator for case 1.

TABLE 21. WSCC transient action of second generator for case 1.

TABLE 22. WSCC transient action of third generator for case 1.

and time to increase in seconds. When the NFC stabilizer
was employed, the rotor speed G1 transient responsiveness
was improved by 66.57 percent in terms of time to settle
and 64.70 percent in terms of time to rise. In comparison to
when the system is uncontrolled, this improvement is based
on time to settle and time to rise. Because G1 was used as the
reference machine, the rotor angle response of G1 is zero.

Table 21 shows that the time to settle for rotor speed G2
using the NFC stabilizer was improved by 69.66 percent
when compared to when the system is uncontrolled, while
Table 22 shows that the time to settle for rotor speed G3
using theNFC stabilizer was improved by 75.70 percent when
compared to when the system is uncontrolled.

TABLE 23. WSCC transient performance results comparison for case 1.

The results of the proposed model are compared with the
results in the reference model [52] to show the effectiveness
of the new approach. The reference model [52] examines
the design of WSCC PSSs systems utilizing two-level fuzzy
PSSs (TLFPSS) and two-level ANFIS PSSs (TLAFPSS).
Table 23 compares the numerical results of the proposed
model and reference model [52] of G2 and G3 in the damping
of EMs in the WSCC test power system for case 1 in the
damping of EMs. The reference model [52] has the same
operational conditions as the proposal model, which were
obtained in this case for comparison purposes. For that spe-
cific generator, the technique with lower values of time to
settle provides strong stability qualities.

It can be shown from Table 23 that the proposed method
minimizes the EMdamping caused by theG2 andG3. In other
words, it improves the time to settle for EMs generated by
the generator 2 by 389 percent when compared to the uncon-
trolled state, 61.7 percent when compared to the TLFPSS
reference model [52], and 51.9 percent when compared to the
TLAFPSS reference model [52]. In addition, the suggested
model saw a 55.9% and 53.4 percent reduction in settling
time for EMs produced by generator 3 when compared to the
TLFPSS reference model [52] and the TLAFPSS controlled
reference model [52], respectively. On the other hand, the
suggested models exhibited effective action on the electric
network, placing the eigenvalues in better places than the
uncontrolled and referenced models. The reduced settling
time values ensured the suggested model’s effectiveness in
damping down the LFO and achieving improved stability
over the reference model.

VI. WSCC TEST SYSTEM QUANTITATIVE PERFORMANCE
EVALUATION COMPARISON OF PSS, IPFC, AND NFC
DESIGN RESULTS FOR CASE 1
Considering the WSCC system, the effectiveness of the pro-
posed technique in comparison with other approaches for
WSCC test system, the quantitative EMs and damping ratio
results based on the proposed NFC model are compared with
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TABLE 24. WSCC system PSS, IPFC and NFC design results comparison for
case 1.

the FFA-PSS design results and FFA optimized PSS with
IPFC.

Table 24 compares the proposed NFC model’s EMs and
damping ratio numerical results with the FFA-PSS design
results and FFA optimized PSS with IPFC for no change
in loading circumstances case 1 in the damping of EMs in
the WSCC test power system. For comparison purposes, the
FFA-PSS design operating points and FFA optimized PSS
with IPFC have identical operating conditions to the proposed
NFC model.

VII. SENSITIVITY ON THE APPLICATION OF THE
PROPOSED NFC MODEL WITH THE FFA-PSSs AND
MULTI-BAND PSSs
Conventional PSSs (CPSS) structures (IEEE PSS2B and
IEEE PSS3B) are meant to provide the stabilizing signal by
passing only a single frequency band. In this regard, IEEE
Std. 421.5 [53] introduced a novel PSS structure called as
a multiband PSS (MBPSS). This new MBPSS is unique in
that it addresses the three distinct frequency bands for more
effective dampening of various power system oscillation
types [54], [55]. To establish the NFC stabilizer effects on the
improvement of the system dynamic response and the rele-
vance of the proposed FFA optimization method in achieving
robustness, a reference model in [56] that studied different
number of PSSs was considered. The reference model [56]
considers a conventional multi-band PSSs (CMBPSS), a
fractional-order (FO) multi-band PSSs (PSO-FO-MBPSS)
and a Fractional-order lead-lag compensator-based MBPSS
design using a hybrid dynamic GA-PSO method. For WSCC
test system, the quantitative EMs and damping ratio results
based on the proposedNFCmodel are comparedwith the FFA
based conventional PSS (FFA-CPSS) design results and the
results from the reference model [56].

Table 25 compares the proposed NFC model’s EMs and
damping ratio numerical results with the FFA-CPSS design
results and the results of the reference model [56] for no
change in loading circumstances case 1 in the damping of
EMs in the WSCC test power system. For comparison pur-
poses, the FFA-CPSS design operating points, the proposed
NFC model and that of the reference model [56] have iden-
tical operating conditions. From the system eigenvalues and
damping ratios of themechanicalmode in Table 25 for normal
loading conditions, the proposed NFC model damping rate

TABLE 25. WSCC system CPSS, CMBPSS, PSO-FO-MBPSS,
DGA-PSO-FO-MBPSS and NFC design results comparison for case 1.

values where found 36.73% efficient when compare to the
DGA-PSO-FO-MBPSS reference model [56] and 41.30%
efficient compared to the PSO-FO-MBPSS model [56].
These values of the damping ratios are significantly improved
by the proposed NFC model. It is also clear that the eigenval-
ues associated with the electromechanical modes have been
shifted to the left of the s-plane with the proposed controller
compared to the reference model [56] controllers.

VIII. CONCLUSION
In this study, research objectives one was obtained by design-
ing aWSCCmulti-machine PSSs system using Farmland Fer-
tility Algorithm (FFA-PSSs controller) and its performance
efficiency was compared to GA and PSO-based PSSs con-
trollers. Research objectives two was obtained by adding an
Interline Power Flow Controller (IPFC) FACTS device to the
PSSs controller to improve the power system’s oscillatory
stability. The application of the FFA-optimized PSSs with
IPFC was achieved in coordinated operation. PSSs optimal
design and supplemental controller of power fluctuations
for IPFC were conducted out on WSCC multi-machine test
systems using a system linear model. Using time-domain
simulations and quantitative analysis, the performance and
efficiency of the proposed FFA-optimized PSSs with IPFC
model was compared to the FFA-PSSs controller. From the
simulations and quantitative analysis outcomes, it was found
that the coordination of the FFA-optimized PSSs with the
IPFC model was found superior than the FFA-PSSs con-
troller in LFOs mitigation. However, in both PSSs design
the rise in the computational and simulation costs was found
unavoidable. This is a major drawback. To compensate and
overcome these drawbacks, this paper proposed a Neuro-
Fuzzy Controller (NFC) developed as a damping controller
that can take the place of the two controllers. Quantitative
analysis results from the WSCC test system simulation show
that in terms of settling time G1 rotor speed respond, the pro-
posed NFCmodel was found to be 480 percent efficient when
compared to the uncontrolled model and 0 percent efficient
when compared to the FFA-PSS and the FFA optimized PSS
with IPFC controller. Similarly, the proposed NFC model
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was shown to be 390 percent efficient when compared to the
uncontrolled model and 0 percent efficient when compared
to the FFA-PSS and the FFA optimized PSS with IPFC con-
troller, respectively, based on the settling time G2 rotor angle
response. Furthermore, the proposed NFC model was found
to be 216 percent efficient when compared to the uncontrolled
model, 0 percent efficient when compared to the FFA-PSSs
design technique, and 149 percent efficient when compared
to the FFA optimized PSS with IPFC controller. Finally, the
proposed NFC model was shown to be 0% efficient when
compared to FFA-PSSs and FFA optimized PSS with IPFC
controllers, but 394 percent efficient when compared to the
uncontrolled model using G3 settling time for rotor speed
data. The same goes to the time to settle for the rotor angle
respond only the uncontrolled model was found efficient
(130%) when NFC model was used with the two controllers
0% efficient. These quantitative simulation outcomes justifies
the proposed controllers capacity in substituting the roles of
the two damping controllers at the same time overcoming the
computational and simulation cost involved when the system
is design using the two damping controllers.
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