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A B S T R A C T   

Since distribution networks have multiple branches, complex topologies and increasing penetration of the 
distributed energy resources (DERs), the accurate fault location is difficult to realize. The existing traveling wave 
fault location methods are strongly affected by the arrival time errors. To overcome the problems mentioned 
above, a multi-terminal traveling wave fault location method is proposed for active distribution networks based 
on residual clustering. Firstly, the traveling wave arrival times are utilized to construct a minimized optimization 
model for each section. The objective optimization function represents the minimization of the sum of squared 
errors (MSSE), and the global optimal solutions reflect the wave velocity and the fault distance. Subsequently, the 
particle swarm optimization algorithm (PSO) is used to solve the above optimization models, and the section 
with the minimum MSSE is judged as the faulty section. Finally, the density-based spatial clustering of appli-
cations with noise (DBSCAN) algorithm is utilized to group the residuals of the faulty section to identify the bad 
data, which are affected by the arrival time errors. And the normal data remained are applied to reconstruct the 
optimization model and calculate the optimal solution of the fault distance. Thus, the fault location results can be 
corrected. Simulation results and field tests indicate that the proposed method has high fault location accuracy, 
strong robustness to time errors and high adaptability for active distribution networks.   

1. Introduction 

Rapid and accurate fault location for distribution networks can 
effectively accelerate fault maintenance and power supply recovery, 
which is of great significance to improve the system stability and reli-
ability. In recent years, distribution systems around the world have 
gradually commercialized the use of DERs, including photovoltaic solar 
energy, wind energy and battery energy, etc. [1]. With the large-scale 
integration of DERs and its associated power electronics, the “radial” 
structure and passive characteristic of traditional distribution networks 
have disappeared. Meanwhile, the power flow direction of some feeders 
in the grid has changed from unidirectional to bidirectional and the fault 
characteristics are quite different from traditional system, which result 
in the false coordination with the conventional over-current protection. 
Thus, the protection and fault location performance become urgently to 
be enhanced [2–3]. 

If the primary equipment is not added, the existing accurate fault 
location methods can be broadly classified into two main categories 
based on the utilized principle: impedance-based methods and traveling 

wave-based methods. Impedance-based methods are easily affected by 
network structure, line parameters, CT saturation and unbalanced three- 
phase loads, and the location accuracy is low [4–7]. In addition, the 
distributed generations (DGs) based on inverter usually have fault ride- 
through ability, which adversely affects the impedance-based methods. 
However, traveling wave-based methods are not affected by fault con-
ditions, CT saturation and load conditions [8–12], which have high 
location accuracy and obviously theoretical advantages. With the 
development of PMU device, wireless communication and signal pro-
cessing technology [13], traveling wave-based methods have shown 
great application potential. More importantly, the traveling wave-based 
methods have excellent adaptability to DERs. On the one hand, the 
length of distribution lines is generally short, thus the initial traveling 
wave can be caught in dozens of microseconds (μs). While the control 
response time (the control time and the switching time of control 
strategy) of distributed generations is milliseconds (ms). The initial 
traveling wave will reach the measuring point earlier than power elec-
tronic devices control response. Thus, the traveling wave-based method 
can be free from the influence of DERs. On the other hand, traveling 
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wave is essentially a transmission state of electromagnetic wave on 
transmission line. The initial traveling wave is only related to the 
superimposed fault voltage source and the distributed parameters of the 
line. Therefore, DERs can be regarded as the boundary of the line, which 
have a certain impact on the subsequent refraction and reflection of the 
traveling wave, while the initial traveling wave will not be affected. 

Distribution networks have a multilayer branch structure with short 
lines. Hence, the mature two-ended traveling wave method in the 
transmission networks is difficult to be directly adopted [14]. Currently, 
the theoretical research of the traveling wave-based method in the dis-
tribution networks focuses on the use of multi-terminal measurement 
information [15–26]. In [15], a set of linear equations are constructed 
with the arrival times at all nodes, and the faulty section is obtained by 
solving the equations. However, the location result of this method is 
susceptible to the error of wave velocity. In [16,17], a fault distance 
difference matrix is constructed by using the arrival times of the fault- 
generated traveling wave, through comparing the matrix elements 
with those in the topological distance difference matrix, the faulty sec-
tion and fault location can be realized. In [18,19], a set of fault distances 
are calculated based on the principle of the two-ended traveling wave, 
and the fault distances are compared with the branch length to deter-
mine the faulty branch. The method in [20] analyses the characteristics 
of the arrival time differences of the initial traveling waves in different 
faulty sections, and utilizes these characteristics to identify the reflected 
traveling wave of the fault point, then the fault distance can be calcu-
lated based on the signal-ended method. However, the above methods in 
[16–20] depend on the accuracy of time information. When there are 
time errors, it may misjudge the faulty section and cause the location 
failure. In addition, the method in [20] depends on the accurate iden-
tification of reflected traveling wave, while the fault traveling wave can 
be reflected at the wave impedance discontinuities such as branch points 
and network terminals. Thus, it is extremely difficult to identify the 
reflected traveling wave of the fault point, which makes it difficult to 
apply the single-ended method in the distribution networks [20–23]. In 
[24,25], the location criterion is constructed for every possible fault 
point in the network based on the arrival time differences of the trav-
eling waves, which is not necessary to identify the faulty section in 
advance. However, each potential fault point is obtained by one simu-
lation process, which aggravates the calculation of fault location. In 
[26], redundant fault location equations are constructed by using the 
traveling wave information of multiple measuring points, then the 
multiple initial fault distances are solved. Finally, the weighted average 
method is used to fuse the fault distances. However, the fusion effect of 
this method is easily affected by the weight setting. The methods in 
[24–26] utilize the redundant time information for fault location, they 
have a certain degree of time error tolerance, but cannot avoid the effect 
of time error on location results. When several detectors have large time 
errors, the fault location may be failed. 

In view of the defects of the above methods, a multi-terminal trav-
eling wave fault location method for active distribution network based 
on residual clustering is proposed in this paper. When a fault occurs, the 
initial traveling wave arrival times are utilized to construct the mini-
mized optimization model for all sections respectively, where the 
objective function represents the MSSE and the optimal solutions reflect 
the traveling wave velocity and the fault distance. Then, PSO algorithm 
is utilized to solve the optimization model of each section. The section 
with the minimum MSSE is judged as the faulty section, and the corre-
sponding optimal solutions are the initial solution of traveling wave 
velocity and fault distance. In order to reduce the effect of time errors on 
the location result, DBSCAN algorithm is utilized to group the residuals 
of the faulty section and identify the bad data which are affected by time 
errors. The optimization model is repeatedly constructed by using the 
remained normal data. Then the corrected solution of the fault distance 
is calculated to obtain the real fault location result. Simulation results 
and field tests show that the proposed method has high accuracy and 
strong robustness to time errors. 

2. The fault location method based on multi-terminal traveling 
wave 

At present, the methods for traveling wave detection are relatively 
mature, including wavelet transform [27], Hilbert-Huang transform 
(HHT) [28], S-transform [29,30], teager energy operator (TEO) [31] and 
mathematical morphology (MM) [32], etc. Among them, S-transform 
has the advantage of extracting the traveling wave with a specific fre-
quency. Since the velocity of the aerial-mode traveling wave is closely 
related to frequency, if a specific frequency of the aerial-mode traveling 
waves and their arrival times can be extracted, the traveling wave ve-
locity in the network can be considered as a constant. According to the 
Nyquist sampling theorem, if the original signal with frequency f is 
recovered from the sampling signal without distortion, the sampling 
frequency should be greater than 2f. Therefore, the Nyquist frequency is 
0.5 fs when the sampling rate of the traveling wave detector is fs. In this 
paper, generalized S-transform [33] is utilized to detect the arrival times 
of aerial-mode traveling waves at Nyquist frequency. 

Before fault location, the network topology is defined as follows. 
Ignore primary equipment such as main power supply, transformer and 
circuit breaker. The terminals of the network are defined as the end-
points, denoted as “D”; the line intersections are defined as the branch 
points, denoted as “B”. In this paper, D-PMU device is used to detect the 
traveling wave signal of aerial-mode voltage [34,35]. Due to the high 
cost of D-PMU and the limited space and load-bearing capacity of the 
overhead wire tower, most branch points have no conditions for addi-
tional installation of D-PMU. Therefore, this paper only places D-PMUs 
at the endpoints. 

Take the complex radiant distribution network shown in Fig. 1 as an 
example. The network structure of its equivalent transformation is 
shown in Fig. 2, according to the definition of the above network to-
pology. Fig. 2 shows a total of 16 endpoints, 12 branch points, and the 
node corresponding relationship between Fig. 1 and Fig. 2 is shown in 
Table 1. 16 D-PMUs are installed in this network, and the symbol of each 
detector is the same as the corresponding endpoint, denoted as “D1 ~ 
D16”; The arrival times of the measured initial traveling waves are 
denoted as “T1 ~ T16”. 

The premise of accurate fault location is identifying the faulty sec-
tion. Both the endpoint “D” and branch point “B” in. Fig. 2 are consid-
ered as node “N”, any two nearest nodes constitute a section. There are 
27 sections in total without line overlap. For a section NiNj composed of 
adjacent nodes Ni and Nj, the network can be divided into two parts. The 
upstream part is directly connected to the node Ni, and the downstream 
part is directly connected to the node Nj. The D-PMU detectors are also 
divided into two groups. The detectors contained in the upstream part 

Fig. 1. Complex radiant distribution network.  
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are denoted as the set Su. The detectors contained in the downstream 
part are denoted as the set Sd. The optimization model is constructed 
according to the known line lengths and the measured traveling wave 
arrival times. The objective function and constraint conditions are as 
follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min fNiNj (v, l) =
∑C(n,2)

R2
xy

Rxy = LNjDx − LNjDy − v (Tx − Ty) − 2 l dxy

dxy = 1 Dx ∈ Su , Dy ∈ Sd

dxy = 0 Dx, Dy ∈ Su or Dx, Dy ∈ Sd

s.t. 0 < v < vc

0⩽l⩽LNiNj

(1) 

Where LNjDx and LNjDy are the line lengths from node Nj to detectors Dx 

and Dy respectively, Tx and Ty are the arrival times of traveling waves 
measured by detectors Dx and Dy respectively, n is the number of de-
tectors, C(n, 2) is the number of combinations of any two detectors, i.e. n 
(n-1)/2, dxy is a 0–1 coefficient related to the position of the detectors, vc 
represents the speed of light, LNiNj represents the line length of section 
NiNj. In mathematical statistics, residual refers to the difference between 
the actual observed value and the estimated value, which can be 
regarded as the observed value of the error. When the estimated value is 
equal to the actual observed value, the residual is zero. In this paper, 
LNjDx − LNjDy is regarded as the actual observed value, 
v (Tx − Ty) + 2l dxy is regarded as the estimated value based on the 
decision variables [v, l]. On this basis, Rxy can be regarded as the re-
sidual, and the objective function fNiNj can be regarded as the MSSE of 
the section NiNj. The optimal solution of the decision variable v repre-
sents the wave velocity, and the optimal solution of the decision variable 

l represents the line length between the fault f and the downstream node 
Nj. 

PSO algorithm is used to solve the above optimization model [36]. 
The relevant parameters are set as follows: the total number of particles 
is 5, the dimension of each particle is 2 which represent the wave ve-
locity and the fault distance respectively. The velocity thresholds of 
particles are ± 0.03vc and ± 10 respectively. The learning factors are 
1.5, and the inertia weight decreases nonlinearly from 0.5695 to 0.1565. 
Since Eq. (1) is a convex optimization problem, its local optimal value 
must be the global optimal value. Therefore, few iterations can converge 
to the optimal solution. In this paper, the number of iterations is set as 
100, the algorithm will terminate when the number of iterations exceeds 
100. 

Obviously, each section can build a similar optimization model. The 
fault f in Fig. 2 is located on section B9B2. When the section NiNj is 
exactly the faulty section B9B2, the network divided result is shown in 
Fig. 3, where Su contains detectors {D3, D4, D5, D6, D7}, Sd contains 
detectors {D1, D2, D8, D9, D10, D11, D12, D13, D14, D15, D16}. Eq. (1) can 
be rewritten as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min fB9B2 (v, l) =
∑C(16,2)

R2
xy

Rxy = LB2Dx − LB2Dy − v (Tx − Ty) − 2l dxy

dxy = 1 Dx ∈ Su , Dy ∈ Sd

dxy = 0 Dx, Dy ∈ Su or Dx, Dy ∈ Sd

s.t. 0 < v < vc

0⩽l⩽LB9B2

(2) 

When there are no time errors, the global optimal solutions of de-
cision variables [v, l] are: 
{

v = vwave
l = lfB2

(3) 

Where vwave is the ideal wave velocity, and lfB2 is the distance be-
tween the fault f and the downstream node B2. It can be analysed that all 
the C(16,2) coefficients Rxy are 0 and the minimum value of the objec-
tive function is 0 by substituting the results of Eq. (3) into Eq. (2). 
Therefore, when there are no time errors, the MSSE of the faulty section 
is 0, and the optimal solutions of the decision variables are the real 
traveling wave velocity and fault distance. 

When the section NiNj is a non-fault section, take section B8B9 as an 

Fig. 2. Equivalent network after transformation.  

Table 1 
The node corresponding relationship between Fig. 1 and Fig. 2.  

Fig. 1 Fig. 2 Fig. 1 Fig. 2 Fig. 1 Fig. 2 Fig. 1 Fig. 2 

D1 17 D8 87 D15 118 B6 90 
D2 27 D9 102 D16 3 B7 31 
D3 53 D10 99 B1 11 B8 29 
D4 44 D11 94 B2 2 B9 4 
D5 63 D12 79 B3 1 B10 103 
D6 61 D13 116 B4 65 B11 109 
D7 9 D14 111 B5 67 B12 81  

Fig. 3. The network divided result of the faulty section B9B2.  
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example to explain. The network divided result is shown in Fig. 4, where 
Su contains detectors {D3, D4, D5, D6}, Sd contains detectors {D1, D2, D7, 
D8, D9, D10, D11, D12, D13, D14, D15, D16}. Eq. (1) can be rewritten as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min fB8B9 (v, l) =
∑C(16,2)

R2
xy

Rxy = LB9Dx − LB9Dy − v (Tx − Ty) − 2l dxy

dxy = 1 Dx ∈ Su , Dy ∈ Sd

dxy = 0 Dx, Dy ∈ Su or Dx, Dy ∈ Sd

s.t. 0 < v < vc

0⩽l⩽LB8B9

(4) 

It can be seen that detector D7 is located in upstream of the fault, but 
it is grouped into the downstream set Sd, which makes the solution of the 
optimization model more complicated. When there are no time errors, 
the C(16,2) combinations of detectors for section B8B9 are discussed in 
three cases for the convenience of analysis. 

Case 1: If detector D7 is ignored, there are a total of C(15,2) com-
binations of detectors to construct a sub-optimization model by using 
the remained detectors. The optimal solutions with MSSE equal to 0 exist 
in this sub-optimization model, when the constraint conditions are not 
considered: 
{

vcase1 = vwave
l case1 = − lf B9

(5) 

Case 2: When one detector is D7 and the other detector belongs to Su, 
there are 4 detector combinations and dxy is equal to 1. The sub- 
optimization model in this case has the optimal solutions with MSSE 
equal to 0: 
{

vcase2 = vwave
l case2 = 0 (6) 

Case 3: When one detector is D7 and the other detector belongs to Sd, 
there are 11 detector combinations and dxy is equal to 0. The sub- 
optimization model in this case has no optimal solutions with MSSE 
equal to 0. For each combination, the solutions with residual equal to 
0 are different and may not satisfy the constraint conditions, as shown in 
Eq. (7). 

vcase3.D7Di = (1 −
2lf B9

lf D7 − lf Di

) vwave Di ∈ Sd (7) 

Compared with Eq. (5)-(7), when the fault is not at branch point B9, 

the solutions of the three cases are different and may not satisfy the 
constraints. Thus, the MSSE of B8B9 is much greater than 0. In addition, 
the network divided results of each section are unique and different from 
each other. Therefore, at least one detector is wrongly grouped in the 
network divided result of the non-fault section. It can be inferred that the 
other non-fault sections are similar to section B8B9, whose MSSE are also 
much greater than 0. On this basis, the MSSE of all sections are calcu-
lated and the section with the minimum calculated value is selected as 
the faulty section, which is expressed as: 

fMN(v, l) = min\{ fD1B1 , fB1B2 ... , fB8B9 , fB9B2 , ... \} (8) 

Where section MN is the faulty section, the optimal solutions [v, l] 
are the initial solutions of wave velocity and fault distance, respectively. 

This method is also applicable to the special case where the fault is 
just located at the branch point. When the fault is located at branch point 
B9, sections B8B9, B9B2 and D7B9 are all faulty sections. If there are no 
time errors, the MSSE of these three sections above are 0. 

In practical engineering, the MSSE of the faulty section will not be 
exactly equal to 0 due to the errors of the traveling wave arrival times, 
but it is still much smaller than that of non-fault sections. In addition, the 
traveling wave velocity is regarded as an unknown quantity when the 
faulty section is identified by the method in this paper, thus the judg-
ment result of the faulty section is not affected by the error of wave 
velocity which has high reliability. 

3. The correction method based on residual clustering for fault 
location result 

The wave velocity is close to the speed of light, and the arrival times 
of the initial traveling waves detected by each D-PMU are almost the 
same, hence a small-time error can also cause a large location error. 
Generally, the location error of the traveling wave-based method in 
transmission networks is less than 300 m which is also less than the 
distance between two towers. However, this error will greatly expand 
the scope of line patrol and even lead to fault location failure for the 
distribution networks. Therefore, the traveling wave location method in 
distribution networks should have a strong time error robustness. This 
paper proposes a correction method based on residual clustering for 
fault location result after Section 2. 

For a distribution network with n D-PMUs. When T1 ~ Tn are the 
ideal traveling wave arrival times, the C(n,2) residuals of the faulty 
section are all 0 and the optimal solution of the decision variable l is the 
accurate fault distance. When there is a large time error in Tx or Ty, the 
absolute value of the residual Rxy will be much greater than 0, which 
belongs to the bad data. The absolute values of the remained residuals 
are close to 0, which belong to the normal data, all residuals form two 
distinct categories, namely two clusters. Therefore, the bad data affected 
by the time errors can be identified based on the absolute values of all 
residuals, and the influence of time errors on the location result can then 
be reduced. In this paper, DBSCAN algorithm is utilized to cluster the 
residuals of the faulty section to identify bad data. 

Firstly, the C(n, 2) residuals of the faulty section are sorted and 
renumbered in absolute value from smallest to largest as the sample set 
SR : 

SR = \{ R1 R2 ... Rq ... RC(n,2) \} (9) 

DBSCAN is a clustering algorithm [37–39], which is based on the 
density of the samples, it can reliably cluster the samples and effectively 
deal with noise without setting the number of clusters in advance. 
Concretely, this algorithm utilizes parameters [Eps, minPts] to describe 
the density of the samples, where Eps is a threshold for the neighborhood 
distance, and minPts is a threshold for the number of Eps-neighborhood. 
The samples in the neighborhood of Rq are defined as a set, denoted as 
SEps.q, SEps.q = {Rp ∈ SR : |Rp − Rq|⩽Eps}. The number of the 
samples in SEps.q is defined as density, which is represented as ρ(SEps.q). 

Fig. 4. The network divided result of the non-fault section B8B9.  
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If ρ(SEps.q) ⩾minPts, the sample Rq is the core sample, Rp and Rq are 
directly density-reachable. If any two adjacent samples in sample R1 
R2…Rm are directly density-reachable, then any two samples of them are 
density-reachable. If the sample Ry and Rz are both density-reachable to 
the sample Rx, then Ry and Rz are density-connected, which is clearly 
symmetric. DBSCAN algorithm traverses the samples in SR. If a sample is 
detected as a core sample, then from the sample, it will start from this 
sample and expand to the density-reachable region to obtain a maxi-
mized cluster in which any two samples are density-connected. The 
clustering process ends when all clusters have no new samples added, 
and the samples that do not belong to any cluster are defined as noise, 
which are the bad data affected by the large time errors. According to 
the above definition, [Eps, minPts] parameters should be selected arti-
ficially before clustering. The traditional DBSCAN algorithm sets minPts 
to 4 and selects Eps by observation. However, the reliability of the 
observation method is extremely low. If the selected Eps is too small, the 
cluster of normal data will be divided into multiple clusters, and the 
ordinary samples will be misclassified into the noise. If the selected Eps is 
too large, part of the noise will be classified into the clusters by mistake. 
Therefore, this paper proposes an adaptive [Eps, minPts] parameters 
selection method based on the application background of the traveling 
wave location method. 

In order to avoid the normal data being divided into multiple clus-
ters, minPts should not be too large. Considering that there are C(n,2) 
samples in SR, the empirical value of minPts is:   

Where is the least integer operator; n is the number of the D-PMU. 
Clustering algorithm is a data mining method based on big data. When 
the number of detectors is less than 5, there are fewer samples in SR and 
the reliability of clustering result is low. On the contrary, the clustering 
result has higher reliability for the large distribution networks with a 
large number of detectors. Thus, the value of minPts for the distribution 
network shown in Fig. 2 is 7. 

For the sample Rq, find the nearest minPts sample and record the 
distance between them as disminPts(q). The distance set Sdis is obtained by 
traversing the samples in SR, Sdis = {disMinPts(q) : Rq ∈ SR}. Take 
the distribution network shown in Fig. 2 as an example, when there are 
truncation time errors, the samples in Sdis are sorted in ascending order 
as shown in Fig. 5. The curve in the figure rises suddenly after a gentle 
part. Obviously, the ordinate of the mutation point is the ideal Eps to 

distinguish the normal data and bad data. Furthermore, this curve is 
highly similar to the J-H demagnetization curve after rotation [40], 
hence the empirical formula of Eps is obtained by referring to the defi-
nition of knee point, as shown in Eq. (11). In Fig. 5, the Eps calculated 
from Eq. (11) is approximately equal to the ordinate of mutation point. 
Therefore, the appropriate [Eps, minPts] parameters can be adaptively 
selected according to Eq. (10) and (11) without manual observation. 

Eps = max (Sdis) − 0.9⋅[max(Sdis) − min ( Sdis)] (11) 

Sample set SR is clustered to obtain one or more clusters and noises 
based on the selected [Eps, minPts] parameters. The cluster with the 
smallest mean value in the clustering result is denoted as SH, and the 
samples in SH are used to repeatedly construct the optimization model as 
shown in Eq. (12). 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min fMN(v
′

, l′ ) =
∑H

|Rxy|
2

|Rxy| ∈ SH

s.t. 0 < v
′

< vc

0⩽l
′⩽LMN

(12) 

Where H is the number of samples in SH, [v′ ,l′ ] are the corrected 
solutions of the wave velocity and the fault distance. 

In summary, the flow chart of the fault location method for active 
distribution network based on residual clustering is shown in Fig. 6. 

4. Simulation and verification 

4.1. Simulation model 

Take the overhead-cable hybrid active distribution network shown in 
Fig. 7 as an example, the multi-terminal traveling wave fault location 
method based on residual clustering is simulated and verified. In the 
figure, the total length of the lines is 36.234 km, the length of overhead 
lines is 29.456 km and the length of cable lines is 6.778 km. The 27 
sections in this network are numbered, and the length of each section is 
shown in the Appendix. 16 D-PMUs are placed at the network endpoints 
with a sampling rate of 10 MHz. PSCAD/EMTDC is used to establish the 
simulation model. The overhead lines adopt the frequency-dependent 
model, and the non-uniform transposition is set to simulate the asym-
metry of line parameters. Gaussian noise with signal-to-noise ratio of 30 
dB is added to the collected signals to simulate the effect of the noise 
during signal transmission. In order to eliminate the influence of the 
difference of wave velocity in the overhead-cable hybrid distribution 
network, this paper converts the hybrid distribution network into the 
equivalent overhead line distribution network by wave velocity con-
version. The specific method is described in [41]. 

The DGs in Fig. 7 are all inverter-interfaced distributed generations 
(IIDGs), and the corresponding basic parameters are shown in Table 2. 
The control system includes active/reactive power separation outer loop 
control, low voltage ride through (LVRT) control and protection, and 
positive and negative sequence double current inner loop control, as 
shown in Fig. 8. The control strategy can suppress the negative sequence 
component of the output current and ensure the symmetry of the output 
current. It can also output different reactive power according to the 
voltage drop degrees at the point of common coupling (PCC) to support 
the system voltage. 

Fig. 5. The samples of Sdis.  

minPts =
{

⌊(n− 1)/2⌋ n⩾10
4 5 ⩽n⩽9 (10)   
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4.2. The performance of the proposed method 

The fault f1 is located on section 3 (i.e. section B2B3) and is 1027 m 
away from the branch point B3. Assume that the A-phase grounding fault 
occurs at f1 when the time is 0.1253 s, the fault inception angle is 60◦, 

and the transition resistance is 500 Ω. Generalized S-transformation is 
applied to the aerial-mode voltage signals after phase-mode trans-
formation. The results of generalized S-transformation and the arrival 
times of initial traveling waves are shown in Fig. 9 and Table 3 
respectively. The fault f2 is located at the branch point B4 (i.e. the 
intersection of section 4, 5 and 17), the fault f3 is located on section 26 (i. 
e. section B11D14) which is only 100 m away from the branch point B11. 
The initial traveling wave arrival times in case of fault f2 or fault f3 alone 
are shown in the Appendix. 

When f1, f2 or f3 occurs a fault separately, the MSSE of each section is 
calculated according to Eq. (1) and the arrival times of the initial trav-
eling waves. Since the magnitude of the MSSE in non-fault sections are 
much larger than that in the faulty section. In order to facilitate the 
graphical display, the MSSE of each section is transformed into the gain 
form according to Eq. (13) on the premise of not changing the numerical 
characteristics. The results of faulty section identification are shown in 
Fig. 10. After the faulty section is identified accurately, the sample set SR 
of the faulty section is clustered by DBSCAN based on the residual 
clustering method in Section 3. The clustering results of f1, f2 and f3 are 
shown in Fig. 11. Finally, the fault location results are recorded in 
Table 4. 
{

fMN = min\{ f1, f2, ... , f27 \}
Ai = 20log(fi/fMN) i ∈ [1, 27] (13) 

For the fault f1, the calculated value A3 in Fig. 10 is 0 which is far less 
than that of other sections. Therefore, section 3 is accurately identified 
as the faulty section. The histogram and clustering result diagram of SR 
are included in Fig. 11. The abscissa of the histogram reflects the ab-
solute value of residuals, and the ordinate reflects the number of sam-
ples. The clustering result diagram is composed of one-dimensional 
scattered points, each of which corresponds to a sample. Its abscissa is 
also the absolute value of the residual, and there is no ordinate. The 
clustering result is represented by different colors. Where, the average 
value of Cluster 1 composed of red scattered points is the smallest, which 
represents the normal data, the green scattered points that do not belong 
to any cluster and are noise. The samples in Cluster 1 are extracted, then 
the corrected solutions [v′ ,l′ ] are calculated according to Eq. (12). In 
Table 4, the location error of f1 after correction is only 3.454 m with an 
error reduction of 64.31%. For the fault f2, the calculated valuesA4, A5 
and A17 are all small, where A4 is the smallest. The f2 is finally located on 
section 4 with an absolute error is only 5.784 m, which proves that this 
method can be applied to the case of branch point fault. It can be seen 
that the maximum location error of the three faults is only 6.836 m, 
which proves that the proposed method has high accuracy. 

4.3. The performance of considering the time errors 

In the actual system, the arrival times of traveling waves have syn-
chronization error and detection error. The synchronization error de-
pends on the clock accuracy of GPS, which is generally less than ± 1 μs. 
However, in extreme conditions such as GPS time synchronization fail-
ure and the clock attacked by forgery, the synchronization error may be 
several μs. The detection error depends on the performance of the 
traveling wave detection method, the steepness of the traveling wave 

Fig. 7. Overhead-cable hybrid active distribution network.  

Table 2 
Basic parameters of the IIDG.  

Parameter Value Parameter Value 

Effective value of output voltage 
(Uo/V) 

690 DC bus voltage (Udc/V) 800 

Ratio of grid-connected 
transformer 

0.69:10.5 Filter inductance (Lf/ 
mH) 

1 

Switching frequency (fs/kHz) 2 Filter capacitor (Cf/μF) 20 
Grid frequency (fg/Hz) 50 Proportional coefficient 

(kp) 
0.2 

Power rating (P/MW) 2 Integral coefficient (ki) 1000  

Fig. 6. The flow chart of the fault location method for active distribution 
network based on residual clustering. 
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head, the transmission error of the sensor and the sampling rate of the 
measuring device. The performance of the existing traveling wave 
detection methods is relatively stable, and the detection error is 

generally less than 2 sampling points. Considering the 10 MHz sampling 
rate adopted in this paper, the detection time error is set within ± 0.3 μs. 
Therefore, the robustness of the proposed method to time errors is 
verified in the following two cases: 1) only the synchronization errors 
exist, 2) both the detection errors and the synchronization errors exist. 

1) Only the synchronization errors exist 
Take the fault f1 as an example, when the arrival time of detector D1 

has a synchronous error of 3 μs、6μs、9μs and 12 μs, the faulty section 
identification results are shown in Fig. 12, the clustering results of each 
case are shown in Fig. 13, and the fault location results and error 

Fig. 8. The control system of the IIDG.  

Fig. 9. The results of generalized S-transformation. (a) D-PMU D1 ~ D8. (b) D- 
PMU D9 ~ D16. 

Table 3 
The first arrival times of the traveling waves.  

D-PMU Arrival Time (s) D-PMU Arrival Time (s) 

D1 0.1253192 D9 0.1253112 
D2 0.1253125 D10 0.1253204 
D3 0.1253168 D11 0.1253201 
D4 0.1253237 D12 0.1253174 
D5 0.1253116 D13 0.1253135 
D6 0.1253143 D14 0.1253188 
D7 0.1253065 D15 0.1253195 
D8 0.1253124 D16 0.1253043  

Fig. 10. The faulty section identification results of f1, f2 and f3.  
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analysis are shown in Table 5. 
Take the fault f1 as an example, when the arrival times of several 

detectors have synchronization time errors, the following five cases are 
simulated and calculated. Case1: detectors D1 and D2 have a synchro-
nous error of 2 μs. Case2: detectors D1 and D2 have a synchronous error 
of 4 μs. Case3: detectors D1, D2 and D13 have a synchronous error of 4 μs. 
Case4: detectors D1, D2 and D13 have a synchronous error of 6 μs. Case5: 
detectors D1, D2, D13 and D15 have a synchronous error of 6 μs. The 
faulty section identification results are shown in Fig. 14, the clustering 
results of each case are shown in the Appendix, and the fault location 
results and error analysis are shown in Table 6. 

It can be analysed that when synchronization errors exist, the MSSE 
difference between the faulty section and the non-fault sections becomes 
smaller from Figs. 10, 12, 14. Even so, the MSSE of the faulty section is 
still significantly smaller than that of the non-fault sections, so the fault 
section can be correctly identified. It can be seen that the error of fault 
location after residual clustering has been greatly reduced, and the ab-
solute error is less than 100 m which has high accuracy from Table 5, 6. 

Fig. 11. The clustering results of f1, f2, f3. (a) f1. (b) f2. (c) f3.  

Table 4 
The fault location results and error analysis of f1, f2 and f3.  

fault v (m/s) l (m) v′ (m/s)  l′ (m)  Initial error(m) Corrected error (m) Rate of error reduction 

f1 2.9732e + 8 1036.678 2.9763e + 8 1031.854 9.678 3.454 64.31% 
f2 2.9854e + 8 6.992 2.9840e + 8 5.784 8.992 5.784 35.68% 
f3 2.9949e + 8 91.078 2.9936e + 8 93.164 10.922 6.836 37.41% 

Note: l and l′ are the distance between the fault location result and B3, B4 or B11, the ideal value is 3200 m, 0 m and 100 m respectively. 

Fig. 12. The faulty section identification results when the arrival time of de-
tector D1 has a synchronous error of 3 μs、6μs、9μs and 12 μs. 

Fig. 13. The clustering results when the arrival time of detector D1 has a 
synchronous error. (a) 3 μs. (b) 6 μs. (c) 9 μs. (d) 12 μs. 

Table 5 
The fault location results and error analysis when the arrival time of detector D1 
has a synchronous error.  

Time 
error 
(μs) 

l (m) l′ (m)  Initial 
error(m) 

Corrected 
error (m) 

Rate of error 
reduction 

+3 945.369 1021.504 81.631 5.496 93.27% 
+6 866.608 1021.504 160.392 5.496 96.57% 
+10 794.609 1021.504 232.391 5.496 97.64% 
+12 732.356 975.635 294.644 51.365 82.65% 

Note: l and l′ are the distance between the fault location result and B3, the ideal 
value is 1027 m. 
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It is verified that the proposed method in this paper has strong robust-
ness to synchronization time errors. 

The results in Table 6 show that the detectors with synchronization 
errors in Case1 and Case2 are the same, but the magnitude of synchro-
nization time errors are different. The time error of Case2 is greater than 
that of Case1, so the location error of Case2 is also greater than that of 
Case1, which is consistent with the common sense. Similarly, Case3 and 
Case4 also conform to this rule. It is worth noting that the synchroni-
zation time errors of Case2 and Case3 are equal, which are 4 μs, and the 
number of detectors with synchronization errors in Case3 increases D13 
compared with Case2. Although the number of detectors with syn-
chronization errors increases, the location error of Case3 decreases. The 
reason is that the faulty section (section B2B3) divides the entire network 
into two parts, as shown in Fig. 15. Detectors D1 and D2 belong to set Su, 
while detector D13 belongs to set Sd, which are located in two different 
sets. The synchronization error of D13 has a certain offset effect on the 
synchronization errors of D1 and D2, which reduces the location error. 
Similarly, Case4 and Case5 also conform to this rule. 

2) Both the detection errors and the synchronization errors exist. 
Take the fault f1 as an example, the random detection errors between 

− 0.3 μs and 0.3 μs are applied to all detectors, and the additional syn-
chronization errors are applied to few detectors. The specific time errors 
of all detectors are shown in Table 7. The faulty section identification 
results are shown in Fig. 16, the clustering results of each case are shown 
in the Appendix, and the fault location results and error analysis are 
shown in Table 8. 

In Table 8, the absolute errors of fault location in all cases are less 
than 80 m. The location errors are greatly reduced after residual clus-
tering, which can avoid the failure of fault location due to the time errors 
to a certain extent. The proposed method still has strong robustness to 
time errors when both the detection time errors and the synchronization 
time errors exist. 

In the above analysis, the fault point f1 is close to the substation B3, 

about 1027 m. To verify the effectiveness of the proposed method when 
the fault is far away from the substation, the simulation analysis is 
performed on f4. The fault f4 is located on section 23 (section D3B8), 
3200 m away from the branch point B8, and 5963 m away from sub-
station B3. The applied synchronization time error is shown in Table 7. 
The faulty section identification results are shown in Fig. 17, and the 
fault location results and error analysis are shown in Table 9. It can be 
found that the absolute error of the location results in all cases are less 
than 90 m. Therefore, the proposed method can still work reliably when 
the fault is far from the substation. 

4.4. The performance compared with the existing method 

To further illustrate the advantages of the proposed method, the 
performance of the proposed method is compared with that of the multi- 
terminal traveling wave fault location method in [25]. The existing 
method constructs the location criterion by using the arrival time dif-
ferences of traveling waves. First, the reference points are arranged 
every 20 m on the lines, then the fault simulation is carried out for all 
reference points to evaluate which reference point is closest to the actual 
fault location, so as to realize fault location. 

The time errors shown in Table 7 are applied to all the detectors. The 
fault location results of the two methods are shown in Fig. 18. The 
average absolute errors of the two methods are 30.930 m and 112.830 m 
respectively. The fault location error of the method in this paper is 
reduced by 81.90 m and the location accuracy is improved by 72.59%. It 
can be seen that this method has the stronger tolerance to time errors. 

5. Field test verification 

In order to verify the performance of the proposed positioning 
method, the field artificial short-circuit tests were put into practice. The 
topological structure of the 10 kV test network is shown in Fig. 19 with a 

Fig. 14. The faulty section identification results when several detectors have 
synchronization time errors. 

Table 6 
The fault location results and error analysis when several detectors have synchronization time errors.  

Case Detector Time error (μs) l (m) l′ (m)  Initial error(m) Corrected error (m) Rate of error reduction 

Case1 D1、D2 +2 940.276 1035.293 86.724 8.293 90.44% 
Case2 D1、D2 +4 850.457 970.811 176.543 56.189 68.17% 
Case3 D1、D2、D13 +4 916.172 1012.597 110.828 14.403 87.01% 
Case4 D1、D2、D13 +6 842.747 933.936 184.253 93.064 49.49% 
Case5 D1、D2、 D13、D15 +6 919.437 946.367 117.563 76.633 34.82% 

Note: l and l′ are the distance between the fault location result and B3, the ideal value is 1027 m. 

Fig. 15. The network divided result of the faulty section B2B3.  
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total length of 23.635 km. Where the length of cable lines is 16.114 km 
and the length of overhead lines is 7.521 km. 

The D-PMUs used in the field tests were provided by Changsha 
University of Science and Technology and Beijing Sifang Automation 
CO., LTD., [13,42,43]. The D-PMU and its installation are shown in 
Fig. 20. The arrival time of the travelling wave is collected locally by the 
travelling wave detection module sheathed on the ground line of the 
distribution transformer, as shown in Fig. 21. Rogowski coil is used to 
convert the current flowing through the grounding line into voltage 
wave signal. Furthermore, the wave head detection can be realized 
based on the change rate of wave head, the duration of wave head and 
the amplitude of wave head, and combined with the S transform or other 
time–frequency analysis algorithms. The sampling rate of this device can 
reach up to 20 MHz (10 MHz is used in the test). As the function 
extension module of D-PMU, the traveling wave module is embedded in 
D-PMU, which is only half of the mobile phone size. The clock timing 
adopts the complementary correction method of GPS/Beidou satellite 

clock and constant temperature crystal oscillator error. The synchronous 
clock error is about 10 ns, which has high sensitivity and accuracy of 
wave front detection. 

When a fault occurs, each D-PMU transmits the recorded initial 
traveling wave arrival time Ti and the transformer number to the cloud 
computing platform of the background master station through the 
communication link (optical fiber / 4G). The cloud platform executes 
the optimization algorithm proposed in this paper to achieve accurate 
fault location. Finally, the fault location results are released through 
Web and SMS to remind operation and maintenance personnel to patrol 
and maintain according to the location result. 

The unmanned aerial vehicle was used to create two interphase 
metal short-circuit fault faults, as shown in Fig. 22. The two faults are 
located on section 3, which are respectively 1502 m and 1501 m away 
from 1#Tower. The faulty section identification results are shown in 
Fig. 23, and the fault location results are shown in Table 10. It can be 
found that the two location errors are 70.303 m and 89.037 m from 

Table 7 
The specific time errors of all detectors.  

Case D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

Case1 ¡3.1 0 − 0.3 − 0.1 − 0.2 +0.2 − 0.1 0 − 0.2 +0.1 − 0.1 +0.3 +0.1 +0.1 0 − 0.2 
Case2 þ6.3 +0.2 +0.1 0 +0.3 − 0.1 +0.2 +0.2 − 0.1 0 − 0.3 − 0.3 0 +0.2 +0.3 − 0.2 
Case3 ¡2.2 ¡1.9 − 0.2 − 0.1 − 0.2 − 0.2 +0.3 +0.3 0 − 0.3 − 0.2 − 0.1 +0.2 − 0.3 − 0.3 − 0.2 
Case4 þ4.1 þ4.3 +0.2 − 0.3 +0.3 +0.1 0 +0.1 − 0.2 − 0.2 +0.3 0 0 − 0.2 +0.1 +0.1 
Case5 ¡4.0 ¡3.9 +0.1 0 − 0.2 0 − 0.2 − 0.3 +0.2 0 +0.3 +0.1 ¡3.8 +0.2 +0.2 +0.3 
Case6 þ6.3 þ6.1 0 0 − 0.2 +0.1 +0.2 +0.2 − 0.1 − 0.2 0 +0.1 þ5.7 − 0.2 þ6.1 − 0.3 

Note: The units in tables are μs. 

Fig. 16. The faulty section identification results when both the detection errors 
and the synchronization errors exist. 

Table 8 
The fault location results and error analysis when both the detection errors and 
the synchronization errors exist.  

Case l (m) l′ (m)  Initial 
error(m) 

Corrected 
error (m) 

Rate of error 
reduction 

1 1100.654 1034.135 73.654 7.135 90.31% 
2 862.583 1016.844 164.417 10.156 93.82% 
3 1102.407 1042.079 75.407 15.079 80.00% 
4 843.430 998.437 183.570 28.563 84.44% 
5 1065.861 1042.602 38.861 15.602 59.85% 
6 917.324 949.513 119.676 77.487 35.25% 

Note: l and l′are the distance between the fault location result and B3, the ideal 
value is 1027 m. 

Fig. 17. The faulty section identification result for f4 when both the detection 
errors and the synchronization errors exist. 

Table 9 
The fault location results and error analysis for f4 when both the detection errors 
and the synchronization errors exist.  

Case l (m) l′ (m)  Initial 
error(m) 

Corrected 
error (m) 

Rate of error 
reduction 

1 3163.661 3194.237 36.339 5.763 84.14% 
2 3240.013 3213.952 40.013 13.952 65.10% 
3 3244.345 3214.149 44.345 14.149 68.09% 
4 3064.691 3165.145 135.309 34.855 74.24% 
5 2881.119 3120.534 318.881 79.466 75.08% 
6 2848.846 3112.774 351.154 87.226 75.16% 

Note: l and l′ are the distance between the fault location result and B8, the ideal 
value is 3200 m. 
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Table 10, while the location errors of simulation study in Section 4.2 are 
less than 20 m. There are three reasons for the larger location error of the 
field test:  

(1) According to the sag effect [1], the length of overhead line which 
is affected by thermal expansion and cold contraction will change 
with the change of conductor temperature. In the field test, there 
may be errors between the actual line length and the recorded 
line length.  

(2) Simulation study has limitations. On the one hand, the influence 
of sensors is not considered in the simulation modelling, 
including the specific influence of A/D conversion in the process 
of signal transmission, the range and accuracy of sensors on the 
traveling wave signal. On the other hand, although 30 dB 
Gaussian white noise is applied in the simulation, the 

Fig. 18. The performance comparison between the proposed method and 
existing method. 

Fig. 19. The topology of the test network.  

Fig. 20. D-PMU and its installation. (a) D-PMU housing. (b) (c) installation.  

Fig. 21. The structure diagram of traveling wave detection module.  

Fig. 22. The artificial short-circuit test.  

Fig. 23. The faulty section identification results.  

Table 10 
The fault location results of the field tests.  

Actual fault 
location 
(m) 

l (m) l′ (m)  Initial 
error(m) 

Corrected 
error (m) 

Rate of 
error 
reduction 

1502 1382.621 1414.963 119.379 87.037 27.09% 
1501 1407.328 1430.697 93.672 70.303 25.77% 

Note: l and l′are the distance between the fault location result and 1#Tower, the 
ideal value is 1502 m and 1501 m respectively. 
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measurement noise in the actual test may not be strictly white 
noise which is more complex than the simulation environment.  

(3) The field test is performed in a small distribution network, and 
the number of traveling wave detectors is small. The simulation 
study is performed in a large distribution network, and the 
number of traveling wave detectors is large. The residual clus-
tering algorithm proposed in this paper is an unsupervised 
learning process based on a large number of data samples, which 
has advantages in large distribution networks. Therefore, the rate 
of location error reduction of the field test is less than that of the 
simulation study, and the location error of the field test is rela-
tively large. 

Although the location error of the field test is larger that of the 
simulation study, the location error is still less than 100 m, which can 
greatly shorten the range of manual patrol and still has great practical 
application value. 

6. Conclusion 

This paper proposes a multi-terminal traveling wave fault location 
method for active distribution network based on residual clustering. The 
following conclusions are obtained: 

(1) The MSSE of each section is calculated by utilizing the PSO al-
gorithm. Compared with the MSSE of all sections, the section 
with the minimum value is identified as the faulty section, and 
the initial solution the fault distance is obtained. In the above 
process, the wave velocity is taken as the unknown quantity, thus 
the location result is not affected by the error of wave velocity.  

(2) DBSCAN algorithm is utilized to cluster the residuals of the faulty 
section to identify the bad data which are affected by time errors. 
The remained normal data are used to repeatedly construct the 
optimization model and calculate the corrected solution of the 
fault distance. It can greatly improve the accuracy of fault loca-
tion and has a strong tolerance to time errors.  

(3) Simulation and field tests show that the proposed method has 
high fault location accuracy and strong robustness to time errors. 
It can be effectively applied to the active distribution networks 
with good engineering application prospects. 

In this paper, the proposed method is mainly used for the distribution 
networks with radiant structure, the improvement strategy for the dis-
tribution networks with ring structure remains to be further studied. 
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