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A B S T R A C T   

This paper systematically analyzes the islanding performance under different case studies and scenarios of the 
most well-known active islanding detection methods (IDMs) for single-phase grid-connected photovoltaic (PV) 
systems. They are named as follows: Active Frequency Drift (AFD), Sandia Frequency Shift (SFS), Slip Mode 
frequency Shift (SMS), and Sandia Voltage Shift (SVS) anti-islanding detection strategies. The performance of 
these four active anti-islanding methods has been examined in detail using Matlab/Simulink. Moreover, the 
quality factor and non-detection zone (NDZ) influence on islanding detection is also analyzed. According to the 
new grid codes and standards, the studied active IDMs provide good detection times. Furthermore, the case 
studies illustrate that these active detection techniques can successfully detect the islanding operation mode 
under different quality factors, types of loads, solar irradiance changes, and fault-ride through (FRT) operation 
mode.   

1. Introduction 

Islanding represents a condition when a section of the electric grid 
with loads and distributed generation (DG) systems, are separated from 
the primary power grid and remains to operates [1–4] with local loads 
[5,6]. Usually, the islanding operation mode is unwanted due to safety 
issues of the utility grid, or it can lead to asynchronous reconnection [2] 
that may damage the equipment [7]. Because of these risks, grid codes 
and standards [8], like IEEE-1547 UL-1741, IEC62116, VDE 0126–1–1, 
IEEE Std. 929–2000 [4], and IEEE 1547 have been established [9–11]. 
The dispersed generation and microgrid standards have been recently 
reviewed in [8]. According to the IEEE 929–2000 [4], to address the 
issue of islanding, operation detection should be studied by suggesting a 
methodology for testing the distributed power generation systems 
(DPGS) [12] as well as protecting the system. Effective and reliable 
islanding detection methods (IDMs) have been achieved [13–16]. 

The IDMs can be passive, active, and hybrid [17–20]. The passive 
islanding methods [6,21] are based on the system parameters 

measurement [22] such as under/over voltage (UOV) and under/over 
frequency (UOF) [9,23–25]. The effectiveness of the passive methods 
depends on the thresholds of the monitored parameters set to identify 
the islanding operation condition. Usually, the voltage threshold is of 
88–110% of the nominal value [10]. The admissible frequency is usually 
between 59.3 Hz and 60.5 Hz [10,26–28]. 

The main disadvantage of the passive anti-islanding strategies is that 
they have a larger non-detection zone (NDZ) [27,29–33]. Many active 
anti-islanding methods have been elaborated to avoid this drawback 
[32,34]. The active methods [35,36] generate some perturbations at the 
point of common coupling (PCC) of the PV system [27,29,37] to change 
one or more power grid parameters that can be sensed by the passive 
IDMs [5,22]; thus, minimize the so-called NDZ [29,37,38]. The hybrid 
methods are new recent techniques, which represent complementary 
combinations of active and passive methods [39–45]. Artificial intelli-
gence methods [46–48] were proposed for the same purpose [49–51]. 

* Corresponding author. 
E-mail address: ibanu@tuiasi.ro (I.V. Banu).  

Contents lists available at ScienceDirect 

Electric Power Systems Research 

journal homepage: www.elsevier.com/locate/epsr 

https://doi.org/10.1016/j.epsr.2022.108909 
Received 17 February 2022; Received in revised form 23 May 2022; Accepted 17 October 2022   

mailto:ibanu@tuiasi.ro
www.sciencedirect.com/science/journal/03787796
https://www.elsevier.com/locate/epsr
https://doi.org/10.1016/j.epsr.2022.108909
https://doi.org/10.1016/j.epsr.2022.108909
https://doi.org/10.1016/j.epsr.2022.108909
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2022.108909&domain=pdf


Electric Power Systems Research 214 (2023) 108909

2

1.1. Contribution and paper organization 

This paper explores the islanding performance of the most used four 
active IDMs for single-phase grid-connected photovoltaic (PV) systems, 
as indicated in [34]. Although the unintentional islanding of PV systems 
has been deeply investigated in the last decade, it is still a timely subject, 
as new requirements have arisen, such as the performance of these 
methods under fault-ride through (FRT) required by grid codes. In this 
study, the Active Frequency Drift (AFD) [52], Sandia Frequency Shift 
(SFS) [37], Slip Mode Frequency Shift (SMS), and Sandia Voltage Shift 
(SVS) [53] active islanding methods are studied in detail and consid-
ering different cases for load quality factors (Qf), load types, and irra-
diance variations. Moreover, the programming code of Matlab Function 
for the analyzed active methods in Simulink is given. The NDZ of each 
active method’s influence on the quality factor is investigated. Testing 
the islanding operation of the PV inverter with studied active methods is 
also analyzed in this paper for different case studies. The results are close 
to real PV systems using detailed grid-connected PV system modeling in 
Simulink [54]. Different case studies confirm the validity of the obtained 

Nomenclature 

Abbreviations/Acronyms 
AC Alternating Current 
ADF Active Frequency Drift 
DC Direct Current 
DG Distributed Generation 
DPGS Distributed Power Generation Systems 
FDZ Fault Detection Zone 
FRT Fault-Ride Through 
IDM Islanding Detection Methods 
MPPT Maximum Power Point Tracking 
NDZ Non-Detection Zone 
P&O Perturb and Observe 
PCC Point of Common Coupling 
PLL Phase-Locked Loop 
PV Photovoltaic 
PWM Pulse Width Modulation 
RMS Root Mean Square 
ROCOF Rate of Change of Frequency 
SFS Sandia Frequency Shift 

SMS Slip Mode Frequency Shift 
STC Standard Test Conditions 
SVS Sandia Voltage Shift 
THD Total Harmonic Distortion 
UOF Under/Over Frequency 
UOV Under/Over Voltage 
VFP Voltage-Frequency Protection 

Variable/Parameter 
Cf Chopping Factor 
Cf0 Implicit Chopping Factor 
df AFD Frequency Variation () 
KSFS SFS Proportional Gain 
KSVS SVS Proportional Gain 
P Active Power 
Q Reactive Power 
Qf Quality Factor 
ΔP Active Power Variation 
ΔQ Reactive Power Variation 
θAFD AFD Phase Angle 
θm SMS Phase Angle  

Table 1 
PV system parameters according to IEEE 929–2000 standard.  

Parameter Value 

Power of the PV Array [kW] 3.5 
Nominal line frequency (f0) [Hz] 60 
Grid voltage (Vg or VRMS LL) [V] 240 
DG output power [kW] 3.5 
Input DC voltage [V] 434 
f(min/max) [Hz] 59.3/60.5 
Grid-side inductance filter (Lg) [mH] 2 
Inverter-side inductance filter (Li) [mH] 1.73 
Capacitance filter (Cf) [μF] 15 
RLC load Resistance (R) [Ω] 16.457 

Inductance (L) [mH] 17.5 
Capacitance (C) [µF] 404.25 

Quality factor (Qf) 2.5  

Fig. 1. Simulated waveform used by the AFD method [30,85].  
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simulation results. Some widely used islanding methods like [20,27], 
and [55] get similar results in the comparison. 

This work summarizes of all the most significant methods used in a 
way in which the studied active methods can be compared and choose 
the required method under certain conditions by defining their anom-
alies as their characteristics. The active methods are studied and 
compared for the first time in this way. The paper’s main contribution 
can be the didactic approach used by the authors so that the researchers 
can study this subject. Challenging cases of islanding detection, like FRT, 
have been considered. Under this context, all the files used to simulate 
the investigated methods are supplied in [56]. 

The paper’s main contribution is analyzing the four most crucial 
active islanding detection methods for PV systems. The performance of 
these methods is analyzed in detail and considers different cases for load 
types, load quality factors, irradiance variations, and fault-ride through 
an operation. Moreover, the non-detection zone of each method, the 

influence of the quality factor, and islanding detection times are also 
studied for different cases. The paper is a reference for other workers and 
researchers to know which method is appropriate to their systems 
concerning its limits and results. Each method is studied and tested in 
different scenarios and complications. 

The drawbacks and gaps in the literature are the lack of complete 
studies with more important IDMs. Only comparative studies with one 
or two active methods and hybrid methods with one active method and 
another passive method, like SMS and rate of change of frequency 
(ROCOF) or SFS and ROCOF hybrid methods, can be found in the 
literature, but not four important IDMs or hybrid methods with three 
passive methods. That is a considerable number to compare them well 
regarding their requirements because they are studied on the same scale. 
The proposed approach aims at filling these gaps by studying the active 
methods differently from others’ works. This paper studies all analyzed 
methods in classical and hybridization mode with the three passive 

Fig. 2. AFD method block diagram.  

Fig. 3. Simulated inverter current waveform used by the SFS method.  

Fig. 4. SFS method block diagram.  
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Fig. 5. Local load and SMS line as a function of frequency.  

Fig. 6. SMS method block diagram.  

Fig. 7. NDZ of SVS method.  

Fig. 8. SVS method block diagram.  
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methods to cover most possibilities to develop novel IDMs. 
The paper is organized as follows. Section 2 presents a systematic 

analysis of four active anti-islanding methods, which are namely the 
AFD, SFS, SMS, and SVS active detection algorithms, with their math-
ematical modeling using the NDZ and quality factor. The influence of the 
quality factor on these active islanding methods is evaluated in the same 
section. The developed single-phase grid-tied PV system and its testing 
with analyzed active IDMs considering the standard operating condi-
tions of each anti-islanding detection algorithm are shown in Section 3. 
Section 4 presents the results of the studied active IDMs considering 
different load quality factors, types of loads, and irradiation effect 
conditions on each active method, as well as the evaluation of effec-
tiveness of the active islanding methods in hybrid detection strategies 
with passive islanding prevention methods. In the last section, the main 
conclusions of this research are presented. 

2. Description of the PV system under anti-islanding test 

To avoid inherent mismatches between the results from software 
based simulations and hardware or real-time simulations, the imple-
mented PV system [54] and all studied IDMs [34] are independently 
validated in Simulink. 

2.1. Studied grid-connected PV system 

The testing PV system relates to the one in [54]. The schematic of the 
developed PV system is given in Fig. 12 [34]. It is composed of: a 3.5 kW 
peak power PV solar array of one string with 14 PV modules Trina Solar 
TSM-250PA05.08 [54], a full-bridge IGBT inverter, an inverter control 
system, an MPPT controller with perturb and observe (P&O) method 
[54,95] a block that measures the PCC voltage, current, frequency, an 
IDMs block which injects currents in the power grid [54], a dis-
connecting block based on the ROCOF [3,9] and voltage-frequency 

Fig. 9. (a) NDZ of AFD method. (b) NDZ of the SFS method. (c) NDZ of SVS method. (d) NDZ of SMS method.  
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Fig. 9. (continued). 

Fig. 10. Load-impedance phase angle as function of the frequency [27,85].  
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protection (VFP) [96] passive methods. When the breaker is opened, an 
islanding operation mode is activated [96]. 

A PWM-controlled single-phase power inverter [54,82] with an LCL 
filter is used in this research. An inverter control system with a 
P&O-based MPPT controller [97,98], DC voltage and current regulators, 
phase-locked loop (PLL) [99–101], measurements [9], and a PWM 

generator are used to control the PV power inverter [54]. The MPPT 
controller [102] collects the maximum electric power from the PV solar 
array under varying weather conditions [103]. 

The used PV inverter transforms the 434 V DC link voltage of a 3.5 
kW PV solar array at 1000 W/m2 and 25 ◦C, which are the standard test 
conditions (STC), to the utility grid voltage, which is 240 V AC at 60 Hz 
frequency [54]. Finally, a 240 V–14.4 kV low frequency transformer was 
connected to the PV inverter [104]. The principal-built simulation 
model parameters are listed in Table 1. 

The anti-islanding method works on the principle of UOV and UOF 
prevention, after which the islanding operation mode is detected. The 
islanding mode appears in all analyzed scenarios at the circuit breaker 
opening at t = 0.5 s [34]. The active methods are carried out on a 
PV-based DG unit which consists of a PV solar array, a PV inverter that is 
operating using P&O based MPPT controller as in [54,103], and [105], 
and an LCL filter, and a switch (circuit breaker or fuse). Moreover, a 
utility grid with a 240 V transformer, an ideal AC source of 14.4 kV RMS, 
and a parallel RLC load from [54] which has parameters to do the Qf =

2.5 as in [13] and [84], are adapted. 

2.2. Studied active islanding detection methods 

The studied active IDMs are detailed in this section. The active 

Fig. 11. Load phase angle function on frequency [13,85].  

Fig. 12. Testing PV system model.  

Table 2 
Simulation results of analyzed active methods.  

Active methods Parameters Detection Time (ms) 
VFP ROCOF 

AFD df = 1.5 Hz 132.0 519.2 
df = 1 Hz 182.2 202.1 
df = 0.5 Hz 323.19 219.0 

SFS KSFS = 0 Hz− 1 130.7 119.9 
KSFS = 0.018 Hz− 1 148.4 119.5 
KSFS = 0.05 Hz− 1 148.1 133.5 

SMS θm = 25◦ 231.2 223.9 
θm = 15◦ 285.8 221.4 
θm = 10◦ 783.0 220.8 

SVS KSVS = 1 A/V 428.0 120.1 
KSVS = 0.5 A/V 615.0 120.7 
KSVS = 0.1 A/V 841.0 220.0  
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islanding methods are detailed as they are presented in the literature. 
Furthermore, the developed Matlab models, including the correspond-
ing Matlab Function codes, are presented, where the NDZ is examined 
and discussed in detail to evaluate these methods. Finally, the General 
Electric (GE) schemes are given in [57]. 

Although there are many good quality islanding detection papers, 
the active IDMs are not studied profoundly. Several papers about active 
islanding protection (detection) were analyzed, such as [58–80]. Next, 

some widely used active methods are introduced in the comparison. 

2.2.1. Active frequency drift method 
The AFD technique influences the output current waveform of the PV 

solar power inverter [30,32], as illustrated in Fig. 1 [81]. During the first 
segment of the first semi-cycle, the output inverter current is sinusoidal 
with slightly higher frequency than the rated inverter current [30]. Δf is 
the difference between the output current frequency and the nominal 

Fig. 13. PV inverter response under islanding operation with AFD method and df =1.5 Hz: PCC voltage, PCC current, and disconnecting signal waveform.  

Fig. 14. PV inverter response under islanding with SFS method and KSFS = 0 Hz− 1: PCC voltage, PCC current, and disconnecting signal.  

Fig. 15. PV inverter response under islanding with SMS method and θm = 25◦: PCC voltage, PCC current, and disconnecting signal.  
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Fig. 16. Inverter response under islanding with SVS method and KSVS = 1 A/V: PCC voltage, PCC current, and fault disconnecting signal.  

Fig. 17. Results of AFD anti-islanding method under different quality factors. (a) RMS grid current. (b) RMS grid voltage. (c) Reactive power. (d) Active power.  
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grid frequency [30]. Once the current becomes null, it remains null for a 
dead time (tz) until the positive semi-cycle of the signal starts [30,32]. 
During the last segment of the second semi-cycle, once the current be-
comes null, it remains null until another cycle starts [30,32]. 

The inverter current of the AFD technique during each cycle is given 
by (1) [13,82]: 

IAFD =
̅̅̅
2

√
Isin[2πft+ θAFD] (1)  

where I represents the phase peak current [83], f represents the utility 
grid frequency in the PCC [84], t represents the time, and θAFD represents 
the angle of the AFD active technique [34]. For example, under islanding 
operation mode, the AFD phase angle θAFD can be expressed as follows 
[13,82]: 

θAFD = π⋅
Δf

Δf + f
(1)  

where, Δf = f - fg and fg is the nominal grid frequency (60 Hz). 
The power grid maintains the frequency of the grid-connected PV 

system. However, when the power grid is disconnected, the current 
injected by the inverter gives the PCC frequency. Therefore, it drifts far 
away from the rated grid frequency until the UOF protection relay 
identifies the islanding mode [30]. Fig. 2 represents the AFD block di-
agram. The developed Simulink block for the AFD method with Matlab 

Function block comprises the following code:  
function y = fcn(f,id,iq) 

%#codegen 
% *********** 
%% AFD Method 
% *********** 
df=1.5; 
x=(pi*df)/(f+df); 
a=cos(x); 
b=-sin(x); 
c=sin(x); 
d=cos(x); 
y=zeros(2,1); 
y(1,1)=(a.*id)+(b.*iq); 
y(2,1)=(c.*id)+(d.*iq);   

2.2.2. Sandia frequency shift method 
The SFS active islanding detection technique enhances the AFD 

islanding performance by a positive feedback [30,86] to drift faster the 
grid frequency far away from the rated grid frequency [30,32]. There-
fore, the SFS method has a significantly smaller NDZ than the AFD 
method [30]. 

The SFS inverter current is given by (3) [13,30]: 

ISFS =
̅̅̅
2

√
Isin[2πft+ θSFS] (2)  

where θSFS is the SMS phase angle. The chopping factor (Cf) is modified 

Fig. 17. (continued). 
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depending on the measured frequency drift as below [13,30]: 

Cf = Cf0 + k
(
f − fg

)
(4)  

where k is a positive feedback gain and Cf0 is the implicit chopping factor 
[30]. Then, the SFS phase angle can be written as [13]: 

θSFS =
cf0 + k

(
f − fg

)

2
(5) 

The SFS current is given in Fig. 3 [86]. Accordingly, the SFS active 
method block diagram would be as depicted by Fig. 4. The Matlab 
Function code for the SFS active method is:  

function y = fcn(f,id,iq) 
%#codegen 
% *********** 
%% SFS Method 
% *********** 
cf=0.04; 
ksfs=0.1; 
x=(pi/2)*(cf+ksfs*(f-60)); 
a=cos(x); 
b=-sin(x); 
c=sin(x); 
d=cos(x); 
y=zeros(2,1); 
y(1,1)=(a.*id)+(b.*iq); 
y(2,1)=(c.*id)+(d.*iq);   

2.2.3. Slip mode frequency shift method 
The SMS technique modifies the inverter current phase angle [30,84, 

86] according to the measured frequency [87] variation and compares it 
with the rated grid frequency [30,32]. Here, the SMS phase angle is 
given by (6) [13]: 

θsms =
2π
360

θmsin
(

π
2

f − f0

fm − f0

)

(6)  

where f0 represents the resonant frequency of the RLC load and fm rep-
resents the frequency when θm arises. fm-f0 = 3 Hz [30,88]. Conse-
quently, the SMS current can be expressed as follows [13]: 

ISMS =
̅̅̅
2

√
Isin[2πft+ θSMS] (7) 

Fig. 5 reveals the SMS frequency curve from 59.3 Hz to 60.5 Hz. The 
SMS phase angle θsms in (6) is assumed to be sinusoidal, while the load 
line appears illustrated as a parallel RLC load with a positive ramp [13]. 
Regardless of the connected load, the grid frequency determines the 
grid-connected inverter’s current phase angle [89]. When the islanding 
mode occurs, the frequency varies around zero [89], situated at the 
intersection of the SMS and load lines, as depicted in Fig. 5. Here, the 
islanding mode occurs when [13]: 

Fig. 18. AFD islanding method under different quality factors. (a) Frequency. (b) ROCOF.  
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dθload

df
|f=fg ≤

dθsms

df
|f=fg (8) 

Using the same reasoning and procedure reported in [37,84], it can 
be stated that the islanding mode in term of the phase angle can be 
obtained like the following [85]: 

θm ≥
12Qf

π2

(
fm − fg

)
(9) 

When the grid frequency is slightly raised after disconnecting the 
grid, the current phase angle increases while the time of the next zero- 
crossing PCC voltage decreases. The PV inverter control detects, recog-
nizes, and identifies this as the frequency increases again. Therefore, the 
inverter’s current phase angle increases until the frequency exceeds the 
limit. When the electrical network is disconnected, the PCC frequency 
decreases continuously until being identified by the under-frequency 
protection relay [30,89]. 

The SMS method block diagram would be as shown in Fig. 6. The 
coding for the Matlab Function of the developed Simulink block of the 

SMS method is related as follows:  
function y = fcn(f,id,iq) 

%#codegen 
% *********** 
%% SMS Method 
% *********** 
cf=0.04; 
ksms=0.08; 
x=(pi/2)*(cf+ksms*(f-60)); 
a=cos(x); 
b=-sin(x); 
c=sin(x); 
d=cos(x); 
y=zeros(2,1); 
y(1,1)=(a.*id)+(b.*iq); 
y(2,1)=(c.*id)+(d.*iq);   

2.2.4. Sandia voltage shift method 
The SVS technique [9,35] utilizes a positive feedback [86] on the 

PCC voltage [32] like the active power strategy. When the PCC voltage 

Fig. 19. SFS method for different Qf. (a) RMS grid current. (b) RMS grid voltage. (c) Reactive power. (d) Active power.  
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decreases, the output PV inverter current decreases, and the power yield 
from the PV system. The reaction time can be balanced by the factor kv, 
which decreases or increases the PV inverter current relative to the 
voltage change. Consequently, the same principle used in the active 
power control can be considered here. Finally, this active technique 
derives the voltage adequacy past the UOV limits, permitting the 
islanding detection. Lowering the disturbance voltage is preferable 
rather than expanding it to keep away from any potential harm to the 
associated hardware. 

The SVS technique is an accessible and highly compelling approach 
among the positive feedback techniques. Moreover, the SVS and SFS 
active anti-islanding techniques enhance the phenomenon adequacy at 
execution. However, the SVS active technique has two disadvantages. 
First, the grid voltage is constantly perturbed, which disturbs the power 
quality, and second, the efficiency/performance of the Maximum Power 
Point Tracking (MPPT) controller can also be influenced [9,35]. 

The PV inverter current reference can be computed from the 
following relationship [9,35]: 

Iref =
kv⋅ΔV + PDG

V
(10)  

where ΔV = V-Vnom represents the voltage change, V represents the 
deliberately imposed voltage at the PCC point, and Vnom represents the 
nominal voltage [86]. 

In Fig. 7, the NDZ of the SVS algorithm is depicted. The SVS method 
block diagram would be as depicted by Fig. 8. The programming code of 

Matlab Function for SVS method is:  
function y = fcn(v,id) 

%#codegen 
% *********** 
%% SVS Method 
% *********** 
ksvs=1; 
y=id+ksvs*(v-240)/240;   

2.3. Non-detection zone of studied active methods 

To establish the NDZ of the studied active islanding methods, the 
phase angle between the voltage and current must be approximated. 
Consequently, the phase angles of the adapted active techniques are 
analyzed to evaluate these active detection methods [84,90]. 

Usually, the reactive power balance condition is defined using the 
loads and inverter’s currents phase angles φload and φinv, respectively 
[84,90]. Therefore, the steady-state frequency value of a PV inverter in 
islanding operation mode is determined using the phase criterion as 
follows [84,90]: 

φinv = φload (11) 

Here, drift frequency techniques are efficient when (12) [84]: 

φinv > φload (12) 

Fig. 19. (continued). 
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The parallel RLC load phase angle φload can be determined as follows 
[84,90]: 

φload = tan− 1
[

Qf

(
f0

f
−

f
f0

)]

(13) 

The PV inverter phase angle φinv in the case of AFD method can be 
calculated as [13,84,91]: 

φinv AFD = π⋅
Δf

f + Δf
(14) 

In a similar way, for the SFS [92] and SMS techniques [84]: 

φinv SFS =
π
2
[
cf0 + k

(
f − fg

)]
(15)  

φinv SMS = θmsin

(
π
2

f − fg

fm − fg

)

(16) 

The NDZ for each IDM is achieved by estimating the frequency 
concerning the quality factor Qf [84]. The simulation tests consider the 
standard operating conditions of the previously detailed methods. The 
frequency variations of AFD method have been analyzed using different 
values of Δf (0.5 Hz, 1 Hz, and 1.5 Hz). The SFS technique was analyzed 
for three cases of accelerating the frequency gain KSFS (0 Hz− 1,0.018 
Hz− 1, and 0.05 Hz− 1) [49]. For the SMS technique, three values of θm 
were analyzed (5◦, 10◦, and 15◦). According to the IEEE Std. 929–2000 
[4], the grid’s circuit breaker opens after six cycles at the beginning to 
ensure the island mode. Thus, the grid’s circuit breaker is disconnected 
at t = 0.5 s. The IPCC grid current is given by (17) [13]: 

IPCC =

̅̅̅
2

√

R
Vg (17) 

The derived relation between the voltage/frequency and power 
mismatch thresholds is expressed by (18) and (19) [29,89]: 
(

V2
pcc

Vmin

)2

− 1 ≤
ΔP
P

≤

(
V2

pcc

Vmax

)2

(18)  

Qf ⋅

(

1 −
(

f 2
PCC

fmin

)2)

≤
ΔQ
P

≤ Qf ⋅

(

1 −
(

f 2
PCC

fmax

)2)

(19)  

where, Vmax, Vmin, and fmin, fmax are the UOV and UOF boundaries. In 
compliance with IEEE 929–2000 Standard [4], the NDZ boundaries [4] 
for the UOV, UOF, and Qf have been specified as 0.88 p.u. to 1.1 p.u., 
59.3 Hz to 60.5 Hz, and 2.5, respectively [29,34]. Therefore, will be 
obtain [29]: 

− 17.36% ≤ ΔP/P ≤ 29.13% (20)  

− 5.94% ≤ ΔQ/P ≤ 4.11% (21) 

When ΔP and ΔQ balance is small beside active power P or reactive 
power Q [30,34,93], the voltage and frequency variation will not be 
sufficient to activate the UOV/UOF protections. Therefore, the islanding 
operation mode cannot be detected [30]. Subsequently, the detecting 
probability of the islanding operation mode with these active techniques 
is high [30]. Therefore, at this moment, the AFD, SMS, SFS, and SVS 
methods were utilized to drift the voltage and frequency outside the 
limits with a smaller power mismatch [29,93]. 

The NDZ of the studied AFD, SFS, SMS [13], and SVS active 
anti-islanding methods appear in Fig. 9. The PV inverter steady-state 
frequency in the islanding operation mode will be outside the volta-
ge/frequency protection relays limits [37]. The PV inverter will then be 
tripped [37]. The intersections between the UOV/UOF lines and the 

Fig. 20. SFS method for different Qf. (a) Frequency. (b) ROCOF.  
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Fig. 21. SMS method for different quality factors. (a) Current. (b) Voltage. (c) Frequency.  
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achieved curves form the NDZ of each active anti-islanding technique. 

2.4. Quality factor influence on islanding operation 

The quality factor of a parallel RLC load represents the ratio between 
the stored and dissipated energies per period at a specific frequency [4, 
13] and is expressed as follows [13,85,91]: 

Qf =
2π
(

1
2 CR2I2

)

πRI2

w0

= w0RC =
R

w0L
= R

̅̅̅̅
C
L

√

(22)  

where w0 = (1/LC) is the load resonant frequency pulsation. The parallel 
RLC load impedance phase and magnitude concerning the f arbitrary 
and f0 resonant frequencies are expressed as in (23) and (24) [13,85,91]: 

∅load = tan− 1
[

R
(

1 − ω2LC
ωL

)]

= tan− 1
(

Qf
f0

f
−

f
f0

)

(23)  

z =
1

1
R +

(
1

ωL − ωC
)2 =

R
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + Q2
f

(
f0
f −

f
f0

)2
√ (24) 

The power mismatch space dP versus dQ cannot establish the NDZ of 
active techniques since, for a determined reactive power mismatch, 
there might be more combinations of inductance L and capacitance C, 
[13,89,94]. However, using the load quality factor Qf as a parameter, 
different RLC load combinations can be governed [85]. 

The islanding frequency and voltage magnitude at steady-state, Vis-

land and fisland, respectively, in the case of a RLC circuit, are given as the 
following [13,85]: 

Pload,island =
V2

island

R
= Pinv (25)  

Qload,island =

(
V2

island

Xc,grid

(
f0

2

fisland

)2

− 1

)

= Qinv (26) 

Therefore, it can be stated that the voltage in an islanding operation 
mode Visland is influenced by the active inverter power Pinv and resistance 
R [85]. Next, the frequency fisland is drifted by changing the inverter 
reactive power Qinv. Here, a slight change in the reactive inverter power 
is necessary to drift φload frequency outside the specified boundaries 
[13]. In the case of a RLC load, the phase angle of loads versus frequency 
curves for different resonant frequencies f0 and Qf are depicted in 
Fig. 10. The variation of load phase angle with the frequency with 
different resonant frequencies f0 and different quality factors Qf would 
be as depicted in Fig. 11 [13,85]. 

2.5. Testing of studied active islanding detection methods 

This section shows the testing system development with analyzed 
active methods. Simulation of the PV system with all studied methods 
was performed as in the literature using the PV system model developed 

Fig. 22. Obtained results for SVS method at different Qf. (a) RMS grid current. (b) RMS grid voltage. (c) Reactive Power. (d) Active power.  
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under the Matlab/Simulink. Table 2 illustrates the obtained simulation 
results. 

Each method has used the recommended parameters in the scientific 
literature within 2 s time as demanded by the IEEE 929–2000 [4] and 
IEEE 1547.1 [106] standards, as stated in Section 2.3. According to the 
IEEE Std. 929–2000 [4], the test load represents a resonant parallel RLC 
load [30]. Therefore, the f0 simulation step has been set to 0.1 Hz. 
Table 1 indicates the load parameters. The inverter injects the active 
power from the PV solar array into the grid while the reactive power is 
nulled. The PV inverter control has a significant role in the case of active 
IDMs; therefore, more case scenarios will be detailed in Section 3. 

Following the testing simulation results, the AFD active method with 
Δf = 0.5 Hz and VFP passive method detect the islanding operation 
mode slower. In contrast, the AFD active method with Δf = 1.5 Hz de-
tects islanding operation faster than the case when the system with Δf =
1 Hz (see Table 2). Given this, Fig. 13 depicts the studied PV power 
system response with the AFD method and VFP relay in terms of the 
VPCC, IPCC phase current, and disconnecting signal, considering only the 
Δf = 1.5 Hz case. 

Fig. 14 shows the voltage and currents for the SFS technique with 
KSFS = 0 Hz− 1 and VFP relay. When KSFS = 0 Hz− 1, the critical detection 
time is t = 132 ms, noting that the SFS technique with KSFS = 0 Hz− 1 

became in comportment like AFD method. Furthermore, the PV gener-
ator has lost its stability [102] at KSFS = 0.018 Hz− 1, during which the 
islanding operation mode is quickly detected. Moreover, the islanding 
frequency reached the 60.5 Hz value over a longer period when KSFS =

0.05 Hz− 1 [37]. Therefore, the system protection does not detect the 

islanding operating mode in all situations [37]. 
Similar anti-islanding tests were done for the SMS method with 

different θm values (25◦, 15◦, and 10◦). Fig. 15 illustrates the islanding 
response of the PV system with SMS technique and VFP relay regarding 
the voltage VPCC, current IPCC, and fault signal only in the first θm = 25◦

condition. 
Noted that for the other θm = 10◦ and θm = 15◦ conditions, the PCC 

frequency fPCC decreased and became lower than the VFP set point after 
the power grid’s disconnection [13]. Meanwhile, the PV inverter ceased 
supplying the local load within six cycles after the frequency exceeded 
the frequency’s lower limits [13] at 783 ms and 285.8 ms, respectively 
(see Table 2). Therefore, the grid-connected PV converter is turned off. 
Furthermore, the PCC voltage VPCC and PCC current IPCC decreased to 
zero when the disconnecting signal was zero. 

According to the IEEE 929–2000 standard [4], the most unfavorable 
situation happens when Qf = 2.5, which is not verified for θm = 25◦ and 
verified when θm = 15◦ and θm = 10◦ Here the AFD phase angle φinv_AFD is 
always positive. On the other hand, the SMS and SFS phase angle, φinv_SFS 
and φinv_SMS can be positive or negative. The AFD inverter current is 
always a maximum frequency, whereas, for the SMS and SFS techniques, 
the current frequency drift can be up/down [13]. 

Fig. 16 depicts the PV system response for the SVS method with KSVS 
= 1 A/V and VFP passive method in terms of VPCC voltage, IPCC current, 
disconnecting signal, and inverter shut-down time which are obtained 
the best islanding detection time of 428 ms. 

Fig. 22. (continued). 
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3. Simulation results and discussions 

In this section, some case studies illustrate the islanding perfor-
mances of the analyzed active methods under different quality factors, 
load types, irradiance changes, FRT operation mode, and effectiveness 
in hybrid strategies. 

3.1. Simulation case studies 

3.1.1. Different load quality factors 
To evaluate that the studied active methods are effective under 

different standards requirements [35], the PV system is simulated under 
a Qf range between 1 and 2.5 [24]. The obtained simulation results are 
depicted from Fig. 17 to Fig. 23. The quality and the perturbation given 
by the studied methods are presented by those graphics. 

3.1.2. Different load types 
The AFD voltage and frequency for different loads are represented in 

Fig. 24. In Fig. 25, the SFS voltage for different load types is shown. The 
SMS voltage and frequency in the case of different load types are 
described in Fig. 26. The SVS voltage and frequency for different kinds of 
loads are depicted in Fig. 27. 

As can be observed from the obtained results, the effect of changing 
load types on the IDMs can be demonstrated by those figures, and to 
know if the active methods can support these forced changes in load in 
terms of detection time and the quality signal (The first limit for active 

methods is that they have a large perturbation in terms of signal quality.) 
against the used IEEE Std. 929 requirements. 

3.1.3. Irradiation effect scenarios 
The solar irradiation variation used in this study is shown in Fig. 28. 

The irradiation shape is not real but is used to show how fast the 
controller responds under the worst-case scenario. The solar irradiance 
does not change from 500 to 1000 W/m2 in 0.1 s. It takes at least 8 s 
[103]. 

Considering the solar irradiation variation as depicted in Fig. 28, the 
PCC grid voltage and current of the studied active islanding methods for 
increasing and decreasing irradiance will be represented in Fig. 29. 
Fig. 30 illustrates the active and reactive power for increasing and 
decreasing in irradiance, while Fig. 31 shows the frequency and ROCOF 
for increasing and decreasing irradiance. From the obtained results, it 
can be concluded that studied IDMs perform very well under solar 
irradiation variations. 

3.2. Performance of studied anti-islanding methods under fault-ride 
through 

New grid requirements have been imposed on the IDMs. For 
example, because of stability and supportability issues, the PV inverters 
have been required to meet frequency and voltage FRT curves so that 
they cannot be disconnected under certain circumstances. This section 
discusses how the FRT requirements might adversely affect the 

Fig. 23. SVS method for different Qf. (a) Frequency. (b) ROCOF.  

F. Barkat et al.                                                                                                                                                                                                                                  



Electric Power Systems Research 214 (2023) 108909

19

performance of islanding detections. 
The performance of the studied IDMs under FRT required by current 

grid codes is illustrated in Fig. 32. The considered scenarios under this 
case study are the behavior of each analyzed anti-islanding method 
under islanding with and without faults cases and fault without island-
ing case, respectively. As shown in Fig. 32, all studied active anti- 
islanding methods are effective during FRT. However, new 

requirements may appear in the future. 

3.3. Evaluation effectiveness of active methods in hybrid strategies 

From the above figures, can be observed and noted the effect of each 
studied active method. This section evaluates the analyzed active IDMs 
in a hybrid islanding detection strategy with passive methods from [34] 

Fig. 24. AFD method for different kinds of loads. (a) Voltage. (b) Frequency.  

Fig. 25. RMS Voltage for SFS method in case of different load types.  
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concerning detection time. In the subsequent experiments, the PV sys-
tem will be disconnected using VFP [13,34] and ROCOF [3,34] relays, 
respectively. 

3.3.1. Different quality factors scenario 
Table 3 shows the results for RLC load under islanding, at Qf = 1, Qf 

= 1.5, and Qf = 2.5, respectively. The best detection for the VFP relay 
timing is registered for the case of SFS IDM with Qf = 1 by 129.7 ms after 
the grid is disconnected. For the ROCOF relay timing, the best case was 
also for SFS IDM with Qf = 1 and detection time of 117 ms. 

3.3.2. Different load types scenario 
The detection times of the analyzed active methods in the hybrid 

strategy [34] for different load types are given in Table 4. 
For the scenario of different load types, the best cases are registered 

for VFP relay timing in the AFD method with RL load case (47.1 ms) and 
for the ROCOF passive relay timing in the AFD method with pure 
resistive load R case (20.4 ms). On the other hand, the most unfavorable 
result using the VFP passive method is registered for the SFS IDM with 
RC load by 539 ms. For ROCOF passive protection method timing, the 
worst-case scenario is for RC load too for AFD method by 631 ms. 
Otherwise, the results show some limitations: the ROCOF relay fails to 
detect the islanding mode for SFS IDM with RC load, and the VFP relay 
also fails to detect islanding mode for SMS IDM with RC load. 

3.3.3. Solar irradiation changes scenario 
The influence of the solar irradiation changes in the proposed hybrid 

strategies from [50] with analyzed active methods has been summarized 
in Table 5. In this table, the solar irradiation changes from Fig. 28 have 
been considered for all the active methods previously presented to 
determine the detection times of the hybrid method with VFP, and 
ROCOF relays from [34]. 

3.3.3.1. Solar irradiation decreasing. For the solar irradiation decreasing 
scenario, the best case for the VFP relay timing is SVS IDM with a 204 ms 
detection time; for the ROCOF relay timing, the best case was 133.4 ms 
recorded in the SVS method. Also, the worst case for VFP relay was 
obtained in the case of AFD method (342.8 ms), and the worst case for 
the ROCOF protection relay was in the case of SMS IDM (1.108 s). 

3.3.3.2. Solar irradiation increasing. For the scenario of irradiation 
increasing, the SFS method gives the best performance by recording 148 
ms in the VFP relay. For the ROCOF relay timing, the best detection time 
was also in the case of the SFS method (31.7 ms). The worst-case were 
the ones of the SVS (471.5 ms) and SMS (308.9 ms) IDMs for VFP and 
ROCOF relays, respectively. 

3.4. Discussion of obtained results and main achievements 

The existing and novel methods have been studied in this paper by 

Fig. 26. SMS method for different kinds of loads. (a) Voltage. (b) Frequency.  
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Fig. 27. SVS method for different kinds of loads. (a) Voltage. (b) Frequency.  

Fig. 28. Irradiation variation scenarios.  
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Fig. 29. Studied active islanding methods under solar irradiation variations. (a) RMS voltage for irradiance increasing. (b) RMS voltage for irradiance decreases. (c) 
RMS current for irradiance increases. (d) RMS current for irradiance decreases. 
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Fig. 29. (continued). 

Fig. 30. Studied active islanding methods under solar irradiation variations. (a) Reactive power in case of irradiance increases. (b) Reactive power in case of 
irradiance decreases. (c) Active power for irradiance increasing. (d) Active power for irradiance decreases. 
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Fig. 30. (continued). 

Fig. 31. Solar irradiance variations. (a) Frequency for solar irradiation increases. (b) Frequency for solar irradiation decreases. (c) ROCOF for solar irradiation 
increases. (d) ROCOF for solar irradiation decreasing. 
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hybridizing them with classical VFP and other passive methods as 
ROCOF. That made it a novel and improved technique studied under 
different parameters and scenarios to show their performance and 
limitations. 

The analyzed IDMs result in no fault detection zone (FDZ) [34,40]. 
The analyzed active methods have a low computational burden and 
operation time [39] compared with intelligent [16] and passive methods 
[6]. 

The studied active methods have good and acceptable power quality 
in terms of total harmonic distortion (THD) wherein some form of 
external perturbation or injection in terms of current, voltage, or phase 

angle is involved [34,86]. 

4. Conclusions 

This paper discussed the implementation and performance evalua-
tion under different case studies of four active IDMs: the AFD, SFS, SVS, 
and SMS methods. The testing system consisted of a single-phase grid- 
tied transformerless PV residential system, a single-phase DC-AC 
inverter, an inverter control with an MPPT controller, a utility grid, and 
a residential load. The UOV and UOF islanding protection methods, 
standard protections used for most grid-connected PV systems, were 

Fig. 31. (continued). 
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chosen as implicit islanding protection methods since they are simple 
and compatible with the analyzed PV system. 

In this work, the most common anti-islanding methods are analyzed 
with a study in detail of their different actions when islanding occurs. 
Furthermore, the study covers the reaction of each method when hy-
bridizing them with VFP and ROCOF passive methods because they are 
the best in terms of detection and sensibility. The study also included all 
methods in different parameters and in different scenarios to get a better 
conclusion. In addition, more simulation test cases considering different 
load quality factors, types of loads, solar irradiation effect conditions, 

and FRT operation on each active IDM were added to sustain the ob-
tained results. Finally, the active methods are studied and compared for 
the first time. 

The conclusions of the studies can be drawn as follows:  

(1) The detection time for the considered active methods satisfies the 
IEEE Std. 929–2000 and IEEE 1547.1 conditions verifying the 2 s 
requirement, sometimes the detection time was less than 1 s.  

(2) The SFS method is better than the AFD method, demonstrated by 
detection time and quality signal results. However, the AFD and 
SFS IDMs have minor differences in results for different quality 
factors scenarios.  

(3) The SVS active method has the longest VFP detection time 
because its VFP passive relay considers the 120 cycles required by 
the IEEE 929–2000 standard for the voltage relay, which take a 
long time to trip-off. This scenario does not happen in ROCOF 
passive relay because it does not take all this time. Thus, the 
ROCOF passive relay has a good detection time for the SVS active 
method and all active methods in all cases.  

(4) The best detection time of islanding mode in the studied scenarios 
was detected in the SFS active method with ROCOF passive 
protection relay. However, the SFS method needed a more sig-
nificant change in active power to detect the islanding operation 
mode. Therefore, the SMS islanding technique is recommended 
for grid-tied PV power systems because it gives the best detection 
time and signal quality with less deterioration. 

Fig. 32. Studied anti-islanding methods under FRT operation. (a) AFD method. (b) SMS method. (c) SFS method. (d) SVS method.  

Table 3 
Detection time in case of different quality factors scenario (ms). (a) VFP Relay. 
(b) ROCOF relay.  

Active IDM Qf ¼ 2.5 Qf ¼ 1.5 Qf ¼ 1 

(a) 
AFD 132.0 131.5 131.2 
SFS 131.0 130.5 129.7 
SMS 220.2 121.5 205.4 
SVS 436.0 292.1 222.0 
(b) 
AFD 119.2 118.3 117.9 
SFS 118.7 117.7 117.0 
SMS 230.2 204.8 121.2 
SVS 120.1 292.1 119.6  

Table 4 
Detection time for different load types scenario (ms). (a) VFP Relay. (b) ROCOF 
relay.  

Active IDM RLC R RC RL 

(a) 
AFD 132.0 74.6 145.3 47.1 
SFS 131.0 74.4 539.0 59.0 
SMS 220.2 127.3 – 59.0 
SVS 436.0 133.0 514.0 59.5 
(b) 
AFD 119.2 20.4 631.0 101.6 
SFS 118.7 21.2 – 43.4 
SMS 223.9 121.7 169.6 31.5 
SVS 120.1 120.4 222.5 43.9  

Table 5 
Detection time for solar irradiation changes scenario (ms). (a) Solar irradiation 
decreasing. (b) Solar irradiation increasing.  

Active IDM VFP ROCOF 

(a) 
AFD 342.8 245.7 
SFS 342.6 450.4 
SMS 333.9 1108.0 
SVS 204.0 133.4 
(b) 
AFD 182.3 37.1 
SFS 148.0 31.7 
SMS 271.1 308.9 
SVS 471.5 119.8  
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(5) The analyzed active methods detect islanding mode effectively 
and effortlessly under different quality factors, types of loads, 
solar irradiation changes, and FRT operation mode. Moreover, 
those methods can effectively work in hybrid IDMs with passive 
methods like VFP and ROCOF. 
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