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A B S T R A C T   

The increasing penetration of electric vehicles (EVs) poses challenges to the operation of existing power systems 
owing to the spatial and temporal randomness and dynamics of EV charging. Although substantial theoretical 
research efforts have been made for EV coordinated charging management, the implementation and validation in 
the context of a practical market mechanism in the presence of EV aggregators require further exploitation. This 
study develops a two-phase coordinated charging scheduling solution in the energy market environment to 
optimally schedule EV charging loads for profit maximization from the perspective of EV aggregators. In the first 
phase, EV aggregators bid for energy in the day-ahead markets, considering a wide variety of uncertainties from 
EV charging and electricity markets. In the second phase, EV aggregators manage the charging loads of EVs in 
real time using purchased energy. The proposed solution was implemented and assessed using the Guangdong 
energy market as a case study through extensive simulation experiments. The numerical results confirm that the 
proposed method can enable the actual consumed energy from EVs to match the day-ahead bidding energy well. 
In this regard, the charging demand of EVs can be met with proper planning, to fulfill the coordinated charging 
operation of EVs in power grids.   

1. Introduction 

1.1. Background and motivation 

It is universally agreed that the large-scale deployment of electric 
vehicles (EVs) and distributed renewable power generation resources 
can effectively mitigate the dependence on fossil fuels in the trans
portation sector and hence reduce carbon emissions. According to a 
recent International Energy Agency (IEA) report, the global EV stock 
will reach 10 million units in 2020, a 43% increase over 2019 [1]. 
However, the uncertainties and randomness introduced by uncontrolled 
charging of numerous EVs would result in deteriorated impacts on the 
operation of power grids, for example, feeder and transformer over
loading, and power quality degradation [2]. To avoid the significant 
reinforcement of existing power grids to accommodate the extra EV 
charging demand, coordinated charging of EVs is considered a 
cost-effective alternative solution to shift the EV load to load-valley 
periods to alleviate the power supply pressure of grids during peak 
hours [3]. 

A critical prerequisite to conducting a coordinated charging 

operation for EVs is the optimal charging strategy of EVs, which aims to 
improve the grid performance by flattening the power load profiles [4], 
reducing power losses [5], or enhancing voltage stability [6]. On this 
basis, a range of operational objectives have been developed to inves
tigate the potential of EVs as flexible loads in the power grid, for 
example, minimizing the power load variance [7], minimizing the 
power loss [8], maximizing the load factor [9], minimizing the peak 
load [10], and avoiding the voltage drop [11]. Moreover, the equiva
lence of the three optimization objectives was investigated in Ref. [12]. 
The results reveal that for practical systems, load variance minimization 
is equivalent to power loss minimization, and load factor maximization 
is almost equivalent to load variance minimization. These observations 
indicate that the above research efforts focus on a specific target to 
investigate the potential benefits of using EVs as flexible resources for 
power grids. However, energy transactions between EV users and power 
grids are seldom involved, and the satisfaction or willingness of EV users 
to participate in coordinated charging is rarely considered. 

As stated above, it is essential to develop more practical frameworks 
to support grid integration of large-scale EVs. In the existing literature, 
two operational frameworks have been widely explored and studied to 
coordinate the charging of EVs to avoid grid congestion. One is to 
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leverage the time-of-use (ToU) tariff policy to encourage EV users to 
charge during off-peak hours [13]. The implementation of ToU tariffs is 
easy because it only requires grid operators to broadcast price infor
mation to the EV users [14]. However, EVs, in this case, cannot offer 
ancillary services to power grids in the absence of a sound-charging 
control system. The other is to introduce EV aggregators to take 
charge of the EV fleet to participate in the electricity market. In this 
architecture, EV aggregators can remotely monitor and control the 
charging/discharging states of the EV batteries. As a result, EV aggre
gators can utilize EVs to provide a series of grid services, for example, 
frequency and voltage regulation, supporting the grid integration of 
renewable energy [15–17]. The latter was adopted in this study to 
investigate the charging behaviors of EVs in a market environment. 

In the authors’ view, the competitive electricity market creates an 
environment for EV-coordinated charging in its widespread practical 
application. Because a single EV’s transaction capacity does not meet the 
entrance criteria for electricity markets, EV aggregators must mediate 
between EV users and grids and participate in the electricity market on 
behalf of an EV fleet [18]. EV users must contract with EV aggregators, 
striving for a lower charging fee. In the energy market, the clearing and 
pricing system depends on the power supply and demand status when 
considering the grid congestion level [19]. A higher electricity price 
signifies a shortage of energy supply, whereas a lower price reveals that 

there is surplus grid capacity to accommodate the extra electric load. In 
this sense, when EV aggregators respond to the real-time pricing system, 
they manage the charging time of EVs away from the grid utilities’ peak 
hours to reduce their energy expense [20]. In the framework of elec
tricity markets, EVs are encouraged to serve as flexible resources for 
providing power-balancing services through EV charging and dis
charging operations [21]. Recently, there has been increasing interest in 
exploiting the coordinated charging operation of EVs in the electricity 
market to promote the large-scale integration of EVs into existing power 
grids. 

1.2. Literature review 

The trading architecture of the spot electricity market includes day- 
ahead and real-time markets [22]. From the perspective of EV aggre
gators, they should bid the electricity in the day-ahead market and 
schedule the charging loads of EVs using the purchased electricity in real 
time. Consequently, the market participation processes of EV aggre
gators can fall into two phases: day-ahead bidding and real-time 
charging scheduling. In this regard, more emphasis is placed on the 
day-ahead bidding problem rather than the real-time scheduling oper
ation, as EV aggregators face a variety of challenges in day-ahead 
markets, including, but not limited to, competition from other 

List of acronyms 

CMM Centralized management mode 
CVaR Conditional value-at-risk 
DIM Distributed incentive mode 
EV Electric vehicle 
GPEC Guangdong power exchange center 
IEA International energy agency 
PD Price difference 
SoC State of charge 
ToU Time-of-use 

Nomenclature 
t Index of hours 
T Set of hours 
k Index of time slots 
K Set of time slots 
w Index of real-time clearing scenarios 
W Set of real-time clearing scenarios 
n Index of EVs 
N1 Set of all EVs with CMM 
N2 Set of all EVs with DIM 
S1

k Set of available EVs with CMM at k-th time slot 
S2

k Set of available EVs with DIM at k-th time slot 

Parameters 
λDay

t Day-ahead energy price at t-th hour, in CNY/kWh 
λRT

w,t Real-time energy price at t-th hour for scenario w, in CNY/ 
kWh 

πw Probability of scenario w occurrence, in p.u. 
λAgr

n,h Agreement price that EV aggregators sell to n-th EV with 
CMM at h-th hour, in CNY/kWh 

θ0 Service tariff that EV aggregators envy on EVs with DIM, in 
p.u. 

φmax
n,k Allowable maximum charging energy of n-th EV at k-th 

time slot, in kWh 
φn,k Response coefficient of n-th EV at k-th time slot, in p.u. 
ε0 Allowable bidding deviation rate in Guangdong real-time 

markets, in p.u. 
EDay

min Allowable minimum bidding energy in day-ahead markets, 
in kWh 

EDay
max Allowable maximum bidding energy in day-ahead 

markets, in kWh 
PMax

n Maximum charge power of n-th EV in kW 
Δt Length of time slots, in hour 
Γc

n Connection time slot of n-th EV, in p.u. 
Γd

n Disconnection time slot of n-th EV, in p.u. 
ηn Charger efficiency of n-th EV, in p.u. 
Batn Onboard battery capacity of n-th EV, in kWh 
SoCc

n Connection battery SoC of n-th EV, in p.u. 
SoCd

n Disconnection battery SoC of n-th EV, in p.u. 
λRT

i Actual real-time clearing energy price at i-th hour, in CNY/ 
kWh 

λAgr
n,j Agreement price that EV aggregators sell to n-th EV with 

CMM at j-th time slot, in CNY/kWh 
δj Consumed energy at j-th time slot, in kWh 

Variables 
EDay

t Day-ahead bidding energy at t-th hour, in kWh 
ΔEw,t Deviation between day-ahead bids and actual energy 

consumption at t-th hour for scenario w, in kWh 
CPen

w,t Expected penalty costs arising from deviation ΔEw,t , in CNY 
EM1

w,n,k Scheduled charging quantity of n-th EV in set N1 at k-th 
time slot for scenario w, in kWh 

EM2
w,n,k Determined charging quantity of user of n-th EV in set N2 at 

k-th time slot for scenario w, in kWh 
EM1

n,j Actual charging quantity of n-th EV in set S1
k at j-th time 

slot, in kWh 
EM2

n,j Actual charging quantity of n-th EV in sede S2
k at j-th time 

slot, in kWh 
ΔEi Actual deviation between day-ahead bids and EV 

consumed energy at i-th hour, in kWh 
CPen

i Actual penalty costs arising from deviation ΔEi, in CNY  
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independent aggregators, the uncertainty of market prices, and the 
minimum required charging demand of EVs [23,24]. In existing studies, 
the focus is on optimization techniques to handle the uncertainty in the 
day-ahead market and make optimal bids, including stochastic pro
gramming, chance-constrained programming, and robust optimization. 
For instance, in Ref. [25], a stochastic programming framework was 
developed for EV aggregators participating in the energy and ancillary 
service markets, considering the impact of market price and reserve 
market uncertainties. In Ref. [26], a risk-constrained optimal bidding 
strategy was presented by incorporating demand response programs and 
EVs into a smart grid. In addition, a robust hierarchical optimization 
method was proposed to regulate the charging of EVs to make optimal 
decisions regarding the bidding strategy in the day-ahead market [27]. 
Herein, we consider the EV charging problem in a systematic manner, 
based on the electricity market framework. 

The day-ahead bidding strategy is critical for EV aggregators to 
reduce their overall operating costs when participating in the electricity 
markets. In the day-ahead bidding problem, EV aggregators are con
fronted with uncertainties in two aspects: EV charging and market 
clearing [28]. Because of the mobility of EVs as a transportation tool, it 
is almost unrealistic to predict EV charging events, including the arri
val/departure time and state of charge (SoC) in the following day [29]. 
Research efforts to cope with uncertainties in EV charging are mainly 
based on probabilistic modeling or scenario-based methods. For 
instance, in Ref. [30], the probability distribution of the charging be
haviors of EV users was modeled using real-world charging data. In the 
simulations, the randomly generated charging data of EVs served as the 
input of the model for the optimal bidding strategy of the EV aggre
gators. The scenario-based approach was adopted in Ref. [31], where 
the driving distances of EVs were accurately modeled to generate sce
narios of EV charging to maximize the profits of EV aggregators in the 
day-ahead energy trade. However, when using simulation scenarios to 
model the uncertainties of EVs, the driving requirements of EVs may not 
be satisfied if the scenarios are not properly generated [32]. 

In addition to the stochastic property of EV charging, EV aggregators 
should deal with uncertainties from the electricity market in the day- 
ahead bidding process. Generally, the day-ahead settlement price 
cannot be acquired before market clearing. Consequently, EV aggre
gators need to consider potential day-ahead clearing scenarios to obtain 
the optimal bidding strategy. P. Afzali’s study, for example, used the 
conditional value at risk (CVaR) to deal with uncertainty in day-ahead 
prices and renewable power producers for the optimal participation 
strategy in the day-ahead market [33]. However, the consideration of 
day-ahead prices for the bids of EV aggregators may not be sufficient 
because the real-time (or balancing) market also affects the profits of EV 
aggregators. More recent efforts have been devoted to the day-ahead 
bidding strategy while considering the possible real-time clearing sce
narios, such as, in Refs. [34,35]. These studies adopt a scenario-based or 
risk-based approach to manage market uncertainties [36]. The 
scenario-based approach explicitly reveals the stochastic property of the 
resources and describes the probability of occurrence of real-time 
clearing scenarios in the day-ahead bidding model. For instance, in 
Ref. [37], a set of real-time clearing scenarios and their probabilities 
were incorporated into the stochastic optimization model to determine 
the optimal bidding strategy of EV aggregators in the day-ahead market. 
The risk-based approach introduces a risk indicator to manage potential 
losses when EV aggregators bid in the day-ahead market. In Ref. [38], 
for example, the CVaR indicator was used in the proposed model to deal 
with underlying uncertainties in the real-time market for risk aversion, 
so that the acquired bidding strategy was not too conservative or too 
optimistic in the energy and frequency regulation markets. 

The observations show that the scenario-based approach uses the 
probability distribution to describe the uncertain parameters for the 
expected profit maximization, and the risk-based approach introduces a 
risk-related indicator to manage the potential risk incurred by uncertain 
factors in the day-ahead bidding model. 

In real-time operation, EV aggregators can schedule the charging 
loads of EVs to decrease the deviation between the day-ahead bids and 
the actual energy consumption to reduce penalty costs. Owing to the 
short time interval for EV charging scheduling, EV aggregators require 
fast strategies that enable them to distribute charging/discharging 
commands among EVs in a timely manner, as suggested by Refs. [39, 
40]. In this sense, the computational complexity of the solving algorithm 
used for the proposed model is vital for the implementation of the 
real-time charging operation of EVs [41]. A very limited body of 
research exists regarding real-time energy management of EVs in the 
electricity market framework. In Ref. [42], a real-time charging-sched
uling model was presented to help EV aggregators participate in the 
energy and regulation markets. The developed model for assigning 
charging points to EVs based on their charging priority was formulated 
as a linear program, which can be solved efficiently. In Ref. [43], a 
holistic methodology was presented to manage the charging of EVs in 
quasi-real-time for the market participation of EV aggregators, consid
ering all aspects of restriction. The proposed method aims to minimize 
the penalty costs of EV aggregators incurred by the deviation between 
the energy bought in the market and the energy sold to EV users to in
crease the EV aggregators’ profits. Moreover, a real-time charging 
strategy for EVs with vehicle-to-grid operation was performed to provide 
ancillary services in Ref. [44]. The computational performance and ac
curacy of several real-time controllers were analyzed. Extensive simu
lations indicate that the proposed controller can improve the accuracy of 
the following regulation signals and reduce battery cycling. 

1.3. 1.3. Paper contributions and organizations 

This study exploited the coordinated charging management of EVs in 
a market environment from the perspective of EV aggregators to enable 
the integration of EVs into the existing power grid. The day-ahead bid
ding process and real-time charging scheduling operations were 
considered to address the EV charging-scheduling problem. The former 
deals with the uncertainties introduced by EV charging behaviors and 
market clearing, and the latter dynamically adjusts the charging strategy 
of EVs for profit maximization. In this study, the proposed coordinated 
charging solution was assessed through a case study of the Guangdong 
electricity market. The primary technical contributions of this study are 
summarized as follows: 

●This study bridges the gaps between theoretical research and 
practical applications for coordinated EV charging by introducing an 
electricity market framework. To apply the proposed approach to 
real-world situations, the agent relationship between EV aggregators 
and EV users is established as a premise for the EV aggregators’ 
market participation. 
●In the proposed methodology, the charging autonomy of the EV 
users is fully respected. In previous studies, it was assumed that EV 
aggregators could directly utilize the charging flexibility of EVs to 
participate in the electricity market. EV users have the authority to 
select their agent contracts with EV aggregators for EV charging 
management. In this context, two types of agent modes were 
developed to satisfy the coordinated charging requirements of EV 
users. 
●Potential real-time clearing scenarios are incorporated into the 
day-ahead bidding model, which can largely reduce the risk arising 
from the real-time market. In addition, the real-time optimizer is 
designed to dynamically adjust the charging strategy of the available 
EVs to follow the day-ahead bidding energy profiles for the opera
tional cost reduction of EV aggregators in the real-time market. 

The remainder of this study is organized as follows. The problem 
regarding the coordinated charging operation of EV in a market 
framework is formulated to gain the optimal market participation 
strategy in Section 2. Subsequently, EV-related and market data for the 
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simulations are presented in Section 3. Subsequently, a result analysis is 
provided in Section 4 to verify the rationality of the proposed method. 
Finally, Section 5 concludes this study and highlights important 
findings. 

2. Problem formulation of coordinated EV charging in market 
frameworks 

2.1. General description 

2.1.1. Operating process of EV aggregators in markets 
In this study, the coordinated charging schedule management of EVs 

is explored by considering the Guangdong electricity market. The 
Guangdong electricity market was the first batch to undertake a pilot 
study on the reform of power markets in China. It uses the security- 
constrained economic dispatch approach to produce the marginal 
clearing price for market-clearing. The timeline of the participation of 
EV aggregators in energy markets is depicted in Fig. 1. In day-ahead 
markets, EV aggregators need to report their power demand to the 
Guangdong Power Exchange Center (GPEC) before 13:00 in a day-ahead 
horizon. Correspondingly, power plants also need to inform the GPEC of 
their supply. According to the power demand and supply status of 
electric grids, the GPEC produces day-ahead market-clearing results 
before 15:30, which are released to EV aggregators. In real-time mar
kets, the GPEC releases the real-time clearing price each hour based on 
the ultra-short-term load prediction (e.g., at the time scale of 15 min) 
and the stored bidding information from power plants and electricity 
retailers. In terms of the current clearing point, EV aggregators schedule 
the charging power of EVs from the current time period to the end of the 
day based on the existing clearing price. 

Based on the market rules, the two-phase operating process of EV 
aggregators managing an EV fleet in a market environment is illustrated 
in Fig. 2. First, in the day-ahead bidding phase, EV aggregators bid electric 
energy for EV charging in advance in day-ahead markets. In the 
Guangdong spot electricity market, power plants submit priced energy 
supply plans to the GPEC, whereas electricity retailers (including EV 
aggregators) need to report non-priced energy demand bids to the GPEC. 
When the GPEC receives bids from all market participants, the day- 
ahead market is cleared by solving the security-constrained economic- 
dispatch problem. The day-ahead clearing price is used for the first 
settlement between the GPEC and EV aggregators. 

In the real-time scheduling phase, EV aggregators must consider the 
charging demand of the current EV fleet and manage the charging 
scheduling of EVs based on the day-ahead bidding energy and real-time 
clearing price. It is worth mentioning that EV aggregators cannot bid for 
energy in real-time. Hence, they can only regulate the charging strate
gies of EVs to increase their profits. Additionally, the availability of EVs 
changes over time. As a result, EV aggregators must instantly update the 
charging information of previously connected EVs and collect the 
charging data of newly connected EVs for charging rescheduling in real 
time. 

2.1.2. Charging agent modes provided for EV users 
Before EV aggregators participate in electricity markets, they first 

need to contrast with individual EV users to procure their charging 
flexibility. In existing studies, EV aggregators have coordinated the 
charging of EVs using centralized or distributed methods [45]. In the 
centralized method, EV aggregators can uniformly schedule the 
charging of EVs to achieve a specific target. In the distributed method, 
the charging behavior of EVs is regulated by the price signals released by 
EV aggregators. This can naturally be extended to two types of agent 
modes provided for EV users to conduct the coordinated charging 
operation: centralized management mode (CMM) and distributed 
incentive mode (DIM). 

In the CMM, EV users should hand over the charging authority of EVs 
to EV aggregators, and EV aggregators can utilize the charging flexibility 
of EVs to generate profits in the competitive electricity market. In this 
mode, the EV aggregators can directly control the EV charging process. 
In return, EV users can obtain cheaper negotiated energy to recharge 
their vehicles. In the DIM, EV users can reserve the charging authority of 
EVs and formulate the charging strategy of EVs by themselves based on 
real-time energy prices. In this mode, EV users must transmit their 
charging instructions to EV aggregators for execution [46]. 

A comparison between CMM and DIM in several aspects is presented 
in Table 1. The observations show that EVs with a CMM have no 
charging autonomy. Consequently, EV aggregators can completely 
control the charging process of these EVs. Additionally, EV users can 
strive for a lower price per kWh for EV charging. On the other hand, 
users of EVs with DIM reserve charging autonomy. Therefore, the 
charging flexibility of these EVs was not high. Moreover, within the 
DIM, the charging costs of EVs depend entirely on real-time market 
prices. 

Once EV users plug their vehicles into the smart charging system, 
they can determine whether to conduct a coordinated charging opera
tion. Either the CMM or the DIM can be selected if they are willing to 
provide the coordinated charging operation, and charging-related in
formation, for example, departure time and charging demand, can be 
made available to EV aggregators. Otherwise, the EVs are charged in 
conventional charging mode. 

2.2. Day-ahead bidding strategy of EV aggregators 

When EV aggregators managing an EV fleet participate in energy 
markets, they need to bid for energy in day-ahead markets to charge EVs 
the next day. A day-ahead bidding strategy is critical for EV aggregators 
to reduce their operational costs. Herein, an optimization model is 
formed to help EV aggregators acquire a participation strategy in day- 
ahead markets by considering various uncertainties from EV charging 
and electricity markets. 

As shown in Fig. 3, a one-day cycle of 24 h is considered for EV 
charging scheduling. In the Guangdong electricity market, the energy 
price was released hourly from 0:00 to 24:00. Herein, a day is divided 
into 24 h equally to conduct the settlement between the EV aggregators 
and the GPEC. However, the hourly timescale is too rough to schedule 
EV charging in practical applications. It is worth mentioning that if the 

Fig. 1. Timeline of EV aggregators participating in energy markets.  
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time interval is too short, it will dramatically increase the complexity of 
the optimization problem and scheduling frequency in the real-time 
coordinated charging operation. Therefore, the 15-min-interval time 
scale was used for EV charging scheduling and the settlement between 
EV aggregators and EV users. In addition, different time discretization 
scales for the EV charging schedule are compared in Table 2. 

To calculate the operational costs of the EV aggregators, we define t 
to represent the serial number of hours during a day and t ∈ T(T =

[1,24]). Hence, the bidding costs of EV aggregators in day-ahead mar
kets can be expressed as 

C1 =
∑

t∈T
λDayt EDayt (1)  

where 
λDay

t denotes the day-ahead energy price at the t-th hour, in CNY/ 
kWh; 

EDay
t denotes the amount of day-ahead bidding energy at the t-th 

hour, in kWh. 
It should be noted that the potential clearing scenarios in real-time 

markets should be integrated in the day-ahead bidding model, as extra 
penalty costs are incurred when the imbalance quantity in real-time 
markets exceeds tolerance. In Guangdong real-time markets, because 
of the imbalance quantity, the potential costs of EV aggregators can be 
expressed as 

C2 =
∑

w∈W
πw
∑

t∈T

(
λRTw,t ⋅ΔEw,t +CPenw,t

)
(2)  

where 
w, denotes the index of potential real-time clearing scenarios, in p.u.; 

Fig. 2. Two-phase operating process of EV aggregators in market environment.  

Table 1 
Comparison between CMM and DIM.  

Mode CMM DIM 

Charging autonomy No Yes 
Charging cost Determinate Indeterminate 
Charging flexibility High Low 
User privacy Moderately concerned Marginally concerned  

Fig. 3. One-day cycle and time scales adopted for EV charging scheduling.  
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πw, denotes the probability of the scenario w occurrence, in p.u.; 
λRT

w,t , denotes the real-time price at the t-th hour for the scenario w, in 
CNY/kWh; 

ΔEw,t , denotes the deviation between the day-ahead bidding energy 
and the energy consumed by EVs at the t-th hour for the scenario w, in 
kWh; 

CPen
w,t , denotes penalty costs arising from the deviation at the t-th hour 

for the scenario w in CNY. 
In Eq. (2), ΔEw,t can be calculated by: 

ΔEw,t =ERTw,t − EDayt (3)  

where ERT
w,t denotes the energy consumed at the tth hour for scenario w. In 

addition, CPen
w,t can be calculated by 

CPenω,t =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
EDayt − (1+ε0)ERTω,t

](
λRTω,t − λ

Day
t

)
,EDayt > (1+ε0)ERTω,t and λ

RT
ω,t> λ

Day
t

[
(1 − ε0)ERTω,t − E

Day
t

](
λDayt − λRTω,t

)
,EDayt < (1 − ε0)ERTω,t and λ

RT
ω,t< λ

Day
t

0,otherwise

(4)  

where ε0 denotes the allowable bidding deviation rate in Guangdong 
real-time markets. 

As stated above, the total costs of EV aggregators can be given by: 

C=C1 + C2 (5)  

where the formation of C1 andC2 refer to Eqs. (1) and (2), respectively. 
In energy markets, EV aggregators can sell energy to users for rev

enue. To obtain the optimal charging strategy for EVs, each hour is 
divided into 4 units equally, and there are a total of 96 time slots during 
the day, as illustrated in Fig. 3. Let k denote the serial number of the time 
slots and k̂IK (K = [1, 96]). As indicated above, two types of agent modes 
are provided for EV users to conduct coordinated charging: CMM and 
DIM. Let N1 denote the set of EVs with CMM. For EVs with CMM, the 
charging costs rely on the negotiated price of EV users with EV aggre
gators. Hence, the expected revenue that EV aggregators can obtain from 
EVs with the CMM can be calculated by 

R1 =
∑

w∈W
πw
∑

k∈K

(
∑

n∈N1

λAgrn,h ⋅EM1
w,n,k

)

,where h= int((k − 1) / 4) + 1 (6)  

where 
EM1

w,n,k denotes the charging quantity of the n-th EV in the set N1 at the 
k-th time slot for the scenario w, in kWh; 

λAgr
n,h denotes the agreement price that EV aggregators sell to the n-th 

EV in the set N1 at the h-th hour, in CNY/kWh. 
Herein, the function ‘int ()’ rounds a number down to the nearest 

integer. The expression in Eq. (6) aims to convert the energy price at the 
k-th time slot to the energy price at the t-th hour. 

Let N2 denote the set of EVs with DIM. For EVs with DIM, the 
charging costs depend on the real-time market price. As a result, the 
revenue that EV aggregators can obtain from EVs with the DIM can be 
calculated by 

R2 =
∑

w∈W
πw
∑

k∈K

(

(1+ θ0)λRTw,h ⋅
∑

n∈N2

EM2
w,n,k

)

,where h= int((k − 1) / 4) + 1 (7)  

where 
EM2

w,n,k denotes the charging quantity of the n-th EV in the set N2 at the 
k-th time slot for the scenario w, in kWh; 

λRT
w,h denotes the real-time price at the h-th hour for the scenario w, in 

CNY/kWh; 
θ0 denotes the service tariff that EV aggregators envy on the EVs with 

the DIM, in p.u. 
Herein, the value of EM2

w,n,k is determined by the EV users. In the de
mand response program, EV users decrease their charging amount for a 
higher energy price. In addition, when the energy price reaches an un
acceptable level, they tend to terminate EV charging to reduce charging 
costs. Based on this principle, the value ofEM2

w,n,k can be formulated as 

EM2
w,n,k =

⎧
⎨

⎩

φmaxn,k − φn,kλ
RT
ω,h, λ

RT
ω,h ≤ φmaxn,k

/
φn,k

0 , λRTω,h > φmaxn,k

/
φn,k

,∀ω, n ∈ N2, k (8)  

where φmax
n,k indicates the maximum allowable charging energy of the n- 

th EV in the set N2 at the k-th time slot, φn,k denotes the response co
efficient of the n-th EV at the k-th time slot, and h is defined as the same 
in Eq. (6). 

Thus, the total revenue of EV aggregators can be calculated as: 

R=R1 + R2 (9)  

where the formation of R1 andR2 can be referred to in Eq. (6) and Eq. (7). 
Consequently, the expected net profits of EV aggregators in the day- 

ahead bidding model can be expressed as 

P=R − C (10) 

In combination with Eqs. (1)–(9), the objective function can be 
formulated as 

max
∑

w∈W
πw
∑

k∈K

(
∑

n∈N1

λAgrn,h ⋅EM1
w,n,k

)

+
∑

w∈W
πw
∑

k∈K

(

(1+ θ0)λRTw,h ⋅
∑

n∈N2

EM2
w,n,k

)

−

(
∑

t∈T
λDayt EDayt +

∑

w∈W
πw
∑

t∈T

(
λRTw,t ⋅ΔEw,t +CPenw,t

)
) (11)  

where the mathematical expressions for h and CPen
ω,t are expressed in Eq. 

(4) and Eq. (6), and 

ΔEw,t =ERTw,t − EDayt ,whereERTw,t =
∑

n∈N1

∑4t

k=4t− 3
EM1
w,n,k +

∑

n∈N2

∑4t

k=4t− 3
EM2
w,n,k (12) 

subject to: 

EDaymin ≤
∑

t∈I
EDayt ≤ EDaymax (13)  

EM1
ω,n,t ≤P

Max
n Δt, ∀n ∈ N1 (14)  

∑

t∈[Γcn ,Γdn]

EM1
ω,n,t ⋅

ηn
Batn

= SoCdn − SoC
c
n,∀ω, n ∈ N1 (15)  

EM1
ω,n,t ≥ 0,∀ω, n ∈ N1, t (16)  

where 
EDay

min denotes the minimum bidding energy in day-ahead markets, in 
kWh; 

EDay
max denotes the maximum bidding energy in day-ahead markets, in 

kWh; 

Table 2 
Time scales for EV charging scheduling in existing studies.  

Reference Length of each 
time slot 

Scheduling accuracy 
for load smoothing 

Computation cost for 
optimal solution 

[47] 1 Hour Low Low 
[48,49]] 0.5 Hour Moderate Moderate 
[3,10,50, 

51] 
15 Minutes High High 

[52] 10 Minutes Extremely high Extremely high  
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PMax
n denotes the maximum charge power of the n-th EV in the set N1, 

in kW; 
Δt denotes the length of time slots, in hour; 
Γc

n denotes the connection time slot of the n-th EV in the set N1, in p. 
u.; 

Γd
n denotes the disconnection time slot of the n-th EV in the set N1, in 

p.u.; 
ηn denotes the charger efficiency of the n-th EV in the set N1, in p.u.; 
Batn denotes the onboard battery capacity of the n-th EV in the set N1, 

in kWh; 
SoCd

n denotes the disconnection battery SoC of the n-th EV in the set 
N1, in p.u.; 

SoCc
n denotes the connection battery SoC of the n-th EV in the set N1, 

in p.u. 
Herein, Eq. (13) denotes the total day-ahead bidding energy that 

should be limited between the minimum and maximum transaction 
capacities. (14) represents the charging power of each EV, which cannot 
exceed the maximum charging power of its charger during the charging 
process. (15) reveals the charging demands of EV users that must be 
satisfied before EVs are disconnected from the power grids, and Eq. (16) 
indicates that the discharging process of the EVs is not considered. 

2.3. Real-time charging scheduling of EVs 

In real-time operation, EV aggregators need to make the utmost of 
the purchased energy for EV charging to avoid unnecessary penalty 

costs. The charging flexibility of EVs should be fully utilized to reduce 
the total operational costs of EV aggregators in real-time markets. 

Fig. 4 depicts the real-time charging scheduling process of EVs on a 
time-rolling horizon. In the k-th time slot, EV aggregators need to judge 
whether to adjust the existing charging strategy of EVs through three 
types of triggering events: 1) Do the real-time clearing prices change? 2) 
Are there new EVs connected to power grids? 3) Are there current EVs 
expectedly disconnected from grids? If any triggering event occurs, EV 
aggregators need to reschedule the charging strategy of EVs; otherwise, 
they will maintain the existing operating strategy for EVs. Before 
rescheduling the charging of EVs, EV aggregators should collect the 
charging data of EVs as the input of the proposed model. Also, the real- 
time clearing prices and the day-ahead bidding strategy are served as the 
inputs of the real-time optimizer for the charging rescheduling strategy 
of EVs. After the k-th time slot, the charging data of EVs disconnected 
from power grids will be removed from the charging scheduling system, 
and the remaining day-ahead bidding energy of EV aggregators will be 
updated for EV charging scheduling in the next time slot. 

Herein, Model (k) is introduced to obtain the optimal charging 
strategy of EVs for the kth time slot at the tth hour for EV charging 
rescheduling. We define S1

k to denote the set of available EVs with the 
CMM at the k-th time slot and define S2

k to denote the set of available EVs 
with the DIM at the k-th time slot. Let λRT

i indicate the released real-time 
clearing price at the i-th hour (i ≥ t). For the time periods after the k-th 
time slot, the expected revenue that EV aggregators can obtain from EVs 
with these two modes in real-time markets can be written as 

Fig. 4. EV real-time charging scheduling schematic diagram.  

RRT =
∑96

j=k

⎛

⎝
∑

n∈S1
k

λAgrn,j ⋅EM1
n,j

⎞

⎠+
∑96

j=k

⎛

⎝(1+ θ0)λRTh ⋅
∑

n∈S2
i

EM2
n,j

⎞

⎠,whereh= int((k − 1) / 4) + 1 (17)   
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where 
λAgr

n,j denotes the agreement price that EV aggregators sell to the n-th 
EV in the set S1

k at the j-th time slot, in CNY/kWh; 
EM1

n,j denotes the charging quantity of the n-th EV in the set S1
k at the j- 

th time slot, in kWh; 
λRT

h denotes the released real-time clearing price at the h-th time slot, 
in CNY/kWh; 

EM2
n,j denotes the charging quantity of the n-th EV in the set S2

k at the j- 
th time slot, in kWh. 

Correspondingly, the expected costs that EV aggregators should pay 
for the time periods after the k-th time slot at the t-th hour in real-time 
markets can be calculated by: 

CRT =
∑24

i=t

(
λRTi ⋅ΔEi+CPeni

)
(18)  

where 

ΔEi=ERTi − EDayi (19)  

ERTi =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑k− 1

j=4k− 3
δj +

∑

n∈N1

∑4k

j=k
EM1
n,j +

∑

n∈N2

∑4k

j=k
EM2
n,j , i = t

∑

n∈N1

∑4i

j=4i− 3
EM1
n,j +

∑

n∈N2

∑4i

j=4i− 3
EM2
n,j , i > t

(20)  

CPeni =

⎧
⎪⎪⎨

⎪⎪⎩

[
EDayi − (1+ ε0)ERTi

](
λRTi − λDayi

)
,EDayi > (1+ ε0)ERTi and λRTi > λDayi

[
(1 − ε0)ERTi − EDayi

](
λDayi − λRTi

)
,EDayi < (1 − ε0)ERTi and λRTi < λDayi

0,otherwise

(21)  

where 
ΔEi denotes the deviation between the day-ahead bidding energy and 

the consumed energy at the i-th hour, in kWh; 
δj denotes the consumed energy at the j-th time slot, in kWh; 
CPen

i denotes the penalty costs arising from the deviation at the i-th 
hour, in CNY. 

Therefore, the objective function with the target of maximizing the 
profits of the EV aggregators in Model (k) can be formulated as: 

max
∑96

j=k

⎛

⎝
∑

n∈S1
k

λAgrn,j ⋅EM1
n,j

⎞

⎠+
∑96

j=k

⎛

⎝(1+ θ0)λRTh ⋅
∑

n∈S2
i

EM2
n,j

⎞

⎠

−
∑24

i=t

(
λRTi ⋅ΔEi +CPeni

)
(22) 

subject to: 
∑

j∈[k,Γdn]

EM1
n,j ⋅

ηn
Batn

= SoCdn − SoC
c
n, ∀n ∈ S

1
k (23)  

EM1
n,j ≤PMaxn Δt,∀j ≥ k, n ∈ S1

k (24)  

EM1
n,j ≥ 0, ∀j ≥ k, n ∈ S1

k (25)  

where Eqs. 23–25 indicate that the charging requirements of EVs should 
be satisfied before they are disconnected from the grids, and that the 
charging power of EVs should be limited to the maximum value of the 
charger, as in the day-ahead bidding model. In addition, the charging 
quantity EM2

n,j of EVs in the setS2
k was simulated using Eq. (8). 

The aforementioned model can obtain the optimal EV charging 
strategy at the kth time slot. In real-time energy management, if there 
are variations in real-time clearing prices, if there is any new EV being 
plugged into the system, or if there is any existing EV being disconnected 
from power grids, the model will be triggered as per the updated inputs. 
Once the EV aggregators obtain the optimal EV charging strategy, co
ordinated charging instructions are delivered to the charging piles for 
implementation. 

3. Data preparation for simulations 

3.1. EV charging data 

In the day-ahead bidding model of EV aggregators, it is extremely 
difficult to predict the charging behavior of EVs because of their 
mobility as transportation tools. To address the impact of EV charging 
uncertainties on the bidding strategy of EV aggregators in this study, 
charging data for EVs were generated using stochastic simulations as the 
model’s input. 

In general, an overwhelming majority of EVs employ either daytime 
charging in the workplace or overnight charging at home for energy 
replenishment. In the simulations, it was assumed that the charging 
events of EVs with overnight and daytime charging accounted for 
approximately 75% and 25%, respectively. According to Ref. [53], 
rough distribution functions can be acquired to describe the charging 
behavior of EVs. The data generation methods for EVs with daytime and 
overnight charging are summarized in Table 3. 

When EV users charge overnight at home, they plug their vehicles 
into charging piles in the evening and disconnect them from charging 
piles in the morning to drive to the destination. Therefore, it is assumed 
that the plug-in time of EVs with overnight charging is mainly distrib
uted in the evening, at approximately 8:00 p.m., and the plug-out time of 
EVs is mainly distributed in the morning, at approximately 7:30 a.m. 
The plug-in time of EVs follows a normal distribution with a mean of 
20:00 and a standard variation of 2 h. The plug-out time of EVs is always 
the morning of the next day. The plug-out time of EVs can be described 
by a normal distribution with a mean of 7:30 and a standard variation of 
1.5 h. For the charging schedule of EVs on the target day, the charging 
ending time of EVs was set to 24:00. The battery SoC of EVs at 24:00 for 
overnight charging is a variable determined by the expected SoC of EVs 
and the EV connection time. The plug-in SoC of the EVs can be described 
by a uniform distribution between 0.2 and 0.5. Finally, the maximum 
operating power of the charger is set to be 3.52 kW (level 1:16A/220 V). 

However, when home charging facilities are unavailable, EV users 
tend to charge their vehicles in the workplace as a primary alternative to 
home charging. In such a scenario, EVs will go through daytime 
charging in most cases, in which EV users plug their vehicles into the 
charging piles after they arrive at the workplace and disconnect them 
from the charging piles in the evening to drive home. Therefore, it is 
assumed that the plug-in time of EVs with daytime charging is mainly 
distributed in the morning at approximately 8:00 a.m., and the plug-out 
time of EVs is mainly distributed in the morning at approximately 7:30 

Table 3 
Creation methods for EV-related data.  

Charge Type Proportion Plug-in time Plug-out time Plug-in SoC Plug-out SoC Charging level 

Overnight charging 75% N (20, 2) N (7.5, 1.5) U (0.2, 0.5) Variable Level 1: 16A/220 V 
Daytime charging 25% N (8, 1.5) N (17.5, 2) U (0.2, 0.5) Variable Level 2: 32A/220 V  
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p.m. The plug-in time of EVs can be described by a normal distribution 
with a mean of 8:00 and a standard variation of 1.5 h, and the plug-out 
time of EVs can be described by a normal distribution with a mean of 
19:30 and a standard variation of 2 h. In addition, the battery SoC of EVs 
is low when plugged into charging piles, and EV users usually expect to 
charge their vehicles to a high level. In this study, the plug-in SoC of EVs 
is assumed to follow a uniform distribution between 0.2 and 0.5, and the 
plug-out SoC of EVs is assumed to be 80% of the maximum SoC that can 
be charged in the connection time. In addition, the maximum operating 
power of the charger is set to be 7.04 kW (level 2:32A/220 V). 

3.2. Market data 

In this study, the proposed solution is implemented in the context of 
the Guangdong electricity market to investigate EV charging behaviors. 
Guangdong Province is the most developed region in China and has 
adopted a series of strong policies to promote the adoption of EVs. The 
large-scale adoption of EVs will challenge distribution networks. On the 
other hand, the Guangdong Province is one of the first to conduct the 
reform of power markets in China. This provides an opportunity to 
investigate EV charging behavior in a market environment. In the day- 
ahead bidding model, EV aggregators should combine the day-ahead 
clearing prices with potential real-time clearing scenarios to create the 
optimal bidding strategy. It is noteworthy that both day-ahead and real- 
time clearing prices are unknown in advance. In general, day-ahead 
clearing prices can be accurately predicted because daily day-ahead 
price profiles show a certain regularity. Nonetheless, there are 
extremely high uncertainties in the real-time clearing prices associated 
with the real-time status of grid supply and demand. Consequently, 
several potential real-time clearing scenarios were considered to handle 
price uncertainties in real-time markets. 

As suggested in Ref. [23], the potential real-time clearing scenarios 
can be classified into four categories by using a multi-class support 
vector machine to analyze the historical market clearing data: low, 
medium, high, and extra high, as illustrated in Fig. 5. It can be observed 
that these four real-time clearing price curves show the same variation 
trend. In each potential clearing scenario, a high price usually occurs 
from 9:00 to 11:00, from 15:00 to 17:00, and from 20:00 to 23:00. Low 
prices appear at 13:00, 19:00, and 0:00 to 8:00. In addition, in the 
extra-high real-time clearing scenario, the lowest clearing price in a day 
is 0.410 CNY/kWh, whereas the highest clearing price can reach 1.236 
CNY/kWh. However, for the low real-time clearing scenario, the 
clearing prices vary from 0.268 CNY/kWh to 0.759 CNY/kWh. These 
four potential clearing scenarios were integrated into the model using a 
probability function. 

From the perspective of EV aggregators, the day-ahead clearing price 

must be predicted by adopting advanced prediction algorithms for 
bidding (e.g. Refs. [54,55]), which is beyond the scope of this study. The 
actual clearing data in the day-ahead markets listed in Table 4 was used 
to validate the proposed method. In addition, regarding the actual 
real-time clearing prices, there is a high level of uncertainty and fluc
tuation. In this study, real-time clearing prices are generated by a normal 
distribution to schedule the charging of EVs in a real-time fashion. 

4. Case study and numerical results 

4.1. Simulation setting 

In the case study, the details of the necessary parameters for the 
simulations are provided in Table 5. Contracts between EV aggregators 
and EV users have significant impacts on EV aggregators’ profits. 
Herein, the agreement price λAgr

n,h that EV aggregators sell to EVs with the 
CMM is set as 0.5 CNY/kWh, and the service tariffθ0 that EV aggregators 
charge to EVs with the DIM is set to 0.25. The following section in
vestigates the profits of EV aggregators for different values ofλAgr

n,h andθ0 

involved. In addition, the allowable tolerance for the penalty due to the 
imbalance in energy in real-time markets is set as 0.05 based on the rules 
of Guangdong electricity markets [23]. The day-ahead bidding energy 
for EV charging was not lower than 1000 kWh and higher than 10,000 
kWh. Moreover, the response coefficient for the coordinated charging of 
EVs with the DIM was set to 2.86, and the charging efficiency of EVs was 
set to 0.95. 

4.2. Result analysis for day-ahead strategy 

First, the number of EVs managed by the EV aggregators was set to 
2000. EVs with CMM and DIM accounted for 50% of EVs, respectively. 
The charging events of the EVs were generated according to the method 
presented in Section 3.1. The number of EVs connected to the power 
grids for charging scheduling in each time slot is shown in Fig. 6. The 
number of available EVs at each time slot varied from 251 to 753. The 
minimum available EVs occurred at the 49th time slot, and the 
maximum available EVs appeared at the 96th time slot. In addition, 
more EVs are available for charging scheduling during the time periods 
from the 1st time slot to the 32nd time slot (i.e., from 0:00 to 8:00), and 
from the 80th time slot to the 96th time slot (i.e., from 20:00 to 24:00). 
Currently, most EV users prefer to charge their vehicles at night. 
Therefore, the simulated charging data of EVs is consistent with real-life 
situations regarding EV charging behavior. 

In the day-ahead time horizon, EV aggregators bid energy for EV 
charging. The simulation results reveal that the day-ahead bidding 
strategy of the EV aggregators is not merely dependent on the day-ahead 
energy price, as illustrated in Fig. 7. In fact, the day-ahead bidding 
strategy of EV aggregators is determined by the day-ahead and real-time 
markets. When the real-time clearing price is higher than the day-ahead 
clearing price, it is profitable for EV aggregators to bid more energy in 
day-ahead markets without the punishment mechanism. However, 
given the disparity in energy costs, EV aggregators should implement an 
appropriate bidding strategy in day-ahead markets to reduce opera
tional costs. Overall, the price difference (PD) between the real-time and 
day-ahead markets can significantly impact the day-ahead bidding 
strategy of the EV aggregators. Fig. 8 presents the relevance between the 
day-ahead bidding strategy and PD when considering four types of po
tential real-time clearing scenarios. PD was larger than 0 in all potential 
clearing scenarios at 9, 11, 12, 14, 15, 16, 17, 18, and 19 h. Nonetheless, 
EV aggregators bid for the maximum allowable energy only at 9, 12, 16, 
17, and 19 h. This is because EV aggregators can obtain enough revenue 
by purchasing cheaper electricity in day-ahead markets and selling it in 
real-time markets to offset the penalty costs caused by the energy 
imbalance. 

When EV aggregators submit the day-ahead bidding strategy to the Fig. 5. Four types of potential real-time clearing scenarios.  
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energy exchange center, the purchasing costs and expected penalty costs 
of the EV aggregators can be calculated, as shown in Fig. 9. It can be seen 
that the purchasing costs in day-ahead markets are mostly located be
tween 1000 CNY and 2000 CNY. Higher purchasing costs appear at the 

hours of 9, 12, 16, 17, and 19, more than 3000 CNY. During these hours, 
EV aggregators pay the highest fee (roughly 5000 CNY) at hour 16. The 
higher purchasing costs are due to the extremely large volume of pur
chased energy and high energy price. Lower purchasing costs occur at 
hours 10, 11, 13, and 20, which are less than 1000 CNY. In addition, the 
expected penalty costs are less than 500 CNY during most hours. Despite 
this, the expected penalty costs exceeded 1500 CNY at 11, 12, 15, 16, 
and 17 h. This is because the day-ahead bidding energy is extremely 
high, whereas the energy used for charging EVs is very limited. 

4.3. Result analysis for real-time operation 

In real-time operation, EV aggregators desire to adjust the charging 
power of available EVs for more profits based on the real-time market- 
clearing result and day-ahead bidding strategy. A comparison between 
the day-ahead bidding energy and the energy consumed by the EVs is 
shown in Fig. 10. The energy consumed by EVs can coincide with the 
day-ahead bidding energy for most hours of the day. This indicates that 
the charging tasks of EVs are scheduled to achieve coordinated energy 
management. Note that there are large deviations between the day- 
ahead bidding energy and the energy consumed by the EVs at 9, 12, 
16, 17, and 19 h. This is because EV aggregators bid for the maximum 
allowable electric energy, but there are no sufficient EVs available to 
consume the bidding energy. Overall, the EV aggregators schedule the 
charging of EVs to match the day-ahead bidding energy profiles to 
reduce their penalty costs. The relationship between the energy 
consumed by EVs and PD with the actual real-time clearing price is 
shown in Fig. 11. When PD is less than 0, the day-ahead price is higher 
than the real-time price. This indicates that EV aggregators bid for 
electric energy at a higher price in the day-ahead markets. As a result, in 
real-time operation, they will consume energy for EV charging to avoid 
more operational costs. The numerical results revealed that the energy 
consumed by EV charging is at a comparatively high level when the PD is 
less than 0, for example, at hours 2, 3, and 22. In contrast, when the PD is 
greater than 0, the real-time price is larger than the day-ahead price. 
This implies that EV aggregators bid for energy at a lower price in day- 
ahead markets. Therefore, they can reduce the utilization of energy to 
obtain more revenue in real-time markets, for example, at 1, 4, 5, 6, 20, 
21, 23, and 24 h. Hence, the real-time charging strategy of EVs largely 
depends on the difference between the actual real-time clearing price 
and day-ahead price, in addition to the day-ahead bidding strategy. 

The cost-benefit analysis of EV aggregators participating in real-time 
markets is presented in Fig. 12. To obtain revenue, EV aggregators can 
sell energy to individual EVs for charging. In addition, they need to pay 
the penalty costs for the imbalanced energy in real-time markets, and 
the settlement for the imbalanced energy also needs to be conducted. 
The revenue of the EV aggregators over a day is illustrated in Fig. 12 (a), 
indicating that the overall variation trend of revenue from EVs with the 
CMM is consistent with that from EVs with the DIM. When the PD is less 
than 0, EV aggregators obtain more revenue from EVs with both the 
CMM and DIM, as shown in Figs. 11 and 12. However, the curve fluc
tuation of revenue from EVs with DIM is much larger than that from EVs 
with CMM. The costs of the EV aggregators are illustrated in Fig. 12 (b). 
Because the energy consumed by EVs fits the day-ahead bidding strategy 
well, there are very low penalty costs incurred in real-time markets, 
except at 9, 12, 16, 17, and 19 h, under the condition that the EV 
aggregators bid the maximum allowable energy. Only at hours 9, 12, 16, 

Table 4 
Day-ahead energy price at each hour in a day.  

Serial Number of Hours 1 2 3 4 5 6 7 8 9 10 11 12 

Energy Price (CNY/kWh) 0.594 0.560 0.479 0.584 0.571 0.467 0.444 0.345 0.311 0.454 0.405 0.439  

Serial Number of Hours 13 14 15 16 17 18 19 20 21 22 23 24 

Energy Price (CNY/kWh) 0.431 0.409 0.557 0.527 0.444 0.341 0.300 0.395 0.392 0.420 0.502 0.526  

Table 5 
Values of necessary parameters for simulations.  

Parameter λAgr
n,h 

(CNY/ 
kWh) 

θ0 

(pu) 
ε0 (p. 
u.) 

EDay
min 

(kWh) 
EDay

max 

(kwh) 
φn,k 

(p.u.) 
ηn (p. 
u.) 

Value 0.5 0.25 0.05 1000 10,000 2.86 0.95  

Fig. 6. Number of available EVs for charging scheduling at each time slot.  

Fig. 7. Day-ahead bidding strategy of EV aggregators associated with day- 
ahead energy prices. 
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17 and 19, there are huge deviations, resulting in high penalty costs for 
the EV aggregators. Despite all these factors, the massive surplus day- 
ahead purchased energy can be traded in real-time markets for the 
second settlement. It can be observed that at 9, 12, 16, 17, and 19 h, the 
revenue obtained by trading the imbalance energy is greater than the 
penalty cost of the imbalance quantity. 

Finally, other case studies with different agreement prices and ser
vice tariff rates are considered, as illustrated in Table 6. For the worst 
scenario (i.e., Case 1 with the lowest agreement price and service tar
iffing), EV aggregators can obtain a net profit of 20901.07 CNY. 
Nevertheless, in the best scenario (i.e., Case 9 with the highest agree
ment price and service tariffing), EV aggregators can obtain a net profit 
of 30385.22 CNY. It can be observed that EV aggregators can employ the 
flexibility of EV charging to make a considerable profit under various 
conditions. This indicates that there are huge business opportunities for 
EV aggregators to coordinate the charging of EVs in energy markets 
while helping EV users reduce their charging costs. 

Fig. 8. Day-ahead bidding strategy of EV aggregators considering potential real-time clearing scenarios.  

Fig. 9. Purchasing costs and expected penalty costs of EV aggregators in day- 
ahead markets. 

Fig. 10. Comparison between day-ahead bids and energy consumed by EVs.  

Fig. 11. Consumed energy by EVs associated with PD for actual real-time 
clearing results. 
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4.4. Comparison of different cases 

The effectiveness of the proposed solution was evaluated in a large- 
scale EV deployment scenario. It is assumed that EV aggregators manage 

4000 EVs (2000 EVs with the CMM and 2000 EVs with the DIM) in the 
energy markets. In addition, a more general day-ahead price curve is 
considered, wherein the day-ahead price at each hour is not lower than 
the price with a low real-time clearing scenario and not higher than the 
price with an extra high real-time clearing scenario. Unlike the case in 
Section 4.2, EV aggregators do not bid for the maximum allowable en
ergy under such a condition. Fig. 13 illustrates the charging schedule 
results for a given day-ahead price curve. The EV aggregators bid for 
energy between 1000 kWh and 8000 kWh. It can also be observed that 
there is a minor deviation between the bidding energy and the actual 
consumed energy from EVs; hence, EVs can be charged as planned based 
on the proposed method to achieve coordinated charging. 

In this study, the potential real-time clearing scenarios are narrowed 
down to four categories to obtain the optimal bidding strategy of EV 
aggregators in a short time. It should be noted that when completely 
considering all possible real-time clearing scenarios, EV aggregators can 
obtain a more satisfactory solution for bidding. Nevertheless, it con
sumes a significant amount of computational time for the solution, 
particularly when EV aggregators managing large-scale EVs are 

Fig. 12. Revenue and cost of EV aggregators in real-time markets over a day: (a) revenue; (b) cost.  

Table 6 
Profit analysis of EV aggregators for different agreement prices and service 
tariffing rates.  

Case Agreement Price for EVs with 
CMM (CNY/kWh) 

Service Tariffing for EVs 
with DIM (p.u.) 

Net Profit 
(CNY) 

1 0.4 0.20 20901.07 
2 0.4 0.25 22394.58 
3 0.4 0.30 23888.08 
4 0.5 0.20 24149.64 
5 0.5 0.25 25643.15 
6 0.5 0.30 27136.65 
7 0.6 0.20 27398.21 
8 0.6 0.25 28891.71 
9 0.6 0.30 30385.22  

Fig. 13. Coordinated charging scheduling results with a large scale of EVs involved.  
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involved. The model was run on a 64-bit PC equipped with an i5-10400 
processor and 16 GB of RAM, and an interface of Lingo 18.0 × 64 was 
employed for solving. Fig. 14 visually presents a comparison of the time 
consumed for adopting different numbers of real-time clearing scenarios 
to obtain the bidding strategy. There were minor differences in the 
computational time when the EV number was small (e.g., 500 and 
1000). However, when the EV number becomes large (e.g., 1000 and 
1500), it requires several times the computing time for the model to 
adopt 8 real-time clearing scenarios than that to adopt 4 real-time 
clearing scenarios. This demonstrates that the proposed strategy can 
significantly reduce the time complexity of the bidding problem. 

5. Conclusion and remarks 

This study explored the optimal charging scheduling operation of 
EVs in a competitive electricity market environment from the perspec
tive of EV aggregators. To this end, a two-phase energy management 
framework for EV charging scheduling was developed based on the 
market rules. In the day-ahead bidding phase, EV aggregators consider a 
wide variety of uncertainties arising from EV charging and markets 
when making optimal bidding decisions. In the real-time scheduling 
phase, EV aggregators dynamically adjust the charging strategy of the 
available EVs to follow the day-ahead bidding energy profile to reduce 
their operational costs. In broad terms, the proposed method enables the 
total charging load profile of the EVs to coincide with the bidding energy 
profile. 

Three important findings are based on this case study. First, the 
bidding strategy of EV aggregators is associated with the grid connection 
time of EVs and the clearing prices. Numerical results indicate that EV 
aggregators bid more electricity in the night than in the daytime, as 
there are more EV charging demands owing to the charging preference 
of EV users. Second, the day-ahead bidding strategy of EV aggregators 
depends largely on the difference between the day-ahead clearing prices 
and real-time clearing prices. If the day-ahead price at an hour is lower 
than the price in all potential real-time clearing scenarios, EV aggre
gators are likely to bid the maximum allowable energy in day-ahead 
markets (e.g., at 9, 12, 16, 17, and 19 h in the case study presented in 
Section 4.2). Third, and most importantly, EV aggregators can employ 
the proposed method to schedule the charging loads of EVs to match the 
day-ahead bidding energy to reduce their operational costs. In addition, 

the simulation results show that the model using four real-time clearing 
scenarios for optimal bids is more efficient than the model that considers 
massive historical real-time clearing scenarios. 

This study investigates the coordinated charging strategy of EVs in 
the energy market. It should be noted that EVs can also provide ancillary 
services for power grids, e.g., frequency regulation. Consequently, the 
charging scheduling strategy of EVs in both the energy and ancillary 
service markets needs to be further exploited. 
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