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Due to global warming and climate changes, buildings including residential and commercial are signifi-
cant contributors to energy consumption. To this end, net zero energy building (NZEB) has become a pro-
gressively popular concept where the annual sum of power generation and consumption is zero.
However, occasionally, there exists a mismatching between demand and supply in NZEB due to consumer
behaviour and weather conditions disturbing the overall management of the smart grid. To overcome
such hurdles, precise prediction of energy usage is a key strategy among others. Therefore, in this study,
an efficient hybrid AI-based framework is proposed for accurate forecasting of power consumption and
generation that is mainly composed of three steps. Initially, the optimal pre-processing procedure is
applied for data refinement. Next, for the spatiotemporal features, a convolutional long short-term mem-
ory (ConvLSTM) is used that learns discriminative patterns from the past power knowledge, followed by a
bidirectional gated recurrent unit (BDGRU) that extracts on temporal aspects. Eventually, feature descrip-
tors are then passed to multilayer perceptron layers to perform the forecasting. After extensive experi-
ments over the household and photovoltaic energy data, we concluded that our model substantially
reduced the errors of 0.012 and 0.045 in terms of mean square error (MSE) on hourly data as compared
to the recent state-of-the-art techniques (SOTA).

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Due to the exponential growth of populations, technological
advancement, and economies, global energy consumption is rising
daily at an alarming rate. In a recent survey, it was reported that
over 40 % of energy is consumed in buildings to meet the require-
ments of consumers [1]. Building construction, weather conditions,
and consumer behaviour have a significant impact on entire energy
usage. In a conventional grid, due to the unavailability of a proper
management system, a huge amount of energy is lost from both
the customer and supplier sides [2]. Therefore, the local grid is
rapidly upgrading into a smart grid, aiming to supply efficient
energy to buildings with constant voltage and at a low cost. Fur-
thermore, to meet energy demand NZEB is considered a favourable
solution, where local renewable energy (RE) systems are integrated
[3]. On the other hand, the intermittent and unstable nature of
renewable energy (e.g., solar energy) can cause severe problems
in the power grid by introducing a mismatch between RE genera-
tion and demand. The recent statistics released [4] by the South
Korean government about power generation is given in Fig. 1. In
the year 2017, the total clean energy generated via various sources
including waste, bio, the hydro, wind, and solar is gradually
increasing due to technological advancement [5]. After eight years
most of the building energy in South Korea will generate a huge
amount of energy from these resources. Furthermore, in buildings,
saving energy is considered an essential component for tackling
climate change. To overcome such a problem, a trustworthy antic-
ipation model is the only solution for power management and
energy preservation in buildings.

To schedule smartly and satisfy consumers’ needs on a federal
or local level, precise electricity prediction is a significant compo-
nent to assist the grid. Also, it can prevent unnecessary power sup-
ply and storage. For instance, if a high demand for energy from the
consumer side is predicted, then unnecessary usage could occur
due to excess power generated by photovoltaics. In contrast, the
prediction of inadequate electricity demand may trigger a power
outage to occur due to scarce power generation resources [6].
Therefore, a durable plan for power demand and supply should
be possible when accurately forecasting energy consumption and
generation, reducing costs and providing a convenient way to effi-
ciently operate an entire power grid [7].
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Fig. 1. The latest statistics are collected from the Korean Energy Information Agency [4].
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In a smart grid, consumer response is also an important topic for
research. A smart grid is responsible for various operations such as
storage, demand, and load management. Also, it provides a respon-
sive environment for the exchange of information between con-
sumers and suppliers. Therefore, the autonomous prediction model
is highly desirable to improve the current policy and consumer satis-
faction. To this end, numerous researchers are developing highly
anticipated models for power consumption and generation. How-
ever, these approaches aremainly designed to be one-sided; in other
words, they can only beused topredict either energy consumptionor
energy generation. A brief description of these approaches and their
flaws are given in the subsequent paragraph.

In recent decades, numerous researchers have performed stud-
ies to anticipate RE and electricity consumption [8], where multi-
ple energy management systems and diverse forecasting period
horizons have been deeply studied including short, medium, and
long-term [9]. Short-term energy forecasting is mainly used for
scheduling the transmission among energy sources, consumers,
and batteries; whereas, cost determination, power dispatch, and
maintenance planning are mostly handled by medium-and long-
term forecasting [10,11]. With the rising quantity of smart grid
monitoring data and better data mining algorithms, data-driven
techniques for estimating RE and electricity load (EL) have
attracted researchers’ interest [12]. There are two types of data-
driven energy forecasting approaches statistical and machine
learning (ML) [13]. The main ambition of statistical approaches is
to establish mathematical relationships between input and output
data [14]; whereas, the Kalman filter [15], autoregressive moving
average [16] and Markov chain model [17] have been widely used
for energy forecasting. ML approaches (random forest, support vec-
tor machine, and fuzzy logic) have achieved incredible outcomes
due to their superior capability to map the complicated nonlinear
input-output relationship [18,19]. For instance, a study [20] inves-
tigated different RE sources, such as solar, wind, and hydro, and
empirically proved the efficiency of the artificial neural network
for power prediction. Similarly, ML applications and taxonomy
have been briefly studied [21] for energy systems, where, based
on experiments, the authors analyzed that the hybrid models
showed accurate prediction scores. Furthermore, numerous fore-
casting algorithms have been examined from diverse viewpoints
including energy policy, economy, battery storage capacity, and
power generation in RE sources [22]. Later, the researcher’s atten-
tion was diverted to the deep learning (DL) model of its remarkable
performance in prediction tasks because of its strong capabilities in
recognizing the primary nonlinear characteristics rather than
employing handcrafted features [23].

In DL, convolutional neural networks (CNN) and recurrent neu-
ral networks (RNN) are widely used for solving numerous prob-
lems, particularly energy forecasting problems [24,25]. The
learning capabilities of these models are worthy and have a strong
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potential generalization ability to compare ML and statistical tech-
niques. To efficiently converge the DL models, first, we need to
investigate the nature of the RE and EL data, which includes both
temporal and spatial features. As previously known, all CNN mod-
els have a strong potential to extract spatial information while
sequential models have sufficient capabilities to capture temporal
features. Therefore, numerous forecasting models exist for RE and
EL predictions that explore CNN and the variants of RNN. However,
due to the diverse attribute nature effect, the performance of the
individual learning model is limited and doesn’t meet the require-
ments as well as not capable to use for establishing an efficient
management system between consumer and provider.

After investigating the literature and analyzing the research, we
found that the hybrid model had sufficient potential to extract
robust, discriminative, and optimal features from historical energy
data. To this end, several combinations of models have been devel-
oped including CNN-GRU, CNN-RNN, CNN-LSTM, and an autoen-
coder with BiLSTM. The aforementioned models have strong
capabilities to precisely predict RE generation and EL patterns.
Although, prediction results obtained from these models still need
improvements to bring a trustworthy management system for
NZEB. To accomplish this job, we proposed a hybrid sequential
learning model ConvLSTM-BDGRU for accurate prediction. The
key contributions of this article are as follows:

1. Existing ML/DL models for energy forecasting are particularly
designed for power consumption or generation prediction,
which do not properly assist the power management systems
in smart grids. To solve this problem, a generalized model is
proposed that can be used for dual functionalities and provide
a convenient way to communicate between supplier and con-
sumer demand, and fulfill the requirements.

2. The performance of the AI-based model entirely relies on data.
The publicly available data not exist in a refined format, due to
environmental factors and consumer behaviour, the recording
devices encounter the problem where the consumption and
generation units are largely influenced that contain outliers,
missing values, and variant scales that made hurdles in the
learning process. To fill this gap, pre-processing is applied,
where scrubbing and standardization methods are employed.

3. Photovoltaics (PV) generation data is highly influenced by dif-
ferent factors, and weather condition is one of them. Existing
predictive models do not consider weather-related attributes
that are not suitable for the unconditional situation and gener-
ate predictions with a high error rate. To tackle such conditions,
our proposed AI-based model intelligently utilizes weather
information and generates accurate results.

4. To verify the generalisability of the model, an extensive exper-
imental results are generated by analyzing various flavours of
feature learning techniques and diverse time scales. Further-
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more, the performance is compared with SOTA techniques
using three evaluation metrics: the MSE, root mean square error
(RMSE), and mean absolute error (MAE) using household con-
sumption and PV solar energy datasets.

The remaining sections of this article are categorized as follows:
Section 2 is a brief review the existing attempts in energy con-
sumption and generation prediction, while in Section 3 a technical
description of the proposed framework is presented. Furthermore,
Section 4 covers the implementation detail and comprehensive
experimental results over different datasets. Finally, Section 5 pro-
vides a summarised description of the proposed work followed by
future research directions.
2. Literature review

Several works on energy have been completed with common
aims, reducing the usage of energy in the building sector while
increasing energy efficiency. Furthermore, the maximum cost-
effective relief option is to supply low-carbon energy that can min-
imize the overall cost and greenhouse gas release at the same time.
Regarding enhancing energy efficiency, various researchers are
also working on low-carbon energy resources that are considered
another significant supportive policy [26]. Wall-fitted solar panels
play a major role in decarbonizing energy generation in buildings
[27]. Hydropower, heat release from power generation resources
and burning can substitute fossil fuels that are mainly utilized
for building cooling and heating systems [28]. To enhance the effi-
ciency of energy consumption and allow passive and active build-
ings, it is necessary to accurately predict future consumption and
generate energy. To this end, the literature is mainly categorized
into two subsections with detailed information, challenges, and
research gaps.
2.1. Energy consumption prediction approaches

For power consumption analysis numerous methods are being
developed to examine time series data to obtain more significant
statistics and other attributes related to the data. In a forecasting
time series, the model forecasts the future value based on histori-
cal data [29]. It is a sequence of data that is recorded at equal inter-
vals of time and uses a particular model to forecast the future value
in various horizons such as by the minute, hour, week, or month
[30]. The assessment of the time series is mainly composed of
two steps: initially, the structure and its primary patterns of the
analyzed data are extracted, while in the second step, a data-
driven model is fitted to the historical data to obtain future predic-
tions. Time series are commonly used for future energy consump-
tion prediction, as buildings are progressively being observed in
real-time. Historic energy consumption data can be used for future
energy prediction that assists the management team in making
new policies. Numerous time series’ artificial intelligence (AI)
and statistical models have been proposed particularly for energy
consumption predictions in a building. A brief explanation of these
methods is given in the subsequent paragraph.

Regarding power consumption prediction, statistical
approaches are widely studied but only exist in relatively old liter-
ature. For instance, a support vector regression (SVR) is deeply ana-
lyzed for energy forecasting [31]. Similarly, a study [32] applied an
extreme learning machine (ELM) algorithm followed by a wavelet
transform. In addition, to take full advantage of ELM, the artificial
bee colony method is explored to obtain optimal parameters for
further improvement. In commercial buildings, to complete the
consumer side demand SVR is applied for short-term forecasting
[33]. Later, another statistical approach called gradient boosting
3

was explored for the short-term horizon and provided a compre-
hensive study of using multiple filters which have strong flexibility
rather than the traditional kernel [34]. These models show limited
performance due to extracting unmatured features in the case of
complex data, therefore, DL techniques are currently the most pop-
ular and widely used techniques for these types of data.

Based on deeply studied literature, deep learning models show
tremendous performance on time series data; however, their
methods are individually designed for either consumption or gen-
eration prediction. For example, STLF-LSTM was mainly developed
to accurately predict the energy consumed in buildings and to
assist the energy management system [35]. Similarly, based on
the genetic CNN and the LSTM energy forecasting model was pro-
posed for accurate predictions where extensive experiments are
generated over residential and commercial buildings [36]. Another
model was introduced using various kernels that significantly min-
imized the error score, although, on different time horizons, the
overall performance was not better due to data complexity [34].
To further boost this work, autoencoder and cluster-based meth-
ods were utilized that intelligently extracted features on a high
level that meets the demand of consumers in the building [37].
As the energy demand is currently rising due to entire building
appliances being reliant on electricity, efficient management of
the local energy system is necessary. To deal with such a problem,
a novel DL model was proposed for precise consumption prediction
of building energy [38]. Similarly, considering the same challenges,
a two-phased DL model was introduced for short-term load fore-
casting to optimize building-related operational strategies [39].

To establish a trustworthy management system for a smart grid,
a sequence-to-sequence (S2S) approach was developed that was
suitable for only short-term consumption forecasting [40]. To over-
come this obstacle, a stochastic model was proposed called FCRMB
that obtained a minimum error score on both short and long-term
situations [41], but its performance is highly influenced due to cer-
tain factors including weather, heating systems, and residential
architecture. To cover such a scenario, a hybrid DL model was
introduced known as CNN-LSTM which considers additional home
appliances variables that play a significant role in the prediction
score [42]. Furthermore, another study also focused on various sit-
uations and proposed an autoencoder-based explainable AI model
SE-AE, that verified its suitability for electrical energy management
systems in smart grids [43]. Inspired by building-related factors, a
novel hybrid approach was presented M�BDLSTM that reflected
two key challenges including cloud conditions and scheduling of
energy consumers [44]. This work was further improved with the
assistance of CNN-BiLSTM for short-term prediction and compute
execution time to prove its adaptability over the smart grid [45].
Next, the individual residential house power analysis was per-
formed using CNN followed by recurrence plots CNN-RP that facil-
itate consumer demand and distributed power system [46]. To
become more efficient a power management system in the smart
grid another algorithm was developed SE-AE that evaluates the
model from various perspectives and achieved a better score of
MSE [43]. Similarly, another research article also contributed a
lot regarding energy prediction for residential as well as commer-
cial building management, where an optimized DL model CNN-
LSTM-AE was presented that intelligently encode and decode the
input data, resulting accurate prediction score [47].

Sometimes in forecasting models there exist non-linearity
between sequential input and output that distributes the overall
performance during testing. To address such a hurdle, a novel dual
fusion network was proposed CNN-GRU however, such a model
was only designed for short-term purposes and secondly, GRU has
limited capability to extract complex patterns [48]. Similarly, the
attention-based model CNN-LSTM-MHAwas also explored for time
series forecasting data that shows remarkable performance for
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long-termprediction, and a high error score is achievedwhen tested
for a short time scale [49]. Such performance is enhanced and inte-
grated dual novel DL model DB-Net for an encoder and a decoder
that achieved incredible performance on a household dataset [38].
Limited work has been found that has generalization capability
and a dual sequential-based model that extracts Spatiotemporal
features from the initial model and then temporal information is
captured from another one. For instance, CL-Net was introduced
for dual functionalities including battery health as well as energy
consumption prediction [50]. Next, CLSTM-BLSTM was proposed
for efficient forecasting and computing time complexity to verify
its adaptability on edge devices [51]. Later, an ensemble algorithm
with a sequential model was developed to further reduce the error
prediction rate [52]. All these researchers’ efforts had limitedperfor-
mance in the case of an irregular trend of data and were unable to
predict the energy for the demand side to efficiently establish the
concept of NZEB.

2.2. Energy generation prediction approaches

In recent decades, energy consumption prediction researchers
have shifted their consideration toward RE for assessing power
generation. Currently, smart buildings are being developed where
different sources of energy, such as solar, wind, and hydropower
are widely used due to their renewable and clean nature. In this
study, we are mainly interested in solar power generation predic-
tion that fully relies on environmental factors including wind
direction and its speed as well as weather condition. These uncon-
trollable parameters create hurdles in the prediction. Numerous
approaches for power generation prediction have been developed,
which are briefly discussed in the subsequent paragraph.

Solar panel energy is clean because it does not release carbon or
other toxic gases. With this beneficial property and eco-friendly
technology, many people who live in urban neighborhoods have
installed solar panels in their homes. Ultraviolet radiation is the
most significant parameter for photovoltaic energy in various time
scales. Numerous data-driven models, including ML and DL, have
shown incredible performance; however, there is still space to
further minimize the error score when perfectly managing the
energy system. For instance, in the study, various CNN, SVR, and
sequential learning models were deeply analyzed for power
generation prediction [53]. Furthermore, well-known traditional
learning approaches such as random forest, XGboost, and gradient
boost were applied to evaluate their performance [54]. Similarly,
another study also investigated decision trees, support vector
machines, and artificial neural networks for the prediction of solar
panel heat [55]. Moreover, short-term solar panel power generation
predictions have mostly been done with the assistance of CNN [56].
Later, to minimize the prediction error score, the researchers
explored the variants of RNN which were convincing and reliable
approaches [57]. After an extensive study of the literature, we con-
cluded that local energy systems are still trying to find an AI-based
intelligent model that accurately predicts energy consumption as
well as generation individually for smooth transmission of energy
between supplier and consumer. Considering this point, we found
the following research gaps in the existing literature, which are
addressed in this study.

a) Renewable resources provide clean energy however, this
energy depends entirely on weather conditions such as rain,
etc. Therefore, its accurate prediction is necessary for power
management.

b) Energy consumption relies entirely on consumer behaviour
which varies over time. Therefore, its accurate prediction is
important for power balancing.
4

c) Mainstream approaches are mainly considered for either
consumption or generation predictions; however, for effi-
cient power management, both predictions need to be made
simultaneously.

3. Proposed framework

RE and EL predictions are very significant for efficient manage-
ment between providers and consumers. However, accurate pre-
diction of energy is still a challenging job due to the unorganized
scheduling of consumption by consumers, missing or noisy data
collection, and volatile weather situations. To assist mediate these
conditions, numerous approaches have been established to predict
power load and generation, as briefly discussed in Section 2. The
power management department is still finding a trustworthy and
generalized model which can be used for dual purposes, generation
and consumption forecasting. To fulfill this requirement we pre-
sent a generalized DL model as shown in Fig. 2. The technical infor-
mation about the main components of our model is provided in the
following subsections.

3.1. Energy data collection

This step is very crucial, where two different types of data are
collected from various sources i.e., solar panels and houses.
Regarding energy consumption-related data, the wires in the con-
sumer building floors are interconnected with a mainboard. Next,
the individual smart meter is positioned in a separate building sec-
tion that usually counts energy units by the minute. This constant
energy data reading is directly influenced by consumer behaviour,
environmental conditions, and circuit fuses, that create noise,
redundancy, and an outlier in the data. On the other hand, energy
generation data is also influenced by the weather, hardware, and
solar panel. For example, due to electricity load-shedding, the
weather forecasting device could suddenly turn off, or sometimes,
faults occur in the hardware, such situations disturb the weather
attribute information during the data collection. Similarly, in the
case of solar power generation, if there is dust or a shadow on
the panel, then it will not generate energy with the required volt-
age, which can cause the generation data to go up and down signif-
icantly, creating huge variations in the data. To overcome these
issues in the data, it is necessary to refine the data before passing
it on to the DL model for prediction. A detail of the pre-processing
mechanism followed in this study is given in the next subsection.

3.2. Energy data pre-processing

Data pre-processing is a significant step for any DL model to
intelligently learn from refined data and make accurate out-
comes/predictions. In this study, the data used for experiments ini-
tially existed in a raw format and contained uncertainties such as
missing values, redundancy, noise, and high variation. To overcome
such ambiguities in data various pre-processing methods are used
to make clean energy generation and consumption data before
transferring them to the proposed model. To normalize and
remove the outliers in data, a moving average filter and standard-
ization techniques are applied to smoothly converge into a DL
model. Furthermore, the substitution method is employed where
null values are replaced by their preceding period values. There
are several attributes in the dataset where each variable has its
own set of scale ranges that made it difficult to tune the model
for a specific task. As DL models learn large numbers of parameters
when given input data, values have a large and diverse range.
Moreover, due to such reasons, the trained model becomes volatile
and yields an unsatisfactory performance. On the other hand, if



Fig. 2. The generalize proposed framework for the prediction of energy consumption and generation prediction, is mainly composed of four steps: initially, the required data
is collected from various sources which are then passed to a pre-processing step that efficiently polishes the data and distributes the data into different time resolutions
including minutely, daily, weekly, and hourly. Next, the refined time series data is forwarded to the proposed model for training that intelligently learns discriminative
features. Finally, the model is tested and evaluated using numerous metrics.
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there is a high difference in variable values output makes the fea-
ture learning procedure unstable and obtains a large error score for
prediction. The above discussion exhibits that scaling of the data is
more important for getting the right prediction for future data.
Therefore, we normalized all unscaled data are arranging them
between 0 and 1 as shown in Fig. 3.

To check the strength of the proposed model, we applied the
data horizons process, which set the energy data into four different
time resolutions, per minutely, daily, hourly, and weekly. However,
Fig. 3. Visual representation of a historical household energy consumption dataset
where (a) depicts the actual data while (b) illustrates normalized data.

5

in the literature, most of the researchers considered hourly data;
therefore, only hourly data is compared in the experimental section.

3.3. Spatiotemporal features learning via ConvLSTM

The main obstacle in fully connected LSTM is processing spa-
tiotemporal information during the transformation of the data
from input to state and state to state. More specifically LSTM is
considered an effective technique to manage the temporal rela-
tionships in data. To learn both spatial and temporal features, a
ConvLSTM is applied rather than an LSTM, where a convolutional
operation is performed internally and has a strong capability to
learn spatiotemporal features. In this study, multiple layers of
ConvLSTM are stacked by encoding time series data, which not
only extracts spatiotemporal features and also shows remarkable
performance in predictions. Regarding the learning process, a
ConvLSTM has a strong complementary power to manage a more
complicated sequence of data, as compared to a conventional
LSTM. The fundamental structure of a ConvLSTM is shown in
Fig. 4. In the RNN architecture multiplication process is performed
internally, while in ConvLSTM layers convolutional operation is
executed during sequential learning. Furthermore, it has a power-
ful ability to decide whether the current information needs to be
learned or ignored from the preceding state. The whole process
performed in a ConvLSTM is described in Eqs. (1) to (5).

it ¼ d Wix � xt þ Wih � ht�1 þ Wic � ct�1 þ bið Þ ð1Þ

f t ¼ d Wfx � xt þ Wfh � ht�1 þ Wfc � ct�1 þ bf
� � ð2Þ

ot ¼ d Wox � xt þ Woh � ht�1 þ Woc � ct�1 þ boð Þ ð3Þ

gt ¼ tanhðWgx � xt þWgh � ht�1 þ bgÞ ð4Þ

ct ¼ f t � ct�1 þ it � gt ht ¼ ot � tanh ctð Þ ð5Þ



Fig. 4. The basic architecture of a ConvLSTM for spatiotemporal feature learning.

Fig. 5. Block diagram for BDGRU that learns in both forward and backward
directions.
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where element-wise and convolution operations are denoted by ʘ
and * while other necessary functions such as hyperbolic and sig-
moid functions are presented by tanh and d. Similarly, the total time
step in ConvLSTM is shown by ‘t’ whereas it , f t ; ot; gt demonstrates
the input gate, forget gate, output gate, and adjustment gate. Addi-
tionally, the three variant states such as input, cell, and hidden are
represented by xt , ct; and ht . There are two different types of input
tensors extracting variant features. For instance, it ; f t; ot; xt , ct; and
ht where the first three are used for temporal features while the last
two are for spatial information. Due to the usage of both spatial and
temporal features, experimental results proved that considering a
ConvLSTM for the sequential learning mechanism is the right deci-
sion because it showed a significant contribution to both RE and
electricity load forecasting.

3.4. Temporal features learning via BDGRU

Energy prediction is a regression-based task associated with
time series. In the current study, we had historical energy data
and need to predict different horizons; therefore, forward and
backward information learning is significant to get a minimum
error score. To this end, BDGRU is applied for both energy genera-
tion and consumption forecasting problems. RNN is particularly
designed for sequence data processing. However, there exist some
weaknesses in RNN which are widely faced by researchers in cases
of long-term dependency problems, such as exploding and vanish-
ing gradients. To handle such problems, two traditional RNNs are
introduced, i.e., GRU and LSTM. These networks can learn long-
term features with the assistance of gates including input, forget,
and output gates. Unlike LSTM, GRU is a computationally less com-
plex architecture that contains only two gates that exist, including
the update and reset gates with no memory unit. Previous studies
revealed that the performance of GRU is better than that of LSTM.
The structure of the GRU mainly contains two gates where each
has its functionality, i.e., the update gate (z) indicates which infor-
mation can be held to the subsequent state, while the reset gate (r)
indicates how to fuse the earlier state information to the new input
data. The following are the formulas from (6) to (9) that represent
the output and state values in GRU.

zt ¼ rðWZ � x tð Þ;hðt � 1Þ½ �Þ ð6Þ

rt ¼ rðWr � x tð Þ;hðt � 1Þ½ �Þ ð7Þ

—ht ¼ rðWZ � x tð Þ; ðrt � h t � 1ð ÞÞ½ �Þ ð8Þ

ht ¼ 1� ztð Þ � h t � 1ð Þ þ zt �—ht ð9Þ
where activation function, input, and previous output are repre-
sented by r, xt, and h(t-1), while the weights of update, reset,
and output gates are denoted by WZ , Wr; andWh respectively.
6

In this paper, a BDGRU is applied composed of two conventional
GRUs, that handles the input tensor from dual directions and then
combine their resultant outcomes. The baisc architecture of
BDGRU is given in Fig. 5, where sequential patterns learns in both
forward and backward directions.
4. Experimental results

This section is mainly composed of four parts: initially, we pro-
vided a detailed implementation and optimal hyperparameters for
the training procedure. Next, a brief description of the datasets fol-
lowed by evaluation metrics was presented. In the third part, the
results obtained via the proposed model were compared to exist-
ing work on both datasets. Finally, ablation studies were conducted
to show the complementary ability of the proposed model.
4.1. Setup

To implement the proposed forecasting system, we needed
basic software and hardware requirements including python
(3.8.5) programming language, Keras framework (2.5.0), Tensor-
flow (2.5.0), window 10, AMD Ryzen 9 3900X, 12-core processor,
GeForce RTX 3090, and 48.0 GB RAM. Furthermore, regarding the
data preparation for the experiments, the dataset was split through
the holdout technique, the dataset is split into 70 % and 30 % for
training and testing. All the experiments were conducted using
batch size (16), optimizer (Adam), and epochs (100).
4.2. Datasets and protocol

To verify the generalization ability of the proposed model and
to establish efficient management between supplier and consumer,
two datasets were used related to consumption and generation.
4.2.1. Household energy consumption
This dataset is publicly available on the official site of the UCI

repository. The energy consumption data was recorded for four
years from 2006 to 2010. There were a total of 2,075,259 samples,
where missing data is counted 25,979 becomes 1.25 % of total
instances. Furthermore, the entire data is collected from a building
situated in France, where one-minute consumption data is coun-
tered. In Fig. 6 global active power shows the microwaves. total
energy consumed by sub-metering 1,2, and 3 where the basic unit
is Watt-hour. In the active power, the maximum and minimum
values were 11.12 and 0.076 in kilowatts. After deeply analyzing
the data we found that sub-metering 1 counted more units which
means more appliances were used such as dishwashers. The vari-
ous resolution of data is given in Fig. 7.



Fig. 6. A brief description of the household energy consumption dataset including attributes, units, and a summary.
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4.2.2. PV energy generation
Most of the existing works are related to either consumption or

generation power prediction. While in this study, a generalized
model is proposed for dual functionality. This dataset is mainly col-
lected from the famous city known as Alice Springs located in Aus-
tralia where a PV system (DKASC) is installed which has 26.5 kW.
Fig. 7. Different data horizon representations of the benchmark household energy con
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The weather-related information is given in Table 1, while the
solar-related details are presented in Table 2, while. Since the year
2010, the counter device was recorded after every-five minutes,
where an observed value is considered on each point. Regarding
the data splitting, from 1 June 2014 to 31 May 2015 were taken
for model training, while from 1 June 2015 to 12 June 2016 were
sumption dataset (a) minutely data (b) hourly data (c) daily data (d) weekly data.



Table 1
Detailed statistical analysis information of the PV energy generation dataset.

Attributes Mean Std Min Max Description

PV Power 3.940 5.280 0 18.562 The output power of the PV system
Wind Speed 2.284 1.389 0.298 43.78 Speed of the wind in m/s
Weather Temperature 20.942 9.875 �3.085 44.194 The temperature in Celsius
Weather Relative Humidity 36.672 23.138 3.125 101.889 Humidity in percentage
Global Horizontal Radiation 264.436 359.471 1.139 1390.946 GHR in w/m2

Diffuse Horizontal Radiation 54.008 90.110 0.318 718.653 DHR in w/m2

Table 2
The technical specifications detail the PV system.

Specification Unit Value

Array Rating kW 26.52
Panel Rating W 170 W
Number of Panels – 156
Panel Model – Eco-kinetic ECOKES 170 M
Array Area m2 199.16
Type of Tracker ADES 5F-27 M, dual axis
Inverter Size/Type – 3*9 kW, SMA SMC 9000TL-10
Installation Completed – 3 Mon, Aug 2010
Array Tilt/Azimuth – Fixed. Tilt = 20oAzimuth = 0o

Fig. 8. Actual and predicted visualized graph for electricity load consumption and
power generation using (a) household energy consumption and (b) PV energy
generation.
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utilized for testing purposes. Both training and testing were con-
taining weather attributes and the output of the PV power of 365
and 378 days respectively.

4.2.3. Evaluation protocol
Once the regression model is trained, the next step is to evalu-

ate its strength via some commonly used metrics including MSE,
RMSE, and MAE. The formulas of these metrics are given in Eqs.
(10) to (12).

MSE ¼ 1
n

Xn
i¼1

yi � yi

� �2 ð10Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

yi � yi

� �2
vuut ð11Þ

MAE ¼ 1
n

Xn
i¼1

jyi � yi j ð12Þ

In the above evaluations formulas, yi denotes the variable for
(N) times predictions which obtain samples from energy consump-
tion while yi represents the observed values. MSE refers to the
average square error which evaluates the difference between the
estimated and observed values while the RMSE score is obtained
by taking the square of the MSE. Similarly, MAE computes the
mean absolute between two variables.

4.3. Analytical experimental results

In this section, the results obtained via the proposed model are
briefly discussed which reflects its strength. Usually, power man-
agement systems in smart grids required a balance between the
consumer and supplier. Therefore, in this research, both consump-
tion and generation datasets are extensively evaluated to assist the
local smart grid and improve the NZEB performance. The recorded
energy data from the demand and provider sides contain abnor-
malities. For instance, a circuit and hardware malfunction, as well
as various environmental condition largely influences the data. To
deal with such a problem a preprocessing step is very crucial to
overcome the ups and downs of data. Despite these facts, energy
generation resources specifically photovoltaic entirely depend on
solar radiation so weather situation is also an important factor,
8

and considering its attributes plays a worthy role in prediction.
Based on the above circumstances, a hybrid AI-based framework
is proposed which is mainly composed of two core modules such
as ConvLSTM and BDGRU. The first module extracts Spatio-
temporal features while the other one only focuses on sequence
information. The actual and prediction graph of the proposed
model is given in Fig. 8, while the outcomes of both consumption
and generation datasets are given in Fig. 9.
4.4. Comparison with SOTA methods

In this section, the scope of the proposed model was evaluated
in two different ways. Initially, the prediction results obtained
through the proposed model were compared with an existing
attempt on both consumption and generation datasets. Next, a
comprehensive ablation study is also conducted in subsection
(4.5) to verify the significance of the empirical outcomes against
others DL models.
4.4.1. Household energy consumption
Regarding the energy consumption of the building, this dataset

is very famous therefore most of the previous studies used it for
experimental purposes. Mainstream approaches developed numer-
ous strategies and obtained good performance however, further
improvement is highly necessary. To this end, a novel hybrid
sequential-based model was proposed, where a remarkable perfor-
mance was obtained on the same dataset to conduct fair compar-
isons. On top of the proposed model, we assessed our results



Fig. 9. The prediction performance of the proposed model over household energy
consumption and PV energy generation datasets.
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with 14 recent models that mostly followed the hybrid approach to
get more significant features from the given sequential data. Fur-
thermore, according to the literature studies researchers used
hourly data resolution for predictions therefore, we considered
the same resolution for our quantitative results to perform a fair
comparison as mentioned in Table 3. Due to a discriminative, rep-
resentative, and robust features extraction mechanism we margin-
ally improve the prediction score is 0.012, 0.110, and 0.086 for
MSE, RMSE, and MAE, while the runner-up obtained 0.015, 0.122,
and 0.088 for MSE, RMSE, and MAE. The comparative analysis ver-
ifies that our hybrid strategy efficiently minimizes the forecasting
error and is suitable for the development of the NZEB.
4.4.2. PV energy generation
Solar power is a popular renewable source that provides clean

energy, saves human life from many hazardous diseases, and is
beneficial for the state economy. Nowadays, most countries
installed PV plants and obtain energy on a large scale. However,
high-level infiltration of PV power effect brings certain challenges
including meteorological situations, installation cost, and intermit-
tency of power generation. To overcome these challenges AI-based
model is a unique solution to forecast the PV power in an accurate
way to assist the smart grid on the management level. Therefore, in
this study, a generalized model is proposed that efficiently works
for both consumption as well as generation prediction. To the best
of our knowledge, the PV dataset is not widely used therefore the
results are compared with a single SOTA method. They followed a
hybrid model comprised of wavelet packet decomposition and
LSTM (WPD-LSTM), where after extensive analysis they obtained
the average score of MSE and RMSE is 0.0555 and 0.2357. While
through the proposed hybrid strategy, we beat it on margin scores
Table 3
Performance comparison of the proposed model with SOTA methods over household
energy consumption dataset.

Method MSE RMSE MAE

S2S [40] – 0.625 –
FCRMB [41] – 0.66 –
CNN-LSTM [42] 0.355 0.596 0.332
SE-AE [43] 0.38 – 0.39
CNN-M�BDLSTM [44] 0.31 0.56 0.34
CNN-BiLSTM [45] 0.29 0.54 0.39
CNN-RP [46] – 0.79 0.59
CNN-LSTM-AE [47] 0.19 0.47 0.31
CNN-GRU [48] 0.22 0.47 0.33
CNN-LSTM-MHA [49] 0.26 – –
DB-Net [38] 0.016 0.127 0.092
CL-Net [50] 0.015 0.122 0.088
CLSTM-BLSTM [51] 0.105 0.324 0.311
M�LSTM [52] 0.109 0.33 0.309
Proposed 0.012 0.110 0.086
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i.e. MSE and RMSE of 0.045 and 0.212 which verifies the effective-
ness as shown in Fig. 10.

4.5. Ablation studies

In this research, a generalized model was proposed; therefore,
ablation analyses were performed on both datasets to fairly com-
pute the prediction strength. For optimal model selection, several
DL models with various setups were evaluated during the experi-
mental work. The main purpose of generating comprehensive
results was to make sure which model extracts more prominent
features and gives a minimum error score in terms of MSE, RMSE,
and MAE. Tables 4 and 5 represent the quantity results on both
household energy consumption and PV energy generation datasets,
using numerous time frames such as minutely, hourly, weekly, and
daily. A detailed description of the analysis is provided below:

4.5.1. Household energy consumption analysis
In the literature study, researchers were interested in extracting

spatial and temporal features from time series data. For this, con-
volutional layers were widely explored for an encoder that could
learn spatial patterns while a sequential-based network was
applied for decoding that extracts temporal features. Inspired by
such a strategy, a ConvLSTM was investigated that could obtain
both spatiotemporal patterns from a given sequential data and
achieve good results. Next, GRU was evaluated that could learn
temporal information using the forward propagation method,
where the prediction score seemed better. After knowing the per-
formance of these models, experiments were conducted on its
BDGRU that gave a minimum error score as shown in the tabula-
tion. Finally, after a deep study, we concluded that ConvLSTM
and BDGRU show incredible performance in various domains, par-
ticularly in time series. Motivated by its tremendous achievements,
we tuned it for energy forecasting by using ConvLSTM as the enco-
der components and BDGRU as a decoder. After deeply investigat-
ing a hybrid model over different resolutions, consistent
performance is obtained. Based on performance, we chose it as
the proposed model.

4.5.2. PV energy generation
Mainstream approaches designed AI-based models for a specific

task that gave incredible results. In this study, our learning strategy
was different; the proposed model was used for dual purposes i.e.
energy consumption and generation. Furthermore, existing
attempts in the forecasting domain mainly performed ablation
studies on one dataset to compute the strength of the model. In
contrast, a comprehensive ablation analysis is delivered in terms
of models and data to verify the generalization ability of the pro-
posed model. Here, numerous sequential model analyses with dif-
Fig. 10. Performance comparison of the proposed model with the SOTA method
over the PV energy generation (DKASC) dataset.



Table 4
Experimental results household energy consumption dataset using numerous time
scales.

Method Minutely

MSE RMSE MAE

GRU 0.121 0.348 0.289
BDGRU 0.113 0.336 0.266
ConvLSTM 0.078 0.279 0.195
Proposed 0.049 0.221 0.138

Hourly

GRU 0.099 0.315 0.143
BDGRU 0.085 0.292 0.124
ConvLSTM 0.041 0.202 0.098
Proposed 0.012 0.110 0.086

Daily

GRU 0.096 0.310 0.141
BDGRU 0.081 0.285 0.122
ConvLSTM 0.038 0.195 0.096
Proposed 0.011 0.105 0.083

Weekly

GRU 0.109 0.330 0.279
BDGRU 0.094 0.307 0.259
ConvLSTM 0.056 0.237 0.167
Proposed 0.024 0.155 0.119

Table 5
Experimental results on PV energy generation dataset using numerous time scales.

Method Minutely

MSE RMSE MAE

GRU 0.285 0.534 0.518
BGRU 0.217 0.466 0.427
ConvLSTM 0.098 0.313 0.287
Proposed 0.051 0.226 0.210

Hourly

GRU 0.278 0.527 0.511
BGRU 0.197 0.444 0.422
ConvLSTM 0.096 0.310 0.283
Proposed 0.045 0.212 0.198

Daily

GRU 0.272 0.522 0.504
BGRU 0.193 0.439 0.415
ConvLSTM 0.091 0.302 0.274
Proposed 0.041 0.202 0.183

Weekly

GRU 0.268 0.518 0.501
BGRU 0.191 0.437 0.412
ConvLSTM 0.089 0.298 0.270
Proposed 0.038 0.195 0.179
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ferent time scales were conducted. In the first experimental
attempt, instead of CNN a ConvLSTM was investigated the intelli-
gently encode the input data and extract spatiotemporal features
because, in the architecture, a convolutional operation was per-
formed internally. As mentioned in Table 5 it gives satisfactory
results on overall resolutions. Similarly, for temporal learning
GRU was evaluated on a diverse setup of data, where we also
showed a convincing performance. After that, the BDGRU model
was evaluated, which also provided a convincing performance over
various resolutions. Finally, inspired by the hybrid mechanism per-
formance, ConvLSTM-BDGRU was deeply analyzed for short and
medium-time scale predictions where they gave minimum error
scores as compared to the previous models; therefore, we consider
it to as a proposed model.
5. Conclusions and future direction

Efficient energy management is the key objective of the smart
grid; therefore, energy generation and consumption are essential
10
to make sure adequate energy to consumers. To achieve this goal,
a generalized predictive model is highly desirable that accurately
predicts both energy consumption and generation. To ensure effi-
cient power transmission among consumers, solar power plants,
and smart grids, this paper presented a sequential knowledge-
based model composed of four major steps: (i) initially, the histor-
ical data from consumption (building) and generation (solar) are
accumulated for the prediction purpose. (ii) Next, pre-processing
is applied over collected energy data to refine them before for-
warding them to the next layer (iii) In the third step, an AI-based
model is proposed where to extract Spatio-temporal features a
ConvLSTM is employed while for sequential learning a BiGRU is
applied (iv) finally, the trained model is evaluated on testing data
in terms of MSE, RMSE, and MAE, to figure out the trained model
ability.

Regarding the trustworthy model selection, a comprehensive
experiments were conducted, where various learning techniques
were investigated over a different way of dataset settings including
minutely, hourly, daily, and weekly. These careful ablation analy-
ses demonstrated that the proposed model obtained remarkable
prediction scores on an hourly resolution. The error values were
attained of 0.012 MSE, 0.110 RMSE, and 0.086 MAE on household
energy consumption, while on PV energy generation we got
0.045 MSE, 0.212 RMSE and 0.198 MAE forecasting scores. Further-
more, the comparative analysis verified that the proposed model
outperforms when SOTA. Hence, we developed an AI-based model
that was suitable for online energy prediction and could be used in
local power systems. The proposed model is particularly designed
for short-term single-step forecasting and cannot be used for long-
term prediction which is the main weakness.

In the future, we aim to develop such a model that has multi-
capabilities including short, medium, and long-term forecasting.
Furthermore, we will mainly focus on model size and its execution
time to enable it for edge devices that operate real-time
predictions.
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