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Abstract: In this work, Ti-6Al-4V (Ti64) porous structures were prepared by selective laser melting
(SLM), and the effects of post heat treatment on its microstructural and mechanical properties were
investigated. The results showed that as SLM samples were mainly composed of needle-like α′

martensite. Heat treatment at 750 ◦C caused α′ phase to decompose, forming a lamellar α+β mixed
microstructure. As the heat treatment temperature increased to 950 ◦C, the width of lamellar α

phase gradually increased to 3.1 µm. Heat treatment also reduced the compressive strength of the
samples; however, it significantly improved the ductility of the porous Ti64. Moreover, heat treatment
improved the energy absorption efficiency of the porous Ti64. The samples heat-treated at 750 ◦C had
the highest energy absorption of 233.6 ± 1.5 MJ/m3 at ε = 50%.

Keywords: heat treatment; Ti-6Al-4V; porous structure; microstructure; mechanical properties

1. Introduction

Compared to fully dense materials, porous metallic materials have many excellent properties [1],
such as low density, large specific surface area, good energy absorption, and excellent permeability;
therefore, they are widely used in the aerospace [2], automobile [3], architecture, medical [4–7],
environmental protection [8], and acoustics [9] industries. Moreover, porous structures are ubiquitous
and have been found in bones, bamboo, wood, and coral. Unfortunately, the traditional subtractive
manufacturing process is difficult to use for fabricating porous metallic structures with complex
topographies. With the development of additive manufacturing, it has become possible to manufacture
these complex porous structures precisely, thereby expanding the application area of these porous
metallic materials.

Selective laser melting (SLM) is a prevalent additive manufacturing process that fabricates porous
titanium alloy structures because of its high material reuse efficiency, high flexibility, and precise shape
production [10]. Furthermore, the titanium alloy Ti-6Al-4V has high specific strength, low density,
high fracture toughness, and excellent corrosion resistance [11], which adds to its wide applicability
in the manufacturing of porous structures. In recent years, there have been many studies [12–15]
about porous Ti64 structures; most of the works are about the effects of topological morphology
(different porosity, different pore size, or different pore unit) on the mechanical properties, permeability,
and biological properties of porous structure. However, research on the effects of heat treatment
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processing on the microstructural and mechanical properties of additively manufactured porous Ti64
structure is still limited. On the other hand, it has already been confirmed that the heat treatment
would improve the mechanical properties of SLM-built Ti64 parts by removing internal defects and
residual stresses [16–19]. Moreover, the mechanical behavior of porous structures is not only related
to its complex topology, but is also related to the microstructure of the material. It is crucial to
consider both structural and microstructure of a material, while manufacturing porous structures for
the specific application.

The present work aims to study the effect of different heat treatment temperatures on the
microstructural and mechanical properties of porous Ti64 structure. In this study, SLM was used
to manufacture porous Ti64 structures. Optical microscope (OM) and X-ray diffraction (XRD) were
used to determine the microstructures under different heat treatment conditions. Finally, a universal
material testing machine was utilized to test the mechanical properties of the porous Ti64 structure.

2. Materials and Methods

2.1. Design of Porous Structure

Figure 1 shows the design process of porous structures. The unit cell of the body-centered cubic
(BCC) was modeled by Solidworks 2016 (Dassault Systemes, Walkerson, French). The unit cell size of
BCC was 2 × 2 × 2 mm. In this work, four different porosities (46.3%, 56.3%, 66.2%, and 75.4%) of
BCC were acquired by changing the diameter of the strut. The size of each sample was designed to be
6 × 6 × 12 mm.
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Figure 1. Schematic of designing process for the body-centered cubic (BCC) porous structure.

2.2. Materials and Manufacturing

The porous structures were fabricated by a selective laser melting machine S200 (Bright Laser
technologies, Xi’an, China). The particle morphology of Ti64 was investigated by a scanning electron
microscopy (SEM, PhenomXL, Shanghai, China). The Ti64 powder was nearly spherical with a smooth
surface, as shown in Figure 2a. The particle size distributions ere d0.1 = 25.1 µm, d0.5 = 37.8 µm,
and d0.9 = 56.5 µm, respectively. The Ti64 powder contained low levels of oxygen, nitrogen, carbon,
and iron, and the chemical composition was as listed in Table 1, which is not much different from
previous research [12]. During manufacturing, the SLM laser was rotated by 67◦ between two adjacent
layers, the laser power was 100 W, and the layer thickness was 30 µm. The scanning strategy and
manufacturing setup is shown in Figure 2b.
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Figure 2. (a) SEM image of the spherical Ti-6Al-4V powder for selective laser melting (SLM)
manufacturing; (b) schematic of the SLM manufacturing process.

Table 1. Chemical compositions of Ti-6Al-4V powder.

Element Ti Al V Fe C H O N

Mass (%) Bal 5.5 3.5 <0.3 <0.08 <0.015 <0.2 <0.05

The as-built samples underwent heat treatment at 750, 850, and 950 ◦C, respectively, at a heating
rate of 10 ◦C/min; were held for 2 h; and were finally cooled to room temperature in a furnace. In order
to prevent oxidation during heat treatment, the samples were sealed in vacuum tubes.

2.3. Microstructural Observation

In this study, the OM (Leica, DMI3000, Wetzlar, Germany) and SEM were used to observe the
microstructures of the as-built and heat-treated samples. During observation, the surfaces of all
samples were ground by SiC paper (600, 1500, and 2000) and mechanically polished, before being
etched in Kroll solution (92 mL H2O, 6 mL HNO3 and 2 mL HF). XRD (Rigaku, Ultima, Japan) with a
copper anticathode, 40 KV acceleration voltage, and 40 mA electric current, was applied in order to
determine the phase composition of porous specimens.

2.4. Mechanical Testing

According to the international standard ISO 13314 for the compression test of porous metallic
materials, the electronic universal testing machine (Shenzhen Kailiqiang Electronic Stretching
Equipment Co., Ltd, WDW-300HC, Shenzhen, China) was used to determine the mechanical properties.
The compression rate was set at 1 mm/min. Three samples of each group were tested; the experiment
was terminated only when the sample was broken entirely or completely dense.

3. Results and Discussion

3.1. Morphology of Porous Ti64 Structure

The as-built samples have a similar appearance in comparison to the design models, as shown in
Figure 3. However, Figure 4 shows a very rough surface on the as-built strut; there are many unmolten
or semi-melt spherical particles adhering to the strut surface; and the size of these particles is very
close to that of the Ti64 powder in Figure 2a. Fortunately, the bound metal particles can be removed by
sand blasting and post treatment [20].
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Figure 4. SEM images of the as-built porous samples with different strut diameters: (a) 780 µm;
(b) 680 µm; (c) 580 µm; (d) 480 µm.

The dry weight method was applied to determine the actual porosities of the as-built samples
using the following equation:

P =

(
1−

Wp

Wd

)
× 100%, (1)

where P is the actual porosity (%); Wp is the weight of as-built samples (g); Wd is the equivalent mass
(g); Wd = ρV; ρ is the density of Ti64, which is 4.51 g/cm3 [13]; and V is the measured volume of porous
structure (cm3). The measured porosities and strut diameters of the as-built samples are shown in
Table 2. It can be observed that there is still a particular deviation between the as-built samples and
the theoretically designed models. The observed differences in porosity and strut diameter between
each model and manufactured sample did not exceed 6%. The porosities measured by the dry weight
method and designed model were very close. The actually manufactured porous samples had thicker
struts than the models.
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Table 2. Strut diameters and porosities of designed and manufactured porous Ti64.

Sample Design Strut
Diameters (µm)

Actual Strut
Diameter (µm)

Design Porosity
(%)

Actual Porosity
(%)

1 780 802 ± 5 46.3 43.2 ± 0.5
2 680 721 ± 2 56.3 52.5 ± 1.5
3 580 611 ± 3 66.2 64.8 ± 0.5
4 480 508 ± 3 75.4 74.9 ± 0.1

3.2. Microstructure

Figure 5 shows the microstructures of the porous Ti64 samples before and after heat treatment.
The microstructure of the as-built sample is mainly composed of acicular α′martensite, because of the
extremely high cooling rate during laser melting process, making the β domain phase transform to fine
α′martensite [21]. Some pores were found in the as-built sample, as shown in Figure 5a,b. This defect
may have been caused by the heat wave airflow that could not escape during the solidification, and this
defect may have an unfavorable effect on the mechanical properties of as-built samples [22]. For the
samples heat-treated at 750 ◦C and 850 ◦C, it is clear that the fine α′martensite began transforming to
an α + β lamellar mixture microstructure, and α phases began to present a lath pattern, but there is still
some needle-like α phase in their microstructures, as illustrated in Figure 5c–f. And comparing Figure 5
d–f, the microstructure is more uniform and the α lath is coarser for the samples heat-treated at 850 ◦C.
In the case of the specimens heat-treated at 950 ◦C, the fine α′martensite completely transformed to
a mixture of α + β, and the α phase showed a more obvious lath pattern, as shown in Figure 5g,h.
In short, with the increase of the heat treatment temperature, the average width of the lamellar α phase
gradually increased, as illustrated in Figure 6. When heat treatment temperature increased to 950 ◦C,
the average width of α lath increased to 3.1 µm, as shown in Figure 6.

Figure 7 shows the XRD patterns of the as-built and heat-treated samples. According to pervious
research [23], it is difficult to distinguish between α and α′phases, because those two phases have a
similar hexagonal (hcp) structure; therefore, all peaks of as-built samples can also be considered α or
α′phase. The XRD peak intensity of the β phase is relatively low for the samples heat-treated at 750 ◦C
and 850 ◦C; it is even hard to see the presence of the β-peak. This indicates that these samples contain
very low transformed β phase. And the β phase peak intensity is higher for the samples heat-treated
at 950 ◦C. The content of β phase in this heat treatment condition is still low, according to previous
research [17].
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Figure 5. Microstructure of porous Ti64 before and after heat treatment: (a) as-built OM image;
(b) as-built SEM image; (c) heat-treated at 750 ◦C OM image; (d) heat-treated at 750 ◦C SEM image;
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OM image; (h) heat-treated at 950 ◦C SEM image.
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3.3. Mechanical Properties

3.3.1. Compression Tests of Porous Structures

Figure 8 represents the stress–strain curves of the porous Ti64 structures with different porosities
after heat treatment. According to Gibson and Ashby [1], it can be seen from the stress–strain curves
that the deformation of the porous sample changed from brittle to ductile after heat treatment. A jagged
plateau and fragmentation appear in the stress–strain curves of the as-built samples, meaning the
as-built samples are brittle. The stress–strain curve of the heat-treated sample is relatively smooth,
indicating that the strut of a heat-treated sample does not undergo severe fracture in the compression
tests. After heat treatment, the acicular α′ martensite in the as-built samples transforms into a coarse
α + β lamellar microstructure. The α + β lamellar microstructure can effectively prevent the crack’s
growth under compressive conditions. In addition, the fracture morphology of the samples tested after
compression in Figure 9 shows that all samples underwent the final compaction stage with a fracture
zone of about 45◦ from the loading direction.
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In this study, a stress–strain of 10% for the sample being tested was selected as the compressive
strength. Table 3 compares the mechanical properties of porous Ti64 structures before and after heat
treatment. It can be seen from Table 3 and Figure 10a that the compressive strength, platform stress,
elastic modulus, and yield stress of the porous structure gradually decreased, when the porosity of the
sample increased. At the same time, the compressive strengths and yield strengths of samples with
the same porosity decreased as the heat treatment temperature increased. Among them, the samples
with lower porosity had a more considerable reduction in yield strength, with the reduction of 19.9%,
and the yield strength of samples heat treated by 950 ◦C decreased from 255.8 MPa to 204.9 MPa.
However, from Figure 10b, it can be seen that the compression elongation of the sample increased with
the increase of heat treatment temperature. The samples with lower porosity had a lower compression
elongation. The maximum increase in compression elongation reached 14.7%, because the α′ phase
in the as-built sample gradually transformed to coarse α + β lamellar microstructure. The lamellar
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microstructures can change the crack path of the sample during fracture and increase the compressive
elongation of the heat-treated samples [18,24]. Under the same porosity, the heat treatment has little
effect on the elastic modulus of samples with the same porosity, and the change in the elastic modulus
of the samples after heat treatment was less than 8%.

Table 3. Mechanical properties of porous Ti64 structure after different heat treatments.

Sample Heat Treatment
Stemperature (◦C)

Design
Porosity (%)

Elastic
Modulus

(GPa)

Compression
Stress (MPa)
ε = 10%

Plateau Stress (MPa)
ε = 20–30%

1

0

46.3 6.7 ± 0.7 320.6 ± 9.4 365.3 ± 12.3
2 56.3 4.6 ± 0.1 228.2 ± 2.4 252.1 ± 7.6
3 66.2 2.7 ± 0.4 112.9 ± 4.6 126.1 ± 7.4
4 75.4 1.2 ± 0.1 47.3 ± 3.1 48.6 ± 1.5
5

750

46.3 6.8 ± 0.4 300.6 ± 3.6 420.4 ± 2.6
6 56.3 4.4 ± 0.1 202.5 ± 0.1 265.2 ± 15.9
7 66.2 2.6 ± 0.1 104.4 ± 1.7 128.9 ± 4.1
8 75.4 1.3 ± 0.2 44.7 ± 0.9 52.0 ± 1.2
9

850

46.3 6.2 ± 0.2 287.8 ± 2.7 422.1 ± 2.3
10 56.3 4.5 ± 0.3 196.2 ± 3.5 263.4 ± 10.1
11 66.2 2.6 ± 0.1 106.0 ± 0.4 130.0 ± 1.1
12 75.4 1.2 ± 1.1 41.6 ± 4.0 46.3 ± 6.4
13

950

46.3 6.4 ± 0.7 265.9 ± 0.3 395.3 ± 22.5
14 56.3 4.1 ± 0.4 173.4 ± 13.0 241.7 ± 26.0
15 66.2 2.3 ± 0.1 96.6 ± 2.5 119.9 ± 4.5
16 75.4 1.1 ± 0.1 36.4 ± 6.6 45.8 ± 3.2
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3.3.2. Gibson–Ashby Model

In previous studies [12,14,15,20], the Gibson–Ashby model has been extensively used to predict
the relationship between the porosity of a porous structure and its elastic modulus and yield strength.
The relationship can be expressed by the following formula:

Ep

Es
= C1(1− P)a (2)

σp

σs
= C2(1− P)b, (3)

where Es and σs are the elastic modulus (GPa) and yield strength (MPa) of the Ti64; Ep and σp are the
elastic modulus (GPa) and yield strength (MPa) of the porous structure, respectively. P is the porosity
of the porous structure (%); C1, C2 are the geometric proportionality constants of the porous structure.
According to previous studies [12,25], the exponent factors a and b of porous structure are related to
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their topological morphology. In this study, the density of Ti64 is 4.51 g/cm3 [13], the elastic modulus is
110 GPa [26], and the yield strength is 1096 MPa [11].

According to Gibson et al. [1], the values of these four constants were C1 = 1.0, C2 = 0.3, a = 2.0,
and b = 1.5. In our work, the predicted values were higher than the above values, as shown in Figure 11.
As shown above, heat treatment has little effect on the elastic modulus of a porous Ti64 structure with
the same porosity. According to the calculations, C1 = 0.1888 and a = 2.0 in this study. The exponent
factor of a was the same as that of Crupi et al. [12] but their C1 magnitude was 0.1453. It can be seen that
the relationship between porosity and the elastic modulus of the BCC porous Ti64 model predicted by
this study is consistent with the research of Crupi et al. [12]; the predicted result is shown in Figure 11a.
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compressive strength (b).

While the heat treatment temperature increased, the yield strength of the porous structure with the
same porosity gradually decreased. Therefore, in this study, four prediction models for the relationship
between yield strength and porosity were obtained, and the predicted curves of Crupi et al. [12] were
closely to this work, as shown in Figure 11b. It can be observed that as the heat treatment temperature
increased, the b value in the yield strength prediction model increased from 2.0 to 2.5, and the curve of
the yield strength prediction model gradually moved down.

3.3.3. Energy Absorption Characteristics

According to the international standard ISO 13314, the formulas for the energy absorption and
energy absorption efficiency of porous structures re as follows:

W =
1

100

∫ ε

0
σdε (4)

We =
W

σmax × ε
× 104, (5)

where W is the energy absorption by the porous structure (MJ/m3), We is the energy absorption efficiency
of the porous structure (%), ε is the compressive strain (%), and is σ the maximum compressive strength
(MPa) of the porous structure within a limited strain range.

The energy absorption capabilities of the porous Ti64 structures at different heat treatments are
shown in Figure 12. It was observed that the samples with the same porosity heat-treated at 750 ◦C
had better energy absorption capability. With the increase of heat treatment temperature, the energy
absorption ability of the samples gradually decreased. Particularly, the samples with porosity of 46.3%
had the highest energy absorption at ε = 50% (233.6 ± 1.5 MJ/m3) after heat-treated at 750 ◦C. In this
study, a strain of 50% was selected to calculate the specific energy absorption of porous structures;
and the samples with low porosity have higher energy absorption energy, as shown in Figure 12e. It is
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because the α′martensite in as-built samples transforms into a lamellar α + β mixed microstructure,
these microstructures can make the cracks expand differently along the α lath during the deformation
process of the sample, so that the energy absorption capacity of the sample is improved. And increase
of the heat treatment temperature makes the width of α lath larger, which reduces the compressive
strength and decreases the energy absorption capacity of the porous structure. Beyond that, due to
the higher compressive strength of the sample with low porosity, the energy absorption capacity of
samples with low porosity is greater. It is believed that the specific heat treatment can improve energy
absorption capability of porous Ti64 structures.
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Figure 13 shows the energy absorption efficiency curve of the porous Ti64 structures with different
porosities after different heat treatments at compressive strain between 5% and 50%. It was found that
the energy absorption efficiency curve of porous Ti64 structures has a good correspondence with their
stress–strain curve. All these samples have a rising stage, stable stage, and dropping stage. Meanwhile,
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for samples with porosities of 46.3% and 56.3%, they have second rising stage; this is due mainly to
these samples breaking secondarily during densification. The maximum compressive strength remains
the same, but the strain still increases before compressive strain 50%, as shown in Figure 8. In the
stable stage, the porous Ti64 structures have the highest energy absorption efficiency, but the efficiency
decreases quickly after that. The curve of the as-built sample curve has jagged bumps during the
stable stage, and as the heat treatment temperature increases, the curve tends to stabilize. This was
because that the as-built samples were brittle and because their strut was broken in the stable stage.
After heat treatment, the samples were more ductile; the struts were not easy to break. It is noteworthy
that the samples with porosities 46.3%, 56.3%, and 66.2% had maximum efficiency in the stable stage;
the heat treatment would slightly decrease their maximum efficiency. However, before the strain 15%,
the heat-treated samples’ efficiencies were higher than those of the as-built samples. And when the
strain exceeded 15%, the curve fluctuated to some extent, which means the porous structure strut begin
began to break or crack. It can be seen that the heat treatment can improve the energy absorption
efficiency of a porous Ti64 structure before it is broken. Meanwhile, for the porous Ti64 structures with
low porosity, when their struts begin to crack, efficiency of the as-built samples would higher than that
of the heat-treated samples.Materials 2020, 13, x FOR PEER REVIEW 13 of 15 
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4. Conclusions

The present work investigated the effect of heat treatment temperature on the microstructural and
mechanical properties of porous Ti64 structures. The main conclusions are the following:

(1) The microstructure of the as-built samples is mainly composed of needle-shaped α′ martensite.
After heat treatment at 750 ◦C, the needle-shaped α′ martensite transformed into lamellar α + β
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microstructure. As the heat treatment temperature increased from room temperature to 950 ◦C,
the width of lamellar α phase gradually increased from 0.3 to 3.1 µm.

(2) The increase in heat treatment temperature could gradually reduce the compressive strength and
yield strength of the porous Ti64 structure. The mechanical properties of the porous structures
with low porosity were more sensitive to the heat-treatment temperature, but the heat treatment
processing hardly affected the elastic moduli of the porous structures.

(3) The energy absorption condition of porous Ti64 structure could be more stable after heat
treatment. Heat treatment at 750 ◦C improved the energy absorption capabilities of the porous
Ti64 structures. The samples with porosity of 46.3% had the highest energy absorption at ε = 50%
(233.6 ± 1.5 MJ/m3) after being heat-treated at 750 ◦C for 2 h.
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