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A B S T R A C T   

Electrical power systems encounter a variety of challenges due to load growth and technological improvement; 
reactive power planning (RPP) and improvement of voltage stability (VS) are the two most significant ones. The 
integration of wind farms (WFs) into power networks has many advantages in terms of operation cost and 
emissions. But leads to voltage instability if it is not optimally sized, placed, and coordinated with VAR sources. 
In this study, a probabilistic multi-objective RPP framework is proposed for power systems with high penetration 
of WFs. A novel wind turbine model that can dynamically control reactive power is suggested based on the 
capability curve of a double-fed induction generator. A new bi-level optimization technique is introduced to 
address the problem considering the uncertainties of loads and wind power. Multi-objective genetic algorithm is 
employed at the upper level to optimally allocate VAR sources, and select the optimal locations of WFs to 
improve VS and decrease VAR sources’ costs. While at the lower level, the overall operation cost is minimized. A 
fuzzy min-max method is modified to find the optimum compromise solution. The results show that the proposed 
technique is effective in improving system VS and operation costs.   

1. Introduction 

1.1. Motivation 

The electrical sector has historically been focused on hydroelectric 
and thermal power plants. While hydroelectric plants are clean and 
effective, there is a constraint on locations for their installation. The 
fossil fuels required for other plants, on the other hand, are running out 
and are considered one of the main causes of CO2 emissions. This has led 
to a significant shift in the paradigm of power systems, with govern-
ments adopting goals and strategies targeted at the comprehensive 
incorporation of renewable energy into electricity networks. Wind 
power stands out among other green energy because it has enhanced the 
convergence of networks greatly [1]. In recent years, wind power 
technology has evolved rapidly. In 2021, the installed wind power ca-
pacity grew by 92 GW, taking the global total installed capacity to 837 
GW. The Global Wind Energy Council predicts that by 2025, the sector 
will expand rapidly and step upward to achieve a total installed capacity 
of 1014 GW [2]. 

The nature and operations of the power system are challenged by the 

fluctuating nature of the wind and the relatively new types of genera-
tors, such as double-feed induction generators (DFIGs), which are uti-
lized in wind farms (WFs) but are uncommon in conventional power 
systems [3]. As a result, a large proportion of wind penetration may have 
an impact on the power grid’s stability [2], necessitating proper reactive 
power planning (RPP) to keep the system operating safely. 

1.2. Literature review 

RPP, which is one of the most important aspects of the above chal-
lenging situation, is concerned with addressing the following two 
questions: (1) where the new reactive power sources should be imple-
mented; and (2) the scale and form of the new reactive power sources. 
An adequate RPP can improve both the voltage profile and the voltage 
stability (VS) of the power grids. Many control behaviors (control var-
iable) can have an effect on the RPP issue rather than depending on new 
sources such as: (i) Regulating the generator excitation is used to adjust 
the voltage set points of voltage-controlled buses (PV buses or generator 
voltage). (ii) Updating the configuration of taps for changing trans-
formers. However, in the majority of power networks, these two stra-
tegies are insufficient due to high system stress. Capacitor banks, on the 
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other hand, are the most common reactive power compensation solu-
tions because they are fairly priced relative to their capability for 
compensation, but they also have the drawback of being slow and un-
reliable [1,4]. Flexible AC Transmission System (FACTS) is widely used 
in the power system due to its rapid control responses and capacity to 
boost loadability. Additionally, it creates new possibilities for regulating 
power flow, reducing losses, and boosting the unstable capacity of 
existing transmission lines [5]. 

Various artificial intelligence-based optimization methods have 
recently been used for the RPP with wind power integration. Authors in 
[1] suggested an application of the differential evolution particle swarm 
optimization algorithm (DEPSO) to minimize losses and VAR investment 
cost with wind power penetration. In [3], a differential evolution algo-
rithm (DE) is presented to solve the RPP problem for 6 scenarios of 
different wind speed levels. In [6] the optimization problem was solved 
using a genetic algorithm (GA) with a static var compensator (SVC). The 
study in [7] presented an RPP method for integrating wind power into a 
distribution system. Tabu search was utilized to reduce the annual en-
ergy losses in the grid-connected system and improve the microgrid 
success index in [8]. The work in [9] proposed an improved adaptive GA 
for a multi-scenario expectation model using SVC. Adaptive GA was 
proposed in [10] to reduce the annual comprehensive cost using 
capacitor banks. Particle swarm optimization gravitational search al-
gorithm (PSOGSA) was investigated in [11] to maximize the annual 
profit of the utility. Authors in [12] presented a multi-objective function 
model that takes into account minimal voltage variation, minimum 
active power losses, and maximum DG optimization capacity. However, 
no one in the preceding literature has focused on VS improvement as a 
crucial planning objective, instead focusing solely on minimizing losses 
and additional VAR costs. 

In [13] a multi-scenario with two sets of variables was proposed and 
solved based on VS constrained optimal power flow method to minimize 
the total system cost. Two different objectives of minimizing the active 
power losses and VS index (named L-index) were approached in [14], 
while VAR compensation devices were modeled as discrete variables. In 

[15], GA was proposed with a probabilistic model of wind turbine (WT), 
VS index was established as one of the multi-objective functions. In [16], 
a multi-objective algorithm was suggested, where the optimal compro-
mise solution was found by combining the min-max technique, fuzzy 
decision maker, and ε-constraint method. However, they depicted the 
WT as a restricted PQ model, which prevented full utilization of the WT 
’s reactive power injection. In [17], a dynamic reactive power control 
strategy was used to model the WT, and multi-objective functions were 
merged as a single objective using the weighted method. GA was used to 
tackle multi-objective optimization problems. In [18], non-dominated 
sorting GA was proposed, and different strategies for controlling the 
reactive power of WTs on RPP were investigated. However, it should be 
emphasized that in [17] and [18], the rotor voltage limits in the wind 
power capability curve as well as the operational wind cost were 
ignored. 

Recently, authors in [19] proposed a strategy for RPP with the 
objective formulated by measuring different cost components such as 
VAR generation cost, line charging cost, FACTS device operation cost, 
and cost due to real power loss. The work proposed in [20] integrates the 
static and dynamic solutions for the RPP problem in industrial micro-
grids operating in islanded mode. As a static solution, the optimal 
location of capacitors banks is determined to mitigate the voltage vio-
lations with demand increases. While the STATCOM as dynamic support 
is placed on the most sensitive bus to support fast voltage recovery under 
motors start-up states. An oppositional-based Harris Hawks optimiza-
tion technique enthralled is suggested and implemented for RPP in [21] 
with the objective of minimizing the operation costs and transmission 
losses. To minimize power loss along with improvement in the voltage 
stability limit, the study in [22] proposed a Moth-flame optimization 
algorithm for RRP using multi-type of FACTS devices. Authors in [23] 
utilized a two-stage approach based on mixed integer linear program-
ming for the RPP approach coupling steady-state operation and dynamic 
VAR demand resulting from intra-hour transitions as well as line-outage 
and short-circuit scenarios to a generic transmission system. However, 
all of these studies did not take into account the presence of renewable 

Notation 

Below is a list of the most important symbols used in this work. As 
needed, other symbols are defined 
A Sets of indices 
Nb Number of system buses 
Ncap Number of newly installed capacitor bank 
Ng Number of generators 
NL Number of transmission line 
Ns Number of loads scenarios 
NSVC Number of newly installed SVC devices 
NT Number of installed transformers 
NTCSC Number of newly installed TCSC devices 
Nw Number of installed wind power farmsB 

Constants and parameters 
Bij Susceptance of the branch between bus i and bus j (p.u) 
Cc Capacitor bank per-unit cost ($/MVAR) 
CF Fixed cost of the capacitor bank in ($) 
Gij Conductance of the ranch between bus i and bus j (p.u) 
ir VAR devices interest rate (%) 
LT VAR devices lifetime (years) 
PDmax The maximum possible power transfer to the load (MW) 
Pmin

Gi , Pmax
Gi Minimum and maximum allowable active power at bus i 

(MW) 
Qmin

Gi , Qmax
Gi Minimum and maximum allowable reactive power at bus 

i (MVAR) 

Smax
l Maximum allowable apparent power in line l (MVA) 

Tmin
K , Tmax

K Minimum and maximum transformer K tap setting limit 
(p.u) 

Vmin
i ,Vmax

i Minimum and maximum allowable operating voltage at 
bus i (p.u) 

Xij Branch reactance between bus i and bus j (p.u) 
Zij Branch impedance between bus i and bus j (p.u)C 

Variables 
AICVAR Annual cost of newly added VAR sources ($) 
Bsvc.i Susceptance of SVC device at bus i (p.u) 
CCap.i Total capacitor bank cost at bus i ($) 
Csvc.i SVC devices installing cost at bus i ($/MVAR) 
CTCSC.l TCSC devices installing cost in line l ($/MVAR) 
ICVAR Total new VAR sources installing cost ($) 
PD Current load demand operating value (MW) 
PDi . QDi Active and reactive power load at bus i (MW/MVAR) 
Pgi . Qgi Active and reactive power generated at bus i (MW/MVAR) 
Qo

ci VAR source capacitive/inductive power at bus i (MVAR) 
Qsvc.i SVC device reactive power injection at bus i (MVAR) 
TK Transformer K tap setting (p.u) 
Sl Apparent power flow in line l (MVA) 
STCSC.l TCSC device power injections in line l (MVAR) 
Vi . Vj Magnitude of the voltage at bus i and j (p.u) 
XTCSC.l TCSC device reactance in line l (p.u) 
δij Phase-angle difference between bus i and j (rad.)  
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energy sources within the system and the state of uncertainty for them, 
and the load demand. 

In the present work, a bi-level optimization strategy is proposed to 
tackle the RPP issue. On the basis of the uncertainty characteristic of 
loads and wind power, a multi-objective genetic algorithm (MOGA) is 
employed in the upper stage to optimally assign new VAR sources and 
identify the best connecting locations of WFs in order to compensate for 
the shortage of reactive power in the power network. The objectives at 
this stage are to maximize VS and minimize the installation cost of new 
VAR sources. While the total fuel cost and WT operation cost are mini-
mized as possible at the lower level. The MOGA solution process is a set 
of points on Pareto’s optimum front, where the best compromise solu-
tion may be determined using a fuzzy min-max approach. Table 1 

classified the surveyed literature and lists the suggested work’s unique 
features in contrast to previous studies. 

In the current work, to compensate and manage the reactive power in 
the electricity grid, several VAR resources are utilised. These are 
capacitor banks and FACTS devices. There are several types of FACTS 
devices that may be employed in a power network. Thyristor-controlled 
series compensators (TCSC) and SVC are two of the most appropriate 
devices for our requirements [5,24]. The model details of these VAR 
sources can be found in [25]. For static implementations, the modelling 
of VAR sources may be done through two methods: (i) the power in-
jection model and (ii) the impedance insertion model. According to the 
impedance insertion model, depending on the kind of device, the 
impedance is injected into the system in series, shunt, or a mix of both. 

Table 1 
A comparison among previous studies and the proposed work novelties.  

Ref. Year Optimization 
algorithm 

Objective(s) VAR sources VS 
index 

Wind model Wind 
cost 

Multi- 
scenario 

Proposed multi- 
objective Capacitors 

bank 
FACTS 

[1] 2014 DEPSO Min. cost of losses and VAR 
sources 

✓ ✓ – Constant power 
factor 

× ✓ – 

[3] 2012 DE Min. cost of losses and VAR 
sources 

× ✓ – Reactive power 
fixed band 

× ✓ – 

[6] 2006 GA Min. cost of losses, VAR 
sources, and fuel cost) 

× ✓ – Reactive power 
fixed band 

× ✓ – 

[7] 2010 Quantum 
Evolution 

Min. cost of losses and VAR 
sources 

✓ × – – × ✓ – 

[8] 2014 Tabu search Min. cost of losses and Max. 
microgrids success index 

✓ × – – × ✓ – 

[9] 2016 Adaptive GA Min. cost of losses and VAR 
sources 

× ✓ – – × ✓ – 

[10] 2018 Adaptive GA Min. cost of losses and VAR 
sources 

✓ × – Constant power 
factor 

× ✓ – 

[11] 2018 PSOGSA Max. annual profit ✓ × – Constant power 
factor 

× × – 

[12] 2020 GAMS Min. cost of losses and Min. 
voltage deviation and Max. 
DG capacity 

✓ × – – × × Weighted method 

[13] 2014 GAMS & MINLP Min. cost of losses and VAR 
sources with 
Max. VS 

✓ × VSM – × ✓ ε-constraint 

[14] 2016 GAMS & 
MO–ORPD 

Min. cost of losses and VAR 
sources with 
Max. VS 

✓ × L- 
index 

Constant power 
factor 

× ✓ Pareto optimal set and 
Fuzzy decision maker 

[15] 2015 GA Min. cost of losses and VAR 
sources with 
Max. VS 

✓ × L- 
index 

– × × Weighted method 

[16] 2021 GAMS Min. cost of losses and VAR 
sources with 
Max. VS 

✓ × L- 
index 

Reactive power 
fixed band 

× ✓ ε-constraint and Fuzzy 
decision maker 

[17] 2013 GA Min. cost of losses and VAR 
sources with 
Max. VS 

× ✓ VSM Dynamic 
reactive power 
control 

× ✓ Weighted method 

[18] 2019 NSGA Min. cost of Fuel and VAR 
sources with 
Max. VS 

✓ × L- 
index 

Dynamic 
reactive power 
control 

× ✓ Pareto optimal set and 
Fuzzy decision maker 

[19] 2022 DECSA Min. cost of losses, VAR 
sources, FACTS, and line 
charging 

✓ ✓ – – – – – 

[20] 2022 – Min. cost of losses and VAR 
sources 

✓ ✓ – – – – – 

[21] 2022 OHHO Min. cost of losses, VAR 
sources and operation cost 

✓ × – – – – – 

[22] 2022 Moth-Flame 
Optimization 

Min. cost of losses and VAR 
sources with 
improve voltage profile 

✓ ✓ L- 
index 

– – – – 

This paper MOGA Min. cost of Fuel and VAR 
sources with 
Max. VS 

✓ ✓ VSM Dynamic 
reactive power 
control 

✓ ✓ Pareto optimal set and 
Fuzzy decision maker 

GAMS: General Algebraic Modeling System. 
MINLP: Mixed Integer Nonlinear Programming solver. 
MO–ORPD: Multi-Objective Optimal Reactive Power Dispatch. 
DECSA: Differential Evolutionary & Crow Search Algorithm. 
OHHO: Oppositional-based Harris Hawk Optimizer. 
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The power injection model executes the VAR source as an element that 
injects/absorbs a specific quantity of active and/or reactive powers to a 
node. These techniques do not conflict with the symmetry of the 
admittance matrix and allow effective and easy incorporation of VAR 
sources into existing analytical software applications for the power 
system, which was used in this work. 

1.3. Contributions and paper organization 

This work focuses on RPP and improving the VS of the power system 
by installing new VAR sources which maximize the voltage stability 
margin (VSM) while keeping the minimum permissible voltage in mind 
with the high penetration of wind power. The system would be more 
capable of sustaining sufficient reactive power for running the network 
in a safe state with an allowable voltage level. As a result, the system 
would be more efficient in the face of wind power’s fluctuating nature. 
Capacitor banks and FACTS which offer a rapid control response and the 
potential to enhance system loadability are utilized as VAR sources to 
support the network. To test the effectiveness of the suggested tech-
nique, an updated IEEE 30-bus test system and a part of the electricity 
grid in South Egypt are employed. 

A detailed model is utilized to describe wind generators instead of 
the traditional technique in which wind generators were given in power 
flow studies as PV or PQ models with constant power factors [17]. This 
technique appears to be relatively simple so far, however, the reactive 
power range accessible is restricted to either a maximum power factor or 
a predetermined regulatory band. Furthermore, because this represen-
tation is not quite accurate, the reactive power infusion from the WT is 
not fully used. 

The WT model studied in this work takes into consideration all 
available reactive power and provides dynamic reactive power control. 
A WT generator’s output is non-linearly proportional to wind speed; 
therefore, it can vary from zero to its rated output when the wind speed 
fluctuates. As a result, these uncertainties should be accounted for in the 
power flow model. A probabilistic model is an ideal representation for 
addressing this issue. Because of its stochastic nature, the available wind 
energy is estimated using the Weibull distribution function, while the 
conventional Gaussian probability distribution function (PDF) is used to 
describe the load demand. Furthermore, the proposed strategy takes into 
account the unpredictability of wind power by integrating variables for 
overestimation and underestimation of available wind energy in the 
wind cost model. 

The main contributions of the present work can be summarized as 
follows:  

- A probabilistic multi-objective framework of the RPP problem is 
suggested for power networks with high wind energy penetration.  

- A novel wind turbine (WT) model that can dynamically control 
reactive power is proposed based on the reactive power capability 
curve of a DFIG. Additionally, a modified operational cost form of 
wind power that accounts for wind power’s volatility is explored.  

- A new bi-level multi-objective strategy is used to solve the RPP 
problem considering the uncertain feature of loads and WTs. In the 
upper level, the MOGA is utilized to optimally assign new VAR 
sources and determine the best-connected WT locations. A modified 
fuzzy min-max technique is presented to find the optimum solution. 

The remnant of the paper is arranged as follows: the uncertainty of 
wind power and load demand with WT modelling are discussed in 
Section 2. A multi-objective RRP problem formulation is described in 
Section 3. The proposed solution algorithm for solving the RPP is dis-
cussed in Section 4. Section 5 depicts the case study results and dis-
cussion. Finally, the conclusions are presented in Section 6. 

2. Load and wind power uncertainty modelling 

Many random factors occur in the power system; this section dis-
cusses the uncertainty of load demand and generated wind power. 

2.1. Load demand uncertainty modelling 

Electrical power systems’ stochastic loads necessitate modeling of 
demand uncertainty at the planning and operation stages. The normal 
Gaussian PDF [17] can be used to describe load uncertainty in general. 
Fig. 1 shows the load levels and probability of each dth load scenario 
which represented by f(PD) and calculated as [14]: 

f (PD) =

∫P
max
D

Pmin
D

1
̅̅̅̅̅̅̅̅̅̅
2πσ2

√ e−
(PD − μD)

2

2σ2 dPD (1)  

where, f(PD) is the probability of the dth load scenario, Pmax
Dd 

and Pmin
Dd 

are 
the boundaries of dth load scenario, and μD and σ are the mean and 
variance of the load scenario, respectively. 

2.2. Wind power uncertainty modelling 

Wind power generation is dependent on the farm’s location and 
fluctuates over time owing to changes in wind speed. Since wind speed is 
a random variable, the uncertainty must be represented in the output 
power of the wind generators. Weibull distributions [26] are a widely 
used model for wind speed. The wind speed’s Weibull PDF is shown in 
Fig. 2(a) and is computed as [1]: 

PDF(U) =

(
k
C

)(
U
C

)k− 1

e
−

(

U
C

)k

(2)  

where U is the wind speed, k is the shape parameter and C is the scale 
parameter. The probability of certain ranges of wind speed in each 
scenario can be obtained as [1]: 

f (U) = 1 − e
−

(

U
C

)k

(3) 

The relationship between the WT ’s active output power Pw and the 
wind speed U shown in Fig. 2(b) and can be approximated as [27]: 

Pw= {

0 0 ≤ U ≤ Uci

Prw
U − Uci

Ur − Uco
Uci ≤ U ≤ Ur

Prw Ur ≤ U ≤ Uco

0 Uco ≤ U

(4) 

Fig. 1. Load characterization PDF.  
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where, Prw represents the rated output power of the WT, and Uci, Ur and 
Uco represent the cut-in wind speed, rated wind speed, and cut-out wind 
speed, respectively. 

It indicates that no net power is generated below the cut-in wind 
speed. The produced wind power rises as the wind speed increases. Once 
the rated wind speed is reached, the WT operates at rated power. That is, 
when the wind speed is between the rated and cut-out wind speeds, the 
output equals the generator’s rated power. Because the wind is too 
powerful to operate safely above the cut-out wind speed, the WT must be 
forced to shut down, and the output power is reduced to zero. 

2.3. Modeling of WT 

The two types of WTs are fixed-speed and variable-speed, with the 
DFIGs being one of the most common types of variable-speed generators 
used in WT units [17]. Fig. 3 depicts the basic structure of DFIG-based 
WTs. The stator of this machine is directly connected to the power 
grid, while the rotor is connected to the grid via an AC/DC/AC variable 
frequency power electronic converter. By changing the voltage magni-
tude and frequency, these converters can regulate the reactive power 
output of the wind generator. Because of the grid-side converters, DFIG 
may be able to provide dynamic reactive power regulation. As a result, 
the WT’s reactive power injection could be used to its full potential. This 
overcomes the major shortcoming of previous methods in terms of 
available reactive power, which is restricted either to a fixed regulation 
band or to a maximum power factor. The power converter also allows 
the DFIG machine to be regulated between sub-synchronous and 
super-synchronous speeds (greater than synchronous speed), with a 
typical range of -40 to +30% [17]. 

The total injected reactive power into the grid by wind generators 
(Qw) is made up of the sum of the injected reactive power by the DFIG 
stator (Qs) and the reactive power injected by the DFIG grid side con-
verters (Qgsc). 

Qw = Qs + Qgsc (5) 

The reactive power from the generator stator side may be determined 
as [28]: 

Qs = 3Is Vssin∅s (6)  

where, Is and Vs is the stator current and voltage, respectively, and ∅s is 
the phase angle between the stator voltage and current. 

The reactive power capability of DFIG grid side converters can be 
given as follows [28]: 

Qgsc = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

S2
gsc − P2

rw

√

(7)  

where, Sgsc is the MVA capacity of the grid side converter. 
The maximum limit of stator reactive power injection is restricted by 

the rated rotor current and the rated rotor voltage; however, while the 
machine is consuming reactive power, the stator current acts as the limit 
factor [28], as illustrated in Fig. 4. 

3. Problem formulation 

The aim of the present study is to solve the RPP issue in the presence 
of uncertain wind power and loads. Thus, the problem has been 
modelled as a multi-objective nonlinear optimization problem and 
solved in a bi-level structure. At the upper level, a MOGA is concerned 
with the optimum allocation of added new VAR sources where 
improving VS and minimizing the cost of new VAR sources are the ob-
jectives. At this level, the locations of added VAR sources (shunt/series) 
and the best connecting points of WT are initially determined by means 
of many factors. Then, a MOGA takes place to determine the appropriate 
value of each VAR source for different scenarios of load level and wind 
speed behaviors. The operational cost is minimized at a lower level by 
addressing an optimum power flow problem. A schematic diagram of 

Fig. 2. WT Performance, (a) Wind speed characterization PDF,(b) WT power curve.  

Fig. 3. DFIG structure.  Fig. 4. DFIG-based WT dynamic reactive power capability.  
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how to solve the problem is shown in Fig. 5. 
The new VAR sources should provide secure operation under any 

conditions. As a result, the upper level assumes three different load 
scenarios (light/base/peak) and two wind power levels (worst/best). 
This results in six scenarios, each with six different values for each of our 
VAR sources. The highest of these values is chosen as the final selected 
value for each source. This ensures the network’s security to the fullest 
extent feasible under any operational condition. At the upper level, the 
goal is to improve voltage stability while minimizing the cost of new 
VAR sources. At the lower level, the total operating costs are reduced by 
adjusting a variety of control variables such as generator voltages and 
changing the transformer tap ratio, as well as optimizing the allocation 
of generated power and controlling the output (setting) value of the new 
VAR sources. The optimal setting of VAR sources is limited by their 
available sizing (which is obtained from the upper level). 

3.1. Optimal location of VAR sources and WT 

3.1.1. Optimal new VAR source location 

3.1.1.1. Shunt sources. The L-index indicator is used to define the lo-
cations of the shunt reactive power compensation source. It is based on 
load flow analysis and its value ranges from zero when there is no load to 
one when there is voltage collapse. Because the bus with the greatest 
L–index value is the system’s weakest bus, these buses are chosen and 
ranked as a suitable site for a new VAR source. The following is a dis-
cussion of the L–index calculation [27]: 
⃒
⃒
⃒
⃒

IG
IL

⃒
⃒
⃒
⃒ =

⃒
⃒
⃒
⃒

YGG YGL
YLG YLL

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
VG
VL

⃒
⃒
⃒
⃒ (8)  

whereIG, IL, VG and VL are the currents and voltages at generator and 
load buses and Y is the admittance matrix. Rearranging (8) we get: 
⃒
⃒
⃒
⃒

VL
IG

⃒
⃒
⃒
⃒ =

⃒
⃒
⃒
⃒

ZLL FLG
KGL YGG

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒

IL
VG

⃒
⃒
⃒
⃒ (9)  

where, 

FLG = − |YLL|
− 1
|YLG| (10) 

The L-index of bus j is given as: 

Lj =

⃒
⃒
⃒
⃒
⃒
1 −

∑Ng

i=1
Fji

Vi

Vj
∠
(
θji + δij

)
⃒
⃒
⃒
⃒
⃒

(11)  

where Fji is the elements in the matrix FLG, and θji is the phase angle of 
the term Fji. 

3.1.1.2. Series sources. The series reactive power compensation sources 
are located at the most critical lines which are defined by the fast voltage 
stability index (FVSI) [29]. It is built on the idea of power flowing 
through a single line. The FVSI is computed for a typical transmission 
line by [29]: 

FVSIij =
4Zij

2Qj

Vi
2Xij

(12)  

where, Qj is the receiving end total reactive power flow. The line with an 
index value that is closer to 1 is the most crucial line for series 
compensation in the system, because it may cause the entire system to 
become unstable and is chosen as a suitable location. 

3.1.2. Optimal WF location 
The optimal connection points of available buses in different regions 

where WT might be installed are selected to reduce the line congestion. 
Based on the power transfer distribution factors (PTDFs), the connecting 
points may be identified. It may be defined as the line flows sensitivity to 
changes in nodal active power injection. It is the ratio of power flow 
changes on line l (between buses i and j) as a result of the power 
transaction from the bus m to n. The most positive amounts of PTDFs 
mean that at the related buses any generation increase (or any load 
decrease) results in a reduction in line congestion [30]. 

PTDFl =
ΔPl

ΔPbus
=

(
Xim − Xjm − Xin +Xjn

)
/

Xij (13)  

where, Xim is the element of the bus reactance matrix in the ith row and 
mth column. 

3.2. The objective functions 

3.2.1. Minimization of VAR investment cost 
The first goal is to minimize the investment costs of new VAR sources 

(ICVAR) which are calculated as follows: 

ICVAR =
∑

i∈Ncap

CCap.i +
∑

l∈NTCSC

CTCSC.l × STCSC.l +
∑

i∈NSVC

Csvc.i × Qsvc.i (14) 

The objective function in (14) consists of three parts represent the 
installation costs of the capacitor banks, TCSC, and SVC respectively, 
where [24]; 

CCap,i = CF + Cc Qc,i (15)  

CTCSC,l = 0.0015S2
TCSCl − 0.7131STCSC.l + 153.57 (16)  

Csvc,i = 0.0003Q2
SVC,i − 0.3051Qsvc.i + 127.38 (17) 

In this study, Cc=3 × 104$/MVAR and CF=1000$ [31]. The total 
VAR device annual installing cost is given by [24]: 

AICVAR = ICVAR
ir ( 1 + ir)LT

( 1 + ir)LT
− 1

(18) 

The LT is supposed to be 10 years, and ir to be 10% 

Fig. 5. Schematic diagram for the proposed bi-level solution method.  
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3.2.2. Improving the voltage stability 
Voltage stability is “the ability of a power system to maintain 

acceptable voltages at all buses under normal conditions and after being 
subjected to a disturbance” [32]. The failure of power systems to satisfy 
the demand for reactive power is the principal factor causing voltage 
instability. The relation between power and voltage (P-V or MW mar-
gins) is used in power systems to assess a system’s ability to sustain VS 
under regular and abnormal conditions [33]. The P-V relation is ob-
tained through a series of solutions for AC power flow. As a consequence 
of increased power transfer between two nodes in the system, there is a 
reflection of voltage shifts, Fig. 6 shows the relation between power 
loading and system voltage. The distance between the base case loading 
and the loading that leads to voltage collapse is called the VS margin 
(VSM), which can be measured in p.u. as follows [34]: 

VSM = (PD.max − PD)/PD (19) 

The aim of this study is to RPP problem in the power system, not only 
for the purpose of improving the bus voltage but also to increase the 
VSM and thus increase the ability of the system to face any emergency. 

3.2.3. Minimization of operating cost 
The operating cost is minimized at the lower level by running 

optimal power flow. This is accomplished by controlling a number of 
decision variables like updating the tap ratio of transformers, controlling 
the active and reactive output of conventional generators, selecting 
scheduled active power from each WF, controlling WF reactive power 
output according to its minimum and maximum limits at this scheduled 
value based on Fig. 4, and changing the output MVAR from the added 
VAR sources based on their approved limits from the upper-level results. 
The total operation cost (CPG) of generated power can be formulated as: 

CPG =
∑Ns

i=1
Ci
(
Pg

)
fi(PD) i = 1, 2,… Ns (20)  

where Ci(Pg) is the operation cost of generated power for the load sce-
nario ith, and fi(PD) is the probability of the ith load scenario. This 
operation cost is divided into two components as follows: 

Ci
(
Pg
)
= Cgi

(
Pgi

)
+ Cwi(Pwi) (21)  

where Cgi(Pgi), and Cwi(Pwi) are the operation cost of the thermal gen-
erators and WF, respectively. The operation cost of the thermal gener-
ators with quadratic cost functions is formulated as follows [35]: 

Cgi
(
Pgi

)
=

∑Ng

i=1
ai
(
Pgi

)2
+ bi Pgi + ci (22)  

where ai, bi, and ci are the ith thermal generator cost coefficients. 

The problem of wind power cost is examined from a new perspective 
in this study, as the operating cost of wind power is estimated by 
combining three mathematical components and can be expressed as 
[35]: 

Cwi(Pwi) = Chwi Pwi + CPwi ( Pwavi − Pwi) + Crwi (Pwi − Pwavi ), i

= 1, 2, 3,…, Nw (23)  

where Chwi is operation cost of the ith WF per MW. CPwi and Crwi are the 
imbalance cost of ith WF due to underestimation and overestimation of 
the scheduled wind power respectively. Pwavi and Pwi are the available 
and scheduled wind power from ith WF respectively. 

The first term in (23) is the cost of actual generated or scheduled 
wind power. The penalty for underestimating and overestimating wind 
power output is addressed in the final two terms of (23). The scheduled 
wind power cannot always equal the available wind power because it is 
a stochastic variable. As a result, underestimation and overestimation 
costs must be included in the objective function. The cost of under-
estimating wind power is considered to be linearly related to the integral 
of the product of the PDF of wind power and the discrepancy between 
available and scheduled wind power. The functional meaning of this 
concept is related to the penalty of wind energy curtailment: 

CPwi ( Pwavi − Pwi) = CPwi

∫Prw

Pwi

(w − Pwi)f ( Pw) dw (24)  

where, f( Pw) is the Weibull PDF of ithWF output power and w is the 
integral variable. 

Similarly, the overestimation penalty cost is calculated. The required 
reserve cost for a wind power deficit is the functional meaning of this 
concept, which may be stated as follows: 

Crwi (Pwi − Pwavi ) = Crwi

∫Pwi

0

(Pwi − w)f ( Pw) dw (25) 

So, the total cost (TCO) is the sum of the new VAR sources cost and 
the total operating cost and can be expressed by: 

TCO = CPG + AICVAR (26)  

3.3. Problem constraints 

Many constraints must be fulfilled to ensure that the system is 
capable to operate in a stable and reliable state. Also, these system 
constraints assure the desired solution achieved is acceptable for the 
functional operation of the power system.  

̵ Active and reactive power balance: 

Pgi − PDi − Vi

∑Nb

j=1
Vj
(
Gijcosδij +Bijsinδij

)
= 0, i ∈ Nb (27)  

Qgi − QDi + Qci + Qo
ci − Vi

∑Nb

i=1
Vj
(
Gijsinδij − Bijcosδij

)
= 0, i ∈ Nb (28)    

̵ Buses voltage limits: 

Vmin
i ≤ Vi ≤ Vmax

i , i ∈ Nb (29)    

̵ Thermal generator active and reactive power limit: 
{

Qmin
Gi ≤ Qgi ≤ Qmax

Gi

Pmin
Gi ≤ Pgi ≤ Pmax

Gi
, i ∈ Ng (30) 

Fig. 6. The relation between power loading and bus voltage.  
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̵ Transmission line flow limit: 

|Sl| ≤ Smax
l , l ∈ NL (31)    

̵ Transformer tap setting limit: 

Tmin
K ≤ TK ≤ Tmax

K , k ∈ NT (32)    

̵ Wind active and reactive power limits: 
{

0 ≤ Pwi ≤ Prw

Qmin
Wi ≤ Qwi ≤ Qmax

Wi
, i ∈ Nw (33)    

̵ New VAR source limits: 
⎧
⎪⎪⎨

⎪⎪⎩

Qmin
ci ≤ Qci ≤ Qmax

ci , i ∈ Ncap

QMIN
SVCi ≤ QSVCi ≤ Qmax

SVCi, i ∈ NSVC

− 0.8Xij ≤ XTCSCi ≤ 0.2Xij, i ∈ NTCSC

(34)   

4. Proposed solution algorithm 

Because the RPP objective functions and constraints are complicated, 
non-smooth, and non-differentiable, the conventional methods fail to 
adequately address this issue. MOGA as an evolutionary algorithm is 
employed to overcome the drawbacks of conventional methods. The GA 
is interested in natural genetics and natural selection search mechanisms 
[11,36]. The multi-objective optimization problem can be formulated 
as: 

Maximizing, Minimizing fi(x,u), i = 1, 2, 3,……… Nobj 

Subject to g(x,u) = 0 Equality constraints 
h(x, u) ≤ 0 Inequality constraints where, fi(x, u) is the objective 

function, u is the state variables set, and x is the controllable variable set. 
It can simply be seen as an attempt to find the best possible solution for 
the objective function using a collection of controllable variables. In this 
study, MOGA is employed with a number of competing aims and 
restrictions. 

Two general approaches are utilized to address multiple-objective 
optimization problems. In the first technique, the individual objective 
functions with weighted factors are combined into a single composite 
function. The second method used in this work is to directly search for 
the complete Pareto optimum set. The notion of an ideal optimization 
approach for multiple objectives is to describe several optimum trade-off 
solutions with a wide range of objective function values, and then pick 
one of the solutions based on the system operator’s requirements. 

Using a fuzzy min-max approach, the optimal compromise solution 
can be calculated. The ith objective function Fi is expressed using the 
fuzzy membership function λi, and is expressed as: 

λi= {

1 if fi ≤ Fmin
i

Fmax
i − fi

Fmax
i − Fmin

i
if Fmin

i < fi < Fmax
i

0 if fi ≥ Fmin
i

(35)  

where, Fmin
i and Fmax

i are the minimum and maximum values of the ith 

objective function among all non-dominated solutions, respectively. 
Although the previous equation is appropriate when minimizing the 

cost is the objective function, but it is found that not appropriate when 
the objective function is to improve the system VS. So, A noticeable 
change has happened in the normalization of the second objective 
function since this objective aimed to be maximized during the opti-

mization procedure, and is expressed as: 

λi= {

1 if fi ≤ Fmin
i

fi − Fmin
i

Fmax
i − Fmin

i
if Fmin

i < fi < Fmax
i

0 if fi ≥ Fmin
i

(36) 

The normalized membership function (λc) for each non-dominated 
solution M, is determined using: 

λc =

∑Nobj
i=1 λi

∑M
c=1

∑Nobj
i=1 λi

(37) 

The best compromise solution is the one with the highest λc value. 
The steps of the proposed RPP solution algorithm are as follows: 

Step 1: Read the network data (generator, branch, bus, etc.…). 
Step 2: Determine the optimal location of the new VAR source and the 

connection points of WFs using L-index, FVSI, and PTDF. 
Step 3: Read the load scenarios. 
Step 4: Read the wind scenarios. 
Step 5: Select the parameters of MOGA: generations number, popu-

lation size, etc.…. 
Step 6: Set the generation count and initialize randomly the 

population. 
Step 7: Identify the boundary limits of the control variables and 

define the limits of VAR sources values share it to the lower level. 
Step 7: Update network data based on RPP solving technique and 

then run power flow. 
Step 8: Examine the objective functions (VSM & total cost) and verify 

the system constraints. 
Step 9: Implement the GA process; mutation, selection, and crossover 

then update the population for the next generation. 
Step 10: Repeat the steps from 7 to 9 where the generation count is 

increased till the stopping criteria are satisfied or the number of gen-
erations reaches its maximum value. 

Step 11: Apply the fuzzy min-max approach and select the optimal 
solution for this scenario from the Pareto solutions. 

Step 12: Update the wind scenario and repeat the steps from 5 to 11 
until the last scenario. 

Step 13: Update the load scenario and repeat the steps from 4 to 12 
until the last scenario. 

Step 14: Select the final approved value of each VAR source from all 
scenarios. 

Fig. 7 depicts the flowchart for the proposed algorithm. 

5. Case study and results 

To evaluate the effectiveness of the suggested MOGA-based approach 
to solving the RPP problem, it is applied to the updated IEEE 30-bus test 
system and a part of the electricity grid in South Egypt. 

5.1. Modified IEEE 30-bus system 

The modified IEEE 30-bus test system is shown in Fig. 8, and the 
network data are taken from [37]. This system includes 6 generators, 41 
transmission lines, and 24 load buses, of which four branches (4–12), 
(6–9), (6–10), and (28–27) are with the tap changing transformer. The 
lower and upper limits for voltage magnitude of the load buses are 0.95 
p.u. and 1.05 p.u. The transformer tapping is changed between 0.9 and 
1.1 p.u. with the step size 0.025. 

The network will be supported by eight new VAR sources, which 
satisfy the maximum system loadability [38]. These VAR sources may be 
either capacitor banks, FACTS, or a mixture of them. The new capacitor 
banks have a rating between 0 to 5 MVAR with a step size of 1 MVAR. 
Three WFs will be allocated by the MOGA in three areas with a greater 
abundance of wind energy, each of which has limited potential network 
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connection points. Table 2 shows the allowed installation capacity of the 
WFs and the possible connection points of each region. The wind power 
generation data is taken according to [28]. 

The normal Gaussian PDF and Weibull PDF are used for modeling the 
load and wind speed uncertainties, respectively. Three scenarios for 

loads are modeled which represent different levels of loads (light, base, 
and peak). The features of these different scenarios are summarized in 
Table 3. 

Many buses have voltages that are beyond the limit before installing 
WFs and new VAR sources. The voltage at the system buses is shown in 

Fig. 7. The proposed flowchart algorithm.  
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Fig. 9, and it is obvious that the minimum voltage of 0.898 p.u. occurs at 
bus 30. As a result, there is an urgent need to supplement the network 
with more VAR resources. 

Buses 18, 21, and 30 are appropriate connection points for WFs 
employing the PTDF for the first, second, and third WFs, respectively. 
The appropriate buses for shunt VAR sources are 30, 29, 26, 25, 27, 24, 
23, and 19. FVSI’s series VAR sources are line 36 (28–27), line 12 
(6–10), line 38 (27–30), and line 13. (9–11). The proposed approach is 
applied to the system under investigation to allocate the additional VAR 
sources optimally. Table 4 shows the optimal setting of VAR sources at 
each load-wind scenario for the three cases of VAR source type. 

It is evident that there are six different values for each VAR source for 
the six supposed scenarios. For example, in the case of capacitors and 
assuming the (first/worst) scenario (peak load & zero wind speed) and 
by applying MOGA, there is a value for each VAR source, which is of 
course sufficient to meet the requirements in this scenario. The same 
goes for the rest of the scenarios. Then for VAR source No. 1, there are six 
values (3, 4, 3, 3, 2, 0, 0, and 0) MVAR one for each scenario. The final 

Fig. 8. Modified IEEE 30 bus single line diagram.  

Table 2 
WF capacity and suggested location for different regions.  

Item Allowed capacity [MW] Available connecting points 

WF1 20 Bus no. 15, 18, 23 
WF2 16 Bus no. 10, 21, 22 
WF3 26 Bus no. 30  

Table 3 
Load scenarios.  

Load interval Load% PDFd 

d1 65 0.15 
d2 85 0.7 
d3 105 0.15  

Fig. 9. Buses voltage pre-adding of new VAR devices.  
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optimal selected solution -which is shown later is the largest value of 4 
MVAR. It is worth noting that these values represent the size of the ca-
pacitors required, while the settings differ according to the operating 
condition. 

The final selected VAR source locations and sizing are shown in 
Table 5 for each case (only capacitors, only FACTS, and hybrid cases). 
The final selected values are the largest values of VAR sources obtained 
in Table 4 for the six situations (load-wind scenarios). This ensures that 
the final setting of these sources is sufficient to compensate for reactive 
power shortage under different operational conditions, such as load or 
wind speed. It should be noted that the value of both capacitors and SVC 
is indicated in MVAR, while the TCSC is indicated in p.u. 

The relation of VAR source cost and VSM for the case of using ca-
pacitors bank only at base load scenario is shown in Fig. 10. The figure 
clearly shows that the relationship is direct between the cost of the new 
capacitors and the increase of system VSM. Figs. 11 and 12 depict this 
relationship for the situation of employing FACTS devices and a hybrid 
assortment at the base load scenario. It turns out that the more we want 
to have a more stable system, the greater the expenditure required 

Table 6 illustrates the total operating cost, which is the sum of fuel 
cost and wind power cost for the three cases of VAR types. Also, the VAR 
cost in each case and the value of VSM are presented. It has been shown 
that using the capacitor bank solely, for the purpose of achieving the 
maximum possible net savings, is more acceptable. However, it is no 
better way to improve the system VS. While the use of FACTS devices is 
the most effective in terms of enhancing the system VS, however, it 
comes at an expensive cost. It also demonstrates that using a hybrid of 
FACTS devices and capacitor banks as a combination to increase 

network VS yields good results at a medium cost. It is evident that the 
total operating cost was not significantly affected in the three different 
cases. While the total cost differs due to the variation in the cost of the 
new VAR sources in the three cases. 

Table 7 compares the operational costs before and after the WFs are 
installed. It has been demonstrated that the installation of WFs has 
significantly reduced operational costs. It also resulted in a cost decrease 
for the needed VAR sources, and given the extent of the system’s VS, 
where the value of the VSM increased, thereby improving the system’s 
VS. This, of course, comes after the installation of new VAR sources. 
Renewable energy has significantly reduced total costs, not to mention 
its outstanding benefits in improving environmental conditions and 
emissions 

The updated IEEE 30-bus test network performance is evaluated 
under different contingency states. Table 8 depicts the results of the 
simulation when the optimization algorithm is applied for line outage 
contingencies. The present work has proven its effectiveness in facing 
contingencies of multiple line outages in the network. 

When the methodologies used to model wind power in the literature 
are studied, it is discovered that the reactive power output of a WF is 
represented either as a fixed band [3,6], or based on the constant power 
factor [1,10,11], or in a dynamic reactive power management way [17, 
18]. However, it should be noted that in both references [17] and [18], 
the rotor voltage constraints in the wind power capability curve were 
neglected. Furthermore, because reactive power is represented as a fixed 
band, this clearly does not make the best use of the WF. A comparison of 
the results of the other two methods is presented in Table 9. The method 
used in this work makes better use of the WF reactive power capabilities, 
lowering the cost of the required new VAR sources. In addition, as seen 
in the previous table, the method adopted in this work produced supe-
rior results in terms of range system VS. 

5.2. South Egypt electricity network 

A transmission network at 220 kV of the South Egypt network [39] is 
utilised to evaluate the proposed technique. Fig. 13 presents a single-line 
diagram of this network. The South Egypt power network is heavily 
loaded with a demand of 4778.5 MW and 2801.8 MVAR. Before adding 
new VAR sources, several buses’ voltages are out of the limit where the 
Oyanat bus has a minimum voltage of 0.665 p.u. The newly configured 

Table 4 
Optimal allocation of VAR sources under load-wind scenarios.  

VAR Source Type Location VAR Size for peak load VAR Size for base load VAR Size for light load 
Zero wind speed Full wind speed Zero wind speed Full wind speed Zero wind speed Full wind speed 

Capacitor Banks Bus 30 3 1 5 1 5 5 
Bus 29 4 1 4 1 5 2 
Bus 26 3 1 3 1 4 4 
Bus 25 3 1 4 0 3 2 
Bus 27 2 2 3 1 5 3 
Bus 24 0 1 1 1 0 1 
Bus 23 0 2 0 0 0 0 
Bus 19 0 1 0 1 0 0 

FACTS Devices SVC 1 Bus 30 4.7 8.46 17.12 5.87 18.93 6.92 
SVC 2 Bus 29 1.14 9.89 5.47 3.52 6.96 14.62 
SVC 3 Bus 26 4.41 6.89 3.19 4.73 2.8 10.67 
SVC 4 Bus 25 4.31 6.94 7.16 2.27 2.31 19.65 
TCSC 1 Line 36 0.418 0.1176 0.3511 0.351 0.2942 0.4027 
TCSC 2 Line 12 0.3137 0.2635 0.3161 0.3072 0.3151 0.3122 
TCSC 3 Line 38 0.4721 0.3479 0.4135 0.2712 0.0401 0.2438 
TCSC 4 Line 13 0.1583 0.021 0.0348 0.155 0.0163 0.1592 

Hybrid SVC 1 Bus 30 1.43 3.71 4.08 2.19 10.54 3.91 
SVC 2 Bus 29 3.8 0.67 5.97 1.71 9.12 3.53 
Cap. 1 Bus 26 4 4 3 5 3 4 
Cap. 2 Bus 25 3 2 4 3 3 4 
Cap. 3 Bus 27 3 2 3 3 3 3 
TCSC 1 Line 36 0.3153 0.3159 0.3134 0.3132 0.3149 0.3086 
TCSC 2 Line 12 0.4022 0.4401 0.3504 0.4427 0.228 0.4343 
TCSC 3 Line 38 0.4689 0.4459 0.4122 0.3811 0.0686 0.2714  

Table 5 
Optimal VAR allocation for the three cases.  

Item Capacitors case FACTS case Hybrid case 

VAR 1 5 @bus 30 19 @bus 30 11 @bus 30 SVC 
VAR 2 5 @bus 29 15 @bus 29 10 @bus 29 SVC 
VAR 3 4 @bus 26 11 @bus 26 5 @bus 26 Cap. 
VAR 4 4 @bus 25 20 @bus 25 4 @bus 25 Cap. 
VAR 5 5 @bus 27 0.418 @line 12 3 @bus 27 Cap. 
VAR 6 1 @bus 24 0.3161 @line 36 0.3159 @line 36 
VAR 7 2 @bus 23 0.4721 @line 38 0.4427 @line 12 
VAR 8 1 @bus 19 0.1592 @line 13 0.4689 @line 38  
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Fig. 10. Relation between VAR cost and VSM in the case of the capacitors for base load scenario. (a) Full wind speed scenario, (b) Zero wind speed scenario.  

Fig. 11. Relation between VAR cost and VSM in the case of the FACTS for base load scenario. (a) Full wind speed scenario, (b) Zero wind speed scenario.  

Fig. 12. Relation between VAR cost and VSM in the case of the Hybrid for base load scenario. (a) Full wind speed scenario, (b) Zero wind speed scenario.  

Table 6 
The operating cost for different new VAR cases.  

Item Capacitor’s case FACTS case Hybrid case 

VAR cost [$] 1.33 × 105 14.5 × 105 9.12 × 105 

Wind cost [$] 1.296 × 106 1.26 × 106 1.26 × 106 

fuel cost [$] 5.8 × 106 6.15 × 106 6.15 × 106 

Total operating cost [$] 7.096 × 106 7.41 × 106 7.41 × 106 

Total cost [$] 7.229 × 106 8.86 × 106 8.322 × 106 

VSM [p.u.] 3.34 4.46 4.44  

Table 7 
The effect of installing WFs in the case of using a capacitor bank.  

Item Without WFs With WFs 

operating cost [$] 1.02 × 107 7.096 × 106 

VAR cost [$] 1.97 × 105 1.33 × 105 

Total cost [$] 10.397 × 106 7.229 × 106 

VSM [p.u.] 1.65 3.34  
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capacitance bank setting hit 80 MVAR as a result of the heavy system 
loading. The system is supported by three WFs with a capacity of 50, 
125, and 125 MW at buses Faum, Sfaga, and Hurgda, respectively. Using 
the L-index factor shows that the weakest busses are Oyanat, Tshka2, 
Tshka1, Balat, Hurgda, Mdecow, Tartor, and Sfaga. The weakest lines by 
FVSI are the lines between (Tshka1-Oynat), (A.Dam-Tshka1), (A.Dam--
Mdecow), and (Nag.Ha-Tartor). 

In table 10, the value of each VAR source is cleared in two scenarios 
of zero and rated output power of WTs at base load. Table 11 shows the 
final optimal approved value of each VAR source which is the maximum 
value in the two scenarios. 

Table 12 shows the overall cost in each of the three cases. As the 
results show, any FACTS, capacitor bank, or a hybrid of the two might 
compensate for the system’s lack of reactive power. If the capacitor 

Table 8 
The optimization algorithm results in line outage contingencies in the IEEE 30-bus system.  

Outage line number* From bus To bus Operating cost × 106 [$] VSM [p.u.] Outage line number* From bus To bus Operating cost × 106 [$] VSM [p.u.] 

1 1 2 7.81 4.06 21 16 17 7.74 3.70 
2 1 3 7.78 3.93 24 19 20 7.75 3.91 
3 2 4 7.77 3.94 26 10 17 7.76 4.10 
4 3 4 7.77 3.93 27 10 21 7.75 3.4 
5 2 5 7.91 3.84 28 10 22 7.77 3.92 
6 2 6 7.77 3.95 29 21 22 7.75 3.90 
7 4 6 7.77 4.06 30 15 23 7.74 3.07 
8 5 7 7.77 3.93 31 22 24 7.76 3.28 
9 6 7 7.81 4.10 32 23 24 7.76 3.72 
10 6 8 7.77 3.70 33 24 25 7.75 3.75 
17 12 14 7.74 3.66 37 27 29 7.76 3.32 
18 12 15 7.75 3.57 39 29 30 7.75 3.70 
19 12 16 7.77 3.88 40 8 28 7.77 3.86 
20 14 15 7.75 3.87 41 6 28 7.77 3.76 

*The lines that lead directly to disconnection of a load or generator were not taken into account, as well as the lines on which transformers or TCSC are supposed to be 
installed. 

Table 9 
A comparison results between the suggested technique and those reported in the 
literature.  

Item Capacitor 
case 

FACTS case Hybrid 
case 

Present work VAR cost 
[$] 

1.33 × 105 14.5 × 105 9.12 × 105 

VSM [p. 
u.] 

3.34 4.46 4.44 

Refs. [1, 10, 11] and  
[14]* 

VAR cost 
[$] 

1.477 × 105 21.351 ×
105 

9.915 ×
105 

VSM [p. 
u.] 

3.31 4.45 4.35 

*The power factor is ranged between 0.98 lag and 0.98 lead. 

Fig. 13. South Egypt Electricity network.  
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banks are simply utilised to compensate for the reactive power, the 
operation is less costly, but the VS indication does not raise to the 
desired level. However, using FACTS devices provide us with a more 
stable system, although it is, of course, more expensive than the previous 
one. Whereas using a combination of capacitors and FACTS allowed us 
to build a network with high stability at a reasonable middle cost. It also 
notes that great savings were caused by relying on of WFs in the system, 
as well as the increase in stability in light of the additional inauguration 
of new VAR sources as well. 

6. Conclusions 

A probabilistic multi-objective RPP framework for power systems 

with substantial wind energy penetration has been described. Based on 
the reactive power capability curve of DFIG, a novel WT model that can 
dynamically adjust reactive power is developed. A new bi-level opti-
mization strategy that accounts for load and wind power uncertainty to 
solve the RPP problem has been proposed. A MOGA is utilized at the 
upper level to discover the best connecting positions of WFs and to 
assign new VAR sources with the target of improving VS and reducing 
the additional VAR sources’ cost. While the objective of the lower level 
is to maintain the overall fuel cost as low as possible. A fuzzy min-max 
algorithm is used to find the optimum compromise option. An updated 
IEEE 30-bus test system and a part of the electricity grid in Egypt are 
used to evaluate the effectiveness of the suggested technique. The results 
of the presented bi-level optimization approach are compared to those in 
the literature, indicating the robustness of the suggested technique in 
addressing the RPP problem. The current study has demonstrated its 
efficacy in increasing system VS and dealing with network outages 
involving many lines. It has been proved that using the capacitor bank 
alone to maximize net savings is better. There is, however, no better way 
to boost system VS. While FACTS devices are the most effective for 
increasing system VS, they are also the costliest. It also demonstrates 
that using a hybrid capacitor bank in conjunction with FACTS to 
enhance network VS yields good results at a reasonable cost. The results 
also demonstrate the significance of integrating WTs into power system 
networks, since this resulted in lower operating costs and higher VS, 
particularly once their size, location, and optimal coordination with 
VAR sources are determined. 

As a future work, the impact of different renewable energy sources 
can be studied with other dynamic stability indices and FACTS types. 
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[1] B. Magalhães, Reactive Power Planning, Porto University, June 2014. PhD. thesis. 
[2] A. Salem, A. ElDesouky, A. Farahat, A. Abdelsalam, New analysis framework of 

Lyapunov- based stability for hybrid wind farm equipped with FRT: a case study of 
Egyptian grid code, IEEE Access 9 (Jun. 2021) 80320–80339, https://doi.org/ 
10.1109/ACCESS.2021.3085173. 

[3] M. Niu, Z. Xu, Reactive power planning for transmission grids with wind power 
penetration, IEEE PES Innovative Smart Grid Technol. (2012), https://doi.org/ 
10.1109/ISGT-Asia.2012.6303336. Tianjin, China 21–24 May. 

[4] A. Salem, A. ElDesouky, A. Alaboudy, New analytical assessment for fast and 
complete pre-fault restoration of grid-connected FSWTs with fuzzy-logic pitch- 
angle controller, Int. J. Electr. Power Energy Syst. 136 (2022), https://doi.org/ 
10.1016/j.ijepes.2021.107745. 

[5] A. Elmitwally, A. Eladl, J. Morrow, Long-term economic model for allocation of 
FACTS devices in restructured power systems integrating wind generation, IET 
Gen. Trans. Dist. 10 (1) (2016) 19–30, https://doi.org/10.1049/iet-gtd.2014.1189. 
Jan. 

[6] L. Chen, J. Zhong, D. Gan, Reactive power planning and its cost allocation for 
distribution systems with distributed generation, IEEE Power Eng. Soc. General 
Meeting (2006), https://doi.org/10.1109/pes.2006.1709370. Montreal, Canada, 
18–22 June. 

Table 10 
Optimal VAR sources values for each wind scenario for the three cases.  

VAR 
sources 

Capacitors case FACTS case Hybrid case 
Zero 
wind 
speed 

Full 
wind 
speed 

Zero 
wind 
speed 

Full 
wind 
speed 

Zero 
wind 
speed 

Full 
wind 
speed 

VAR1 61 63 68 SVC 10 SVC 10 SVC 35 SVC 
VAR2 71 75 72 SVC 16 SVC 52 SVC 30 SVC 
VAR3 71 72 22 SVC 14 SVC 8 Cap. 7 Cap. 
VAR4 4 4 18 SVC 14 SVC 15 Cap. 15 Cap. 
VAR5 3 3 0.002 

TCSC 
0.1578 
TCSC 

7 Cap. 5 Cap. 

VAR6 50 79 0.0681 
TCSC 

0.1058 
TCSC 

0.1548 
TCSC 

0.0687 
TCSC 

VAR7 6 4 0.0583 
TCSC 

0.0583 
TCSC 

0.0804 
TCSC 

0.1078 
TCSC 

VAR8 3 2 0.069 
TCSC 

0.0604 
TCSC 

0.0599 
TCSC 

0.0003 
TCSC  

Table 11 
Final approved VAR sources values for the three cases.  

Item Capacitor case FACTS case Hybrid case 
Value location value location value location 

VAR1 63 Oyanat 68 SVC Oyanat 35 SVC Oyanat 
VAR2 75 Tshka2 72 SVC Tshka2 52 SVC Tshka2 
VAR3 72 Tshka1 22 SVC Tshka1 8 Cap. Tshka1 
VAR4 4 Balat 18 SVC Balat 15 Cap. Balat 
VAR5 3 Hurgda 0.1578 

TCSC 
Tshka1 - 
Oyanat 

7 Cap. Hurgda 

VAR6 79 Mdecow 0.1058 
TCSC 

A.Dam - 
Tshka1 

0.1548 
TCSC 

Tshka1 - 
Oyanat 

VAR7 6 Tartor 0.0583 
TCSC 

A.Dam - 
Mdecow 

0.1078 
TCSC 

A.Dam - 
Tshka1 

VAR8 3 Sfaga 0.069 
TCSC 

Nag.Ha - 
Tartor 

0.0599 
TCSC 

A.Dam - 
Mdecow  

Table 12 
The operating cost for different three cases.  

Item Capacitor’s 
case 

FACTS case Hybrid 
case 

Without 
WFs 

VAR cost [$] 21.7 × 105 96.4 × 105 60.3 × 105 

fuel cost [$] 8.263 × 108 8.25 × 108 8.242 ×
108 

Total cost [$] 8.2847 × 108 8.3464 ×
108 

8.3023 ×
108 

VSM [p.u.] 1.274 1.854 1.726 
With WFs VAR cost [$] 1.4948 × 105 46.665 ×

105 
32.275 ×
105 

Wind cost [$] 1.82 × 107 1.81 × 107 1.81 × 107 

fuel cost [$] 6.78 × 108 6.79 × 108 6.79 × 108 

Total operating 
cost [$] 

6.962 × 108 6.971 ×
108 

6.971 ×
108 

Total cost [$] 6.9635 × 106 7.0177 ×
106 

7.0033 ×
106 

VSM [p.u.] 1.296 2.635 1.823  

A.A. Eladl et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0378-7796(22)00968-3/sbref0001
https://doi.org/10.1109/ACCESS.2021.3085173
https://doi.org/10.1109/ACCESS.2021.3085173
https://doi.org/10.1109/ISGT-Asia.2012.6303336
https://doi.org/10.1109/ISGT-Asia.2012.6303336
https://doi.org/10.1016/j.ijepes.2021.107745
https://doi.org/10.1016/j.ijepes.2021.107745
https://doi.org/10.1049/iet-gtd.2014.1189
https://doi.org/10.1109/pes.2006.1709370


Electric Power Systems Research 214 (2023) 108917

15

[7] Y. Hong, K. Pen, Optimal VAR planning considering intermittent wind power using 
Markov model and quantum evolutionary algorithm, IEEE Trans. Power Deliv. 25 
(4) (2010), https://doi.org/10.1109/TPWRD.2010.2044897. 

[8] S. Arefifar, Y. Mohamed, Probabilistic optimal reactive power planning in 
distribution systems with renewable resources in grid-connected and islanded 
modes, IEEE Trans. Ind. Electron. 61 (11) (2014), https://doi.org/10.1109/ 
TIE.2014.2308144. 

[9] S. Liu, “Research of reactive power planning optimization based on improved 
adaptive genetic algorithm for wind power plant,” 2nd Inter. Conf. on Artificial 
Intelligence and Industrial Engineering (AIIE 2016) 2016, 10.2991/aiie- 
16.2016.29. 

[10] J. Jing, Z. Yang, Y. Wu, Z. Qian, W. Hu, and X. Jiang, “Optimal planning of reactive 
power for distribution system considering distributed wind generator,” 2nd IEEE 
Conf. on Energy Internet and Energy System Integration, Beijing, China, 20–22 
October 2018, 10.1109/EI2.2018.8582457. 

[11] N. Gupta, Stochastic optimal reactive power planning and active power dispatch 
with large penetration of wind generation, J. Renew. Sustain. Energy 10 (2) 
(2018), https://doi.org/10.1063/1.5010301. 

[12] Z. Wang, H. Liu, and J. Li, “Reactive power planning in distribution network 
considering the consumption capacity of distributed generation,” 5th Asia Conf. on 
Power and Electrical Engineering (ACPEE), Chengdu, China, 4–7 June 2020, 
10.1109/ACPEE48638.2020.9136183. 

[13] X. Fang, F. Li, and Y. Xu, “Reactive power planning considering high penetration of 
wind energy,” IEEE PES T&D Conf.and Exposition, Chicago, IL, USA, 14–17 April 
2014, 10.1109/tdc.2014.6863471. 

[14] S. Mohseni-Bonab, A. Rabiee, B. Mohammadi-Ivatloo, Voltage stability constrained 
multi-objective optimal reactive power dispatch under load and wind power 
uncertainties: a stochastic approach, Renew. Energy 85 (2016), https://doi.org/ 
10.1016/j.renene.2015.07.021. 

[15] M. Wang and C. Qiu, “Chance-constrained reactive power planning of wind farm 
integrated distribution system considering voltage stability,” 12th IEEE Inter.Conf. 
on Electronic Measurement and Instruments, ICEMI, Qingdao, China, 16–18 July 
2015, vol. 1, 10.1109/ICEMI.2015.7494181. 

[16] A. Shojaei, A. Ghadimi, M. Miveh, F. Gandoman, A. Ahmadi, Multiobjective 
reactive power planning considering the uncertainties of wind farms and loads 
using information gap decision theory, Renew. Energy 163 (2021), https://doi. 
org/10.1016/j.renene.2020.06.129. 

[17] H. Amaris, M. Alonso, C. Ortega, Reactive power management of power networks 
with wind generation, Springer-Verlag London 5 (2013), https://doi.org/10.1007/ 
978-1-4471-4667-4. 

[18] M. Ghodrati, M. Piri, and S. Sadr, “Probabilistic multi-objective reactive power 
planning considering large-scale wind integration,” International Power System 
Conf. (PSC), Tehran, Iran, 9–11 December 2019 doi:10.1109/ 
PSC49016.2019.9081501. 

[19] N. Karmakar, B. Bhattacharyya, Techno-economic strategy for reactive power 
planning using Series-shunt compensation in power transmission network, Sust. 
Energy Tech. Asse 49 (2022), 101677, https://doi.org/10.1016/j. 
seta.2021.101677. February. 

[20] P. Dey, Md. Chowdhury, P. Roy, and T. Aziz, “Developing a methodology for 
reactive power planning in an industrial microgrid,” IEEE Region 10 Symposium 
(TENSYMP), 1–3 July 2022, Mumbai, India, 10.1109/ 
TENSYMP54529.2022.9864406. 

[21] S. Gudadappanavar, S. Mahapatra, Metaheuristic nature-based algorithm for 
optimal reactive power planning, Int. J. Syst. Assur. Eng. Manag. 13 (3) (2022) 
1453–1466, https://doi.org/10.1007/s13198-021-01489-x. June. 

[22] V. Gupta1, R. Babu, Reactive power planning problem considering multiple type of 
FACTS in power systems, Int. J. Syst. Assur. Eng. Manag. 13 (4) (2022) 1885–1894, 
https://doi.org/10.1007/s13198-021-01588-9. August. 

[23] S. Samaan, M. Momeni, M. Knittel, M. Murglat, A. Moser, Multi-criteria based 
steady-state and dynamic reactive power planning for transmission systems, Elec. 
Power Syst. Rese 209 (2022), 107929, https://doi.org/10.1016/j. 
epsr.2022.107929. August. 

[24] A. Elmitwally, A. Eladl, Planning of multi-type FACTS devices in restructured 
power systems with wind generation, Int. J. Electr. Power Energy Syst. 77 (2016) 
33–42, https://doi.org/10.1016/j.ijepes.2015.11.023. 

[25] A. Eladl, M. Basha, A. ElDesouky, Multi-objective-based reactive power planning 
and voltage stability enhancement using FACTS and capacitor banks, Electr. Eng. 
(2022), https://doi.org/10.1007/s00202-022-01542-3. 

[26] R. Hemmati, R. Hooshmand, A. Khodabakhshian, Market based transmission 
expansion and reactive power planning with consideration of wind and load 
uncertainties, Renew. Sustain. Energy Rev. 29 (2014) 1–10, https://doi.org/ 
10.1016/j.rser.2013.08.062. 

[27] M. Ghaljehei, A. Ahmadian, M. Golkar, T. Amraee, A. Elkamel, Stochastic SCUC 
considering compressed air energy storage and wind power generation: a techno- 
economic approach with static voltage stability analysis, Int. J. Electr. Power 
Energy Syst. 100 (2018) 489–507, https://doi.org/10.1016/j.ijepes.2018.02.046. 

[28] J. Tian, C. Su, and Z. Chen, “Reactive power capability of the wind turbine with 
doubly fed induction generator,” 39th Annual Conf. of the IEEE Industrial 
Electronics Society, Vienna, Austria, 10–13 November 2013, doi:10.1109/ 
IECON.2013.6699999. 

[29] H. Salama, Voltage stability indices–a comparison and a review, Comp. Elect. Eng. 
98 (2022), https://doi.org/10.1016/j.compeleceng.2022.107743. 

[30] E. Dehnavi, H. Abdi, Determining optimal buses for implementing demand 
response as an effective congestion management method, IEEE Trans. Power Syst. 
32 (2) (2017), https://doi.org/10.1109/TPWRS.2016.2587843. 

[31] S. Ramesh, S. Kannan, S. Baskar, Application of modified NSGA-II algorithm to 
multi-objective reactive power planning, Appl. Soft Comput. J. 12 (2) (2012) 
741–753, https://doi.org/10.1016/j.asoc.2011.09.015. 

[32] Y. Tang, Voltage Stability Analysis of Power System, Science Press, Springer, 2021, 
https://doi.org/10.1007/978-981-16-1071-4. 

[33] H. Zhang, B. Liu, X. Liu, A. Pahwa, H. Wu, Voltage stability constrained moving 
target defense against net load redistribution attacks, IEEE Trans. Smart Grid 
(2022), https://doi.org/10.1109/TSG.2022.3170839. 

[34] D. Zhou, U. Annakkage, A. Rajapakse, Online monitoring of voltage stability 
margin using an artificial neural network, IEEE Trans. Power Syst. 25 (3) (2010) 
1566–1574, https://doi.org/10.1109/TPWRS.2009.2038059. 

[35] A. Eladl, A. ElDesouky, Optimal economic dispatch for multi heat-electric energy 
source power system, Int. J. Electr. Power Energy Syst. 110 (2019), https://doi. 
org/10.1016/j.ijepes.2019.02.040. 
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