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A B S T R A C T   

This paper suggests the Hidden Layer Recurrent Neural Network (HLRNN) for controlling a wind power gen-
eration system based on a dual-fed induction generator. The generator’s stator is connected directly to the 
electrical grid, while the rotor is linked through bidirectional converters. A PI controller-based Indirect Vector 
Control (IVC) scheme has been established to pilot the system. The PI regulator allows linear systems to perform 
well, but when subjected to physical variation conditions, the system’s response becomes unstable, making the PI 
controller insufficient. This paper aims to ensure the PI controller gains self-adaptation regardless of the severity 
of the circumstances. The effectiveness of the proposed control is demonstrated by taking into account critical 
conditions such as wind speed changes, generator parameter variations, and asymmetrical faults in the grid. 
Furthermore, it is confirmed by the enhanced performance and the reduced oscillations during a voltage dip. The 
simulation results, achieved using MATLAB/Simulink, demonstrate that the response time is reduced to 1.8 (m s), 
the static error is minimized to 0.16%, and the overshoot is improved to 0.24% when compared to the IVC based 
on the PI controller and some existing neural network schemes.   

1. Introduction 

On account of the growth of the population and home automation 
devices, there was a significant increase in electrical energy demand. A 
great quantity of energy is based on fossil fuel energy. So, many chal-
lenges, such as environmental pollution and the significance of the in-
crease in the cost of fossil fuels, are due to several causes, such as war, 
political reasons, etc. For these reasons, renewable energy, especially 
wind energy, has been considered an alternative solution because it is 
environmentally friendly and independent of the fluctuations in prices 
of fossil fuel energy and inexhaustible energy [1,2]. In addition to these 
benefits, current and future technological advancements encourage 
countries to invest in this field. 

The dual-fed induction generator is the most commonly utilized 
machine in wind energy systems because of its many advantages [3,4]. 
Therefore, the bidirectional converters transfer about 25%–30% of the 
rated power, and the rest of the power is transmitted directly to the 
electrical grid, which minimizes cost and power losses and reduces the 
size of the converters [5,6]. The stator of the generator is connected 
directly to the grid. However, the rotor is branched to the electric power 
via AC/DC/AC Converters, including the Grid Side Converter (GSC) and 

the Rotor Side Converter (RSC) [7], as depicted in Fig 1. The converters 
use IGBT switches controlled by using Sinusoidal Pulse Width Modula-
tion (SPWM) to reduce the harmonics that exist in the grid-injected 
currents. The RSC governs the stator power produced by the generator 
by managing the speed of rotation and rotor currents. The GSC, on the 
other hand, keeps the DC bus voltage constant [8]. The DFIG has a 
complex system of electrical and mechanical equations with strongly 
coupled flux and electromagnetic torque. As a result, active and reactive 
power are implicitly coupled [5]. Besides, the accurate control of the 
RSC and GSC contributes to the grid-connected DFIG’s stability. The 
vector control (VC) scheme is a widely used and researched method for 
independently controlling the active and reactive power of a wound 
rotor induction generator [9]. This method employs Park Trans-
formation to solve the complexity of the equation system and the 
orientation of the rotor/stator flux or the voltage according to the 
component "d" or "q" axis of the rotating d-q referee, allowing each 
quantity to be managed independently without affecting the other. M. 
Bouderbala et al. [10] have compared and analyzed the two vector 
control variants, Direct and Indirect Field Oriented Control (DFOC and 
IFOC). The first performs the voltages directly, ignoring the coupling 
terms between the two axes, and employs two PI regulators to pilot the 
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powers. The second considers the linkage terms and compensates them 
by using PI controllers. The latter variant is classified into two types. One 
controls the closed-loop current and the open-loop powers, while the 
other pilots the active/reactive power and the current in the closed-loop 
[11,12]. Besides, the vector control scheme is utilized to establish 
grid-side converter control by regulating grid currents and DC link 
voltage [11]. As is known, VC control, with its different variants based 
on the PI controller, is the most commonly utilized control in the in-
dustrial process of the alternative motors because it has the character-
istics of simplicity and reveals satisfactory performance in terms of 
precision, stability, and response time. Therefore, it has two inherent 
problems [12]. The first is that the PI Controller gain calculation is 
dependent on the system settings. As a result, defective settings or any 
change in the regulator parameters as a result of temperature elevation, 
machine device damage, grid fault, etc., can result in oscillating dy-
namic response and even system instability or negatively affect system 
performance [13,14]. The second issue is a lack of self-adaptability in 
response to external disturbances [15]. Recently, many methods have 
been proposed to deal with these vector control limitations. The most 
popular methodologies used to manage wind turbine systems are Fuzzy 
Logic Control (FLC) and Neural Network (NN). NN systems imitate the 
function of the human central nervous system, while FLC systems rely on 
the operator’s qualitative knowledge of the system. The first demon-
strates the benefits of being robust, fast, simple, and describing systems 
as numeric and symbolic associations. However, because the FLC is not 
always accurate, the results are perceived based on assumptions, and 
may not be broadly accepted. Furthermore, due to the difficulty of 
precisely defining the fuzzy laws and membership functions and testing 
a fuzzy knowledge-based system, extensive testing with hardware is 
required. Furthermore, fuzzy logic-based systems lack the capacity of 
neural networks and machine learning-type model recognition [16]. The 
second method has several advantages, including a relatively simple 
training algorithm, the capacity to surpass other models in the presence 
of high-quality information and data, the ability to estimate any function 
regardless of its linearity, fast learning abilities from examples, parallel 
processing, the ability to solve nonlinear problems, and fault tolerance 
[17,18]. However, it has some significant drawbacks such as hardware 
dependence, unexplained network functioning, assurance of proper 
network structure, difficulty in showing the problem to the network and 
the network’s duration is unknown [16]. There are two main NN ar-
chitectures: the Feed-Forward and the Recurrent Neural Networks 

(FNNs and RNNs). Most researchers employ feed-forward (FNN) models 
in conjunction with the back-propagation learning algorithm to resolve 
different dynamical problems. Nevertheless, the FNN is fixed mapping 
and does not provide dynamical mapping without using tapping delays 
[19]. The recurrent neural network, on the other hand, is a widely used 
model with significant capabilities not found in FNN, such as attractor 
dynamics and the capacity to hold information for future needs. Besides, 
their capacity to handle time-varying input or output via their own 
neural natural temporal process is particularly intriguing [19]. As a 
result, the RNN is a dynamic mapping that is best placed for dynamical 
systems than the FNN. More importantly, RNNs are classified into two 
types: Completely and Partially Recurrent Neural Networks (CRNNs and 
PRNNs). The learnable weights are used to link the hidden layer to the 
output layer in the first one. This engenders a complex model, leading to 
an extremely difficult learning process. However, in the second, there is 
only a local feedback linkage rather than a global one. This leads to a 
simpler network architecture with a memory characteristic and thus a 
less complex training process [20]. The hidden layer recurrent neural 
network structure (HLRNN), commonly called the Diagonal Recurrent 
Neural Network (DRNN), is a type of PRNN. Therefore, the only recur-
rent connections permitted in a HLRNN are self-recurrent connections in 
the hidden layer, in which the recurrence connections are considered to 
include a waiting time. When the self-recurrent interconnections are 
removed, the structure transforms into a feed-forward network. 
Although compared to feed-forward and fully recurrent NN topologies, 
the HLRNN uses fewer neurons, is easier to implement in real-time 
systems, and provides faster results [21]. 

A wound rotor induction generator produces power at a low cost, 
allowing for competitive prices and more power output ability. Never-
theless, the generator systems are very sensitive to grid problems and 
subject to unstable operation conditions. Consequently, these issues led 
to the disconnection of the generator from the grid. In the power grid 
utility, a short circuit between phases, known as a Voltage Dip (VD), can 
destabilize and produce high oscillations in the produced power, raise 
the DC-link voltage, and increase the stator and rotor currents [22]. As a 
result, a conventional PI controller cannot reduce the ripples and cannot 
eliminate the steady-state error of the alternative oscillations [23]. 
Another potential issue that could destabilize the electrical grid is that 
when a crowbar system protection is activated. So, the DFIG can act like 
a squirrel-cage induction asynchronous generator due to short-circuited 
rotor windings [24]. Besides, a squirrel-cage induction asynchronous 

Fig 1. Wind energy conversion based on DFIG configuration.  
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generator absorbs reactive power from the grid, resulting in a voltage 
drop in the transmission line [25]. More recently, researchers have 
expressed an interest in testing and validating control approaches while 
the system is connected to an electrical network. Besides, many methods 
can be used to dampen the oscillations observed in the generated power. 
Authors in [24] have proposed a hybrid control based on Fuzzy Logic 
Control and a PI controller to regulate Fault Ride Through with a 
crowbar to mitigate the oscillations and ensure system protection. 
Furthermore, in all investigated scenarios, D. Çelik [26] has used a shunt 
active power filter to keep the THD value of the source current within 
the predefined limits. In addition, the author has proposed the Lyapunov 
with a proportional integral algorithm with anti-windup to control and 
reduce the DC-link voltage oscillations. Besides, in [27] the hybrid 
control based on the Sliding Mode Control (SMC) and the adaptive linear 
neuron (ADALINE) proportional resonant (PR) is proposed for control-
ling the grid interfaced Vienna rectifier. The SMC was used to regulate 
the DC-Link voltage, and ADALINE-PR was proposed to control the 
source current. The simulation results show that the ADALINE-PR pre-
sents a fast dynamic response, very low THD, and very low oscillation in 
the generated power and DC-link voltage. The system’s ability to 
generate power in the event of grid faults, which are frequently caused 
by short circuits, is also gaining attention [28,29]. Grid failures might be 
classed as symmetrical or asymmetrical. The symmetrical malfunction 
affects all phases of the system while keeping it balanced. The sym-
metrical fault is a three-phase fault. Unsymmetrical or asymmetrical 
faults are the names given to the other three fault types (One 
Line-to-Ground (L2G), Line-to-Line (L2L), and Double-Line-to-Ground 
(LL2G)) [30,31]. K. Tamvada et al. (2018) [30] have utilized the vec-
tor control strategy to pilot the system and studied the behavior of the 
DFIG under symmetrical and unsymmetrical grid fault conditions. In this 
paper, the proposed control is tested in the case of an asymmetrical fault. 
Furthermore, H. Elaimani et al. (2020) [32] employed Sliding Mode 
Control to govern the RSC and GSC and compared the GSC controlled by 
the PI Controller and SMC when exposed to a voltage dip. 

Because of the fluctuating and intermittent nature of the wind speed 
profile, the Maximum Power Point Tracking (MPPT) algorithm should 
be designed and improved to track the peak power produced by wind 
turbines from wind energy [7]. Thus, the maximum power value is 
determined by the nature and characteristics of each rotor blade and the 
wind’s fluctuating velocity [33]. Several methodologies have been 
proposed to carry out this algorithm. The MPPT with Optimal Tip Speed 
Ratio (OPTSR) and the MPPT with Power Signal Feedback (PSF) are two 
techniques that require measurement of the wind power speed via a 
sensor. However, the wind velocity is estimated without sensors in the 
MPPT with Optimal Torque Control (OTC) and the MPPT with Pertur-
bation and Observation (P & O) algorithms [34]. Recently, intelligent 
methodologies, such as neural networks and fuzzy logic, have been 
suggested for developing MPPT algorithms. More information is avail-
able in the review established by H.H. Mousa et al. [35]. In addition, 
[36] have conducted a comparative study of these techniques and the 
perturbation and observation algorithm. The authors have demon-
strated that neural networks provide a faster response time than fuzzy 
logic and (P & O), respectively. Besides, A. A. Chhipa et al. [37] have 
suggested a hybrid of these two methods called the Adaptive 
Neuro-Fuzzy Inference System to establish the MPPT algorithm. In this 
manuscript, the MPPT using the OPTSR based on the PI controller was 
chosen and developed because it is efficient, less complex, and has a 
faster convergence speed with no oscillation, as indicated by [34,35]. 
Besides, the PI Controller gains are self-tuning using the HLRNN algo-
rithm in order to adapt the controller to any change in the wind speed 
and get a more rapid response. 

This article suggests and establishes the hidden layer recurrent 
neural network for adapting the parameters of the PI controllers. The 
HLRNN method provides better response time, minimizes overshoot, 
and maintains adequate tracking of the reference under severe condi-
tions such as changes in wind speed, generator parameter variation, and 

grid voltage dip caused by asymmetrical phase fault. The following 
points highlight the study’s contributions:  

• The MPPT with OPTSR is combined with HLRNN to gain faster 
convergence. 

• The simulation results are compared to those obtained using con-
ventional PI controllers and with some existing work.  

• The performance of the suggested method is evaluated in terms of 
power convergence and DC bus voltage.  

• Finally, the efficiency of the proposed approach control system is 
demonstrated adopting Matlab/Simulink simulation with a 5 MW 
DFIG wind turbine under severe conditions such as generator 
parameter variations and asymmetrical grid faults. 

The remainder of the paper is arranged as follows: Section 2 focuses 
on the most recent articles in Neural Networks used for WECS based on 
DFIG Section 3 investigates the mathematical models of wind power 
plant systems as well as the indirect vector control for wind chains. 
Section 4 examines the hidden layer recurrent neural network for tuning 
the different PI Controllers. Section 5 examines and contrasts the out-
comes of the two studied strategies, as well as evaluates the suggested 
control in a variety of severe scenarios such as changeable wind speed, 
generator parameter modification, and grid faults. Finally, section 6 
presents the conclusions. 

2. Report on the most recent papers on Neural Networks applied 
for WECS based on DFIG 

Neural Networks with their different architectures, whether single or 
multi-layer, and various neural learning schemes have been developed 
and utilized in various applications. Also, NNs have been used in the 
modeling, identification, optimization, predicting, and control of com-
plex and non-linear systems [18]. Moreover, NNs are widely used in 
wind turbine systems for many issues such as determining the optimal 
value of the PI Controllers, replacing the PI or PID Controllers (Pro-
portional-Integral-Derivative), as well as identifying the parameters of 
adaptive control (Nonlinear Backstepping Control, Sliding Mode Con-
trol, etc.) and estimating the uncertainties. S. Mahfoud et al. (2022) [38] 
have suggested an Intelligent Direct Torque Control (DTC) by replacing 
the speed controller, switching tables, and hysteresis comparators with 
Neural Network to improve the inconvenient of the classical DTC, that is 
the presence of the ripples, especially in low speed of the generator as 
well as the improvement of the THD of the rotor and stator currents. The 
authors trained the neural network method employing the feed forward 
back-propagation approach to reduce the mean square error, which was 
chosen as the cost function. The number of hidden layer neurons is 
determined through trial and error until the required performance is 
attained. S. Labdai et al. (2021) [39] have proposed an artificial neural 
network to approximate uncertainties and reject external disturbances 
for an adaptive control based on the Lyapunov function. The authors 
have compared the proposed method to Sliding Mode Control and Field 
Oriented Vector Control. The effectiveness and robustness of the pro-
posed control against the uncertainties have been demonstrated. The 
authors employed a neural network layout with a single hidden layer of 
10 neurons. The output layer is activated using a sigmoid function. In 
[40], a Deep Learning Neural Network (DLNN) model with its tuned 
weights using an optimization technique has been used to determine the 
gain values of the PID controller. A multi-layer feed forward network 
with numerous hidden layers is the DLNN topology. There are two 
hidden layers, each with four neurons. The authors classified the DLNN 
method training into two stages: pre-training, which is based on unsu-
pervised learning techniques, and fine-tuning, which is based on the 
back propagation neural network training algorithm. A gray artificial 
bee colony algorithm is used to tune weights. A sigmoid function is used 
to enable the output layer. In [41], the authors have proposed the 
feed-forward neural network (FFNN) architecture to optimize and 
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control the DFIG The authors have compared three kinds of these 
structures, which are probabilistic FFNN, multi-layer perceptron FFNN 
and radial basic function FFNN, with the conventional controllers. The 
simulation results validate the superiority of the RBFNN over the other 
types. The authors employed one hidden layer with 25 neurons, which 
has been shown to improve performance. The linear transfer function is 
utilized to trigger neuron output. The settling time for the active power 
response is 1.33 (s) with a 38% overshoot for a step input. J. Tavoosi 
et al. (2022) [42] have replaced the PI controllers in the outer loop with 
a combination of the Recurrent Neural Network and Fuzzy Logic Type-II 
(RT2FNN) to control the power of a grid-connected. However, the cur-
rent in the inner loop is controlled using PI Controller. This proposed 
control is designed based on the concept of the Radial Basis Function 
Network. The multi-layer structure with a self-recurrent hidden layer 
was used by the authors. Furthermore, the weights are expected to be 
Gaussian Type-II sets. A comparison study between the proposed ap-
proaches is performed. The results show that the active power response 
time is 1.7 (s) with a 0.32% overshoot. Furthermore, B. Boudjellal et al. 
(2020) [43] have used an artificial neural network to regulate inde-
pendently the stator powers in open-loop instead of the two PI con-
trollers. A (2–7–1) structure Multilayer Perceptron networks was 
utilized. The authors have adopted for the input, hidden, and output 
layer the tan-sigmoid, the log-sigmoid, the linear activation function, 
respectively. The simulations results reveal that the response time of the 
active power is 0.028 (s). In addition, H. Benbouhenni et al. (2021) [12] 
have proposed a Neural Direct Vector Control (NDVC) based on feed 
forward neural networks with the Levenberg–Marquardt algorithm. The 
authors have compared the proposed control with the standard Direct 
Vector Control (DVC). The simulation results show that the NDVC out-
performs the DVC with a response time of 1.78 (m s). 

By analyzing this report of the previous works, we can observe that 
the response time needs to be improved due to the intermittent nature of 
the wind profile. In this context, we apply the HLRNN control to the 
whole wind energy system. This paper presents a completed and 
detailed study for academic and industrial research in the field. 

3. Wind power plant system modeling and vector control 

3.1. Wind turbine modeling 

Wind turbines generate electricity by transforming kinetic energy in 
the wind into rotational kinetic energy in the turbine. Therefore, the 
mechanical power (PTu mec) is stated as [44,45]: 

PTu mec = 0.5.CP− Tu(β− Tu, λ− Tu).rho.π. R2V3
wind (1) 

The mechanical torque CTu-mec is given by: 

CTu mec =
PTu mec

ΩTu mec
(2)  

Where Vwind is the wind energy speed (in m/s), rho denotes the air mass 
per unit volume (in kg/m3), R is the turbine radius (in m), ΩTu− mec is the 
turbine speed (in rad/s), and CP− Tu denotes the turbine’s performance 
coefficient. Cp-Tu could be expressed as [3,18]: 

CP Tu(β− Tu, λ− Tu) = [0.5 − 0.0167.(β− Tu − 2)].sin
(

π(λ− Tu + 0.1)
18.5 − 0.3.(β− Tu − 2)

)

− 0.00184.(λ− Tu − 3)(β− Tu − 2)
(3) 

The power coefficient is not a fixed rate and changes with the tur-
bine’s tip speed ratio (TSR). The TSR is formulated as follows: 

λ− Tu =
R. ΩTu mec

Vwind
(4)  

3.2. Gearbox modeling 

The mechanical equation of the system is shown in Eq. (5), with the 
total mechanical dynamics being taken back to the rotor blade shaft 
[44]: 

J tot.
dΩrot− mec

dt
+ fr.Ωrot mec = Cg − CTem (5) 

With 

Cg =
CTu mec

GBox
;GBox =

Ωrot mec

ΩTu mec
(6) 

Where J-tot is the total inertia of the wind chain, CTu-mec is the turbine 
torque, CTem is the generator’s electro-magnetic torque, fr is the total 
viscous coefficient of friction, Ωrot-mec represents the rotational speed at 
the rotor axis of the gearbox (rad/s) and GBox denotes the gearbox’s 
multiplier factor. 

3.3. Electrical equation of the DFIG modeling 

It is advantageous to move towards a more appropriate reference 
frame to obtain a simpler model of the generator. The Park trans-
formation allows the three-phase frame to be transferred to a rotating 
reference frame (dq-reference frame). So, stator and rotor voltages 
equations are expressed as follows [40,46]: 

Vgr d = Rsta . ista d +
dφsta d

dt
− ωgr. φsta− q

Vgr q = Rsta.ista q +
dφsta q

dt
+ ωgr.φsta d

Vrot d = Rrot.irot d +
dφrot d

dt
− ωrot.φrot− q

Vrot q = Rrot.irot q +
dφrot q

dt
+ ωrot.φrot d

(7) 

Where Vrot and Vgr indicate the rotor and grid voltage; ista and irot 
describe the currents; φsta and φrot represent the flux; Rsta and Rrot 
identify the resistors of windings; ωgr and ωrot are the angular pulses; Lsta 
and Lrot denote the inductances; Lm represents the Mutual inductance. 
The rotor and stator are designated by the characters "rot" and "sta," 
respectively. The electro-magnetic torque is given below [43]: 

CTem = − ppole.
Lm

Lsta

(
irot q.φsta d − irot d.φsta q

)
(8) 

The number of DFIG pole pairs is indicated ppole. The stator active 
and reactive powers are written as follows [10]: 

Ps = Vgr d.ista d + Vgr q.ista q (9)  

Qs = Vgr q.ista d − Vgr d.ista q (10)  

3.4. Maximization of the generated power 

Under normal wind turbine operation, the MPPT approach is 
established to maximize the available energy in the wind. The MPPT 
method is designed, with mechanical speed control. This methodology 
involves maintaining the generator speed stable at its reference, which is 
achieved when the Cp is optimum. The electro-magnetic torque (CTem) 
developed by the DFIG is equivalent to the reference value applied by 
the control [47,48]: 

CTem = CTem opt (11) 

The optimized electro-magnetic torque CTem-opt for achieving opti-
mum rotation velocity is given as follows: 

CTem opt =

[

Tp mppt +Ti mppt.
1
S

]

.
[
Ωrot mec opt − Ωrot mec

]
(12) 
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Where Tp-mppt and Ti -mppt are the MPPT regulator gains. The optimal 
mechanical speed (Ωrot-mec-opt) is [47]: 

Ωrot mec opt = GBox.ΩTu mec opt 

With 

ΩTu− mec− opt =
Vwind. λ− Tu

R
(13) 

Calculation of MPPT regulator gains. The pole compensation 
technique was utilized to compute the PI regulator parameters. In [48], 
more information on the PI gains calculation approach is provided. So, 
the system’s time constant (Tsys) is: 

Tsys =
Jtot

fr
(14) 

The gains of the MPPT regulator are determined as: 

Timppt =
1

τ.fr
; Tpmppt =

− Ti− mppt. Jtot

fr 

With 

τ =
Tsys

1000
(15)  

3.5. Indirect field oriented control methodology 

3.5.1. Rotor side converter control 
The indirect vector control is used to regulate the powers of the 

generator separately and to address the system’s coupling problem. The 
powers are piloted in the open loop, while the closed loop is utilized to 
govern rotor currents. Stator flux is assumed to be constant and is ori-
ented with the d-axis. Because the stator windings resistor is eliminated, 
the voltage expression might be modified as follows [10]: 

φsta d = φsta ; φsta q = 0
Vgr d = 0 ; Vgr q = Vgr = ωs.φsta

(16) 

The rotor voltage expressions can be written using the Laplace 
Transform as [10]: 

Vrot d =

[

Rrot +

(

Lrot −
L2

m

Lsta

)

.s
]

irot d − g.ωgr

(

Lrot −
L2

m

Lsta

)

irot q (17)  

Vrot q =

[

Rrot +

(

Lrot −
L2

m

Lsta

)

.s
]

irot q + g.ωgr

(

Lrot −
L2

m

Lsta

)

irot d + g.
Vgr. Lm

Lsta

(18) 

Where g is the DFIG’s slip. 
The rotor currents equations are conducted using Eqs. (17) and (18), 

as follows: 

irot d =

[

Vrot d + g. ωgr

(

Lrot −
L2

m

Lsta

)

irot q

]/[

Rrot +

(

Lrot −
L2

m

Lsta

)

.s
]

(19)   

irot q =

[

Vrot q − g. ωgr

(

Lrot −
L2

m

Lsta

)

irot d − g
Vgr. Lm

Lsta

]/[

Rrot+

(

Lrot −
L2

m

Lsta

)

.s
]

(20) 

The following are the rotor current references [10]: 

i∗rot q = −
Lsta

Lm.Vgr
. P∗

s (21)  

i∗rot d = −
Lsta

Lm . Vgr
.

(

Q∗
s −

V2
gr

ωgr. Lsta

)

(22) 

The voltage references can be defined using Eqs. (17) and (18), as 
follows: 

V∗
rot q =

[
i∗rot q − irot q

]
.

[

Tp− rsc1 +Ti− rsc1.
1
S

]

+ erd + Vs′ (23)  

V∗
rot d =

[
i∗rot d − irot d

]
.

[

Tp− rsc2 +Ti− rsc2.
1
S

]

+ er q (24) 

Where 

er d = g.ωgr

(

Lrot −
L2

m

Lsta

)

.irot d  

er q = g.ωgr

(

Lrot −
L2

m

Lsta

)

.irot q  

Vs′

= g
Vgr. Lm

Lsta
(25)  

3.5.2. Determination of RSC controller gains 
The pole compensation approach is utilized to calculate the PI co-

efficients (Tp− rsc, Ti− rsc). The system’s time constant is [48]: 

Ts =

(

Lrot −
L2

m

Lsta

)/

Rrot (26) 

Therefore, the expressions of PI coefficients (Tp− rsc, Ti− rsc) are 
computed as follows [48]: 

Tp rsc =
1

Trsc
.

(

Lrot −
L2

m

Lsta

)

Ti− rsc =
Tp rsc. Rrot(
Lrot −

L2
m

Lsta

)

With 

Trsc =
Ts

100
(27)  

3.5.3. Grid side converter control 
The GSC regulates the DC-link voltage and reactive power trans-

ferred with the electrical network. The grid voltage is regarded oriented 
to the q-axis and is obtained using the Park transformation to develop 
the GSC control methodology. To estimate the angle of transformation, 
the Phase-Locked Loop (PLL) strategy is utilized. More details about the 
development of the PLL approach are provided in [48]. Thus, grid 
voltages can be stated as follows: 

Vgr d = 0 ; Vgr q = Vgr (28) 

The voltages and powers can be reduced to the following [49]: 

Vgsc d = −
[
Rf +Lf .s

]
.igsc d + ωgr.Lf .igsc q (29)  

Vgsc q = −
[
Rf +Lf .s

]
.igsc q − ωgr.Lf .igsc d + Vgr (30)  

Pg = Vgr.igsc q (31)  

Qg = Vgr.igsc d (32) 

The connection between converters powers can be represented as 
follows [45,49]: 

VDC.iC = Pg gsc − Pg rsc (33) 

The power of the grid-side converter is calculated as below: 

Pg = Pg gsc = VDC.iC + Pg rsc (34) 

Where Pg_RSC is the power of the RSC, which is described as: 

Pg rsc = VDC⋅irsc (35) 

The DC-link power reference (P∗
dc) is written as follows: 
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P∗
dc = VDCi∗c (36) 

The references of the grid currents are computed from Eqs. (31), 
(32), (33), and (34) as follows: 

i∗gsc q =
1

Vgr
.
(
V∗

DC.i
∗
c + Pg rsc

)
; i∗gsc d =

Q∗
g

Vgr
(37) 

To have a unit power factor, it is supposed that the reference of 
reactive power is null. As a result, we apply a zero direct current grid 
reference (i∗gsc d = 0). The voltage references are as follows [50]: 

V∗
gr d =

[
i∗gsc d − igsc d

]
.

[

Tp− gsc2 +Ti− gsc2.
1
S

]

+ egsc q (38)  

V∗
gr q =

[
i∗gsc q − igsc q

]
.

[

Tp− gsc1 +Ti− gsc1.
1
S

]

− egsc d + Vgr (39) 

Where 

egsc− q = ωgLf igsc q ; egsc d = ωgr.Lf .igsc d (40) 

The following are the expressions for grid currents [3]: 

igsc q =
1

[
Rf + Lf . s

].
(

V∗
gr q − ωgr.Lf .igsc d − VDC.Sq

)
(41)  

igsc d =
1

[
Rf + Lf . s

].
(

V∗
gr d +ωgr.Lf .igsc q − VDC.Sd

)
(42) 

Where Sd and Sq are the Park transformation switching states. The 
PIDC regulator is used to control the DC-link voltage at the reference. As 
a result, the regulator settings are as follows: 

Tp− DC = 2.ξ.ω.c
Ti− DC = ω2.c ; Where ξ is the damping coef ficient (43) 

The currents igsc_q and igsc_d, flowing through the RL filter, are 
controlled by a PIGSC regulator utilized in the inner loop. Taking the 
managed system’s time constant (Tgsc) into account, the PIGSC parame-
ters are [42]: 

Tp− gsc1,2 =
Lf

Tgsc
; Ti− gsc1,2 =

Rf

Tgsc
(44)  

4. Wind turbine system-based dfig controlled by recurrent 
neural networks 

4.1. Problem description 

The stator powers, which are controlled indirectly through the d-q 
component rotor currents in closed-loop as described in Eqs. (21, 22), 
DC-Link voltage, as shown in Eq. (37), and grid currents, as demon-
strated in Eqs. (41, 42), are the quantities to control for the investigated 
system. To operate the system, a conventional PI Controller with simple 
characteristics is typically used. Unfortunately, this controller confronts 
difficulties such as gain dependency on system parameters, limited 
robustness, and poor performance. Hidden layer recurrent neural 
network approach is developed for self-tuning the gains of the PI regu-
lators and guaranteeing the self-independence of the generator settings 
to improve the dynamic performance of the variable power plant system 
based on DFIG The PI regulator has two gains: one that takes into ac-
count the present error (Proportional) and one that indicates the accu-
mulation of past errors (Integral). Each of these errors is weighted by a 
scalar value (Tp, Ti) and the sum is calculated. This amount is then fed 
into the control system. The control concept of a standard PI regulator is 
then as follows: 

u(t) = TPi . e(t) + TIi.

∫t

0

e(t).dt (45)  

4.2. Self-Adapting PI controller gains based on hidden layer recurrent 
neural network 

4.2.1. HLRNN structure 
A hidden layer recurrent neural network is a derivative of a fully 

associated recurrent neural network with one hidden layer made up of 
self-recurrent neurons. This method was chosen to automatically update 
the PI regulator gains because of its simplicity and effectiveness, lower 
reaction time, and capacity to have a similar dynamic mapping response 
as other forms of recurrent neural networks [44]. The HLRNN structure 
depicted in Fig 2 is made up of three layers. Three neurons comprise the 
input layer: the regulator delayed neuron’s output command, the actual 
output neuron, and the bias. With adjustable weights represented by the 
weight vector (WI) the input layer is linked to the hidden layer. How-
ever, several neurons make up the hidden layer. The latter’s neurons are 
dynamical in the concept that their output is communicated back to 
their input via delayed units. The diagonal weight (WD) ensures the 
feedback. As a result, the local circuits are responsible for the network’s 
dynamic behavior. Besides, by zeroing vector WD, HLRNN is reduced to 
Multi-Layer Feed-Forward Neural Network (MLFFNN). The output layer 
contains two neurons that represent the PI Controller’s gains. The 
connection between hidden and output layer neurons is represented by 
the output weight vector (WO). 

The power plant system is controlled by six PI regulators based on the 
HLRNN algorithm. The structure of each Controller is chosen based on 
the trial-and-error method until the desired performance is achieved. So, 
the MPPT algorithm is calculated using the first controller. The second 
and third are employed to perform rotor current. The fourth is set up to 
maintain the DC-Link voltage constant. The fifth and sixth are in charge 
of the grid currents. Based on the structure illustrated in Fig 2, the 
controllers of the system can be designed as shown in the following sub- 
sections. 

4.2.2. HLRNN-based MPPT controller 
Fig. 3 depicts the control process design for MPPT controller, by 

adopting the hidden layer recurrent neural network methodology to 
tune the PI regulator’s gains. The HLRNN-MPPT controller is designed 
with three neurons in the input layer, seven neurons in the hidden layer, 
and two neurons in the output layer (3-7-2 structure). 

4.2.3. Implementing the RSC controller based on the HLRNN method 
Fig. 4 illustrates the control process design for Rotor side converter, 

which is based on the HLRNN methodology used to self-adapt the PI 
regulator’s settings. The HLRNN-RSC 1 and 2 Controllers are designed 
using a 3–10–2 structure. 

4.2.4. Designing the GSC and DC link controllers optimized by the HLRNN 
method 

Fig. 5 shows the GSC and DC-link voltage control process based on 
the hidden layer recurrent neural network approach, which is dedicated 
to optimize the PI regulator’s gains. The GSC Controller is designed 
using the 3–10–2 architecture. The HLRNN DC-Link Controller, on the 
other hand, is based on a 3–8–2 structure. 

The PI regulators, illustrated in Figs. 3-5, are tuned by minimizing 
the cost function mean square error (MSE), which is defined by the 
following equation: 

Ej(k) =
1
2
(
yj(k) − ynnj(k)

)2 (46) 

Where y(k) defines the output responses of the system, which are 
wind turbine’s rotational speed (Ωrot_mec), rotor current components 
(irot_d and irot_q), grid currents (igsc_d and igsc_q), and DC-Link voltage 
(VDC). However, ynn(k) denotes the output responses of the HLRNN 
structure, which are: Vdcnn, igsc_dnn, igsc_dnn, irot_dnn, irot_qnn, and Ωrot_mecnn. 
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4.3. Mathematical equations of the HLRNN algorithm 

The initial layer of the HLRNN structure is composed of three com-
ponents which constitute the vector input below: 

Inj(k) = [ui(k − 1)yi(k)b],With b = 1 and k is the discrete − time signal (47) 

Where yj (k) is the actual output of jth neuron, b denotes the bias, and 
uj (k-1) represents the delayed control command input of the HLRNN 
algorithm. Therefore, the actual control algorithm is defined by trans-
forming Eq. (45) into a recurrence equation as follows: 

uj(k) = TPj (k) . xc1j + TIj (k) . xc2j (48) 

Where 

xc1j = ej(k); xc2j =
∑

ej(k) (49)  

ej (k) is the error between desired output and the observed output of the 
system. TP and TI are the Controller’s Proportional and Integral gains, 
respectively. 

The vector input of the recurrent jth neuron is described by the 
following sum vector (Vj (k)): 

Vj(k) =
(
Inj(k)

)
.ωIj + ωDj.Hj(k − 1) (50) 

Where wDj (k) is the weight vector of the recurrent hidden layer Hj 
(k) is the output of the hidden layer and is activated using the hyperbolic 
tangent function as below: 

Hj(k) = f (Vj(k)) =
1 − e− Vj

1 + e− Vj
(51) 

The output vector of the HLRNN (Ynnj (k)), as shown in Fig 2, is 
expressed as follows: 

ynnj(k) =
∑Nd

i=1
ynnj(k − 1) + ωOj (k). Hj(k) (52) 

Where wOj (k) is the weight vector of the output layer. The hidden 
layer recurrent neural network’s learning is ensured by updating the 
weights of each neuron to optimize the fitness function specified in Eq. 
(45). Furthermore, the gradient descent learning approach with mo-
mentum term is utilized to update the input, recurrent, and output layers 
in the following manner [20,51]. Besides, the addition of momentum as 
a fixed factor decreases the fluctuation tendency of the learning activity 
and enhances convergence [52]. 

Fig 2. Structure of HLRNN.  

Fig 3. MPPT Controller based on HLRNN method.  
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ωIj(k) = ωIj(k − 1) + ρIj .

(

−
∂E
∂ωI

ij

)

+ μj . (
(
ωIj(k − 1) − ωIj(k − 2)

)

(53)  

ωDj(k) = ωDj(k − 1) + ρDj .

(

−
∂E

∂ωD
j

)

+ μj . (
(
ωDj(k − 1) − ωDj(k − 2)

)

(54)  

ωOj(k) = ωOj(k − 1) + ρOj .

(

−
∂E

∂ωO
j

)

+ μj . (
(
ωOj(k − 1) − ωOj(k − 2)

)

(55) 

Let us compute the partial derivative of the cost function with respect 
to the weights: 

−
∂E
∂ωI

ij
= e(k).

∂Ynn(k)
∂Hj(k)

.
∂Hj(k)

∂ωI
ij

= e(k).ωO
j .Zij(k) (56)  

−
∂E

∂ωD
ij

= e(k).
∂Ynn(k)
∂Hj(k)

.
∂Hj(k)
∂ωD

ij
= e(k).ωO

j .Tj(k) (57)  

−
∂E

∂ωO
ij

= e(k).
∂Ynn(k)

∂ωO
ij

= e(k).Hj(k) (58)  

Where 

Tj =
∂Hj(k)
∂ωD

ij
=
∑Nd

j=1
ωOj(i).

(
1+Hj(i)

)
.
(
1 − Hj(i)

)
.φj(i);WithTj(0) = 0 (59)  

Fig 4. PI Controller Design for RSC based on HLRNN architecture.  

Fig 5. PI Controller based on HLRNN architecture for GSC and DC-Link voltage.  
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Zji =
∂Hj(k)

∂ωI
ij

=
∑Nd

i=1

∑Nin

j=1
ωOj(i).

(
1+Hj(i)

)
.
(
1 − Hj(i)

)
.Inj(k);With Zji(0)

= 0
(60) 

Where Nin and Nd are the number of the neurons in first and dynamic 
cell, respectively. ρIj, ρDj, and ρOj are the learning rate of the input, 
hidden, and output cell, respectively, μj is the momentum constant. A 
learning rate should be specified for each training algorithm. The 
learning rates are chosen based on the testing method. In this work, 
learning rates were tested with smaller values until a satisfactory result 
was obtained. However, the maximum learning is occurred in the range 
[-0.5, 05] [53]. 

If 
⃒
⃒ωDj(k)

⃒
⃒ > 1  

then 

ωDj(k) =
1
2
. sign

(
ωDj(k)

)
(61) 

Finally, the gains of the PI controller can be tuned and updated ac-
cording to gradient descent as follows: 

TPj (k) = TPj (k − 1) + Ynn (k) .ej (k). xc1j (62)  

TIj (k) = TIj (k − 1) + Ynn (k).ej (k). xc2j (63)  

4.4. Proposed algorithm flowchart 

The steps for generating the programming code in Matlab script are 
organized as shown in the flowchart in Fig 6. The MPPT Controller sub- 
program is used as an example, and the other sub-programs will be 
examined in the same way. 

5. Simulation and results 

5.1. Simulation data 

The wind energy plant system based on the dual-fed induction 
generator is modeled using previously established equations and simu-
lated employing Matlab/Simulink. Based on the flowchart (Fig 6), a 
main program code of the hidden layer recurrent neural network control 
has been constructed in the employed software’s script, in which six sub- 
programs are invoked, each of which is destined for tuning one PI 
controller parameters. Fixed values are assigned to the learning rate and 
inertia coefficients of the input, hidden, and output layers. Table 1 
shows the parameters utilized in the simulation for the system 
comprised of the 5 MW wind turbine, DFIG, capacitor, and the serial 
resistance inductance (RL) filter. 

Two bidirectional converters, rotor side and grid side converter, are 
employed to pilot the generator. The proposed control is developed to 
create pulse width modulation (PWM) for optimal converters regulation. 
The PI gains have been automatically adjusted to achieve the best 
response for the studied system. According to the error function 
formulation, the mean square error is reduced when the PI regulator 
parameters are tuned to the optimal gains illustrated in the Table 2. 

5.2. Results and discussion 

The effectiveness and robustness of the hidden layer recurrent neural 
network (HLRNN) method are demonstrated under normal conditions, 
generator parameter variations, and grid phase short-circuited faults. 

5.2.1. Normal conditions 
This section displays the simulation results of the rotor wound in-

duction generator, which is powered by a wind turbine and connected to 
the electricity grid. To determine the grid voltage components, the Park 
transformation is employed, which is based on the angle transformation 
estimated by the Phase-Locked Loop (PLL) with the PI Controller. Fig. 8 
depicts the grid’s quadrature and direct voltages utilized to supply the 
generator. Moreover, Fig 9 shows the wind turbine coefficient of power 
derived using the two techniques. As it might be seen, the HLRNN keeps 
the Cp parameter at its optimal point (Cpmax = 0.5), the TSR at its op-
timum (λ− Tu− opt= 9.19), and the aerodynamic power at its maximum. 
Furthermore, the change in wind speed is disallowed in court time. 
Fig. 10 depicts the mechanical rotational velocity attained using the 
MPPT methodology based on the PI controller and HLRNN strategy. In 
comparison to the other technique, the HLRNN method provides a 
shorter time, estimated at 0.02 (m s), for following the speed reference 
without overshoot. The MPPT algorithm is utilized to create the refer-
ence stator active power (Ps*). Fig. 11 depicts the stator active power 
calculated by the investigated controllers. By comparing these results, it 
is noticeable that the produced power rapidly follows the reference (Ps*) 
when the hidden layer neural network is used rather than the indirect 
vector control (IFOC), with superior performance in terms of rapidity 
and precision. Fig. 12 illustrates the reactive power, which is set to zero 
to maintain a unit power factor. Fig. 13 describes the effect of wind 
speed change on DC-Link voltage. As we can see, every change in wind 
speed causes a voltage overshoot. Besides, the proposed technique has 
less voltage overshoot than the IFOC. 

We can affirm that the main benefit of the hidden layer recurrent 
neural network is that it swiftly eliminates wind disturbances while 
maintaining the DC-link voltage constant with a zero error. Similarly, 
the suggested technique improves overshoot significantly more than 
classical PI controllers. Table 3 shows the comparison results for the two 
methods. The nominal active power is 5 MW, the rotational speed is 
rated at 105.2 rad/s, and the DC link voltage is rated at 1200 V. As can 
be shown, the HLRNN outperforms the indirect vector control based on 
the PI Controller. The proposed technique minimizes overshoot, signif-
icantly reduces response time, and attenuates static error. 

5.2.2. Variation in DFIG settings 
This part puts the hidden layer recurrent neural network to the test 

against unanticipated changes in the generator’s intrinsic settings. Many 
situations are taken into consideration for this objective. First, the ro-
tor’s resistance is modified by 100% (the case where the rotor resistance 
is warming up). When the HLRNN technique is employed, the response 
time is the same, but it is increased to 11.7 (m s) with an error of 1.78% 
when the indirect vector control based on the conventional PI controller 
is utilized, as shown in Fig 14. In the second case, the rotor inductance 
value is altered by a factor of 100%. Fig. 15 indicates that the output 
power is guaranteed to be stable with a minimal increase in response 
time of the order of 4.6 (m s). When the IFOC approach is used, response 
time becomes 29.2 (m s). Furthermore, the system’s stability is affected. 
The third scenario involves increasing the rotor resistance and induc-
tance by 100% of their rated values, as illustrated in Fig 16. In this 
instance, HLRNN outperforms IFOC in terms of precision and stability. 
Finally, the fourth situation examines the effect of increasing the stator 
inductance to 100% on the generated power, as shown in Fig 17. When 
the HLRNN approach is used, a power overshoot of the order of 1.74% is 
observed, which is regarded as negligible. The response time grew from 
1.8 (m s) to 5.2 (m s), maintaining the system’s stability. When the in-
direct vector control is utilized, the response time is raised to 13 (m s), 
and the system’s stability is lost. 

These findings lead us to conclude that hidden layer recurrent neural 
network control is more robust and efficient in terms of system stability 
and response time. 

5.2.3. Grid fault conditions 
The fault analysis is conducted for variable wind speeds and when 

the speed is at its rated value for asymmetrical grid faults such as Line- 
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Fig 6. Flowchart of the HLRNN Algorithm.  
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to-Ground, Line-to-Line-to-Ground, and Line-to-Line. The fault block 
contained in Matlab/Simulink is used to perform the fault diagnosis. 
Therefore, the predefined default values of grid fault parameters are 
considered, which are illustrated in Table 4. Besides, the grid fault 
appeared at 0.4 (s) and was cleared at 0.6 (s) while remaining 200 (m s). 

Figs. 18 and 19 show the reaction of the stator active power and the 
DC-Link voltage, respectively, in the case of the line-to-ground (L2G) 
fault, employing the two examined strategies. As shown in Fig 18, the 
highest oscillations around the nominal value are reduced from 32.02%, 
for indirect vector control based on a traditional PI controller, to 
29.82%, for hidden layer recurrent neural network control (HLRNN). 

After the fault is cleared, the active power curve remains at its reference 
with a reduced response time of 14.4 (m s) when using HLRNN 
compared to 23.3 (m s) when using the traditional PI Controller. Fig. 19 
depicts voltage oscillations of the DC link capacitor during a line-to- 
ground fault. When HLRNN is used, the peak value is reduced from 
23.92% to 13.42%. Figs. 20 and 21 depict the response of the active 
power and the DC-link voltage to the double-line-to-ground (LL2G) 
failure using the two investigated techniques. HLRNN reduces oscilla-
tions for this fault type from 75.04% to 35.26%, as shown in Fig 20. After 
the problem is resolved, the response time is lowered from 35.6 (m s) to 
16.6 (m s) when the proposed control is utilized. However, when 
HLRNN is applied, a static error of 8.82% is observed, while a static error 
of 2.92% is recorded when indirect vector control based on PI Controller 
is employed. Fig. 21 displays voltage oscillations of the DC link capacitor 
during the LL2G fault. The maximum value of ripples is reduced from 
23% to 12%. Besides, the response time is improved from 38.5 (m s) to 
19.2 (m s) when HLRNN is employed. Figs. 22 and 23 illustrate the in-
fluence of line-to-line (L2L) short circuit using the two strategies tested 
on active power and DC-link voltage, respectively. As seen in Fig 22, 
HLRNN lowers oscillations for this fault type from 83.93% to 53.6%. 
After the problem is overcome, the proposed control reduces the 
response time from 26.7 (m s) to 19.9 (m s). During the LL2G fault, the 
voltage oscillations of the DC-Link capacitor are shown in Fig 23. When 
HLRNN is used, the maximum value of ripples is lowered from 37.83% 
to 16.41% and the response time is reduced to 16.4 (m s) from 19 (m s). 

These results show that hidden layer recurrent neural network con-
trol of a wound rotor induction generator provides robustness against 

Fig 7. Wind energy speed profile (m/s).  

Table 1 
Parameters of wind power plant system components.   

Parameters Symbol Values 

Turbine Radius of blade R 51.583 m  
Coefficient of multiplier GBox 47.23  
Total moment of inertia Jtot 1000 kg.m2 

DFIG DFIG rated power Ps 5 MW  
Stator leakage inductance Lsta 1.2721 mH  
Rotor resistance Rrot 1.446 mΩ  
Rotor leakage inductance Lrot 1.1194 mH  
Mutual inductance Lm 0.55187 mH  
Stator line to line voltage Vgr 950 V 

Capacity DC-link capacitance C 4400 μF 
Filter RL Resistor of the filter Rf 20 Ω  

Inductance of the filter Lf 0.08 H  

Table 2 
Optimal gains of different controllers.   

MPPT Controller RSC1 Controller RSC2 Controller GSC1 Controller GSC2 Controller DC-Link Controller 

Gains Tp Ti Tp Ti Tp Ti Tp Ti Tp Ti Tp Ti 
Values − 5.56e+7 1.84e+2 1.427 1.237 0.686 1.872 6.24e+3 1.47e+2 3.232e+4 1.66e+2 1.991 4.499e+2 

The wind energy velocity used to model the system is depicted in Fig. 7. 

Fig 8. dq components of grid voltage (V).  

E. Chetouani et al.                                                                                                                                                                                                                              



Electric Power Systems Research 214 (2023) 108829

12

Fig 9. Wind turbine power factor.  

Fig 10. Mechanical rotational speed (rad/s).  

Fig 11. Stator active power (W).  

Fig 12. Reactive power (VAR).  
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grid asymmetrical faults while providing electricity production with 
reduced overshoot and a fast response time when the failure is corrected. 

5.2.4. Comparison study to other existing neural network schemes 
Table 5 compares the proposed methodology to current neural 

network control approaches reported in the literature. Response time, 
steady-state error, and overshoot are utilized as criteria in this com-
parison. With a shorter response time and a reduced overshoot, the 

hidden layer recurrent neural network strategy outperforms the other 
methods. 

6. Conclusions 

The entire wind chain is modeled using the before-mentioned 
equations and controlled by two proposed methods: the Indirect Field- 
Oriented Control and the Hidden Layer Recurrent Neural Network. 
The system is simulated employing Matlab/Simulink software and the 
script to establish the program code. A changeable wind velocity profile 
is chosen and used to train the system. The DFIG stator is directly con-
nected to the power grid, while the rotor is linked via two pulse width 
modulation AC/DC/AC converters to the electric grid. Maximum Power 
Point Tracking is established in a closed-loop with speed control. Then, 
the stator powers are managed using indirect field-aligned vector con-
trol and intelligent neural network control to enhance the dynamical 
performance of the system. Finally, the generator’s robustness and 
effectiveness are tested by altering all its settings and are examined 

Fig 13. DC-Link voltage (V).  

Table 3 
Summary of the two approaches outcomes.   

Active power Rotational speed DC-link voltage 

Performances PI HLRNN PI HLRNN PI HLRNN 
Response time (m s) 10.1 1.8 0.1 0.02 28 26 
Static error% 1.42 0.16 0 0 0 0 
Overshoot% – 0.24 – – 32.41 19.08  

Fig 14. Active power (R’rot = 2. Rrot).  

Fig 15. Active power (L’rot= 2. Lrot).  
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under power grid voltage dips caused by different asymmetrical grid 
faults. According to the simulation results:  

• The response time of the hidden layer recurrent neural network 
(HLRNN) is ameliorated to 1.8 (m s) compared to some recent neural 
network architectures and the indirect vector control. Furthermore, 
the HLRNN guarantees a reference track with an improved static 
error of 0.16%.  

• The HLRNN outperforms the IFOC in terms of DC-link voltage control 
during wind speed changes. The response time is lowered to 0.026 s 
from 0.028 s when the Indirect Vector Control is applied. Addition-
ally, the overshoot is minimized to 19.08% from 34.41%.  

• The HLRNN method reveals better results than the indirect vector 
control in terms of robustness to variations in generator parameters 
and asymmetrical grid faults. When subjected to the investigated 
conditions, the HLRNN improves stability, increases precision, and 
decreases system reaction time. 

Funding 

This research received no external funding. 

Fig 16. Active power (R’rot = 2. Rrot and L’rot = 2. Lrot).  

Fig 17. Active power (L’sta = 2. Lsta).  

Table 4 
Grid fault parameters.  

Parameter Fault resistance 
Ron 

Ground resistance 
Rg 

Snubber resistance 
Rs 

Value (ohm) 0.001 0.001 1e+6  

Fig 18. Active power in the case of a line-to-ground fault (L2G).  
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Fig 19. DC-link voltage in the state of a line-to-ground fault (L2G).  

Fig 20. Active power in the state of a two-line to ground fault (LL2G).  

Fig 21. DC-link voltage in the situation of a two-line to ground fault (LL2G).  

Fig 22. Active power in the case of a line-to-line fault (L2L).  
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Future work 

In this work, we observe that the proposed control reduces the peak 
value of active power and the voltage in the capacitor caused by short- 
circuit voltage sags. As a result, Flexible AC Transmission Systems 
(FACTS) may be requested in the event of a grid fault and can be pro-
posed as future work for this study. 
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