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ABSTRACT

We study resource planning strategies, including the integrated healthcare resources’ allocation and shar-
ing as well as patients’ transfer, to improve the response of health systems to massive increases in de-
mand during epidemics and pandemics. Our study considers various types of patients and resources to
provide access to patient care with minimum capacity extension. Adding new resources takes time that
most patients don’t have during pandemics. The number of patients requiring scarce healthcare resources
is uncertain and dependent on the speed of the pandemic’s transmission through a region. We develop a
multi-stage stochastic program to optimize various strategies for planning limited and necessary health-
care resources. We simulate uncertain parameters by deploying an agent-based continuous-time stochas-
tic model, and then capture the uncertainty by a forward scenario tree construction approach. Finally, we
propose a data-driven rolling horizon procedure to facilitate decision-making in real-time, which miti-
gates some critical limitations of stochastic programming approaches and makes the resulting strategies
implementable in practice. We use two different case studies related to COVID-19 to examine our opti-
mization and simulation tools by extensive computational results. The results highlight these strategies
can significantly improve patient access to care during pandemics; their significance will vary under dif-
ferent situations. Our methodology is not limited to the presented setting and can be employed in other
service industries where urgent access matters.
© 2022 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

established widespread closures and stay-at-home orders to inter-
vene in this issue (Govindan, Mina & Alavi, 2020; Mervosh, Lu &

COVID-19 was first identified in Wuhan, China in December
2019 and it has since become a global pandemic (Ferreira, Kan-
nan, Meiduté-Kavaliauskiene & Vale, 2022). As of December 2021,
there have been more than 250 million reported COVID-19 cases
worldwide. As the result of the COVID-19 pandemic, the world
has seen more than five million deaths until now; most health-
care systems have faced extraordinary challenges. As one of the
most important challenges, outbreaks of the SARS-CoV-2 infec-
tion in local communities yield a massive increase in demand for
limited resources such as intensive care unit (ICU) beds, health-
care personnel, and mechanical ventilators. Several governments
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Swales, 2020; Ferreira et al., 2022). However, the accelerated num-
ber of COVID-19 cases forced many hospitals to discharge exist-
ing patients earlier to preserve care capacity for COVID-19 patients
(Parker, Sawczuk, Ganjkhanloo, Ahmadi & Ghobadi, 2020; Tonna et
al., 2020) as part of the guidelines from the Centers for Disease
Control and Prevention (CDC, 2020). Although these approaches
were effective to treat a greater number of COVID-19 patients, they
resulted in poor outcomes for non-COVID-19 patients and a sub-
stantial financial loss for healthcare systems.

Extending healthcare resources’ capacity is impossible for many
countries in a short time, according to Adelman (2020). Ramp-
ing up production of complex medical equipment, such as ven-
tilators, in facilities configured for other products will require
time that several COVID-19 patients don’t have. In such critical
situations, two other primary strategies are resource sharing and
demand redistribution, which can minimize shortages in response
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to massive hospitalization demand with the minimum extension
of resources’ capacity. Some facts demonstrate the applicability of
these strategies in countries or local communities. Indeed, the in-
fection spreads at varying rates in different regions, and COVID-
19 cases peak at different times in different regions. This vari-
ance provides an opportunity for sharing some scarce resources
such as ventilators; these devices can be transported over large
distances or within regions to reduce capacity shortfalls caused
by an epidemic surge in a particular area. In addition, regarding
demand redistribution, patients tend to select hospitals/healthcare
centers in accordance with their reputation or distance on a lo-
cal level, which leads to unbalanced patient loads across hospi-
tals/healthcare centers and a decrease in the overall quality of pa-
tient care (Drevs, 2013; Varkevisser, van der Geest & Schut, 2012).
Parker et al. (2020) demonstrated that the operationally feasible
redistribution of newly admitted patients through the network of
healthcare systems can reduce the patients’ overflow. Healthcare
systems can consider system-level interventions and patient trans-
fers to maximize the utilization of available resources.

From the medical literature, qualitative studies propose some
strategies to deal with the capacity shortage under a potential
surge in demand (Mills, Helm & Wang, 2020). This study is mo-
tivated by the healthcare capacity concerns created during the
COVID-19 pandemic. Its theory and practice are directly relevant to
the capacity planning through healthcare systems, and the objec-
tive is to optimize the use of resources during a pandemic by vari-
ous strategies. We develop a novel data-driven multi-stage stochas-
tic programming approach for managing healthcare resources as
well as demand redistribution to provide care for patients during
a pandemic. In particular, we provide an answer to the question,
“what could have been done to mitigate shortages due to a massive
increase in the demand for limited resources during a pandemic such
as COVID-19?"

Our decision-making framework considers two types of health-
care resources: 1) direct, in use resources (such as ICU beds and
ventilators) and 2) service resources (such as personnel and lab-
oratories). We also then explore various possible capacity plan-
ning options for healthcare resources, including capacity exten-
sion and relocation, as well as demand redistribution strategies
that are modeled to provide hospitalization services to patients.
This methodology considers uncertainty in the disease spread and,
therefore, demand for healthcare resources in various regions or
hospitals. We deploy a simulation approach based on an agent-
based continuous-time stochastic model to capture the COVID-19
spread providing a daily forecast for the hospitalization demand
over time, and this model can be adapted to any county or geo-
graphical region. Our modeling study provides critical insights into
how regions or hospitals could cope with a surge in demand for
healthcare resources.

The existing scientific literature suffers from a lack of deci-
sion support tools for managing healthcare resources during a
pandemic, which simultaneously considers the above-mentioned
strategies and demand uncertainty. In this study, the proposed
data-driven decision-making tool encompasses a large scope of op-
erational situations. The proof of concepts will be given for alloca-
tion and relocation of ventilators among several healthcare regions
of the US and, secondly, allocation of resources and demand re-
distribution among hospitals in an area of Iran. A summary of the
contributions of this work is as follows:

» We propose a multi-stage stochastic program (MSSP) for the in-
tegrated healthcare resources planning and demand redistribu-
tion during a pandemic. This model accounts for various patient
types and healthcare resources during pandemics.
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o We extend our model into a data-driven resource planning ap-
proach by developing a rolling horizon procedure, which will
help decision-makers make real-time decisions.

o« We deploy an agent-based continuous-time stochastic model
for modeling the COVID-19 transmission and then a scenario
tree construction approach to capture the stochasticity of the
number of infected individuals requiring hospitalization.

o We investigate two different case studies by our proposed tools.

The organization of the paper is as follows: Section 2 pro-
vides the literature review. In Section 3, the problem definition and
MSSP are described. The data-driven decision-making approach
based on the rolling horizon approach is explained in Section 4.
The agent-based simulation approach and scenario tree construc-
tion approaches are presented in Section 5. Computational results
based on two case studies are provided in Section 6. Several man-
agerial insights derived from our computational results are pre-
sented in Section 7. Finally, Section 8 concludes the paper.

2. Literature review

Regarding disaster management and humanitarian operations,
abundant literature exists (see e.g., Altay & Green III, 2006; Gupta,
Starr, Farahani & Matinrad, 2016; Rodriguez-Espindola, Albores &
Brewster, 2018; Wex, Schryen, Feuerriegel & Neumann, 2014) and
several papers investigate the healthcare operations for emergency
situations (see e.g., Adan, Bekkers, Dellaert, Jeunet & Vissers, 2011;
Chi, Li, Shao & Gao, 2017; Luscombe & Kozan, 2016; Sung & Lee,
2016). However, the nature of epidemic outbreaks and pandemics
are meaningfully different from other disasters in terms of their
dynamic nature, resources’ demand, global scale, and length. The
World Health Organization has defined practical phases in epi-
demics and pandemics management: Anticipation, Early detection,
Containment, Control and mitigation, and Elimination or eradication
(World Health Organization, 2018). Literature focusing specifically
on the allocation of healthcare resources during emergencies of-
ten concentrates on the distribution of life-saving medical devices
(Dasaklis, Pappis & Rachaniotis, 2012). Resource allocation helps
in Containment and Control and mitigation phases when it comes
to healthcare resources planning. Generally, the resource alloca-
tion problem has been deeply investigated since the 1990s by the
operations research community (see e.g., Bakuli & Smith, 1996;
Elmaghraby, 1993; Fiedrich, Gehbauer & Rickers, 2000; Hegazy,
1999).

Mills et al. (2020) investigated possible actions of hospitals
to provide immediate additional healthcare services in the case
of urgent massive demand. They focused on strategies related to
the Containment and Control and mitigation phases. Further, in the
medical literature, there are some research studies, such as Hick et
al. (2004), Kaji, Koenig and Bey (2006), and Rothman, Hsu, Kahn
and Kelen (2006), which identified response components and de-
veloped conceptual frameworks to propose qualitative methods for
creating the surge capacity without quantification of capacity allo-
cation and relocation approaches. Practical reports in the health-
care systems of the Netherlands indicated that the lack of cooper-
ation between hospitals is a major cause for trauma patients to be
transported outside the region because of shortages in ICU capacity
and their corresponding nurses (Litvak, Van Rijsbergen, Boucherie
& van Houdenhoven, 2008). Litvak et al. (2008) addressed the ca-
pacity problem related to ICU beds, in which many hospitals in a
geographical region reserve a small number of ICU beds for the
regional emergency patients. Scheduling of nurse shifts and plan-
ning of workforce are also addressed by Otegbeye, Scriber, Ducoin
and Glasofer (2015) and Willis, Cave and Kunc (2018), respec-
tively. Farley et al. (2013) highlighted that emergency department
information systems constitute a unique and important role in
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hospitals’ electronic health records, and the information system
performance affects physician clinician workflow, decision-making,
communication, overall patient safety, and quality of care. Most re-
search works in resource planning in healthcare systems deal with
standard and forecastable leadwork of a single healthcare center.
Some other studies address mass casualty incidents that demon-
strate short-term effects on hospitals, but those works contrast
with the long-lasting effects of a pandemic outbreak.

During the influenza pandemic preparedness, Toner and Wald-
horn (2006) emphasized the significance of cooperation between
different healthcare centers to decrease the extreme healthcare
system stress. Bertsimas et al. (2020) showed the advantages of
inter-regional collaboration in sharing ventilators across states in
the U.S. Assuming a perfect demand forecast, their deterministic
optimization model allocates the federal stockpile of ventilators
and determines how many ventilators to transfer between states
to minimize ventilator shortage costs. Considering the same prob-
lem, but with stochastic demand, Mehrotra et al. (2020) presented
a two-stage stochastic model for allocating and sharing ventilators.
They demonstrated that sharing ventilators across states could re-
duce shortages. Parker et al. (2020) studied the problem of finding
demand and healthcare resource transfers between hospitals dur-
ing the COVID-19 pandemic to minimize the required new capacity
and shortage for healthcare resources. They used robust optimiza-
tion to address demand uncertainty. The concern of this study, re-
source planning strategies for healthcare systems during epidemics
and pandemics, is recently highlighted by the operations research
community to improve the response to pandemics, especially to
COVID-19. Further, modeling the effects of pandemics on a region’s
individuals and their progression is also investigated; some of the
studies related to COVID-19 are Lewnard et al. (2020), Parker et
al. (2020), Levin et al. (2020), Nabi (2020), Silva et al. (2020), and
Reddy et al. (2020).

Methodologically, in the healthcare operations management
area, the two-stage stochastic programming approach is commonly
employed to formulate various problems that incorporate uncer-
tainty (see e.g., Mehrotra et al., 2020). However, the uncertainty in
stochastic parameters such as the number of patients is usually re-
alized progressively and the decisions at each period or stage are
a function of uncertainty observations, previous decisions, and ob-
served feedback outcomes up to that stage (Erdogan et al., 2013;
Govindan, Fattahi & Keyvanshokooh, 2017). Therefore, multi-stage
stochastic programming will be a more suitable optimization tool
that we utilize in this work.

There are key differences between the above papers and ours.
First, the focus of most studies in resource planning during a pan-
demic is a single mitigation strategy to improve the healthcare sys-
tems’ response; however, our model with realistic features con-
siders various patient types, demand redistribution, and different
capacity planning options aligned with the type of healthcare re-
sources. Second, an MSSP is developed to incorporate the uncertain
number of patients requiring treatment during a pandemic. Third,
the decisions made by MSSPs are not implementable in practice,
and a data-driven decision-making approach with the help of a
rolling horizon procedure is developed to deal with this issue and
to determine real-time decisions.

3. Problem formulation

During a pandemic such as COVID-19, surges in demand for the
healthcare system often occur; it's common for the healthcare re-
sources of a hospital to be lower than the required capacity. We
categorize resources in terms of patients’ usage types. The first is
direct in use resources (DUR), which a hospital assigns them to
a patient as long as he/she is hospitalized. For example, suitable
beds and ventilators are in this category for COVID-19. The second
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category is service resources (SER) such as personnel or laborato-
ries that a hospital utilizes as needed.

Given the ongoing capacity concerns, based on the types of re-
sources, three main strategies are used by various countries during
pandemics (especially COVID-19), as follows:

Demand redistribution: to address the balance of loads, redistri-
bution of patients between hospitals is implemented,

Resource allocation (extension): the government or policy mak-
ers provide more external resources for regions or hospitals such
as increasing capacity through calling in additional personnel and
creating new suitable beds.

Resource relocation (sharing): the sharing of capacity between
regions (hospitals) is applicable for portable resources, such as
healthcare personnel and ventilators.

In this section, we propose a multi-stage stochastic program
(MSSP) to determine the optimal demand redistribution, resource
allocation, and sharing decisions to minimize shortages, medical
treatment refusals or delays, and resource extension. Following
practical requirements, the foremost priority is to minimize short-
ages (non-accepted patients), and the second goal is to minimize
the allocation of new resources to healthcare regions or hospitals.

By using an MSSP, the optimization problem has several deci-
sion layers, where random parameters are progressively realized,
and decisions should be adapted to this process. Typically, an N-
stage stochastic program includes a sequence of stochastic param-
eters &1, &,,...,&y_1 with a discrete support. A scenario is a re-
alization of these stochastic parameters over the problem’s stages
(periods), and a scenario tree represents the progressive observa-
tion of these parameters. During a pandemic such as COVID-19,
a healthcare system faces various patient types in different re-
gions or hospitals requiring treatment (unlike healthcare equip-
ment). The number of patients in various types at different re-
gions or hospitals is a stochastic parameter in our study, which is
thought of as the healthcare system’s demand.

The decisions in each stage of an MSSP can be categorized into
two groups: (i) the decisions that are made before the uncertainty
realization at that stage, (ii) the decisions that are made based
on the uncertainty realization. In our problem setting, both re-
source sharing and extension belong to the first group of deci-
sions, and other decisions, including the acceptance or refusal of
patients and demand redistribution, belong to the second group.
Fig. 1 illustrates these decisions in our problem in period t €T
where T = {tg,tp + 1, ..., te} is the set of time periods.

A policy should be non-anticipative in an MSSP, which means
the decisions made at each stage must not be dependent on the
future realization of stochastic parameters. There are two com-
mon ways to formulate an MSSP (Dupacova, 1995; Kall & Wallace,
1994). In the first, an MSSP is formulated as a sequence of nested
two-stage stochastic programs in which non-anticipativity is im-
plicitly imposed. In the second (used in this paper), a set of non-
anticipativity constraints (NAC) is explicitly modeled and these
constraints should be considered for the decisions that are deter-
mined before uncertainty realization (Dupacova, 1995; Erdogan &
Denton, 2013; Kall & Wallace, 1994).

To model stochasticity related to various patient types in
healthcare regions or hospitals as a scenario tree, a set of scenarios
S with countable size |S| is taken into account. The corresponding
scenarios’ probabilities are 7y, 7, ..., 7|5. If we denote a realiza-
tion for patient number of type k € K at region i €  on period t € T
under scenario s € S by D}, and & = (D}, :iel, ke K), then the
realization of stochastic parameters in scenario s € S from period
tp to period t. is (Etso,“g‘fOJr],...,Sti). Fig. 2a shows an example of
a scenario tree with three periods and five scenarios for our prob-
lem with three regions. As an example, for scenario s and period ¢,
(ID3;¢ 1, 1D, 1, ID54,1) is a realization related to the number of pa-
tients in type 1 and |Dj,,|, |D5;,| and |D,,| are corresponding to
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The shortage and the amount of
used resources are determined at
the end of each period.

/

to to+1 t t,

™~

Various hospitals or regions in the
healthcare system response to the
realized demand during each period.

Allocation and sharing decisions
should be determined before
uncertainty (demand) realization

The response includes acceptance,
refusal, and redistribution of patients

Fig. 1. Different decision types and the decision-making process over |T| period.
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: Scenario 1
\
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1
1
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Scenario 2 '
\ Scenario 2
E
Scenario 3 !
!
1
1
1 .
Scenario 3
Scenario 4
Scenario 4
Scenario 5
Fig. 2a. A scenario tree example.
Scenario 5

region 1, 2, and 3, respectively. Fig. 2b is an alternative represen-

tation of the scenario tree, which is called scenario fan, where the

individual scenarios observed in the particular stages are disaggre-

gated to form five scenarios. The MSSP is presented as follows:
In this section, the proposed MSSP is presented. However, the

solution obtained from solving the MSSP is scenario-dependent . ‘s s
and, hence, it is not implementable in the real-world practice and Min : Zn‘ o Z ZZW““ + ZZ Z (T +1 = )my

Fig. 2b. The corresponding scenario fan.

does not allow the information attained over time to be used. In- s tel teT keK i€l teT reRous

deed, the critical limitation of scenario-based stochastic programs

is that their optimal policy is only valid for a limited set of sce- +ZZ Z (TI+1-t)c + B ZZZZCI?’M

narios. To resolve this issue, we develop a new data-driven Rolling el teT reRser i'el iel tel reR

Horizon Procedure (RHP). Our approach, presented in Section 4,

addresses this issue and provides real-time day-to-day sharing pol- 4 DD I (1)
icy and demand redistribution in a rolling horizon manner. The re- irel iel teT keK

quired notations for presenting the mathematical model are de- _

fined in Table 1. kb?rtn =Ey, Viel, YreRpy, Vses (2-1)
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Table 1
Notations.
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Sets and indices

T

The set of periods indexed by t,t' e T.

S The set of scenarios s,s" € S.

1 The set of regions i,i €I (it is possible to consider hospitals set instead of regions based on the problem setting).

R The set of healthcare resources r € R. Rpyg and Rsgg denote the direct in use and service resources, respectively. Rgx and Rrg denote the
set of resources with the possibility of capacity extension and sharing, respectively. Finally, Rf, and R} are the complement of set Rgx
and Rrg, respectively.

K The set of patient types, k € K.

R(k) The set of required healthcare resources for patient type k.

I(i, 1) The set of regions, which can receive (forward) resource r € R from (to) region i e I.

I1(i, k) The set of regions, which can receive (forward) patient type k € K from (to) region i € I. It is assumed the patient transfer should be
done by a lead time of less than one day (period).

Parameters

D3, The number of patients’ arrival in type k € K at region i € I in period t € T under scenario s € S.

'y Average discharge time of an accepted patient in k € K.

Lyii Lead time for transshipment of resource r € Ry between regions i and i’ €I, Ly > 1, Vi, i’ e L.

Ari Lead time of adding resource r € Rgx at region i,Viel

)_(,-ktD The number of hospitalized patients in type k € K at region i € I at the beginning of planning horizon.

Xie The number of accepted patients in type k € K in region i € I in periods before tg, which they will be discharged at period t based on
T'y. This parameter is zero for t > to + I[').

l::,-,[0 The number of available resources r € Rpyg in region i € I at the beginning of planning horizon.

C-,[U The capacity of resource r € Rggg in region i € I at the beginning of planning horizon.

[ The capacity usage coefficient of patient type k € K for resource r € Regg.

Decisions

n, The number of added healthcare resources r € (Rpyr N Rex) at region i e I in period t € T under scenario s € S.

iy The amount of new capacity for healthcare resource r € (Rsgr N Rpx) added at region i € I in period t € T under scenario s € S.

i re The number of healthcare resource r € Rrg, which are transshipped from region i € I to i’ € I at the beginning of period t € T under
scenario s € S.

v, The capacity of healthcare resource r € Rsgg at region i € I in period t € T under scenario s € S.

X The number of accepted patients in type k € K in region i € I during period t € T under scenario s € S.

Wi, The number of non-accepted patients in type k € K in region i € I in period t under scenario s € S.

w;.f“ The number of non-accepted patients in type k € K in region i € I in period t under scenario s € S that cannot be met even with
transferring them to other regions, so sent to the next period.

kb3, The number of available healthcare resource r € Rpyg in region i e I at the beginning of period t € T under scenario s € S.

kes., Secondary variable that represents the number of healthcare resource r € Rpyy in region i € I at the end of period t € T under scenario
seS.

Diie The number of patients in type k € K, which are sent from region i € I to i’ I at period t € T under scenario s € S.

@ Auxiliary binary variable that represents the refusal of patients is occurred in region i € I at period t € T under scenario s € S.

kb = ke; Viel VteT\{te}, VreRpg, VseS (2-2
i rt=1) \{ 0} PUR ( ) xskt Z pu’kt - let + Z pfzkt + Wlk(t 1)
i'el(i,k) i'el(i,k)
kem — kbfrt + Z ql Ir(t » /) + nlr(t ) Z X?kt ViellVkeK, VteT, VseS§ (6-1)
i'el(i,r) keK:reR(k)
2 Kt DL Kery D G H s VielVkeK VteT VseS
keK:reR(k) keK:reR(k) Pel(ir) Wike = ' Z Divie tel, vk e K, €l, Vse
VielLVteT.¥reRygVseS (2-3) releh
(6-2)
n,=0ViellVteT,VreRy Vses (2-4) o
Wfktgr?ssx{Dikt} a,ViellVkeK, VteT, VseS  (6-3)
G=0Viel Viel VteT,VreRf, Vse$s (3)

Vire _Clrto"’_z ir(t' = )+Z Z qztr(t’ L)

t'<t t'<t i'el(i,r)
=Y > G VielVteT VreRyg VseS (4-1)

t'<ti'el(i,r)

Ge=0VielVteT,VreRy, VseS (4-2)

Z Prr }_(iskto +sz§kc’ - Z

keK:reR(k) t'<t
l/s Viel,VteT,VreRSER,VseS (5)

irt

Xy~ D Xk

to+ I <t’'<t t'<t
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> Phw smax{Di}x (1-aj,) VielVkeK VieT Vses (6-4)
s'e
i'el(i,k)

nt_nlrtVieI,Vre(RDURﬂREX), VteT,

Vs eS: (8.8 4. &) = (&5.65.4..... &) (7-1)

C,?rtZCanIEI VTE(RSERQRE)()VI'ET
Vs eS: (66 ) = (6.8 ... &) (7-2)
Ufrtzvfrt\?,lel VreRSER,VteT

Vs eS: (.6 ,.....8) = (6.6 .1.....6) (7-3)
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kb?rt = kbf;t Vie I, Vre RDURsv teT,

Vs.s'eS: (6,65 ... &) = (6.6 .....6,) (7-4)

Tre = @ Viel, VielLVreRViteT,
V5,5/€53(frso’ftsoﬂvm’asq)=(§rs;"§rso/+1’-~~’ tS/—l) (7-5)

n, c, v, kb.ke.q w.w.p.x.q>0and a e {0, 1}/1XIK*ITIxIS|
(8)

Our main goal in relation (1) is to minimize the amount of cu-
mulative non-accepted patients in the considered healthcare sys-
tem over the planning horizon, the total number of added DUR
resources, the total number of added SER resources, and the to-
tal amount of patient transfers and resource sharing. According to
the practical aspects, the weights «, B, and y are set such that
the minimization of non-accepted patients has the highest prior-
ity. The second priority is to minimize the total number of new re-
sources. Since the supply of new resources is time-consuming for
policy makers, it is desirable to have as much time as possible be-
fore new supplies of healthcare resources. In order to account for
this aspect in our formulation, the weight |T| + 1 —t is considered
for new resources in each period t. Furthermore, this weight can be
interpreted as some rental cost per day in the objective function.
Finally, we minimize the amount of resource sharing and patients’
transfer, by considering coefficients 8 and y, respectively, with the
lowest priority in comparison with other goals. In practice, policy
makers can set coefficients 8 and y based on their necessities. It
is worth noting that in the results, the mentioned parameters are
tuned so that the amount of shortages be reasonable and manage-
able for the healthcare system.

Based on constraints (2-1)-(2-4), the available DUR at the be-
ginning and end of each time period are calculated. The possibility
of the extension of DUR resources and resource sharing over the
planning horizon are considered by constraints (2-4) and (3), re-
spectively. In addition, relations (4-1) show the available capacity
of SER resources in each period and under each scenario. The pos-
sibility of adding SER resources over the planning horizon is con-
sidered by constraints (4-2). For the acceptance of patients’ hospi-
talization, constraints (5) guarantee the available capacity for serv-
ing them in terms of SER resources. Based on constraints (6-1)-
(6-4), the amount of patients’ acceptance, non-acceptance, and re-
distribution are calculated. Constraints (6-2) obtain the number of
refused patients that cannot be met even by transferring them to
other regions (hospitals). Further, constraints (6-3) and (6-4) guar-
antee that a region (hospital) can accept the patients from other
regions (hospitals) in each period if it does not refuse any patients
at that period. Constraints (7-1)-(7-5) are NACs in our MSSP, which
are considered for the decisions that are made before uncertainty
realization at each stage. Variable types and ranges are defined in
constraints (8). It is worth noting that the proposed model is flex-
ible to be used for a set of regions as well as hospitals.

4. Data-driven decision-making by the RHP

Here, we propose a data-driven resource planning framework
under uncertainty by using an RHP to implement our MSSP in real
time. The rolling horizon approach makes the obtained policy im-
plementable in practice and evaluates the policy empirically. By
this approach, the latest data that is revealed as time progresses
enables us to adjust our decisions over time. In other words, we
observe the realization of the uncertain parameters in one period
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and, then, dynamically update the uncertainty for the following pe-
riods and input parameters of the MSSP.

To explain how the proposed approach works for the real data
over a horizon of |T| periods (days), we consider a sample path,
denoted by w, as real data. The sample path includes the realized
number of patients and discharge of accepted patients over |T| pe-
riods. In planning horizon = {tg,tg+1,...,t.}, to obtain a policy
for t* € T, we solve the MSSP with a scenario tree for the number
of patients over periods t*,t*+1, ..., t*+|T| — 1. Then for the
implementation of the obtained policy, we solve the MSSP with a
horizon of |T| periods in which for the first period t*, the uncer-
tain parameters are known (based on sample path w) and the op-
timal decisions are fixed. For the next period, we update some in-
put parameters of the stochastic model and in addition to model’s
parameters that should be updated in each period, we repeatedly
update the uncertainty after a predetermined number of periods
by calibrating parameters of our simulation model based on our
observations (See the RHP in Fig. 3).

The explained procedure should be repeated in each period, and
we roll the patients’ arrival planning horizon forward one day by
adding a new period to the calendar at every step. In obtaining
policy in each specific period t*, we should update some parame-
ters of the stochastic model and consider some modification in the
presented model to capture the impacts of previous realized data
and decisions. In Table 2, we provide the definition of some param-
eters, which are used for the model’s modifications, and we entitle
this model the rolling horizon model. It is worth noting that period
t* is the first period of the horizon in the rolling horizon model.

In the rolling horizon model, parameters I::,»rt0 and C_,-,[O should

be changed to Ej;. and Ci.., respectively, and their values are
based on the available information at the beginning of each period.
Constraints (2-3) should be updated as follows:

S — kb s
ke;,, = kb, + Z q,"ir([—Ln/i)5(I*Lri’i)zt*

irel(i,r)
S
Z Xikt
keK:reR(k)
Y Xherogerose T D Xie—
keK:reR(k) keK:reR(k)
- Z q?i/rt
irel(i,r)

VielLlVteT,VreRpgVseS (9)
By constraints (9) in the rolling horizon model, the impact of pa-
tients’ acceptance, resource sharing decisions, and realized uncer-

tainty will be captured. Furthermore, constraints (4-1) should be
modified as follows:

Vie = Gt 2 G 20 20 Biir (0 (L)t T > Qi

t'<t t'<ti'el(i,r) t'<t
=2 2 i
t'<t iel(ir)
VielVteT,VreRgg VseS (10)

Constraints (5) is also modified in the rolling horizon model as fol-
lows:

Z Prr
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Finally, the patients which are not accepted in any region before
period t* should be considered in constraints (6-1) for the first pe-
riod by substituting parameter W';, instead of W’fk(t*_1)~

The RHP has been applied for MSSPs in a few studies (Fattahi
& Govindan, 2018, 2020) and one can refer to these studies for
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Fig. 3. The RHP in this study.

Table 2
Parameters for updating the rolling horizon model.

The number of accepted patients in type k € K in region (hospital) i € I in periods before t*, which they will be discharged at period t
The number of accepted patients in type k € K in region (hospital) i € I in periods before t*, which is supposed to be discharged in

The number of healthcare resources r € Ry, which are transshipped from other regions to region i € I in periods before t* and will be

Eire The amount of resource € Rpyg, which are available in region i € I at the beginning of period t*.
Cire» The capacity of resource r € Rgeg in region i € I at the beginning of period t*.
)_(fkr, The number of hospitalized patients in type k € K at region i € I at the beginning of period t*.
Kike
based on I'y. This parameter is zero for t > t* + [';.
Kite
B period t based on I'y, but they are discharged in periods before t*.
Qirf
available at the beginning of period t € T.
W!k

beginning period).

The number of patients in type k € K at region I, which are not accepted in any regions in period t* — 1 (previous period of the

more information about the estimation of the true objective func-
tion in real time by rolling horizon simulation. In other words, by
assuming enough realized sample paths, we can evaluate the poli-
cies from MSSPs by the rolling horizon simulation. Fig. 3 shows the
RHP in this study.

5. Scenario tree construction for multivariate stochastic
parameters

In this study, we focus on one category of COVID-19 pandemic
patients, those who get the SARS-CoV-2 virus from infected in-
dividuals in a cohort. This group includes patients with a critical
state who will die if they remain untreated. These patients should
be hospitalized, and their treatments, including an ICU with me-
chanical ventilation, can prevent a subset of deaths among them.
To construct a scenario tree for the MSSP, we follow the approach
presented by Ekici, Keskinocak and Swann (2014) for the simula-
tion of the number of patients who need hospitalization in a re-
gion with insights from experts in a medical school. Accordingly,
an agent-based continuous-time stochastic model is constructed
for the COVID-19 transmission.

Firstly, the entire population is divided into three age groups
(0-19y, 20-59y, or >60y), that helps model the various types of
interactions between people in the population. The population in
a region is classified into Susceptible (S), Exposed (E), Infected (It),
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Quarantined (Ig), Hospitalized at the critical stage (Iy), Recovered
(R), and Deceased (D). In our model, a proportion of the exposed
individuals in an age subgroup are quarantined as soon as they get
into the Infected stage, which means they are isolated from the
population and do not infect additional individuals. Our simulation
network related to defined compartments is illustrated in Fig. 4.
We construct the base model for each group and the disease
spread is modeled through two main parts: 1) the disease progress
for an infected individual, and 2) the spread of the disease be-
tween the members of the population. In other words, we assume
that each individual will lie in one of the compartments in Fig. 4.
Pq.Pr, and Pp are the probabilities of self-quarantine of an in-
fected individual, recovery of an infected individual without hos-
pitalization, and death of a hospitalized individual, respectively. In
the model, we assume 80% of 0-19y group, 50% of 20-59y, and
90% of >60y group quarantine themselves after getting the infec-
tion. Generally, we model a defined cohort of individuals (e.g., pop-
ulation of a region) for a given number of days (simulation hori-
zon). The simulation time unit is one day. Susceptible individuals
can acquire SARS-CoV-2 infection from infected individuals in the
cohort. Once an individual is infected, he/she progresses through
various infection states until either recovery or death. The severity
of disease and the length of stay in each disease state are based
on age-specific transition probabilities of COVID-19 natural history,
estimated from historical data and scientific reports (Haridy, R.,
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Fig. 4. The simulation network of our model.

2020; Hu et al., 2020; Liu, Gayle, Wilder-Smith & Rocklév, 2020;
Mizumoto, Kagaya, Zarebski & Chowell, 2020; Wang et al., 2020;
Yang et al., 2020; Zhou et al., 2020; Perc, GoriSek Miksi¢, Slavinec
& Stozer, 2020). In this study, we considered that the individuals
who are in the critical disease state should be managed in an ICU
with mechanical ventilation.

Effective reproduction number (Rj) is another important param-
eter of our model which is the average number of secondary cases
caused by an infectious individual; it determines the infectivity of
the virus. We update the input parameters each week to account
for the variation of effective reproduction number. By consultation
from partner medical schools, we have obtained the other param-
eters and constructed the described disease spread model.

By running the simulation model, we obtain the number of pa-
tients in critical state at each region/hospital over a planning hori-
zon. The results of the simulation model depend on the values of
Pqo. Pr. Pp, and Ry, which can change within some small intervals
based on the literature’s data. Therefore, by running the simula-
tion model several times, we can obtain a set of discrete scenar-
ios for the stochastic parameter as a scenario fan. We then con-
struct a scenario tree based on the generated scenario fan and
reduce the number of scenarios in order to avoid computation-
ally intractable stochastic programs. To do so, we deploy a for-
ward scenario tree construction method proposed by Heitsch and
Romisch (2005) based on the proposed heuristics by Dupacova,
Growe-Kuska and Romisch (2003). They proposed two approaches
to transform a scenario fan into a scenario tree called as the for-
ward and backward constructions. The generated scenario fan fol-
lows a probability distribution F and if we transform it into a sce-
nario tree with probability distribution FT, the Kantorovich dis-
tance (DX) between F and FT should be less than a predetermined
value ¢. In other words, the reduction algorithms apply maximal
reduction strategy such that DX(F, FT) < &.

We use forward scenario tree construction approach in this pa-
per and bundle the scenarios for each period t € T. For detailed ex-
planations related to the scenario construction approach, one can
refer to Fattahi and Govindan (2018), Fattahi, Govindan and Key-
vanshokooh (2018), and Fattahi and Govindan (2020). Further, pa-
rameter ¢ is considered as &r x emgx Where &, is a constant value
between zero and one representing a scale for the amount of re-
duction in the initial scenario fan and &mgx is the minimum dis-
tance between F and one of its scenarios with probability one. It is
worth noting that by increasing the reduction scale ¢y, the number
of obtained scenarios decreases, so the information loss increases.
However, as the number of scenarios decreases, we have a better
computational tractability for solving the MSSP. Therefore, there is
a trade-off between the number of scenarios and computational
tractability.

The RHP enables us to deal with the uncertainty realization
over time. The uncertainty vector at each time period t*, &« =
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(&+.&-11,....&+7)-1), depends on uncertainty at periods before
time period t*. If we consider the realized uncertainty before t*
as &j;+_q), the dependency of &~ to §;._q) can be presented as

& (‘g'-[t*,]]). During any pandemic, many parameters can affect dis-

ease spread and transmission and we capture &:- (é{r*q]) by our
simulation model and update the scenario trees in predetermined
time periods over the planning horizon.

6. Computational results

We will give a proof of concept for our data-driven MSSP
methodology using two case studies during COVID-19 pandemic:
1) sharing mechanical ventilators among a subset of regions in the
U.S., 2) sharing nurses and ventilators and demand transfers be-
tween hospitals in a geographical area of Iran.

6.1. Case study 1: sharing ventilators among a subset of U.S.
healthcare regions

In this case study, we address sharing of ventilators among
healthcare regions in an area of the USA based on Keyvashokooh,
Fattahi, Zokaeinikoo, Freedberg and Kazemian (2020). During each
peak of the pandemic, additional ventilators were obtained from
the government to cope with the surge in ventilator demand. Our
data-driven optimization model informs an optimal ventilator al-
location and relocation policy so that the uncertain demand can
be satisfied with the fewest possible ventilators. This ensures that
hospitals can better serve non-COVID patients and potentially can-
cel fewer procedures by accommodating the needs of patients with
as few ventilators as possible. It should be mentioned, in this case
study, we address one type of critical patients needing ventilators,
and patient transfer between regions is not reasonable and appli-
cable since we have not considered hospitals in this case study.

In solving the MSSP, 150 scenarios in the form of a scenario fan
are simulated by using the agent-based continuous-time stochas-
tic model for COVID-19 transmissions, and then the scenarios are
reduced and converted into a scenario tree by the forward sce-
nario construction approach. In our implementations, parameter
& is set to 0.7. It is worth noting for setting the value of &, we
have done stability analysis based on the approaches proposed by
Fattahi and Govindan (2018), and the in-sample and out-of-sample
stability error are 2.2% and 1.8%, respectively. Regarding computa-
tional tractability, in examined case studies, our model is solvable
with various settings by the CPLEX solver in less than 5 min.

The impact of sharing ventilators strategy. In order to investi-
gate the importance of sharing strategies, 20 sample paths are gen-
erated based on our simulation model that represent the realized
number of new patients in need of ventilators on each day over
the planning horizon (90 days) and the length of ventilator use for
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Table 3
Ventilator needs and sharing outcomes under two strategies.
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Total new ventilators
required, Mean (SD)

Total transshipments
between regions, Mean

Total shortages
(non-accepted patients),

Maximum number of shortages
(non-accepted patients) over

(SD) Mean (SD) scenario paths
No sharing 1574.7 (114.4) 0 (0) 16.1 (8.1) 34
Sharing 662.5 (21.2) 2898 (132.1) 14.8 (7.9) 27
Sharing ________ No sharing Sharing and Transfer ======== No sharing, No Transfer —=== Sharing, No Transfer — — No sharing, Transfer
- : . . 00l T T T T T T T T
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Fig. 5. Average number of required ventilators in each day in Case study 1.
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Fig. 6. Average cumulative number of required ventilators in Case study 1.

each patient. Considering this set of samples, we implement our
data-driven approach to obtain the optimal sharing policy corre-
sponding to each sample path. The average number of new venti-
lators required to cope with the demand and its cumulative value
under two strategies (sharing and no sharing strategies) are shown
in Figs. 5 and 6, respectively.

As seen in Fig. 5, when resource sharing is not done, a new
supply of ventilators is needed earlier than when ventilators are
shared. Under the sharing strategy, some of the early shortages
can be eliminated by moving ventilators from regions with excess
ventilators to those experiencing a shortfall. More importantly, we
can see in Fig. 6 that the no sharing strategy requires significantly
higher number of additional ventilators to cope with the demand.
While 1574.7 additional ventilators are needed in average to avoid
refusal of patients’ care as much as possible across this US area
under the no sharing strategy, this area under the sharing strat-
egy requires only 662.5 additional ventilators to achieve the same
outcome. The more details of information obtained from simulat-
ing case study 1 are reported in Table 3. Through solving our case
study by the RHP over 90 days, we have constructed a scenario
tree for each day and updated the input parameters of our agent-
based simulation model, weekly. It is worth noting that the average
number of scenarios in the constructed scenario trees by &, = 0.7
is 22.8.

From Table 3, we can see the amount of sharing between the
regions is significant under the sharing strategy. In addition, al-
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Fig. 7. Average total number of required nurses in case study 2.

though the impact of sharing strategy on the non-accepted pa-
tients’ number is not meaningful based on our mathematical mod-
eling, the total number of needed ventilators in the case of no
sharing increases significantly. In other words, in our optimization
problem, we have assumed the needed ventilators will be supplied
by the government in the US and because of this issue, we have
not any significant increase in the value of shortages.

6.2. Case study 2: demand redistribution and sharing resources
among a subset of Iranian hospitals

In this case study, main hospitals in some cities of Iran are con-
sidered during the COVID-19 pandemic that contains 20 hospitals
in a healthcare region. Each hospital has an initial capacity of ven-
tilators, ICU beds, and medical personnel (nurses). The ICU beds
and ventilators correspond to the DUR and medical personnel re-
late to the SER. Here, sharing of ventilators and medical personnel
and patients’ transfer are possible to provide services to infected
patients requiring the hospitalization. The horizon of three months
in the third peak of COVID-19 is considered for this case study. Our
data-driven model optimizes various strategies such that demand
can be satisfied with fewest resources possible.

6.2.1. The impact of sharing resources and patients transfer strategies

We investigate the importance of our strategies in this section.
Considering a set of samples as realized uncertainty, we implement
our data-driven approach to obtain the optimal resource planning
corresponding to each sample path. The average total number of
new nurses and ventilators required to cope with the demand un-
der four strategies (no sharing and no patient transfer, sharing and
no patient transfer, no sharing and patients transfer, sharing and pa-
tients transfer strategies) are shown in Figs. 7 and 8, respectively.
More details of information obtained from simulating case study 2
are reported in Table 4. It is worth noting that through solving case
study 2 by the RHP over 90 days, the average number of scenarios
in the constructed scenario trees by &, = 0.7 is 24.1.

Presented results in Table 4 show that we can improve the re-
quired ventilators and nurses by about 20% and 14%, respectively,
by using both sharing and patients’ transfer strategies. Further, the
sharing strategy in this case study is more effective than patients
transfer strategy in terms of required new resources. However, pa-
tients transfer strategy has a better impact on the reduction of
non-accepted patients in compared to the sharing strategy. Fig. 9
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Table 4
Ventilators and nurses needed under four strategies.
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Total new ventilators

Total new nurses required,

Total shortages Maximum number of shortages

required, Mean (SD) Mean (SD) (non-accepted patients) (non-accepted patients) over
Mean (SD) scenario paths
No sharing, No patients 1877.1 (129.2) 397.8 (28.9) 18.8 (9.9) 27
transfer
Sharing, Patients transfer 1498.1 (112.7) 342.5 (26.1) 2.1 (1.01) 5
Sharing, No patients 1558.5 (113.1) 359.3 (27.9) 3(3.7) 14
transfer
No sharing, Patients 1661 (115.4) 366.2 (25.0) 4 (2.8) 10
transfer
|—Shan'ng and Transfer ======++ No sharing, No transfer —=== Sharing, No transfer = — No sharing, Transferl 6.2.2. Demand Tedistl’ibution VS resource Sharing
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Fig. 8. Average total number of required new ventilators in case study 2.
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Fig. 9. Main patients’ transfers through the considered region in case study 2 (more than 10 over the planning horizon in average).
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Fig. 11. The release time of ventilators after usage for the COVID-19 patients.

6.3. The significance of data-driven decisions

One of the main advantages of our proposed data-driven
methodology is the progressive information update based on un-
certainty realization over time. In this sub-section, we assess the
impact of data-driven decision-making in terms of one aspect. The
discharge time of a patient, denoted by I', has a significant im-
pact on the optimal decisions. In this paper, we have assumed that
the discharge time of patients in critical state and the resources’
release are the same. Using published data on the duration of ven-
tilator use for patients with COVID-19, we used a lognormal distri-
bution for I' (Ludwig, Jacob, Basedow, Andersohn & Walker, 2021).
Based on our historical data, the value of I" follows log-normal dis-
tribution and In( I') has normal distribution with mean 2.5 and
standard deviation 0.93. Fig. 11 shows the release time of ventila-
tors in our historical data.

In the optimization model, we set the value of I to the mean
duration of ventilator use (14 days). Then, by implementation of
our data-driven approach, we account for the released ventilators
in each region on each day. In order to investigate the importance
of this data-driven approach, we assume that all ventilators will
be released after 14 days and use our model without updating re-
leased ventilators on each day. As shown in Fig. 12, without a data-
driven approach in case study 1, 764.5 additional ventilators are
called on to ensure demand is met as much as possible, whereas
with a data-driven approach, the same is achieved with only 662.5
ventilators. Further, in case study 2, the average amount of re-
quired ventilators and nurses increase about 11% and 9%, respec-
tively, if we assume a constant value for I' and do not update the
input parameters based on the obtained information.

Note we have only examined the importance of parameter I'
in this sub-section, and in our data-driven model, we update the
discharge of patients as well as the uncertainty through our data-
driven RHP.
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Fig. 12. Average number of required ventilators in case study 1 and in the case of
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Fig. 13. Average total number of required ventilators in case study 1 for risk-neutral
and risk-averse policies.

6.4. Risk-averse decisions

Here, we determine a risk-management policy by using the
Conditional Value at Risk (CVaR) as a well-defined risk mea-
sure. Linear programming techniques are used for formulating the
problem by this risk measure (Ahmed, 2006). By assuming the
cumulative distribution function of random variable Q as Fq(.),
the Value at Risk at the confidence level ¢ (VaR.) is VaR.(F) =
inf {6 € R| 74(60) = ¢} and hence CVaR:(F) =E(Q|Q = VaR.(F)).
Additionally, based on the formulation presented by Rockafellar
and Uryasev (2002), CVaR:(F) = ;2£{2+ =E[(F-2)*]}.

One important issue related to the risk-averse MSSPs is the
time consistency. Recently, it has been highlighted by several stud-
ies as a desirable property of a problem. Informally, in order to
preserve the time consistency in MSSPs, by given the available in-
formation at the time when a policy is determined, the optimal-
ity of the policy should only be with respect to possible future
realizations (Homem-de-Mello & Pagnoncelli, 2016). Ruszczynski
(2010) defined the time consistency in dealing with sequences
of random variables in the dynamic programming approach, and
Shapiro (2009) focused on the stability of decision variables at
each stage in risk-averse MSSPs.

We consider CVaR. of total non-accepted patients instead of its
expected value and, we have used the approach of Yin and Biiyiik-
tahtakin (2021)) for modeling the risk-averse MSSP. Yin and Biiyiik-
tahtakin (2021)) confirmed that their modeling approach preserves
the time consistency. In other words, our formulation enforces the
time consistency by non-anticipativity constraints.

In case study 1, we examine the total number of new venti-
lators over 90 days for risk-averse decisions where c is equal to
0.8 and 0.95. In Fig. 13, the needed ventilators for risk neutral and
risk-averse decisions are illustrated.
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Table 5
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New ventilators required and the number of non-accepted patients with the risk-neutral and risk-averse policies.

New ventilators required, Mean (SD)

Total non-accepted patients, Mean (SD)  Maximum of non-accepted patients

over scenarios

Risk-averse Policy with ¢ =0.95 710.8 (16.7)
Risk-averse Policy with c=0.8 699.8 (17.2)
Risk-neutral Policy 662.5 (21.2)

3.2 (2.7) 9
43 (2.2) 11
14.8 (7.9) 27

Table 6

New ventilators required and non-accepted patients with the risk-averse, stochastic, and deterministic policies in case study 1.

New Ventilators Required, Mean (SD)

Total non-accepted patients, Mean (SD)  Maximum non-accepted patients over

scenarios
Risk-averse Policy with ¢=0.95 710.8 (16.7) 32 (2.7) 9
Risk-neutral policy by MSSP approach 662.5 (21.2) 14.8 (7.9) 27
Risk neutral policy by two-stage 677.2 (23.7) 15.1 (9.2) 27
stochastic programming approach
Deterministic Policy 619.3 (24.9) 26.2 (15.3) 53

Table 7

New ventilators and nurses required and non-accepted patients with the risk-averse, stochastic, and deterministic policies in case study 2.

New ventilators required, Mean New nurses required, Mean

Total non-accepted patients, Maximum non-accepted

(SD) (SD) Mean (SD) patients over scenarios

Risk-averse Policy with 1541.7 (78.1) 355.1 (14.8) 0.81 (0.22) 2

c=0.95

Risk-neutral policy by MSSP 1498.1 (112.7) 342.5 (26.1) 2.1 (1.01) 5

approach

Risk neutral policy by 1589.4 (128.1) 353.8 (32.9) 2.9 (0.92) 6

two-stage stochastic

programming approach

Deterministic Policy 1382 (189.7) 307.9 (48.1) 16.7 (2.9) 24

—@— Risk-averse Risk-neutral From Table 6, we can see about 2.4% improvement of the MSSP

. 18 in compared with the two-stage stochastic program in terms of
5 15 the total number of new ventilators in case study 1. In addition,
g 3 as shown in Table 7 for case study 2, the improvement of required
> 312 ventilators and nurses are 5.7% and 3.2%, respectively. In the two-
® R stage stochastic model, all allocation and sharing decisions should
g _g' 2 be made at the beginning of the planning horizon. Additionally,
32 6 the poor performance of the deterministic policy is highlighted in
0 o terms of the amount of non-accepted patients in which the aver-
Eé’ § 3 age number of patients is considered instead of stochastic patients’
o number.

> 0
< 0 05 1 15 ) The importance of lead times. Our extensive computational

Lead times coefficient

Fig. 14a. Sensitivity of non-accepted patients to lead-times.

As shown in Fig. 13, the risk management policies call for about
8% more ventilators. However, this comes with the benefit of fewer
non-accepted patients and standard deviation of new ventilators in
practice. CVaR. quantifies the expected value of the worst (1 — «)%
non-accepted patients. If we increase the value of parameter c,
CVaR, accounts for the risk of higher number of non-accepted pa-
tients. As a consequence, larger values for parameter c result in
larger values for CVaR.. Here, we have investigated two values for
¢, including 0.8 and 0.95, in case study 1, and the corresponding
results are reported in Table 5.

Here, we report the new resources allocation as well as the
number of non-accepted patients in both of case study 1 and 2
under risk-averse and risk-neutral policies. Furthermore, we com-
pare our results by the obtained policies from two-stage stochas-
tic programming and deterministic models to highlight the impor-
tance of the uncertainty consideration and multi-stage stochastic
programming approach. In the two-stage stochastic model, all al-
location and sharing decisions should be made at the beginning of
the planning horizon. In Tables 6 and 7, the results related to case
study 1 and 2 are reported, respectively.

experiments indicate that the number of non-accepted patients
is mainly dependent on lead-times in both of risk-neutral and
risk-averse policies. For case study 1, Fig. 14a presents the sen-
sitivity of the average non-accepted patients on lead time val-
ues related to the risk-neutral and risk-averse policies, and
Fig. 14b illustrates the sensitivity of the average cumulative new
ventilators’ requirement on lead time values. In the sensitivity
analysis various multiplier coefficients are considered for lead
times.

As shown in Fig 14, the lead time values has a main neg-
ative impact on the output of resource planning during a pan-
demic in both of risk-averse and risk-neutral policies. However,
presented results show that the risk-averse policy has a more sta-
bility against the increase of lead times in terms of non-accepted
patients amount. If policy makers are able to decrease the lead
time values, the responsiveness of healthcare systems would be
improved during a pandemic.

6.5. The impacts of interventions on resources need

Regarding case study 2, on several occasions, Iranian gover-
nors announced stay-at-home orders aimed to slow the spread of
COVID-19. The policy makers’ orders were effective in reducing
transmissions and can be captured by the reduction in estimated
effective reproduction number of the disease.
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Fig. 14b. Sensitivity of resource allocation to lead-times.

In this part, we investigate the effect of these interventions on
optimal policy and resources need. In particular, we model two
scenarios in which the transmission rate from the considered hori-
zon is 50% higher or lower compared to the observed rate. If in-
terventions were less effective, ventilator and nurse needs derived
from our optimal policy would increase 18% and 12%, respectively.
This is because less effective interventions would result in more in-
fections and, subsequently, a higher demand for resources. On the
other hand, if interventions were more effective, the need for ven-
tilators and nurses from our optimal policy would decrease 7% and
5%, respectively.

7. Managerial insights

To meet potential surges in healthcare resources’ demand un-
der pandemics, our optimization model considers various types of
patients as well as resources (DUR and SER) simultaneously for the
first time in the literature. Further, the model considers the shar-
ing strategy and patients’ transfers to avoid non-accepted patients
as much as possible by using the fewest additional resources. The
presented optimization setting is flexible and applicable for differ-
ent healthcare resources planning problems, which is confirmed by
our computational results for two real examples.

Our empirical results provide insight into how hospitals in dif-
ferent regions could cope with the increase in demand for health-
care resources, which results from local surges in infections during
COVID-19. Based on the computational results, by sharing ventila-
tors among regions of an area of the USA, the average number of
ventilators allocation to regions decreases about 58%. In the sec-
ond case study (hospitals of a healthcare region of Iran), it de-
creases about 17%. The main reason for different significance of
the ventilators sharing strategy between these two cases is that
the infection spreads at varying rates in different regions in case
study 1. Therefore, this provides an opportunity for sharing scarce
resources such as ventilators, which can be transported over large
distances within regions to alleviate capacity shortfalls caused by
an epidemic surge in a region. More importantly, governors and
decision makers have to ‘find’ significantly more ventilators to cope
with the demand in the absence of sharing, which will take time;
several patients don’t have time during pandemics.

Based on our results from solving case study 2, we can find
patients’ transfer as another efficient strategy in reducing the to-
tal required capacity in hospitals. In order to facilitate patients’
transfer between hospitals to manage the healthcare systems’ ca-
pacity, an infrastructure is necessary for transshipping patients be-
tween hospitals in a short time. Since the patients’ transfer has not
any lead time compared with resource transshipments in our case
study, it is more impactful in terms of the minimization of non-
accepted patients (See Table 4). On the other hand, the integrated
use of sharing resources and demand redistribution strategies im-
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prove the required resources about 21% while the improvement
related to the usage of the single resource sharing and patients’
transfer strategy are about 17% and 12%, respectively.

The proposed data-driven decision-making framework can help
decision makers adjust their decisions in real-time based on the
past observation of uncertain parameters and their prior decisions.
We highlight the importance of the information update related the
release time of healthcare resources. In the accessible historical
data, the release time of ventilators used for the COVID-19 pa-
tients follows a log-normal distribution and varies largely in dif-
ferent cases; our data-driven decision-making framework improves
the additional capacity allocation in both case study 1 and 2 by
real-time decisions.

We highlight the significance of the MSSP in compared with de-
terministic and two-stage stochastic programming model. Further,
by developing the risk-averse MSSP with the CVaR of non-accepted
patients instead of its expected value, we investigate the risk-
neutral and risk-averse decision-making in healthcare resources
planning. Our experimental results show that the risk-averse deci-
sions make the expected allocation of additional resources worse,
its standard deviation lower, and reduces the amount of non-
accepted patients in our case studies. Therefore, in many practi-
cal situations, we can increase the robustness of our decisions by
employing a risk-averse objective function.

Finally, interventions like closure of non-essential business,
mask wearing, and social distancing protocols are very effective in
reducing transmissions. Such mandates are captured by consider-
ing different values for the effective reproduction number in our
simulator, and we show these strategies can meaningfully reduce
the required additional resources in hospitals.

8. Conclusion

We introduce a new integrated resource sharing and de-
mand redistribution problem during pandemics. Our optimiza-
tion is applicable for various patient types and required health-
care resources. Under a multi-period setting, an MSSP with non-
anticipativity constraints is developed to obtain the optimal shar-
ing, patients’ transfer, and capacity allocation decisions.

Methodologically, we formulate our problem as a mixed-integer
linear programming model, which is solvable by the CPLEX as a
commercial solver. The real-world applicability of the proposed
MSSP is deeply investigated by two real case studies. A new data-
driven decision-making approach is developed to implement the
decisions made by the MSSP in real-time. This approach enables
decision-makers to employ the data that is realized over time and
to adjust the corresponding decisions in a rolling horizon frame-
work.

In the computational results, we illustrate the validity of our
model and its importance in resource planning during COVID-19
pandemic. Further, the significance of the MSSP is compared with
both deterministic and two-stage stochastic programming models,
data-driven decisions, the sharing of healthcare resources, the de-
mand redistribution, and risk-averse decisions are discussed and
analyzed. Our decision-making framework showcases its capabil-
ities and flexibility with its exceptional performance in reducing
required new healthcare resources during pandemics.

To capture the demand uncertainty and create an efficient sce-
nario tree in our optimization problem, a simulation approach
based on an agent-based continuous-time stochastic model is used
to model the disease spread. Next, by applying the forward sce-
nario tree construction technique, we reduce the scenarios’ num-
ber and convert them into a scenario tree. The efficiency of this
method is confirmed by in-sample and out-of-sample stability
analysis.
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Although our work is motivated by healthcare operations man-
agement under pandemics, our models and insights can also be
applied to other service industries under massive increases in de-
mand. Moreover, this study has a few limitations, which can be
addressed by future researches. In our model, we do not consider
priorities in responding to patients in the case of shortfalls and pa-
tients’ preferences in selecting hospitals.
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