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Abstract: Growing Electric vehicle (EV) ownership leads to an increase in charging stations, which
raises load demand and causes grid outages during peak hours. Microgrids can significantly resolve
these issues in the electrical distribution system by implementing an effective energy management
approach. The suggested hybrid optimization approach aims to provide constant power regardless
of the generation discrepancy and should prevent the early deterioration of the storage devices. This
study suggests using a dynamic control system based on the Fuzzy-Sparrow Search Algorithm (SSA)
to provide a reliable power balance for microgrid (MG) operation. The proposed DC microgrid
integrating renewable energy sources (RES) and battery storage system (BSS) as sources are designed
and evaluated, and the findings are further validated using MATLAB Simulink simulation. In
comparing the hybrid SSA strategy with the most widely used Particle Swarm Optimization (PSO)-
based power management, it was observed that the hybrid SSA approach was superior in terms
of convergence speed and stability. The effectiveness of the given energy management system is
evaluated using two distinct modes, the variation of solar irradiation and the variation of battery state
of charge, ensuring the microgrid’s cost-effective operation. The enhanced response characteristics
indicate that the Fuzzy-SSA can optimise power management of the DC microgrid, making better use
of energy resources. These results show the relevance of algorithm configuration for cost-effective
power management in DC microgrids, as it saves approximately 7.776% in electricity expenses over a
year compared to PSO.

Keywords: microgrid; energy management; fuzzy logic; sparrow search algorithm

1. Introduction

Based on sales, innovation, and environmentally friendly transportation, battery-
powered vehicles began to dominate the automotive industry at the beginning of this
decade. To reduce their carbon footprint and move toward a green economy, nations
worldwide support clean, sustainable transportation. Governments are encouraging the
use of electric vehicles as a step toward a green economy by subsidizing consumer taxes.
The market for electric vehicles is expanding as a result of the significant companies in the
automotive industry concentrating their investments in this sector. Due to the many factors
that encourage EV use, recent business models aim to increase personal mobility, driverless
mobility, vehicle sharing, public transportation, and logistics [1]. Due to the accelerating
environmental impacts and carbon dioxide emissions, several countries have decided to
downsize internal combustion engines and incorporate electric vehicles within a specific
time period in the coming decade. Lack of charging infrastructure, range anxiety, variances
in load, battery cost, non-standardization of charging, and a shortage of public charging
stations are the challenges limiting the market growth of EVs. Harmonizing electric vehicle
charging stations is hampered by using several connections at charging stations [2,3].
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Electric utility providers should be prepared to meet the rising demand from EV
consumers by installing charging infrastructure and increasing energy production. Power
demand will rise during peak hours due to the expansion in EV charging, hence a dynamic
energy management strategy is required to address this issue [4]. A utility’s primary
priorities are to lower operating costs and maintain the stability of the system while it is
in operation. Integrating renewable energy resources into the grid is essential to meeting
energy demand, reducing emissions, and ensuring smooth operations [5]. Microgrids are
being promoted as a solution for energy and environmental disparities. Depending on the
application case, the microgrids can be installed in either grid-tied or islanded mode [6].

Renewable energy sources are unreliable, and the number of EVs that need charging
might change, making energy supply and demand challenging to estimate. Hence, energy
waste or shortages could reduce microgrid reliability. Another problem is making power
management operate well and economically. The power management approach should
consider energy storage, EV charging station energy demands, and renewable energy
production. The strategy for managing power must consider how much energy the EV
charging stations need, how much energy can be stored, and how much renewable energy
can be made. To optimize energy efficiency, sophisticated control systems and algorithms
are required. Researchers have come up with several studies to deal with these problems,
including power management that balances supply and demand and minimizes energy
expenses. This can be implemented with intelligent control systems and predictive models.
Decentralized energy management solutions enhance local energy management. The
central energy management system can adjust its energy management based on energy
demand and supply with real-time feedback from these systems. DC microgrids that
use renewable energy to power EV charging stations and are managed by hybrid energy
management systems might be a sustainable approach to providing energy. Still, modern
control systems and decentralized energy management systems are needed to deal with
the problems and challenges of controlling energy supply and demand and ensuring that
the power management strategy is the best. DC microgrids fuelled by renewable energy
can be efficient and cost-effective through the above objectives.

2. Literature Review

The MG system is an integrated system that combines energy management, efficiency,
reliability, and stability with an autonomous and dynamic communications network [7].
Due to the self-healing capabilities of the microgrid, all of the energy sources will continue
to operate in resilience and coordination despite changes in load demand and sources [8].
One of the benefits of islanded microgrids is that they can be placed in isolated areas
where it is difficult to connect with the utility. Islands are delicate areas; thus, installing an
isolated renewable-based microgrid has significant advantages. It is more environmentally
friendly than fossil fuel-powered cars and energy generation [9]. The microgrids are
divided into AC and DC microgrids based on their operational configuration. Concerning
efficiency, system size, operational control, and cost, a DC microgrid is superior to an AC
microgrid. The overall efficiency rises when fewer power electronic converters are used.
Since a transformer is not necessary with AC/DC converters, the size of the microgrid is
drastically reduced.

In this scenario, microgrids offer a reliable infrastructure for the controlled exchange of
electricity and safe data transfer between the sources and utilities [10–12]. The DC-operated
microgrid has numerous benefits, including delivering high-power energy without needing
reactive power adjustment, no requirement of phase control, lower conversion losses, and
effective control of imbalance conditions [13]. Microgrid energy production may change
due to climatic variations [14]. The energy produced by a PV-integrated microgrid fluc-
tuates according to variations in the amount of sunlight hitting the photovoltaic panels.
Researchers worldwide have developed several control methodologies to ensure an uninter-
rupted power supply and improve microgrid performance [15]. Various control strategies
for microgrid control are currently being studied. The hierarchical, secondary, and droop
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controls are the most widely used among them. Artificial intelligence techniques are the
main focus of recent microgrid research.

Swarm intelligence optimizations are frequently utilized in solving complicated en-
gineering problems due to their high flexibility and efficiency. Swarm intelligence opti-
mization aims to identify the optimum solutions to global optimization situations [16].
The ant colony algorithm and particle swarm optimization, introduced in 1992 and 1996,
respectively, are the most popular swarm intelligence-based algorithms among researchers
worldwide due to their powerful global searching capabilities [17]. Recent years have
seen the introduction of numerous novel algorithms inspired by the behaviour of birds,
insects, and fish. The Sparrow Search Algorithm is a novel, nature-inspired algorithm
developed by Xue et al. in 2020 to address ongoing optimization issues using the behaviour
of sparrows as an inspiration [18]. The SSA has more stability and higher convergence
accuracy compared to other swarm intelligence algorithms [19].

The future power grid scenario relies on electric vehicles. Power quality, voltage
profile, frequency synchronization, and other operational issues are some of the difficulties
associated with EV integration in microgrid systems. The efficient integration of EVs with
microgrids will improve power system flexibility while lowering electricity costs. An
intelligent microgrid energy management system incorporating EV charging will flatten
the load profile, reduce peaks, and increase the use of DERs [20–23]. The authors of [24]
proposed an AC microgrid with load demand-based control and onboard charging with
diesel generators, but conversion and emissions are more significant. Smart charging
and flexible EV charging have been applied with power control in [25,26], where the
difficulties are the conversion phases and overloading. Optimal charging with variable PV
power has been studied in [27]. An energy management system for the home that uses
distributed energy resources and enables battery-powered electric vehicle charging and
discharging was proposed by Anawach Sangswang et al. [28]. The authors of [29] introduce
dynamic simulation optimization of size and achieved suitable system performance based
on PV and Wind Battery as the sources. The authors of [30] introduced a data-driven
model and discussed a grid-connected power management strategy. The authors of [31]
have presented a microgrid topology using PV as the source and built an MPPT and PI-
based charging control. The authors of [32] describe a microgrid with high penetration of
renewable energy sources and management employing hybrid invasive weed optimization
for the most cost-effective charging. The authors of [33] proposed a DC microgrid with
EV charging by coordinating the power flow using fuzzy logic, with PV Battery and Grid
as energy sources. Power management in the variation of solar power and pricing are
discussed. A novel hourly energy supervisory control was analysed in [34] where wind, PV,
and hydrogen energy were considered uncertainties in the solar irradiance. The authors
of [35] proposed an intelligent optimization-based EMS for an islanded DC microgrid. The
authors presented an energy management strategy with hourly variations in wind and
solar irradiance [36]. Most research has focused on AC microgrid integration rather than
DC microgrids with high renewable energy source penetration. The presence of EVs may
affect the management and distribution of energy in the DC microgrid, and the effect of
EVs on hybrid optimization-based EMS has been less investigated. The majority of research
has focused on the efficiency of a specific DC microgrid application and size. The DC
microgrid’s scalability for varied uses and sizes has to be investigated.

A PSO-based fuzzy PI controller, which yields better results compared with a stan-
dalone control approach, was implemented [37,38]. Ahmed Fathy et al. validated that
the Sparrow Search Algorithm outperforms the ant lion optimization, the fuzzy-self adap-
tive particle swarm optimization, and a few other recent swarm intelligence optimization
algorithms, when tested in the microgrid with constant load using the Battery, Microtur-
bine, and PV as sources [39]. This research aims to develop a control that combines the
advantages of SSA and fuzzy logic to manage the DC microgrid, facilitate sustainable
transportation, and use renewable energy sources for EV charging.

The significant contributions of the paper on the mentioned scenario include:



Systems 2023, 11, 273 4 of 20

• Integrating renewable energy systems with electric vehicles can lower harmful emis-
sions and increase resource efficiency by providing energy storage.

• The development of a DC microgrid driven by non-polluting energy sources that are
capable of efficiently and effectively balancing power to satisfy load demand and
charging electric vehicles.

• Combining the advantages of fuzzy logic control with the sparrow search algorithm to de-
termine the optimal microgrid regulation parameters for different environmental scenarios.

• Utilizing intelligent hybrid energy management control effectively to address fluctua-
tions in a microgrid and enable EV charging.

• Power management in the DC bus, irrespective of the variations in the irradiance and
the load uncertainties using hybrid SSA and Fuzzy controller.

The paper is structured as follows; Section 3 depicts the system architecture and
Section 4 discusses the control strategy involved. The simulation is conducted in MAT-
LAB/Simulink, and the results are verified and evaluated in Section 5, which also describes
future scopes.

3. System Architecture

A Photovoltaic solar system, a fuel cell energy system, a battery storage system, and
an electric vehicle charger make up the proposed DC microgrid system under research,
as shown in Figure 1. The solar PV system is a significant contributor to reducing green-
house gas emissions and the cost of electricity. PV is the best option when it comes to
running a self-sufficient grid. PV systems’ energy depends on voltage, irradiance, and
temperature [40]. PV cells are electrical devices that use semiconducting components to
convert solar radiation into electricity [41]. A boost converter connects the PV array to
the DC bus. The peak point of the photovoltaic curve can be used to power a PV system
using a boost converter and a maximum power point tracking algorithm. Researchers
employ a variety of MPPT algorithms to get the most power possible out of photovoltaic
systems [42]. This paper employs Maximum PowerPoint Tracking with an incremental
conductance technique to extract the most power from the specified PV system [43]. The
P-V and I-V characteristics of solar cells for a range of irradiances at T = 25 ◦C are shown in
Figure 2. The DC link voltage stability is the primary goal of the battery storage system.
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Additionally, it maintains the power balance of the microgrid by storing or releasing
surplus or deficit electricity [44]. The battery storage system is powered by a bidirectional
converter, allowing for both charging and discharging, as depicted in Figure 1. The Fuel
Cell (FC) has attracted the interest of industries and academic institutions as a reliable
source of energy since the beginning of this century. FC is gaining popularity across various
industries due to recent technological developments and as a clean energy source. The
advantages of a fuel cell-based energy system are to improve microgrid performance and
encourage hydrogen energy utilization. The fuel cell is an electrochemical cell that uses
hydrogen as fuel and oxygen as an oxidant to produce energy through chemical reactions,
with only water and heat as by-products. The advantage of FC is that it does not require any
moving parts to function. In microgrid operations, FC can substitute for fossil fuel-based
power units. A boost converter connects the fuel cell to the grid [45–47].

4. Control Strategy

The control strategy for the DC microgrid under study is illustrated in Figure 3. The
PV system is considered the primary source and is connected to the DC bus through a
Boost converter [48]. The maximum power is extracted from the solar using the MPPT
based on the incremental conductance algorithm [49]. The Voltage (Vpv) and current (Ipv)
parameters of the PV are taken into consideration, the duty cycle is calculated and fed for
pulse width modulation (PWM) generation, and control signals for the boost converter are
generated [50]. The advantage of the incremental conductance method is that it can trace
the peak power under rapidly changing environmental conditions [51]. The bidirectional
converter and the boost converter that connects the battery and fuel cell are controlled by
a PI-based controller [52]. The system is kept more stable while utilizing the PI control
technique since the error derivative is not used in the event of data noise. It results from
the derivative behaviour in the PI’s input being less sensitive to real and relatively quick
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changes in the system’s state without derivative intervention [53]. The different sources are
operated in a balanced mode during the variations in solar irradiance.
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The fuel cell is connected to the load via a boost converter. The switching signals
for the fuel cell’s DC–DC boost converter are produced by the PWM generator, whose
duty ratio is determined by the PI controller [54]. The reference voltage and load voltage
differences are used in the PI controller feedback loop to calculate the error signal [55].
A DC–DC bidirectional converter should be used to connect the battery source to the
microgrid because they charge and discharge during operation. In order to produce a
switching pulse for the bidirectional converter, the PI controller compares many factors,
such as the current value from the PV boost converter, FC boost converter, and load, to
produce an error signal [56]. The difference in battery current and error signal from the
earlier comparison is fed to the PI controller, which generates the duty ratio and passes
it to the PWM generator to produce the switching signal for the DC–DC bidirectional
converter [57]. The Proportional gain (kp) and Integral gain (ki) values for the PI controller
have been determined using artificial intelligence techniques like fuzzy logic and the
Sparrow search algorithm. Based on the operating conditions, the control logic determines
the direction of energy flow between these components. The global optimality of the fuzzy
controller’s solutions could not be ensured. Fuzzy rules are therefore optimized using SSA
to increase their effectiveness and precision [58]. The optimum solutions are calculated
based on the Hybrid Sparrow search algorithm and are utilized to create the control signal
for the converters [59]. The controller combines the advantages of fuzzy control and SSA.
The schematic representation of the control is shown in Figure 4.



Systems 2023, 11, 273 7 of 20

Systems 2023, 11, x FOR PEER REVIEW 7 of 21 
 

 

their effectiveness and precision [58]. The optimum solutions are calculated based on the 

Hybrid Sparrow search algorithm and are utilized to create the control signal for the con-

verters [59]. The controller combines the advantages of fuzzy control and SSA. The sche-

matic representation of the control is shown in Figure 4. 

 

 

 

 

 

 

Figure 4. Schematic representation of the proposed hybrid SSA control. 

Proposed Intelligent Hybrid Control with Fuzzy and Sparrow Search Algorithm 

The fuzzy logic controller’s rule base is designed to meet a timely and stable state 

response. The fuzzy controller’s output has less fluctuation for slight changes in either 

input, which results in more precise control. The four fundamental components of a fuzzy 

logic controller are fuzzification, fuzzy interface, rule basis, and defuzzification. When de-

signing the fuzzy control, the control variables must be carefully chosen. The error and its 

derivative are considered inputs for fuzzy logic control. The input and output rules are 

defined using the membership functions, although there is no set procedure to be fol-

lowed. Table 1 displays the design of a 7 × 7 rule base. The primary control factors are 

used to identify the variables and their ranges. The fuzzy logic controller is created with 

the help of these control variables. An FLC controller and an FLC rule viewer with mem-

bership functions are shown in Figures 5 and 6, respectively. 

Fuzzification Defuzzification
Fuzzy 

Interface

Fuzzy Rule 
Base

Input Output

Fuzzy Logic Controller
 

Figure 5. Structure of the Fuzzy logic Control. 

Table 1. Rule base for fuzzy logic control. 

Error 
Change in Error 

EL EM ES Z OS OM OL 

Z OL OM OS OS ZO OS ZO 

O1 OS OS OM OS LN EM EM 

O2 OL OM OM OM ZO ES ES 

Fuzzy PI
Controller

Output

SSA 
Tuning 

algorithm

Updated PI Values

Input

Error

+_

Figure 4. Schematic representation of the proposed hybrid SSA control.

Proposed Intelligent Hybrid Control with Fuzzy and Sparrow Search Algorithm

The fuzzy logic controller’s rule base is designed to meet a timely and stable state
response. The fuzzy controller’s output has less fluctuation for slight changes in either
input, which results in more precise control. The four fundamental components of a fuzzy
logic controller are fuzzification, fuzzy interface, rule basis, and defuzzification. When
designing the fuzzy control, the control variables must be carefully chosen. The error and
its derivative are considered inputs for fuzzy logic control. The input and output rules are
defined using the membership functions, although there is no set procedure to be followed.
Table 1 displays the design of a 7 × 7 rule base. The primary control factors are used to
identify the variables and their ranges. The fuzzy logic controller is created with the help
of these control variables. An FLC controller and an FLC rule viewer with membership
functions are shown in Figures 5 and 6, respectively.

Table 1. Rule base for fuzzy logic control.

Error
Change in Error

EL EM ES Z OS OM OL

Z OL OM OS OS ZO OS ZO

O1 OS OS OM OS LN EM EM

O2 OL OM OM OM ZO ES ES

O3 LN EM ES ZO ES OM OL

O4 OM OS OS ZO OS OS OS

O5 OS OS OM OM ZO ES LN

O6 ZO OS OM ZO ES EM LN
O—Positive, E—negative, Z—zero, S—small, M—medium, L—large.
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Xue et al. recently developed the Sparrow Search Algorithm, a unique swarm-based
optimization algorithm, to resolve ongoing optimization issues. The feeding and anti-
predation behaviours of the sparrow population are the basis for SSA optimization. The
foraging role of the sparrow population is used to divide the sparrows into two groups.
Producers (those who gather food from various sources) make up around 75% of the
population, while scroungers (people who obtain food that producers uncover) make up
the remaining 25%. The population of sparrows makes up the SSA’s mathematical model.

A =



a11a12 . . . . . . a1d

a21a22 . . . . . . a2d

.. . . . . . . . . . . . . . . . .
.
.

an1an2 . . . . . . and


(1)

The fitness of the population of sparrows can be calculated as follows:
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T(S) =



t(s 11s12 . . . . . . s1d)

t(s21s22 . . . . . . s2d)

.. . . . . . . . . . . . . . . . .
.
.

t(sn1sn2 . . . . . . snd)


(2)

The following steps are involved in the estimation of the SSA parameters.

1. Step 1

Set the settings for the sparrow population, including the number of sparrows, the
maximum number of iterations, the total number of producers, the alarm value, and the
safety threshold, at random. The ideal answer ought to be shown in the output. In SSA,
randomization is used to initialize the population.

Positionij = Lower Boundj +
(
Upperboundj − Lowerboundj

)
∗ random(i, dimension)

where i is the number of individuals/sparrows in the population, j is the dimension
(1,2,3,4 . . . .), and Positionij is the position of the ith sparrow in the jth position.

2. Step 2

In this phase, check if the current iteration (t < MaxT) is less than the maximum
iteration. If the condition is true, the sparrows will be ranked based on their fitness values.
The current best and worst sparrows will then be identified. The sparrow with the lowest
fitness value is considered the best, while the sparrow with the highest fitness value is
considered the worst, as this is an optimization procedure.

3. Step 3

In this step, the location of the scrounger and the producer are updated in the search
space. The new position of the producer is mathematically given in (3), where A2 is the
alarm value and SF is the safety threshold. The sparrow foraging technique is as follows:
when the sparrow sees a predator, one or more individuals will chirp, and the entire group
will fly away when the chirp value exceeds the threshold value. The producer’s location is
updated in the search space by following the conditions below [60]:

Pt+1
ij =

{
Pt

i,j ∗ exp −i
a∗MaxT , i f (A2 < SF)

Pt
i,j + V ∗ L, i f (A2 ≥ SF)

(3)

If (A2 > SF), there is no predator, and the producer is looking for food. After hearing
the chirp alarm, the population flies to a secure zone when another sparrow spots some
predators [61]. The scrounger’s location is given mathematically in the search area (4).

Pt+1
ij =

 V ∗ exp
xt

worst−xt
i,j

i2 , i f
(
i > n

2
)

pt+1
p +

∣∣∣pt
i,j − pt+1

p

∣∣∣ ∗ E ∗ M, otherwise
(4)

The scroungers’ energy level is assessed. The energy level influences the foraging
method. If (i > n/2) the scroungers leave the area and search for food elsewhere. Otherwise,
scroungers go to the producers and fight for the food.

4. Step 4

The location is updated in the search space, which is also updated. Using the equation
below, we update the position of the sparrow. The following condition is validated and
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the search space’s location is updated [62]. We update the sparrow’s location using the
calculation below.

Pt+1
i,j =


Pt

best + β·
∣∣∣Pt

i,j − Pt
best

∣∣∣, i f qi > qg

Pt
best + T·

( ∣∣∣Pt
i,j−Pt

worst

∣∣∣
( fi− fw)+ε

)
, i f qi > qg

(5)

The following condition is checked. Fitness(present) > Fitnessg(global best), represents
the sparrow at the edge of the group. Here, Xbest indicates the location of the population
and T indicates the sparrow’s travel direction. The fundamental steps of the SSA are
simplified in the flowchart presented in Figure 7.
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5. Results and Simulation

In a microgrid system of solar panels, fuel cells, and batteries, energy was managed
using a hybrid SSA-based control. The suggested control was examined in both of the
microgrid’s operational modes. The two operating circumstances were evaluated. Finding
the optimum solution will require going through several rounds because the process
is both fuzzy- and metaheuristic-based. MATLAB/Simulink was used to develop the
DC microgrid model. The energy sources and power converters were developed using
Simscape in Simulink. Simscape is the physical modelling component in the Simulink
environment, whereas Simulink is a graphical programming environment for modelling,
testing, and evaluating system behaviour. The MATLAB code for SSA was developed,
where the optimal solutions for the kp & ki values of PI controllers were generated and fed
into the Fuzzy logic control. Variations in solar irradiance values and battery SoC values
were used to operate the microgrid in various modes while maintaining the load on a DC
microgrid for EV charging. Results and analysis of hybrid SSA controllers in different cases
are discussed in this section. The parameters of the DC microgrid model developed are
tabulated in Table 2.

Table 2. Simulation Parameters.

Component Parameters Value

Fuel Cell

Number of Cells 65

Nominal Stack Efficiency 55%

Operating Temperature 65 Celsius

Nominal Air Flow Rate 300 Ipm

Nominal Supply Pressure 1.5 bar

Nominal Composition
(H2, O2, H2O) (99, 21, 1)

Fuel Cell Resistance 2.3677 ohms

Nerst Voltage of one Cell 1.2101 V

Stack Power (Maximal) 7000 W

Solar PV

Temperature 25 ◦C

Irradiance 1000

Series Connected Modules Per 8

Power 2000 W

Parallel Strings 1

Open Circuit Voltage 37.3 V

Short Circuit Current 8.15 V

Number of Cells 60

Solar PV Boost Converter

Input Resistance Inductor 12

Input Capacitor 0.48 µF

Input Inductance 1.2 mH

Fuel Cell Boost Converter

Input Resistance 2.36 Ω

Input Capacitor 0.13 µF

Output Capacitor 0.16 µF

Input Inductance 3.6 mH

Bidirectional Converter
Inductance 1.4 µF

Input Capacitor 1.16 mH

Li-ion battery
Capacity 48 Ah

Terminal Voltage 250 V
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Case (i). The effect of the system under solar PV irradiance variation is explained.

Solar irradiation affects PV power. The variation in the output voltage, current, and
power of the sources and the DC bus are shown in Figures 8–10. The solar PV irradiances are
100 W/m2, 800 W/m2, 600 W/m2, and 400 W/m2. The simulation results of the four states
of irradiance variation during system operation are shown in this section. The battery’s
negative power represents charging activity, while its positive power denotes discharging
activity. The SSA-Fuzzy hybrid control produces the best values for the proportional gain
and integral gain, and the duty cycle is produced by feeding the value to the PI controller.
The combined controller maintains the DC Bus voltage at 400 V during the irradiance
change. In Figure 8, the irradiance value is varied at T = 1 s to 800 W/m2.

The fuel cell starts supplying power to the grid, and the battery discharges. At T = 2,
the irradiance value drops to 600 W/m2, the PV power drops to 1000 W, and the fuel
cell and battery power increase, depicting the battery discharging profile. Similarly, the
irradiance values are reduced at T = 3 and T = 4 s. The load power remains constant while
the solar irradiation is changed, as depicted in Figure 10. The gradual increase in the fuel
cell and battery power supply can be seen in maintaining the bus power at 4000 W, keeping
the bus voltage at 400 V and bus current at 10 A. Electric vehicle lithium-ion batteries
are charged using a constant current or constant voltage approach. The battery charger
delivers a constant amount of current to the battery being charged in constant current
mode, regardless of the battery’s voltage level. When a battery is first charged, this mode is
typically used as its voltage gradually rises and its internal resistance falls.

The charger will operate in constant current (CC) mode until the battery voltage
reaches a specific pre-set level. The charger will then enter constant voltage (CV) mode.
The battery receives a constant voltage from the CV mode, which is maintained until the
battery’s current flow reaches a predetermined level, signalling that the battery is fully
charged. The charging current in the CC mode remains constant until the voltage hits a
cut-off voltage. In the CV mode, the voltage remains constant as the current falls. This
procedure is designed to be controlled by a battery management system integrated into the
vehicle battery system. The initial voltage is low when the EV battery starts to charge. If the
charging current is not constant, both the battery and charger lifecycle will be shortened.
The battery charging is unaffected by the change in irradiance at periods 1, 2, 3, and 4. The
battery’s SoC was set to 9, and as shown in Figure 11, the voltage and current profile of the
battery indicates that it is charging as the irradiance changes.
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Case (ii). Stable charging of the EV with variations in the SoC of the storage battery.

The outcomes of testing the DC microgrid’s performance for differences in the battery’s
SoC are shown in Figure 12. Power is absorbed when the reading is positive, whereas
power is exuded when the reading is negative. This simulation demonstrates how the
proposed energy management system influences the behaviour of the DC microgrid when
solar energy is kept constant while the battery soc values are altered. As shown in Figure 13,
the load power is balanced at the required value during variations in the battery SoC at
time period T = 2 s and T = 4 s. The DC bus voltage is regulated at 400 V and the load
draws a current of 10 A. Throughout the irradiance change, the control algorithm keeps the
DC connection voltage at 400 V. In Figure 12, at T = 2 s, the SoC value changes; the fuel cell
begins feeding power to the grid, the battery begins to discharge, and the voltage drops.
At T = 4, when the SoC value reduces further and the battery voltage drops, the fuel cell’s
power output and the battery’s discharge curve increase. While a charger is connected to the
microgrid, the proposed controller’s hybrid energy management strategy helps maintain
the bus power, voltage, and current at constant values. According to Figure 14, the EV
battery is charged without causing any changes in load demand. To assess the effectiveness
of the suggested fuzzy-SSA energy management technique, PSO-based optimisation is
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used. Particle velocities are controlled when individual evolutionary positions are replaced
in PSO, in contrast to conventional evolutionary computation methodologies. It is known
from earlier studies that the PSO, with its coordination of renewable energy sources and
storage devices, is well suited for the real-time operations of microgrids. When it comes to
battery sources, the PSO assists in creating the best charging and discharging schedules,
depending on cost and availability factors. Another virtue is its adaptability and scalability.
Figure 15 shows a comparison of the output response with PSO-based regulation at the
load side. It is evident from the outcome that the hybrid SSA-based optimal solutions are
effective at generating the necessary output in the islanded DC mode. Compared to the
PSO-based EMS, the proposed system’s response exhibits greater steady-state performance
in less operating time with a reduced drop in power.
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Discussion and Implications

In both operating conditions at t = 0–1 s, the total power of the PV system can supply
power to the load as it generates the required amount. The moment t = 1 s in the varying
irradiance condition, the generated PV power is reduced and the Battery and fuel cell
compensates for the required power at the load side. The charging of the EV load is not
interrupted during this variation. In varying SoC condition, the battery power is reduced
at t = 2 s and the FC and PV delivers the required amount of power to the load side. The
voltage is regulated without varying the EV charging while addressing the uncertainties
on the generation side. The load responses of the proposed hybrid SSA and PSO-based
system are compared in Table 3. The maximum output power is harnessed in the hybrid
SSA method compared to PSO. The oscillations are less in hybrid SSA.

Table 3. Load response of the hybrid SSA and PSO.

Optimization Technique Time Period Power (W)

Hybrid SSA
0.4 3900

0.5 3980

PSO
0.4 3800

0.5 3900

Fuzzy logic control with sparrow search algorithms can optimise microgrid control.
However, real-time implementation raises challenges. Real-time data collection and process-
ing are difficult. Load demand and renewable energy data generation might be complicated
and time-sensitive in a dynamic microgrid. Real-time data capture systems are needed to
acquire inputs effortlessly and precisely. Responsiveness without accuracy loss requires
accurate real-time data. Validation of data and processing can be used to find and eliminate
inconsistent data. To deal with data variability, pre-processing techniques like interpolation
and data smoothing can also be used. The accuracy of input variables can be improved by
incorporating redundant sensors or data sources, which can also increase data reliability.
The impact of inaccurate or missing data can be reduced using methods like sensor fusion,
which merges data from various sources. Supervisory learning techniques can be utilized to
improve the data captured. Future research should focus on establishing stable and efficient
real-time data collection systems, optimising the algorithm’s computational efficiency, and
overcoming practical implementation hurdles. Only by overcoming these challenges can
the Fuzzy-SSA algorithm be implemented in real-time microgrid control settings and realise
its potential benefits.

The future scope of the proposed microgrid can include improved decision-making,
car charging, and system efficiency using supervisory learning techniques. Power capacity,
charging infrastructure, and vehicle requirements determine a microgrid’s maximum
charging capacity. Supervisory learning algorithms can analyse power capacity data,
estimate power availability, and efficiently allocate resources. Predictive analytics change
charge rates and schedules based on real-time data to optimise microgrid utilisation without
overwhelming it. The advanced learning-driven demand response programmes motivate
vehicle owners to change their charging patterns to maximise vehicle charging. Machine
learning optimises charging schedules and vehicle-to-grid energy flow using real-time data.

6. Conclusions

Future-oriented sustainable development in the energy sector primarily focuses on
establishing renewable-based microgrid networks with EV connectivity to enable smart grid
environments. This article considered integrating solar PV systems, fuel cells, and battery
energy sources to create an isolated DC microgrid that delivers power to the consumer load
and EV charging. A comprehensive energy management system was developed to address
the challenges of dynamic and unpredictable events. The developed microgrid system was
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analysed at various stages of two scenarios using the proposed hybrid intelligent algorithm.
The suggested hybrid EMS maintains the necessary power balance between the sources
and the storage system for supplying continuous power in light of the experimental data.
The balance of the terminal power of the power components under consideration and
the quick regulation of the DC bus voltage during fluctuations were also tackled. The
resulting findings are examined and validated by comparing them with the PSO-based
energy management strategy.

Further examination demonstrated that the hybrid SSA-based response is effective and
efficient based on a comparison of the results of the hybrid SSA-based control with the PSO-
based control. With fewer voltage drops and transients, the power flow is kept at its rated
value. Further studies should concentrate on determining the fast response characteristics
of the hybrid algorithm for application in AC microgrids and hybrid microgrids and
examining the effect of rapid battery charging and discharging.
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Nomenclature

e Dimension of the problem
n Number of sparrows
T Travel direction of sparrows in range [−1,1]
SF Safety threshold
M Dimension of the matrix in 1 × e
Pij(t) Position of the ith sparrow in jth position.
A2 Alarm range [0,1]
V Random value in normal distribution
a Random value range [0,1]
E Matrix of 1 × e with random elements
qi Sparrow fitness value
qg Best fitness value
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