
Faculty of Health, Science and Technology
Master thesis in Computer Science
Second Cycle, 30 hp (ECTS)
Supervisor: Prof. Javid Taheri, University of Karlstad, Karlstad, SWE <javid.taheri@kau.se>
Examiner: Senior Lecturer Mohammad Rajiullah, University of Karlstad, Karlstad, SWE <mohammad.rajiullah@kau.se>
Karlstad, June 15th, 2023

Predicting resource usage on a
Kubernetes platform using
Machine Learning Methods

Arvid Gördén <arvid@bag.org>

Abstract

Cloud computing and containerization has been on the rise in recent years and have
become important areas of research and development in the field of computer science.
One of the challenges in distributed and cloud computing is to predict the resource
utilization of the nodes that run the applications and services. This is especially
relevant for container-based platforms such as Kubernetes. Predicting the resource
utilization of a Kubernetes cluster can help optimize the performance, reliability, and
cost-effectiveness of the platform.

This thesis focuses on how well different resources in a cluster can be predicted using
machine learning techniques. The approach consists of 3 main steps: data collection,
data extraction and pre-processing, and data analysis. The data collection step involves
stressing the system with a load-generator called Locust and collecting data from
Locust and collecting data from Kubernetes with the use of Prometheus. The data pre-
processing and extraction step involves extracting relevant data and transforming it
into a suitable format for themachine learningmodels. The final step involves applying
different machine learning models to the data and evaluating their accuracy.

The results of this thesis illustrate that machine learning can work well for predicting
resources in a cluster based on how stressed the system is and that the best performing
machine learning model tested was Support Vector Machine with a polynomial
kernel.

Keywords
Master thesis, Kubernetes, scaling, resource management, horizontal pod autoscaler,
vertical scaling, machine learning

ii

Sammanfattning

Cloud computing och containerisering har ökat de senaste åren och har blivit viktiga
områden för forskning och utveckling inom datavetenskap. En av utmaningarna inom
distribuerad och cloud computing är att förutsäga resursutnyttjandet av de noder som
kör applikationerna och tjänsterna. Detta är särskilt relevant för containerbaserade
plattformar som Kubernetes. Att förutsäga resursutnyttjandet av ett Kubernetes-
kluster kan hjälpa med att optimera plattformens prestanda, tillförlitlighet och
kostnadseffektivitet.

Denna avhandling fokuserar på hur väl olika resurser i ett kluster kan förutsägas med
hjälp av
maskininlärningstekniker. Tillvägagångssättet består av 3 huvudsteg: datainsamling,
dataextraktion och för-processering, samt dataanalys. Datainsamlingssteget innebär
att stressa systemet med en load-generator som heter Locust och samla in data från
Locust och även samla in data från Kubernetes med hjälp av Prometheus. Steget för
för-processering och extrahering av data innefattar att extrahera relevant data och
omvandla den till ett lämpligt format förmaskininlärningsmodellerna. Det sista steget
innefattar att tillämpa olika maskininlärningsmodeller på data och utvärdera deras
noggrannhet.

Resultaten av denna avhandling demonstrerar att maskininlärning kan fungera bra för
att förutsäga resurser i ett kluster baserat på hur stressat systemet är och att den bäst
presterandemaskininlärningsmodellen som testades var Support VectorMachinemed
en polynom-kernel.

Nyckelord
Masterarbete, Kubernetes, scaling, resurshantering, horisontell pod autoscaler,
vertikal scaling, maskininlärning

iii

Acknowledgements

I want to express gratitude to my supervisor Javid Taheri at Karlstad University for
his guidance, knowledge, and attitude throughout this whole project. He has been
supportive and uplifting and this thesis would not have been possible without his
knowledge and advice.

I would also like to thank my friend Adam Rubak for being someone to talk to and
bounce ideas with throughout the project.

Finally I would like to thank friends and family who have been supportive and helped
me in stressful times.

iv

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Description . 2
1.3 Research question . 2
1.4 Thesis Goals . 3
1.5 Ethics and Sustainability . 3
1.6 Methodology . 3
1.7 Delimitations . 3
1.8 Outline . 4

2 Background and Related Work 5
2.1 Microservices . 5
2.2 Containerization . 5

2.2.1 Kubernetes . 6
2.3 Vertical and Horizontal scaling . 9
2.4 Google Online Boutique . 9

2.4.1 Locust . 10
2.5 Prometheus . 11
2.6 Libraries . 12
2.7 Machine Learning . 13

2.7.1 Support Vector Machine . 13
2.7.2 Multilayer Perceptron . 13

2.8 Related Work . 13

3 Approach and methodology 15
3.1 Environment . 15

3.1.1 Kubernetes cluster topology . 15
3.1.2 Demo application . 15
3.1.3 Programming environment . 16

3.2 Method and approach . 16
3.2.1 Data collection process . 16
3.2.2 Data pre-processing . 18
3.2.3 Machine Learning . 19
3.2.4 Experiment setup . 21

v

CONTENTS

3.2.5 Limitations . 21

4 Result, evaluation and discussion 22
4.1 Results . 24

4.1.1 Machine learning predictions . 24
4.1.2 Prediction error . 31
4.1.3 Error MSE and 95th percentile 38

4.2 Evaluation and discussion . 43

5 Conclusions and Future Work 45
5.1 Conclusion . 45
5.2 Future Work . 45

References 47

vi

Chapter 1

Introduction

This chapter introduces the project and presents some background on the topic while
also describing the research problem and presenting a research question.

1.1 Background
Microservices is a software architecture that has risen in popularity over the years. It
is a design pattern that splits a complex system into smaller, independent, and loosely
coupled services. Each service handles a specific functionality or domain and interacts
with other services through well-defined interfaces. This way, microservices enable
faster and more reliable delivery of applications, as each service can be developed,
tested, deployed, and scaled independently. Microservices also improve fault tolerance
and resilience of the system, as failures in one service do not affect the whole system.
Containerization is a technology that facilitates the implementation of microservices,
as it allows for creating isolated and lightweight environments for running each service
[8].

Containerization is a way of virtualizing applications so that they run in their own
environments without interfering with each other, but still use the same operating
system resources. A container is like a package that has everything an application
needs to run, such as libraries, data, configuration files, etc [11] [29]. Containerization
differs from virtualization by focusing on the operating system layer instead of the
hardware layer. This means that containers are more lightweight and efficient than
virtual machines. Some examples of technologies that enable containerization and
container management are: Docker, Docker swarm, Kubernetes, Red Hat OpenShift,
etc [29].

Kubernetes allows for autoscaling to be done and this is possibly through the
Horizontal Pod Autoscaler. Scaling in a cloud system can primarily be done by two
methods: 1) Horizontal Scaling. This method involves adding or removing entire
containers or virtual machines. The advantage of this method is that it can handle
large variations in resource demand. The disadvantages are that it is slower because it

1

CHAPTER 1. INTRODUCTION

takes time to deploy a new virtual machine and that the time delay is not consistent. 2)
Vertical Scaling. Thismethod involves changing the size of the existing resources, such
as the CPUormemory allocated to a deployed virtualmachine and allows for faster and
smoother resource control. The drawback of this method is that it has a limited range
of possible control actions [10].

1.2 Problem Description
One of the challenges of developing applications using a microservice architecture is
predicting the number of resources needed for each service. Resources include CPU,
memory, disk space, network bandwidth, etc. If a service needsmore resources, it may
become faster, more responsive, and more successful. On the other hand, if a service
has too many resources, it may waste money and energy.

To address this challenge, somemicroservice architectures use autoscaling techniques
to adjust the resources allocated to each service based on the demand. Autoscaling
can be reactive or proactive. Reactive autoscaling monitors the performance metrics
of each service and scales up or down when a threshold is reached. For example, if
the CPU utilization of a service exceeds 80%, more instances of that service can be
created to handle the load. Reactive autoscaling is simple but may introduce latency
or downtime during scaling operations.

Proactive autoscaling tries to predict the future demand of each service and scales
up or down in advance. For example, if a service expects a surge of traffic during a
particular time of the day, more instances of that service can be created beforehand
to avoid congestion. Proactive autoscaling is more complex but may reduce latency or
downtime during scaling operations [18] [25].

1.3 Research question
Since little of the related work have studied pro-active scaling for vertical scaling one
research question could be:

a) Howwell canmachine learning algorithms be used to accurately predict resource
utilization in a microservice application?

This would give insight to how accurate predictions on the vertically-scalable resources
is and in turn whether or not these predictions could be used for autoscaling.

Another research question would be to examine the amount of datapoints
needed:

b) What fraction of data could be used for training to accurately predict resources?

The answer to this question could give insight to how many training points need to be
considered in order to receive accurate predictions on the resources in a Kubernetes

2

CHAPTER 1. INTRODUCTION

cluster.

1.4 Thesis Goals
This thesis’ purpose is to achieve four main objectives. The first objective is to create
testing scenarios that are reliable and provide good, validated data. Second is to
identify and choose suitable parameters that can deliver the best system performance.
Thirdly is to implement a way of collecting the data from the testing scenarios,
transforming it to an appropriate form and apply machine learning to it. Finally is
to evaluate the training and predictions and compare the machine learning methods
to each other.

1.5 Ethics and Sustainability
Microservices and cloud architecture pose some sustainability challenges that need to
be addressed. For example, microservices may also increase the number of servers,
network traffic, and data transfers required to run an application, which leads to
higher energy consumption and carbon footprint and cloud-architecture often involves
transferring data across long distances and regions, which adds to the energy cost and
environmental impact.

1.6 Methodology
The research methodology of this thesis consisted of conducting literature research to
identify different problems and solutions when scaling in a Kubernetes system but also
to get a clear overview of the research area.

Furthermore, qualitative and quantitative research was conducted. The qualitative
research consisted of learning about the different tools that were used throughout the
project such as Kubernetes system and locust load-testing, and more.

The implementation phase included applying the different tools to obtain some results.
This phase involved running experiments, collecting data, evaluating the data.

The quantitative research consisted of observing and analyzing the data with help of
machine-learning and then evaluating this data.

1.7 Delimitations
The focus of this thesis is to examine how well different machine learning methods
perform when predicting the resource utilization of a Kubernetes cluster and it does
not compare this to any other method of scaling or predicting resources. The thesis
will also not inspect how the predicted results perform in a live system.

3

CHAPTER 1. INTRODUCTION

1.8 Outline
This thesis is structured in 5 chapters. The first chapter introduces the topic
and provides context for the thesis. Chapter 2 provides the necessary background
information about tools, environments, methods and concepts for the rest of the
thesis.

Chapter 3 describes the choices, methods and implementation details of the work that
was done for this project.

In chapter 4 the results from the work performed is presented, evaluated and
discussed.

Finally, chapter 5 summarizes the thesis and suggests future work that can be
done.

4

Chapter 2

Background and Related Work

This chapter presents background and concepts that are relevant for the rest of the
thesis.

2.1 Microservices
The Microservice architecture has risen in popularity over the years and has become
one of the main ways of developing applications. The microservice architecture is
a design pattern that divides an application into smaller, independent, and loosely
coupled services. Each service is responsible for a specific functionality or domain and
communicates with other services through interfaces. The microservice architecture
enables faster development, testing, deployment, and scaling of applications, and also
has improved fault tolerance and resilience [8].

2.2 Containerization
Containerization is a form of virtualization that run applications in an isolated
environment while sharing the hardware resources of the operating system they run
on. A container is a runnable instance of an image that contains all of the requirements
for it to operate such as libraries, data, configuration data, etc [11] [29].

The focus of containerization is to abstract the operating system level instead of
virtualizing the hardware stack by using virtual machines. Some containerization and
container orchestration technologies that exist and are used is: Docker, Docker swarm,
Kubernetes, Red Hat OpenShift, etc [29]. The differences between virtualization and
containerization has been illustrated and can be viewed in figure 2.2.1.

5

CHAPTER 2. BACKGROUND AND RELATEDWORK

Figure 2.2.1: Virtualization compared to containerization

2.2.1 Kubernetes
Kubernetes is a portable, extensible and open-source platform that orchestrates and
manages containers. Some of this orchestration andmanagement involves automating
many manual tasks such as: deploying and scaling containerized applications.
Kubernetes was originally developed by the company Google but in 2015 the project
was donated to the Cloud Native Computing Foundation (CNCF) [9] [26].

Some features and functionality that Kubernetes provides is as follows:

• Service discovery and load balancing: A container in Kubernetes can
be accessed either by its DNS name or by its unique IP address. Kubernetes
provides load balancing and network traffic distribution mechanisms to ensure
the stability of the deployment under high demand.

• Storage orchestration: Kubernetes enables the automatic integration of
various storage solutions, ranging from local devices to public cloud services.

• Automated rollouts and rollbacks: Kubernetes enables you to define the
desired state of your deployed containers and to coordinate the actual state
with the desired state in a controlled manner. For instance, you can instruct
Kubernetes to create new containers for your deployment, to terminate existing
containers and to transfer their resources to the new containers.

• Automatic bin packing: By providing Kubernetes with a cluster of nodes that

6

CHAPTER 2. BACKGROUND AND RELATEDWORK

it can use to run containerized tasks it can be told how much CPU and memory
each container need. Kubernetes then fit the containers to the nodes to make the
best use of the resources.

• Self-healing: Kubernetes guarantees the reliability and availability of
containers by performing various actions based on their status and health. These
actions include restarting failed containers, replacing containers with new ones,
terminating unresponsive containers, and delaying their exposure to clients until
they are fully functional.

• Secret and configurationmanagement: Kubernetes can store and manage
information that is sensitive, such as passwords, OAuth tokens, and SSH keys.
Secrets and application configuration can be deployed and updated without
rebuilding the container images, and without exposing the secrets in the stack
configuration [9].

Figure 2.2.2: A diagram showcasing an overview of a Kubernetes cluster

The Kubernetes architecture is made in such a way that when it is deployed, you get
a cluster, which is demonstrated in figure 2.2.2. A cluster is made up of two different
components, these are nodes and the control plane. The nodes are a set of worker
machines that host and run containerized applications. Each Kubernetes cluster has
at least one worker node. The purpose of the worker nodes is to host Pods, which is
a group of one more containers that have shared storage and network resources. The
cluster’s worker nodes and pods are managed by the control plane, which guarantees
that they properly function and coordinate. When in a production environment, the
control plane is usually run across multiple computers and a cluster usually runs
multiple nodes which provides fault-tolerance and higher availability [9] [11].

The components that build up the control plane can make global decisions about the
cluster and detecting and responding to cluster events. These components can be

7

CHAPTER 2. BACKGROUND AND RELATEDWORK

run anywhere in the cluster but for the sake of simplicity, the set up scripts usually
start all the control plane components on the same machine and they do not run user
containers on this machine. The kube-apiserver is a component that simply exposes
the Kubernetes API and is the main implementation of the API server that serves as
the front end for the control plane. It is designed to scale horizontally. etcd is another
component of the control plane which is a key-value store that is made to be consistent
andhighly-available. It is used as the backing store for all of the cluster data. Thekube-
scheduler component watches for newly created pods that has not yet been assigned
to a node and then assigns it to a node. Several factors are taken into account when a
scheduling decision is made, such as: resource requirements, hardware, software, and
policy constraints, affinity and anti-affinity specifications, data locality, inter-workload
interference, and deadlines. kube-controller-manager runs controller processes.
Controllers in Kubernetes are control loops that watch the state of the cluster and
make or request changes when it is needed. The controllers strive to move the clusters
state closer to a desired state. Each controller is a separate process but all of them
are compiuled into a single binary and are run as a single process, this is to reduce
complexity [9] [23]. Some different types of controllers are:

• Node controller: Notices and responds to when a node goes down.

• Job controller: Watches for job objects(one-off tasks) and creates pods that run
those tasks to completion.

• EndpointSlice controller: Populates EndpointSlice objects (to provide a link
between Services and Pods).

• ServiceAccount controller: Create default ServiceAccounts for new namespaces.

The final component of the control plane is the cloud-controller-manager. Its
purpose is to embed cloud-specific control logic. It lets you link the cluster to a cloud
provider’s API and then separates the components that interactwith the cloudplatform
from those that only interacts with the cluster.

The components for the nodes run on every node and maintains running pods and
provides it with the Kubernetes run-time environment. kubelet is a so called ”node
agent” and it runs on each node in the cluster. Its objective is to make sure that the
containers are running in a pod. Kubelet takes a set of the PodSpecs provided to it
andmakes sure that the containers that are described in the PodSpecs are running and
are healthy. It does not manage containers that have not been created by Kubernetes.
kube-proxy is a network proxy and runs on each node in the cluster and implements
a part of the Kubernetes concept that exposes an application running on a set of pods
as a network service. It maintains network rules on the nodes and the rules allow
communication with the pods from network sessions both inside and outside of the
cluster. Container runtime is the software which is responsible for running the
containers [9].

8

CHAPTER 2. BACKGROUND AND RELATEDWORK

2.3 Vertical and Horizontal scaling
Scaling resources in a cloud system can primarily be done in two ways: 1) Horizontal
Scaling. This is whenwhole containers or virtual machines are allocated or deallocated
and implies that the allocation changes aremade in discrete steps. The benefit of using
this method is that very big changes can be made and thus works over a large range.
The downsides, however, is that it is slower since deploying a new virtual machine
takes time and that time delay can be varying. 2) Vertical Scaling. Thismethod is when
the size of the already allocated resources are changed, for example like changing how
much CPU or memory is allocated to a virtual machine that has already been deployed
and allows for quicker and smoother control of the resources. The downside of this
method is that the range of possible control actions is limited [10].

2.4 Google Online Boutique
The Google online boutique demo application is a web-based e-commerce platform
whose purpose is to showcase the use of themicroservice architecture and cloud-native
technologies. The application consists of a frontend web server that interacts with
multiple back-end services, each of these performs a specific function such as product
catalog, checkout, payment, shipping, recommendation, etc. The application is
designed to be scalable, resilient, and observable, using various tools and frameworks
such as Kubernetes, Istio, Prometheus, Grafana, Jaeger, and OpenTelemetry. The
application can be deployed on different cloud platforms such as Google Cloud
Platform, AmazonWeb Services, andMicrosoft Azure, as well as on-premise or hybrid
environments. The application serves as a realistic example of how to build and operate
a modern e-commerce system using microservices and cloud-native technologies [6].
The different services that make up the Google online boutique demo are:

• frontend: Exposes an HTTP server to serve the website. Does not require
signup or login and generates session IDs for all of the users automatically.

• cartservice: Stores the items in the user’s shopping cart in Redis and retrieves
it.

• productcatalogservice: Provides the list of products from a JSON file and
ability to search products and get individual products.

• currencyservice: Converts one amount of money to another currency. Uses
real values fetched from European Central Bank. It’s the highest QPS service.

• paymentservice: Performs a mock payment with the credit card info and the
amount provided and generates a transaction ID.

• shippingservice: Calculates the shipping cost for the items in the cart and
sends them to a fake address.

• emailservice: Sends a mock email to users confirming their order.

9

CHAPTER 2. BACKGROUND AND RELATEDWORK

• checkoutservice: Retrieves user cart, prepares order and orchestrates the
payment, shipping and the email notification.

• recommendationservice: Recommends other products based on what’s
given in the cart.

• adservice: Provides text ads based on given context words.

• loadgenerator: Continuously sends requests imitating realistic user shopping
flows to the frontend [6].

The architecture and relationship between these services are demonstrated in figure
2.4.1

Figure 2.4.1: Architecture of Google Online Boutique

2.4.1 Locust
Locust is an open-source evaluation and load testing tool for websites. It is based on
Python and is made to be scriptable, scalable and easy to use. Locust allows the user
to simulate a high number of concurrent users and then measures how the application
reacts to the generated traffic. It works by having user behavior defined in Python
code. The user can write their own custom classes that inherit from the Locust class
and can then define tasks that would simulate different actions that can be performed
in the application that is being tested. As an example, a task could be to visit a website
and then fill out a form on the website and then submit it. The user can specify how
often a task should be executed and how many users that should perform each task. A
number of instances of the classes are then spawned by Locust and distributes them
across differentmachines that are available. Locust also has aweb-based user interface
that lets the user monitor and modify the test as it is running. The user can see the

10

CHAPTER 2. BACKGROUND AND RELATEDWORK

test results and statistics in real-time in the browser. Locust can also be run without
the web interface, which makes it convenient for continuous integration and delivery
testing [17] [27].

3 different charts are available to the user in the interface when running a test. These
are total requests per second that both graphs the rate of requests and the rate of
failures with two different curves, Response times (milliseconds) with two different
curves for the median response times and the 95th percentile response times, and
finally the number of simulated users [27].

In Google Online Boutique, the service called loadgenerator is where Locust is
hosted.

2.5 Prometheus
Prometheus is a toolkit for monitoring and alerting systems that is open-source and
free to use. It was created by SoundCloud in 2012 and has been adopted bymany other
companies and organizations. Prometheus is not tied to any specific company and is
developed and maintained by a community of developers and users. To reflect this,
Prometheus became part of the Cloud Native Computing Foundation in 2016 as the
second project to join after Kubernetes [15].

A multi-dimensional data model is provided by Prometheus through collecting data in
the form of time series from different data sources at a set interval and then storing it
locally on a disk where the data is identified by metric name and key/value pairs. This
model is very similar to the way that Kubernetes organizes its metadata. Prometheus
uses a pull strategy overHTTP so that it can collect the real-timemetrics in a time series
database and uses a query language specifically made fro Prometheus called PromQL
[15] [22].

The different types of metrics provided by Prometheus can be divided in 4 different
types:

• Counter: A cumulativemetric that represents a singlemonotonically increasing
counter whose value can only increase or be reset to zero on restart. For
example, you can use a counter to represent the number of requests served, tasks
completed, or errors.

• Gauge: A metric that represents a single numerical value that can arbitrarily go
up and down. Gauges are typically used for measured values like temperatures
or current memory usage, but also ”counts” that can go up and down, like the
number of concurrent requests.

• Histogram: A histogram samples observations (usually things like request
durations or response sizes) and counts them in configurable buckets. It also
provides a sum of all observed values.

11

CHAPTER 2. BACKGROUND AND RELATEDWORK

• Summary: Is similar to the histogrammetric and samples observations. While
it provides a total count of observations and a sum of all observed values, it also
calculates configurable quantiles over a sliding time window [15].

Prometheus promotes a whitebox monitoring
approach which aids in the administration of the internal technicalities about the state
of the microservices. The Prometheus ecosystem mainly consists of five components:
1) The Prometheus server which scrapes metrics from jobs and aggregates and records
numberic time series. 2) Client libraries that matches the applications language. 3)
Alertmanager which manages alert notification, grouping and inhibition. 4) Exporters
that distributes existing metric from the third-party systems. 5) Grafana which can
pull metrics and display so called Dashboards of the metrics [22].

2.6 Libraries
The Kubernetes API is a REST API. All operations and communications between
components, and external user commands are REST API calls which the API Server
handles. Everything on the Kubernets platform is treated as an API object and thus
have an entry in the API. Many client libraries for different languages are available for
the API which handles common tasks such as authentication [1].

Matplotlib is a plotting package for Python that has the capability of generating
quality graphs. The design is made in such a way that both simple and complex plots
can be made with the use of a few commands. It also has capabilities to integrate with
both the Pandas and NumPy libraries [2].

NumPy is a Python package that provides tools for scientific computing and data
analysis and is a fundamental package for working with multidimensional arrays and
matrices. It also offers a wide number of choices of mathematical functions, random
number generators, linear algebra routines, etc. and can be used for image and signal
processing, machine learning, statistics, physics and more [13].

Pandas is a fast, powerful, flexible and easy to use open source data analysis and
manipulation tool, built on top of the Python programming language. It provides data
structures designed to make working with relational or labeled data easy and intuitive.
These data structures are called DataFrame, which is used for 2-dimensional data, and
Series, which is used for 1-dimensional data [3] [16].

Scikit-learn is an open-source machine learning library for Python that includes
algorithms that are based on classification, regression, and clustering and has support
for supervised and unsupervised learning. In addition to its core functionality, it
offers a range of features that support different aspects of the machine learning
workflow, such as data pre-processing, model selection, model evaluation, and more
[19] [20].

12

CHAPTER 2. BACKGROUND AND RELATEDWORK

2.7 Machine Learning
Machine Learning is a branch of artificial intelligence where computers learn from
data without being explicitly programmed. This is done by utilizing algorithms that
iteratively improve the predictions that are made by incorporating feedback from the
data [4]. By extending on classical techniques from statistical modeling, modern
machine learning has become a powerful tool because of the increased volume of
data, exponential growth in computational power and advances in the design of the
algorithms. These algorithms are typically referred to as ”models” and the choice
of model for a problem is based on the characteristics of the dataset and the output
that is desired. Machine learning can usually be divided into supervised learning
and unsupervised learning. Supervised learning is when the model is being given
a collection of input data and the corresponding correct output data. Unsupervised
learning is when the model trains itself on the data provided and tries to find patterns
or structure without any guidance [12].

2.7.1 Support Vector Machine
Support Vector Machine(SVM) is a supervised machine learning model that can be
used for both classification and regression problems. The main idea of SVM for
classification problems is to create a hyperplane between categories that maximizes
the margin between them [5] For regression the idea is similar, however, now what
is being maximized is the amount of points that fit within the margin [28]. SVM can
make use of different so called kernels to fit the data, like linear or different orders of
polynomials [5].

2.7.2 Multilayer Perceptron
Multilayer Perceptron(MLP) is a type of feedforward artificial neural network that can
learn complex functions from input-output pairs. It has multiple layers of nodes, each
with a nonlinear activation function, that connect in a directed graph. The first layer
is the input layer, which receives the input features. The last layer is the output layer,
which produces the output values. Between them, there can be one or more hidden
layers that perform the different computations. To train anMLP, a supervised learning
technique called backpropagation is used. It adjusts theweights andbiases of the nodes
by minimizing the error between the predicted and actual outputs. The error can be
measured by different metrics, such as RMSE. An MLP can handle both linear and
nonlinear data [14].

2.8 Related Work
Previous research done on this topic proposes new AI based models for
autoscaling.

13

CHAPTER 2. BACKGROUND AND RELATEDWORK

One study proposed a proactive framework based on machine learning. The proposed
solution is an autoscaler that scales horizontally. 4 different machine learning models
were compared: ARIMA, LSTM, Bi-LSTM and transformer based models. The
model that performed the best out of all of them was the Informer model which is a
transformer based model [21].

Another paper presents an system that centralizes cluster autoscaling and resource
management. It offers a low-latency automated system for managing containers and
assessing resiliency for dynamic systems. The system predicts the load using a Bi-
LSTM and periodically updates the autoscaling policy for cluster performance. The
system is proactive and performs both horizontal and vertical scaling. The study also
compared 3 different algorithms: ARIMA, Holt Winters and Bi-LSTMwhere Bi-LSTM
performed the best [7].

A third study proposes a proactive horizontal scaling solution that makes use of
different machine learning methods to optimize resources. This is done by calculating
the accuracy of each model and choosing the one with the highest accuracy. 3 models
were used, namely: HTM, LSTM and ARwhere ARwas used themost and LSTM short
thereafter [24].

Many of these studies propose similar solutions and are usually only for horizontal
scaling. Many machine learning methods are also the same, leaving a gap for
examining other models. Usually, only one resource metric is also used for predictions
which is CPUusage. For these studies, the system that is being tested is primarily small
and does not contain several different deployments.

14

Chapter 3

Approach and methodology

In this chapter, the different methodologies and environments that have been used
are described. Furthermore, the implementation of the methods are described in this
chapter.

3.1 Environment

3.1.1 Kubernetes cluster topology
The Kubernetes cluster used during this project was hosted on vSphere that was
running Ubuntu. It consisted of 4 worker nodes and 1 master node. The specifications
for the nodes are presented in Table 3.1.1. The virtual machine running Kubernetes
was available on Karlstad University and could be accessed through the use of VPN
and SSH.

Node CPU Memory SSD

1 8 vCPU 8GB 20GB
2 8 vCPU 8GB 20GB
3 8 vCPU 8GB 20GB
4 8 vCPU 8GB 20GB

Table 3.1.1: Table of the nodes used

3.1.2 Demo application
The demo application that was used for testing and measuring is called Google Online
Boutique and is described more in depth in Chapter 2.4. The services are written in
different programming languages like Python, Go, Java, and Node.js. The primary
objective of the demo application is to showcase how to deploy, test, and monitor a
microservice application with Kubernetes and Google Cloud.

15

CHAPTER 3. APPROACH ANDMETHODOLOGY

3.1.3 Programming environment
Python was the programming language that was chosen for the work of this thesis. The
reason for this choice is that Python is a language that is quite easy to work with and
writing and prototyping code is relatively fast. Furthermore Python has a plethora of
libraries and packages available that can ease and add to development. Many machine
learning libraries are also available for Python which was a contributing factor in the
decision.

The libraries used during the work were:

• requests: a library for sending HTTP requests and handling responses

• numpy: a library for numerical computing and manipulating arrays

• pandas: a library for data analysis and manipulation

• matplotlib: a library for creating plots and visualizations

• kubernetes API: a library for interacting with the Kubernetes cluster
management system

• scikit-learn: a library for machine learning and data mining

A more in-depth description of these libraries can be found in chapter 2.6 For writing
the code, Visual Studio Code (VScode) was used as the integrated development
environment. It is fast and light-weight and has support for many different
programming languages and can run code directly from the program itself. It also
has support for different features like syntax highlighting, debugging, testing version
control, etc. The features of VScode can also be extended through the use of its
extension library.

Jupyter notebook was also used to do calculations and better display the graphs and
tables from packages like pandas andmatplotlib as Jupyter has support for outputting
this directly.

3.2 Method and approach

3.2.1 Data collection process
The collection of the data can be separated into different parts.

Firstly, before swarming the cluster, the Kubernetes API needed to be invoked in
order to make sure that everything is running correctly and/or to make changes to
the cluster.

For theAPI library towork on adifferent system than that onwhich the cluster is hosted
on the kube_config must be loaded into the library. The kube_config file was obtained
by running the command kubectl config view --raw on the systemwhere the cluster
is hosted. This command outputs the kube_config file with the raw authentication

16

CHAPTER 3. APPROACH ANDMETHODOLOGY

tokens. The Kubernetes API, and all other python packages, were installed through
the use of Pythons package manager called PIP.

A python file was created for handling the Kubernetes API communication. Within
this file, two classes were created. One called ”Patcher” whose main objective and
functionality was to perform so called patch operations on Kubernetes objects such
as setting the amount of replicas or setting resources like CPU or Memory limits. The
second class was called ”Reader” whose functionality was to perform ”get” operations
like getting the amount of replicas for one pod or to watch the cluster for changes and
tell the program to halt until a change was made or a change was registered. Both of
these classes needed to load in the kube_config file to be functional.

Secondly, the Locust swarm needed to be started. The Locust web UI has an
internal API that was visible in the network tab when using developer tools in a
browser. This was utilized when making the management of locust swarms available
programmatically. In order for this to work the python requests library was used
which simplifies the usage of HTTP POST and HTTP GET. The class that handled
Locust swarms was called ”LocustManager” and it contained 3 methods, including its
constructor. These were: start_swarm which composed a dictionary containing the
user count, spawn rate, host and total run time for the swarm which it then sent to
Locust with an HTTP POST, download_report which downloaded the results from the
swarm and saved it as an HTML file. This class together with the Patcher and Reader
class was then used in a python file whose purpose was to start new tests and download
the data. Since many tests would be run after each other, blueprints for different
collections of tests were made. These were defined in a YAML-file where the user can
define specifications for patching the Kubernetes cluster and define the specifics for
the locust swarm such as run time, user count and spawn rate. An example:

test_cases:
- k8: {}

locust:
host: http://172.16.19.100:32000
run_time: 181
spawn_rate: 100
user_count: 100

test_number: 0
- k8: {}

locust:
host: http://172.16.19.100:32000
run_time: 181
spawn_rate: 100
user_count: 100

test_number: 1

A pythonmodule for quickly creating blueprints was also created. Which would iterate
over a number of defined user counts and create a blueprint. The run time was

17

CHAPTER 3. APPROACH ANDMETHODOLOGY

calculated by using the formula round(users/locust_spawn_rate) + 180. The 180 is
added to allow the Kubernetes cluster to stabilize.

When a swarming roundwas done running and it had been downloaded theHTML-file
needed to be converted into JSON in order to make the extraction and parsing of the
data easier. The code for this was provided by the project supervisor and it uses etree
from the lxml library for parsing the HTML.

After each swarm, data from Prometheus needed to be collected as well in order to
obtain information onCPUusage, memory usage, network usage, etc. The code for this
was also provided by the supervisor and uses a Python library for Prometheus where
data can be collected by the use of queries with the query language PromQL. The query
results are returned as a dictionary and the results were put in a JSON-file.

3.2.2 Data pre-processing
When the gathering of the data was done the correct data had to be chosen and
extracted, and put into a form that would be of benefit for the machine learning
models.

This was done by loading the JSON-files for each test into a dictionary and placing the
desired points of data into a Pandas dataframe together with the name of the pod and
the user count for that particular swarm. The data points that were extracted:

• CPU usage

• Memory

• Memory Irate

• Network receive

• Network transmit

• Replicas

First, the data from the Locust and Prometheus JSON-files was retrieved. This was
done by loading the JSON into a python dictionary and then searching through the
dictionary for each desiredmetric and creating a new dictionary with all the datapoints
for each metric. The new dictionaries were then converted into Pandas dataframes by
utilizing the from_dict method that is present in the Pandas library. After this, all of
the dataframes with the different metrics were merged into one and user count from
the Locust dictionary was inserted into the dataframe as well.

When this was done a second dataframewasmade that would contain the normed data
points. The normalization method that was used was min-max normalization which
uses the formula: x′ = x − xmin/xmax − xmin, where x′ is the normed value, x is the
actual value, xmin is the minimum value of the data and xmax is the maximum value of
the data. This method of normalization turns the data with the minimum value into 0
and the maximum value into 1 and the rest in between.

18

CHAPTER 3. APPROACH ANDMETHODOLOGY

These were then saved into a CSV-file for quick and easy access at any time.

Before applying machine learning to the data, the pod names needed to be encoded to
a non-string value since the machine learning methods used from scikit-learn cannot
use string values. This was achieved by using the class LabelEncoder which is build
in in scikit-learn and transforms a string into an integer which it can later decode as
well.

3.2.3 Machine Learning
Three different machine learning methods were used and compared to predict
resources. These were:

• Multilayer perceptron

• Support Vector Machine with linear kernel

• Support Vector Machine with polynomial kernel

The rationale behind choosing these is because when using scikit-learn these are quite
easy to train and not that many parameters need to be considered but also because
there is still a gap in the related studies when using machine learning methods.

When using machine learning in this project, the input variable chosen was amount
of users and the features were: CPU, Memory, Memory irate, Network transmit and
Network receive. The reason these were chosen is because they are relevant resources
that could be bottlenecks for different pods. In retrospect, the memory irate feature
could have been ignored as this is a result from a Prometheus query that calculates the
per second rate of change and is not an actual resource in the system.

When training was being done, a unique model was trained for each combination of
feature, pod name, user step and machine learning algorithm. What this means is
that the input would always be user count and the output would be one of the features
mentioned earlier. This was done to achieve a higher accuracy for the models as
this have previously been tested by using all features as output and it had resulted in
abnormally low accuracy. What user stepmeans in this context is that every datapoints
where every 200, 300, 400.. etc. users coincided with the user count would be chosen
as training data. This was done to evaluate how much of the training data would be
needed to be used and stilled achieve good accuracy on the predictions. The different
users steps that were used for training was: 200, 300, 400, 500, 600, 700, 800 ,900,
1000, 2000, and lastly 3000. Tomake this clearer as an example a uniquemodel could
be:

feature: CPU
pod name: frontend
user step: 300
ML algorithm: SVM polynomial

while another could be:

19

CHAPTER 3. APPROACH ANDMETHODOLOGY

feature: Memory
pod name: currencyservice
user step: 200
ML algorithm: SVM linear

The training was done on the normed data and the predicted data was then un-
normalized by using the formula x = x′(xmax − xmin) + xmin.

Hyperparameter tuning

Hyperparameter tuning was performed on each model to find the best training
parameters for that particular data set. The parameter grid used for multilayer
perceptron was:

{
'hidden_layer_sizes': [(50,), (100,), (150,)],
'activation': ['relu','tanh','logistic'],
'alpha': [0.0001, 0.001 ,0.05],

}

and for both kernels for support vector machine it was:

{
"C": [0.01 ,0.1, 0.5, 1,],
"degree": [3, 4, 5]

}

The reason for choosing these hyperparameters for optimization is because these
are the ones that would have the most frequent changes when training different
models. C and alpha are regularization parameters and help with over-and
underfitting. The motive behind choosing a small search space for the different
machine learning algorithms was because of time constraint and resource constraint
based onmy personal computer as hyperparameter tuning became a bottleneck during
training.

The method chosen for hyperparameter tuning was GridSearchCV which chooses a set
of the cartesian product of the hyperparameters and trains, validates and calculates
the accuracy of the chosen set until it finds the most accurate set of parameters.

Error

When measuring the prediction error, 20 random samples from the whole data set
(which includes the training data) was used. The error was simply calculated by
subtracting the predicted value from the actual value.

From these error values, two measures of error were obtained: mean squared
error(MSE) and the 95th percentile. MSE was calculated by taking squaring all of the
errors and getting the average of that.

20

CHAPTER 3. APPROACH ANDMETHODOLOGY

Presenting and visualizing the data

Matplotlib was used for visualizing and plotting the data. Figures for every resource
were created that contained an axes for each pod. Each axes contained different graphs
for every trained model and also the 20 values that had been randomly sampled from
the original data set. The same was done for the graphs that display the error.

3.2.4 Experiment setup
The experiments and collected data went through several iterations before landing on
using 10000 users as maximum and HPA(Horizontal Pod Autoscaler) at 60%.

At first, a lower user count was used as the cluster needed to be provided with more
resources to handle a bigger load. At the start the Kubernetes API was used to scale
CPU and memory resources of the pods, but this was later abandoned as it gave
bad response times and sometimes resulted in pod failures. When HPA was tested,
different thresholds were tested. These were: 20, 30, 40, 50, 60, 70, and 80 percent,
and it was determined that 60% performed the best out of these.

3.2.5 Limitations
The largest limitations on the methodology used was the hyperparameter tuning as
well as training a unique model for every combination as described earlier since this
resulted in training all the models and tuning their hyperparameters took a long
time. The choice of hyperparameters could also be a limitation as choosing more
hyperparameters might have produced better results but at the same time this would
have increased time to train even more.

21

Chapter 4

Result, evaluation and discussion

In this chapter, the various predictions made by the machine learning methods are
presented, analyzed and discussed.

22

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

23

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

4.1 Results

4.1.1 Machine learning predictions

Figure 4.1.1: CPU prediction

24

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

Figure 4.1.2: Memory prediction
25

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

Figure 4.1.3: Mem_irate prediction
26

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

Figure 4.1.4: Network receive prediction
27

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

Figure 4.1.5: Network transmit prediction

28

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

Figures 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.1.5 present the predictions from all the different
models as graphs and the 20 random original points as blue dots. Each models graph
can be identified by looking at the figures’ legends. The title of the figures describe the
resource that was predicted and the y-axis is that resources’ value. The x-axis represent
the user count and the title for each subfigure represent a Kubernetes pod.

29

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

30

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

4.1.2 Prediction error

Figure 4.1.6: CPU error

31

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

Figure 4.1.7: Memory error
32

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

Figure 4.1.8: Mem_irate error
33

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

Figure 4.1.9: Network receive error
34

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

Figure 4.1.10: Network transmit error
35

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

The figures 4.1.6, 4.1.7, 4.1.8, 4.1.9, 4.1.10 demonstrate the error of each models
prediction. The title of each figure describeswhat resource prediction the error belongs
to and the legend identifies each models error as a colored dot.

36

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

37

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

4.1.3 Error MSE and 95th percentile

Figure 4.1.11: CPU error metrics
38

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

Figure 4.1.12: Memory error metrics

39

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

Figure 4.1.13: Mem_irate error metrics

40

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

Figure 4.1.14: Network receive error metrics

41

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

Figure 4.1.15: Network transmit error metrics

42

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

The figures 4.1.11, 4.1.12, 4.1.13, 4.1.14, 4.1.15 contain the mean squared error and 95th
percentile error for all of the predictions made. Each models mean squared error and
95th percentile error are represented as colored dots and can be identified in the legend.
The title of the figures represent the resource that was predicted. The x-axis represent
the user steps that was used to train the models.

4.2 Evaluation and discussion
The results in section 4.1.1 show that SVM linear usually performs quite severely and
themodel is also underfitting. This is made clear in a figure like 4.1.1 where SVM linear
is far off several of the original data points for every pod. There are, however, figures
where it performs better such as 4.1.2 for the frontend and productcatalogservice pod.
The case of themodel performing badly is also supported by the figures in section 4.1.3
where SVM linear has a generally high mean squared error and 95th percentile error.
This is reinforced in a figure like 4.1.11 where, for most pods, SVM linears MSE and
95th percentile error is higher than the other models.

MLP performed relatively well in regard to mean squared error and 95th percentile
error. However, the figures in section 4.1.1 suggest that the model is overfitting. This
is made clear in figure 4.1.1 but even more in figure 4.1.7 where MLP takes statistical
outliers and noise into heavy consideration in pods paymentservice, adservice and
shippingservice. This would explain why it also sometimes outperforms SVM poly in
section 4.1.3.

SVM poly performs the best overall when considering error measurements and
whether or not it is overfitting or underfitting. The figures in section 4.1.1 indicate that
SVM poly has achieved a balance between underfitting and overfitting when compared
to SVM linear and MLP. Although figures such as figure 4.1.1 show that some models
for SVMpoly does not fit the original datapoints particularlywell. The results in section
4.1.3 also show that the model’s error is relatively low.

Combining the results from figures in sections 4.1.2 and 4.1.3 demonstrates that a
lower user step has a smaller error and that going above 1000 user steps gives a higher
error.

The results from the machine learning models suggest that when predicting resource
utilization for Kubernetes, using SVM with a polynomial kernel is a good middle
ground as this provides a lower error while at the same time finding a balance when
fitting the model. MLP could also be used, but as it is overfitted, it may produce
misleading predictions. SVM linear should not be used as the model is underfitted
and also has a high error.

When looking at what user step performed best the discrepancy in lower x-axis in
figures in section 4.1.2 should be addressed. These high errors are most likely a result
of SVM linear underfitting, which can be confirmed by looking at figures in section
4.1.1, where SVM linear usually begins very far down away from the actual values of the

43

CHAPTER 4. RESULT, EVALUATION AND DISCUSSION

data. One can also see a jump in errors at 6000 users. This could result from higher
user steps like 1000, 2000, and 3000 having higher errors. From this, it seems that
the lower user steps are better for training; however, there is no significant change in
mean squared error between 200 and 1000 user steps. This means that any user step
could probably be used between these values and still produce good predictions but
taking more datapoints into consideration is probably better and which is also quite
intuitive.

44

Chapter 5

Conclusions and Future Work

This chapter summarizes the whole of the thesis and presents some suggestions that
could be done for future work on the topic.

5.1 Conclusion
This thesis aimed to evaluate different machine learning methods used on data for
resource utilization in a Kubernetes cluster when putting the cluster under different
loads. This project was done by doing a literature review, setting up the testing
environment in Kubernetes, running experiments, collecting data, extracting and
analyzing data, and learning about different techniques in machine learning.

Data was collected by running different tests with the goal of analyzing the data from
these tests and using it with different machine learning models to predict resource
utilization and then compare these different models to each other. The test results
and the comparison suggest that the best machine learning model out of the 3 was
Support Vector Machine with a polynomial kernel as this provided an excellent middle
ground.

5.2 Future Work
For futurework, there aremany alternatives that could be explored. One such direction
would be to conduct more experiments with a larger number of users to evaluate the
usability and effectiveness of the machine learning methods. This would in turn give
more data for training and more different user steps could be examined.

Another direction would be to extend the machine learning, such as having more data,
more computational power, and more time, to perform more hyperparameter tuning
and optimization of the models so that the under- and overfitting might be fixed.

A third alternative would be to comparemoremachine learningmethods, such as SVM
with a custom kernel or any other type of regression model, to each other and examine

45

CHAPTER 5. CONCLUSIONS AND FUTUREWORK

how those perform.

46

Bibliography

[1] API Overview | Kubernetes. https://kubernetes.io/docs/reference/using-
api/. Accessed: 2023-05-16.

[2] Ari, Niyazi and Ustazhanov, Makhamadsulton. “Matplotlib in python”. In:
(2014). DOI: 10.1109/ICECCO.2014.6997585.

[3] Ashish, Kumar. Mastering Pandas : A Complete Guide to Pandas, From
Installation to Advanced Data Analysis Techniques, 2nd Edition. Packt
Publishing, 2019. ISBN: 9781789343236.

[4] Ayache, Eliot H. and Omand, Conor M. B. Generating Scientific Articles with
Machine Learning. 2022. arXiv: 2203.16569 [cs.LG].

[5] Cervantes, Jair, García-Lamont, Farid, Rodríguez-Mazahua, Lisbeth, andLópez,
Asdrúbal. “A comprehensive survey on support vector machine classification:
Applications, challenges and trends”. In: Neurocomputing (Sept. 2020). DOI:
10.1016/j.neucom.2019.10.118.

[6] GoogleCloudPlatform. microservices-demo: Sample cloud-first application
with 10 microservices showcasing Kubernetes, Istio, and gRPC. https : / /
github.com/GoogleCloudPlatform/microservices-demo. Accessed: 2023-05-
14. 2023.

[7] Hettiarachchi, Lasal Sandeepa, Jayadeva, Senura Vihan, Bandara, Rusiru
Abhisheak Vikum, Palliyaguruge, Dilmi,
Arachchillage, Udara Srimath S.Samaratunge, and Kasthurirathna, Dharshana.
“Expert System for Kubernetes Cluster Autoscaling andResourceManagement.”
In: 2022 4th International Conference on Advancements in Computing (ICAC),
Advancements in Computing (ICAC), 2022 4th International Conference on
(2022). ISSN: 979-8-3503-9809-0.

[8] Khazaei, Hamzeh, Ravichandiran, Rajsimman, Park, Byungchul, Bannazadeh,
Hadi, Tizghadam, Ali, and Leon-Garcia, Alberto. “Elascale: Autoscaling and
Monitoring as a Service.” In: (2017). URL: https://login.bibproxy.kau.se/
login?url=https://search.ebscohost.com/login.aspx?direct=true&db=
edsarx&AN=edsarx.1711.03204&lang=sv&site=eds-live.

[9] Kubernetes Overview. https://kubernetes.io/docs/concepts/overview/.
Accessed: 2023-03-22.

47

https://kubernetes.io/docs/reference/using-api/
https://kubernetes.io/docs/reference/using-api/
https://doi.org/10.1109/ICECCO.2014.6997585
https://arxiv.org/abs/2203.16569
https://doi.org/10.1016/j.neucom.2019.10.118
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://login.bibproxy.kau.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsarx&AN=edsarx.1711.03204&lang=sv&site=eds-live
https://login.bibproxy.kau.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsarx&AN=edsarx.1711.03204&lang=sv&site=eds-live
https://login.bibproxy.kau.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsarx&AN=edsarx.1711.03204&lang=sv&site=eds-live
https://kubernetes.io/docs/concepts/overview/

BIBLIOGRAPHY

[10] Millnert, Victor and Eker, Johan. “HoloScale: horizontal and vertical scaling
of cloud resources”. In: (2020), pp. 196–205. DOI: 10.1109/UCC48980.2020.
00038.

[11] Moravcik, Marek, Kontsek, Martin, Segec, Pavel, and Cymbalak, David.
“Kubernetes - evolution of virtualization.” In: 2022 20th International
Conference on Emerging eLearning Technologies and Applications (ICETA),
Emerging eLearning Technologies and Applications (ICETA), 2022 20th
International Conference on (2022), pp. 454–459. ISSN: 979-8-3503-2033-6.
URL: https : / / login . bibproxy . kau . se / login ? url = https : / / search .
ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.9974681&
lang=sv&site=eds-live.

[12] Nichols, James A., Chan, Hsien W. Herbert, Chan, Hsien W. Herbert, and
Baker, Matthew A. B. “Machine learning: applications of artificial intelligence
to imaging and diagnosis”. In: Biophysical Reviews (Feb. 2019). DOI: 10.1007/
s12551-018-0449-9.

[13] NumPy. https://numpy.org/. Accessed: 2023-05-17.

[14] Obiora, Chibuzor N, Ali, Ahmed, and Hasan, Ali N. “Using the Multilayer
Perceptron (MLP) Model in Predicting the Patterns of Solar Irradiance at
Several Time Intervals”. In: (Jan. 2023). DOI: 10 . 1109 / saupec57889 . 2023 .
10057744.

[15] Overview | Prometheus. https : / / prometheus . io / docs / introduction /
overview/. Accessed: 2023-05-16.

[16] pandas - Python Data Analysis Library. https : / / pandas . pydata . org/.
Accessed: 2023-05-17.

[17] Pradeep, S. and Sharma, Yogesh Kumar. “A Pragmatic Evaluation of Stress
and Performance Testing Technologies for Web Based Applications”. In:
International Conference on Artificial Intelligence (Feb. 2019). DOI: 10.1109/
aicai.2019.8701327.

[18] Rampérez, Víctor, Soriano, Javier, Lizcano, David, and Lara, Juan A. “FLAS: A
combination of proactive and reactive auto-scaling architecture for distributed
services.” In: Future Generation Computer Systems 118 (2021), pp. 56–72.
ISSN: 0167-739X. URL: https : / / login . bibproxy . kau . se / login ? url =
https://search.ebscohost.com/login.aspx?direct=true&db=edselp&
AN=S0167739X20330879&lang=sv&site=eds-live.

[19] Rondon, Carlos VicenteNino,Delgado, ByronMedina, Casadiego, Sergio Castro,
and Rojas, Jorge Gomez. “Computational Learning Models of Scikit-Learn
for Automatic People Identification Integrated in a GUI.” In: 2022 IEEE
XXIX International Conference on Electronics, Electrical Engineering and
Computing (INTERCON), Electronics, Electrical Engineering and Computing
(INTERCON), 2022 IEEE XXIX International Conference on (2022), pp. 1–4.
ISSN: 978-1-6654-8636-1.

48

https://doi.org/10.1109/UCC48980.2020.00038
https://doi.org/10.1109/UCC48980.2020.00038
https://login.bibproxy.kau.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.9974681&lang=sv&site=eds-live
https://login.bibproxy.kau.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.9974681&lang=sv&site=eds-live
https://login.bibproxy.kau.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.9974681&lang=sv&site=eds-live
https://doi.org/10.1007/s12551-018-0449-9
https://doi.org/10.1007/s12551-018-0449-9
https://numpy.org/
https://doi.org/10.1109/saupec57889.2023.10057744
https://doi.org/10.1109/saupec57889.2023.10057744
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://pandas.pydata.org/
https://doi.org/10.1109/aicai.2019.8701327
https://doi.org/10.1109/aicai.2019.8701327
https://login.bibproxy.kau.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edselp&AN=S0167739X20330879&lang=sv&site=eds-live
https://login.bibproxy.kau.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edselp&AN=S0167739X20330879&lang=sv&site=eds-live
https://login.bibproxy.kau.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edselp&AN=S0167739X20330879&lang=sv&site=eds-live

BIBLIOGRAPHY

[20] scikit-learn: machine learning in Python. https : / / scikit - learn . org/.
Accessed: 2023-05-17.

[21] Shim, Simon, Dhokariya, Ankit, Doshi, Devangi, Upadhye, Sarvesh, Patwari,
Varun, and Park, Ji-Yong. “Predictive Auto-scaler for Kubernetes Cloud.” In:
2023 IEEE International Systems Conference (SysCon), Systems Conference
(SysCon), 2023 IEEE International (2023). ISSN: 978-1-6654-3994-7.

[22] Sukhija, Nitin and Bautista, Elizabeth. “Towards a Framework for Monitoring
and Analyzing High Performance Computing Environments Using Kubernetes
andPrometheus”. In:Ubiquitous Intelligence andComputing (Aug. 2019). DOI:
10.1109/smartworld-uic-atc-scalcom-iop-sci.2019.00087.

[23] Todorov, Milen Hrabarov. “Deploying Different Lightweight Kubernetes on
Raspberry Pi Cluster.” In: 2022 30th National Conference with International
Participation (TELECOM), International Participation (TELECOM), 2022
30th National Conference with (2022), pp. 1–4. ISSN: 978-1-6654-8212-7.

[24] Toka, Laszlo, Dobreff, Gergely, Fodor, Balazs, and Sonkoly, Balazs. “Adaptive
AI-based auto-scaling for Kubernetes.” In: 2020 20th IEEE/ACM International
Symposium on Cluster, Cloud
and Internet Computing (CCGRID), Cluster, Cloud and Internet Computing
(CCGRID), 2020 20th IEEE/ACM International Symposium on (2020). ISSN:
978-1-7281-6095-5.

[25] Toka, Laszlo, Dobreff, Gergely, Fodor, Balázs, and Sonkoly, Balazs. “Machine
Learning-Based Scaling Management for Kubernetes Edge Clusters”. In: IEEE
Transactions onNetwork andServiceManagement (Jan. 2021). DOI: 10.1109/
tnsm.2021.3052837.

[26] What is Kubernetes? https://www.redhat.com/en/topics/containers/what-
is-kubernetes. Accessed: 2023-03-22.

[27] What is Locust? — Locust 2.15.1 documentation. https://docs.locust.io/en/
stable/what-is-locust.html. Accessed: 2023-05-15.

[28] Yaqin, Ainul, Rahardi, Majid, Abdulloh, Ferian Fauzi, Kusnawi, Budiprayitno,
Slamet, and Fatonah, Siti. “The Prediction of COVID-19 Pandemic Situation
in Indonesia Using SVR and SIR Algorithm.” In: 2022 6th International
Conference on Information Technology, Information Systems and Electrical
Engineering (ICITISEE), Information Technology, Information Systems and
Electrical Engineering (ICITISEE), 2022 6th International Conference on
(2022). ISSN: 979-8-3503-9961-5.

[29] Zhou, N., Zhou, H., and Hoppe, D. “Containerization for High Performance
Computing Systems: Survey and Prospects.” In: IEEE Transactions on
Software Engineering, Software Engineering, IEEE Transactions on, IIEEE
Trans. Software Eng 49.4 (2023), pp. 2722–2740. ISSN: 0098-5589. URL:
https://login.bibproxy.kau.se/login?url=https://search.ebscohost.

49

https://scikit-learn.org/
https://doi.org/10.1109/smartworld-uic-atc-scalcom-iop-sci.2019.00087
https://doi.org/10.1109/tnsm.2021.3052837
https://doi.org/10.1109/tnsm.2021.3052837
https://www.redhat.com/en/topics/containers/what-is-kubernetes
https://www.redhat.com/en/topics/containers/what-is-kubernetes
https://docs.locust.io/en/stable/what-is-locust.html
https://docs.locust.io/en/stable/what-is-locust.html
https://login.bibproxy.kau.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.9985426&lang=sv&site=eds-live
https://login.bibproxy.kau.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.9985426&lang=sv&site=eds-live

BIBLIOGRAPHY

com/login.aspx?direct=true&db=edseee&AN=edseee.9985426&lang=sv&
site=eds-live.

50

https://login.bibproxy.kau.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.9985426&lang=sv&site=eds-live
https://login.bibproxy.kau.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.9985426&lang=sv&site=eds-live
https://login.bibproxy.kau.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.9985426&lang=sv&site=eds-live

	Introduction
	Background
	Problem Description
	Research question
	Thesis Goals
	Ethics and Sustainability
	Methodology
	Delimitations
	Outline

	Background and Related Work
	Microservices
	Containerization
	Kubernetes

	Vertical and Horizontal scaling
	Google Online Boutique
	Locust

	Prometheus
	Libraries
	Machine Learning
	Support Vector Machine
	Multilayer Perceptron

	Related Work

	Approach and methodology
	Environment
	Kubernetes cluster topology
	Demo application
	Programming environment

	Method and approach
	Data collection process
	Data pre-processing
	Machine Learning
	Experiment setup
	Limitations

	Result, evaluation and discussion
	Results
	Machine learning predictions
	Prediction error
	Error MSE and 95th percentile

	Evaluation and discussion

	Conclusions and Future Work
	Conclusion
	Future Work

	References

