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A B S T R A C T   

In this research, the two-level structure of optimal planning and operation of the energy hub (EH) based on 
demand uncertainty and renewable energy resources (RES) is presented. The optimal planning based on 
stochastic-probability models is presented at the primary and optimal operation based on stochastic-probability 
models is also presented at the secondary level. The proposed method is planned based on the problem-solving 
approach in continuous and discrete space. The optimal planning objectives include determining the optimal 
capacity of EH equipment and minimizing investment costs. Optimal operation objectives are also planned and 
formulated based on minimizing EH operation cost, reducing greenhouse gas emissions, increasing RES utili-
zation based on stochastic-probability modelling, and examining the demand response/integrated demand 
response (DR/IDR) effect. The DR programs implementation causes a reduction of 14.3% of the EH total cost, and 
the IDR programs implementation also causes a reduction of 16.56% of the EH total cost. The use of the proposed 
optimal two-level model, in addition to efficiency in different operation scenarios, has also reduced the calcu-
lation time. The optimization problem is solved based on Mixed Integer Linear Programming (MILP) and Binary 
Real-Coded Hybrid Genetic Algorithm (HRBC-GA).   

1. Introduction 

In recent years, concerns about declining energy reserves have led to 
a greater focus on the efficient use of energy carriers and energy effi-
ciency planning. The integrated use of different energy carriers under 
the concept of EH is an idea that largely responds to the concern of 
increasing energy demand and reducing the level of energy reserves. The 
use of EH ideas has not only improved the optimal distribution of energy 
and power but also increased the security and reliability of energy dis-
tribution systems [1]. The EH consists of various sections such as the 
energy input carrier, coupling section which includes converters and 
energy storage devices as well as energy output carriers section. Since 
different equipment with different characteristics is used in the EH, 
modelling and implementing a multi-carrier energy system will have 
more complexities than single-carrier power supply systems [2]. In the 

input energy section, energy carriers can be divided into two categories. 
Stochastic energy carriers and non-stochastic energy carriers. Stochastic 
energy carriers are like RES (wind and solar). Non-stochastic energy 
carriers are like fossil fuels. Therefore, renewable and non-renewable 
energy carriers are considered EH inputs [3]. In the coupling section, 
converters, different units of electrical, thermal, and cooling storage can 
be used. The coupling section, based on the efficiency of converters and 
energy storage units, is considered an interface between input and 
output carriers. The output of the EH also includes electrical, heating, 
and cooling demand [4]. 

The use of RES has grown significantly in recent decades. RES in-
crease the uncertainty of optimal energy distribution in the EH structure 
due to their probability in power generation and energy production [5, 
6]. Therefore, the use of RES increases the complexity of EH modelling 
and planning [7]. One of the useful and efficient methods in modelling 
RES is the use of probability tools. Algorithms and probability models 

Abbreviations: RES, renewable energy resources; DR/IDR, demand response/integrated demand response; MILP, mixed integer linear programming; EH, energy 
hub; HRBC-GA, hybrid real and binary coded genetic algorithm; EVs, electric vehicles; PDF, probability distribution functions; CHP, combined heat and power; EES, 
electrical energy storage; TES, thermal energy storage; AC, absorption chiller; Tr, transformer; EHP, electric heat pump; EC, electric chiller. 
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Nomenclature 

OMCt,s
E operation and maintenance cost of electrical network and 

power exchange with upstream network ($) 
OMCt,s

RES operation and maintenance cost of RES ($) 
OMCt,s

CHP,B operation and maintenance cost of CHP and Boiler ($) 
OMCt,s

E/Th operation and maintenance cost of electrical and thermal 
storages ($) 

OMCt,s
EM operation and maintenance cost of emissions gas ($) 

OMCt,s
DR/IDR operation and maintenance cost of DR/IDR program ($) 

OMCt,s
UEC operation and maintenance cost of unsupplied energy 

consumers ($) 
OMCt,s

EV operation and maintenance cost of EVs ($) 
TCt,s

EH total cost ($) 
ICOCt,s

EH investment cost and optimal capacity ($) 
OMCt,s

EH operating and maintenance cost ($) 
ICt

Eq equipment investment cost ($) 
ICCt

Eq equipment installation cost based on capacity ($) 
Ir equipment interest rates ($) 
Λgrid− Hub

buy the price of electric power purchased by the hub ($/kW) 

ΛHub− grid
sell the price of electric power sold by the hub ($/kW) 

ΛRES RES generation cost ($/kW) 
Λg natural gas carrier prices ($/kW) 
ΛS

e operation cost of electric energy storage ($/kW) 
ΛS

Th operation cost of thermal energy storage ($/kW) 
Λem emission costs ($/kW) 
ΛDR/IDR

z implementing cost of DR/IDR algorithms ($/kW) 
ΛUEC unsupplied energy of the consumer cost ($/kW) 
ΛHub− EV

sell the selling price of electrical energy from the EH to the EV 
($/kW) 

ΛEV− Hub
buy the purchase price of electrical energy from an EV by an EH 

($/kW) 
ΛOMC

e operating cost due to the implementation of the DR/IDR 
algorithm ($/kW) 

Λbase
e base cost due to the implementation of the DR/IDR 

algorithm ($/kW) 
Pmax,c

Eq maximum equipment installation capacity (kW) 

PInstall,c
Eq equipment installation capacity (kW) 

PHub− grid
e (t, s) the electric power sold by the hub (kW) 

Pgrid− Hub
e (t, s) the electric power purchased by the hub (kW) 

Pt,s
RES(t, s) RES power (kW) 

PCHP
g (t, s) natural gas power required by the CHP unit (kW) 

PB
g (t, s) natural gas power required by the boiler unit (kW) 

PHeater
e (t, s) electric heater power (kW) 

PEHP
c (t, s) electric heat pomp power for cooling (kW) 

PEHP
Th (t, s) electric heat pump power for thermal (kW) 

Pe(t, s) electrical power demand (kW) 
PUEC

e (t, s) unsupplied electrical power (kW) 
PRES

e (t, s) electric power of RES (kW) 
PTh(t, s) thermal power demand (kW) 
PAC

Th (s, t) absorption chiller power (kW) 
Pc(t, s) cooling power demand (kW) 
Pch

E (t, s) charge power of electric storage (kW) 
Pdis

E (t, s) discharge power of electric storage (kW) 
Pch

Th(t, s) charge power of thermal storage (kW) 
Pdis

Th(t, s) discharge power of thermal storage (kW) 

PSh− up
e,Th,c (t, s) electrical, thermal and cooling demand shifted up (kW) 

PSh− down
e,Th,c (t, s) electrical, thermal and cooling demand shifted down 

(kW) 
PUEC(t, s) unsupplied energy of the consumer (kW) 
Pt,s

Hub− EV(t, s) power injected from the EH into the EV (kW) 
Pt,s

EV− Hub(t, s) power injected from an EV into an energy hub (kW) 
Pt,s

EV,ch(t, s) EV charge power (kW) 
Pt,s

EV,dis(t, s) EV discharge power (kW) 

PPr− up,down
e (t, s) participation of electric power in the DR/IDR price- 

based program (kW) 
δmin

E/Th,δ
max
E/Th minimum and maximum charge and discharge index of 

storage units (kW) 
δLoss

E/Th energy loss index of storage units 
bch

E/Th,b
dis
E/Th binary variables related to storage units 

bEHP
h ,bEHP

c binary variables related to EHP 
bSh− up

e ,bSh− down
e binary variables related to DR/DR shifted demand 

bPr− up,bPr− down binary variables related to the DR/IDR price-based 
program 

bT− up
e,Th,c, I

T− down
e,Th,c binary variable related to transmitted electrical, 

thermal and cooling loads 
bInt− up

e.Th.c ,bInt− down
e.Th.c binary variable related to electrical, thermal and 

cooling cut-off loads 
bEq the binary variable in the discrete approach 
bEV binary variable related to EV unit 
bbuy

e ,bsell
e binary variable related to the sale and purchase of 

electrical power 
ηAC

Th− c absorption chiller efficiency (%) 
ηTr

ee transformer efficiency (%) 
ηCon

ee efficiency of converters (%) 
ηEHP

e− Th thermal efficiency of EHP unit (%) 
ηEHP

e− c electric efficiency of EHP unit (%) 
ηCHP

g− Th thermal efficiency of CHP unit (%) 
ηCHP

ge electrical efficiency of CHP unit (%) 
ηB

g− Th thermal efficiency of Boiler unit (%) 
ηHeater

e− Th thermal and electrical efficiency of electric heater unit (%) 
ηEV,ch EV charging efficiency (%) 
ηEV,dis EV discharge efficiency (%) 
ηch

E/Th,ηdis
E/Th charging and discharging efficiency of electrical and 

thermal storage units (%) 
EICHP

em CHP emission index 
EIB

em boiler emission index 
EEV− min,EEV− max charging and discharging range of EV (kWh) 
EVn number of EVs 
ELoss

E/Th(t, s) energy losses in electric and thermal storage units (kWh) 

SOCt,s
EV,ch EV state of charge 

DPR demand participation rate for DR/IDR 
ξup,down DR/IDR algorithm execution coefficient 
C1,C2,C3 load cut-off coefficients 
ρ(s) probability of scenarios 
d(se) days of the season 
hEq equipment lifetime 
t time 
s season 
Δt time changes  
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express the best pattern of renewable resource behaviour [8]. Therefore, 
by using renewable resource probability modelling, EH operators are 
able to provide more accurate and efficient planning of the EH. Electric 
vehicles (EVs) are also a unit whose use has grown significantly in recent 
years. Although EVs play an important role in providing a secure and 
efficient EH structure, the use of this equipment requires careful 
modelling. EVs, like RES, have uncertainties that reduce the reliability 
and security indicators of optimal energy distribution in the structure of 
the EH. Therefore, modelling and considering uncertainties caused by 
RES and EVs are necessary and important. Algorithms and probability 
models can also be used to model EV units [9]. 

One of the most important challenges of EH ideas is energy distri-
bution and optimal planning. As mentioned, because the EH uses 
different equipment with linear, nonlinear, random and probabilistic 
characteristics, modelling the EH is more complex and difficult than 
single-carrier distribution networks [10]. In recent years, the use of 
stochastic-probability algorithms has been considered as an efficient 
tool in modelling the structure of the EH. Stochastic-probabilistic algo-
rithms accurately describe the behaviour of EH actors. Thus, EH oper-
ators are able to obtain an optimal energy planning model. Therefore, 
energy management is one of the most important challenges of the EH. 
EH management and planning is a multidimensional issue. Optimal 
management of EH includes technical, economic and environmental 
dimensions. Therefore, in recent years, the use of different demand-side 
management algorithms and DR programs has grown significantly. DR 
algorithms have highlighted the role of consumers in the mechanism of 
energy distribution systems. Therefore, DR programs and demand-side 
management algorithms play an effective role in providing the 
optimal structure of the energy distribution system [11]. DR programs 
are basically classified into two categories: price-based and 
incentive-based. Because DR programs, in addition to being used in the 
electric carrier sector, can also be used in the thermal and cooling carrier 
sector, the term IDR can be used instead of DR. DR programs generally 
affect customer consumption patterns. Therefore, the effect of DR al-
gorithms on the load curve and reduction of operating costs of the EH 
can be seen [12]. 

Optimal EH scheduling describes a complex nonlinear problem based 
on the presence of stochastic sources, energy storage units, DR / IDR 
programs, operating constraints, various decision variables, as well as 
technical and economic uncertainties. Therefore, choosing a problem- 
solving method is important [13]. 

In this paper, a two-step approach to linearize the problem of 
stochastic-probability optimization as well as the optimal planning and 
operation of EHs based on solving the optimization problem in contin-
uous and discrete space is presented. In this study, optimization algo-
rithms have been programmed at two primary and secondary levels. In 
the primary, optimal planning and determination of the optimal ca-
pacity of EH equipment have been presented. In the secondary, optimal 
operation of EH is provided by considering DR/IDR programs, technical, 
economic and environmental indicators. The proposed model based on 
two approaches of continuous and discrete problem solving space is 
calculated and its results are presented. Providing two spaces for solving 
discrete and continuous problems increases the freedom of action of EH 
users. Therefore, operators can choose EH equipment based on the re-
sults of the continuous problem solving space, or they can plan and 
model the EH equipment based on the security margin obtained in the 
results of the discrete problem solving space. On the other hand, DR/IDR 
programs with the goals of changing the consumption pattern of sub-
scribers, which causes an increase in profit due to the implementation of 
DR/IDR algorithms, as well as improving the load curve profile due to 
changing the consumption pattern of subscribers and reducing invest-
ment and operation costs have been presented. 

1.1. Literature review 

In this section, in addition to reviewing previous research in the field 

of planning and optimal management of multi-carrier energy distribu-
tion systems (EH), the strengths and challenges of various research are 
also expressed. Finally, according to Table 1, a comparison of the pro-
posed method with other research is presented. 

In [14], a multi-carrier distribution model in the microgrid context 
based on DR programs to reduce operating costs and environmental 
hazards due to fossil fuel consumption is presented. The problem model 
is based on technical and environmental uncertainties. The proposed 
method is solved using the Modified Shuffled Frog Leaping Algorithm 
(MSFLA). The DR program model is also based on the TOU method. The 
results of this study show the efficiency of the proposed method in 
different operation scenarios such as reducing operating costs, reducing 
costs due to greenhouse gas emissions and improving the load curve 
based on the implementation of DR programs. The most important 
challenge of this research is the lack of using energy storage devices and 
the effect of these devices on improving the load curve. Although in the 
problem model, the probability algorithm is used to model the behav-
iour of RES, the effect of uncertainty of RES on the proposed method has 
not been investigated. 

In [15], the EH probability model based on considering the uncer-
tainty of power generation sources and EVs is presented. In this study, 
DR programs are proposed to improve the load curve profile based on 
changes in the price of electricity carriers. The proposed method is based 
on robust optimization and is solved using the mixed integer linear 
programming method. In order to validate, the results of this study are 
presented in different scenarios such as the effect of probability loads on 
the optimal distribution of energy and also the effect of the imple-
mentation of the DR programs on the flattening of the load curve. The 
results of this study show the efficiency of the proposed method in the 
face of various uncertainties such as uncertainty of the RES and EVs. The 
most important challenge of this research is the lack of analysis of the 
proposed method on a large scale. The larger the scale of the EH to-
pology, the more indicators and decision-making variables and un-
certainties must be considered in the optimization problem. Another 
challenge of this research is the lack of the DR model for thermal energy 
sectors. 

In [16], the optimal model of EH for a coastal city with economic and 
environmental indicators is presented. In order to reduce the risk in-
dicators of fossil fuels and reduce the cost of greenhouse gas emissions, 
RES provides part of the electrical demand. In this study, the optimi-
zation problem, which includes reducing the cost of operation and 
reducing the cost of greenhouse gas emissions based on the genetic al-
gorithm (GA), has been solved. The results of this study show a signifi-
cant reduction in the annual operating cost of the EH and a reduction in 
the cost of greenhouse gas emissions. The most important challenge of 
this study is the lack of consideration of RES uncertainties. Also, in this 
study, the probability indicators due to changes in energy carrier prices 
and loads have not been considered. 

In [17], a stochastic EH model based on responding to various 
challenges such as energy demand, the uncertainty of RES, electricity 
prices and the interaction of energy carriers with each other is pre-
sented. The probability planning model based on considering DR pro-
grams and reducing greenhouse gas emissions with the aim of reducing 
operating costs is presented. The most important challenge of this 
research is the lack of consideration of stochastic loads and the lack of 
analysing the proposed method on a large scale. 

In [18], a two-level EH control model is presented with the aim of 
reducing operating costs and improving the efficiency of energy distri-
bution networks. At the primary level, optimization goals include 
minimizing the daily costs of energy distribution networks, while at the 
secondary level, goals such as reducing the cost of operating energy and 
also the optimal exchange of power and energy with distribution net-
works and other hubs are considered. In this study, the EH, in addition to 
connecting to other energy distribution networks, is also able to ex-
change power and energy with other hubs. The proposed method is 
based on the nonlinear optimization problem with the Karush – Kuhn – 
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Tucker (KKT) optimization indices. The proposed method is analysed in 
different scenarios in the IEEE 33 network. The challenge of this 
research is the lack of consideration of renewable sources and renewable 
resource probability models. Uncertainties due to technical, economic 
and environmental indicators have not been considered in this study. 

In [19], the day ahead energy planning based on electricity market 
exchange indicators as well as consideration of economic and environ-
mental indicators is presented. The optimal EH model is planned based 
on reducing operating costs and reducing costs due to greenhouse gas 
emissions. The results of this study have been analysed in different 
scenarios and the results of this study show a 22% reduction in the 
operating cost of the EH and a 13% reduction in the greenhouse gas 
emissions cost. The most important challenge of this study is the lack of 
analysis of the probability RES behaviour in the structure of the EH and 
the effect of probability behaviour of these resources on the performance 
of the proposed method. Also, in this study, the uncertainty caused by 
changes in the prices of energy carriers has not been considered in the 
planning of the day ahead. 

In [20], the optimal EH model based on two levels of primary and 
secondary optimization with economic and environmental indicators is 
presented. In this study, the primary objectives are planned based on 
reducing operating costs. The secondary objectives also include 
reducing greenhouse gas emissions, reducing energy losses, and opti-
mizing the capacity and size of energy storage units. The nonlinear 
optimization model is programmed based on the lexicography optimi-
zation method. The proposed model includes uncertainties due to RES 
and the price of electricity carriers. The analysis of the proposed method 
in different scenarios shows the reduction of operating costs, energy 
losses and greenhouse gas emissions. 

In [21], the EH model based on intelligent structure and Lyapunov 
optimization algorithm in three levels of virtual control is presented. 
The proposed model is modelled by considering energy distribution 
constraints, operating constraints, flexible loads, and energy storage 
indices. In this study, flexible loads have been considered as random 
process variables in modelling the optimization problem. In this study, 
part of the energy demand hub is supplied by stochastic (renewable) 
sources. Although the results of this research show the efficiency of the 
proposed method in different operation scenarios, the most important 
challenges of this research are the lack of analysis of resource probability 
behaviour and the lack of analysis of environmental indicators. 

In [22], the intelligent EH structure based on the stochastic 
mixed-integer linear programming (SMILP) method and the goals of 
optimal day-ahead planning as well as increasing the influence of RES in 
the structure of optimal energy distribution are presented. The problem 
of optimization is planned by considering energy market interactions 
and various decision-making indicators, including economic and tech-
nical indicators. Although the results of this study show the efficiency of 
the proposed method in reducing the costs of operating EH and 
increasing the penetration of RES, the most important challenges of this 
study are the lack of analysis of RES stochastic behaviour and the lack of 
analysis the risks of greenhouse gas emissions. 

In [23], optimal EH planning is presented by considering the charge 
and discharge threshold indicators of energy storage units and the 
implementation of DR programs. In this study, by analysing the charge 
and discharge status of energy storage units, the performance planning 
of energy storage units for the next day is presented. The implementa-
tion of DR programs is also planned with the aim of reducing the costs of 
operating the EH and increasing the security and flexibility indicators of 
the EH. The proposed method has been analysed in different operation 
scenarios. The results of this study show the optimal performance of the 
proposed method in short-term planning. The most important challenge 
of this research is the lack of analysis the greenhouse gas emissions risks 
and the costs associated with it. 

In [24], EH planning based on the analysis of uncertainties due to 
RES and EVs with the aim of reducing operating costs and greenhouse 
gas emissions is presented. The proposed method is programmed and Ta
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solved based on the robust mixed-integer linear programming (RMILP) 
method. In this study, uncertainties of EVs and RES have been consid-
ered as random variables in the optimization problem. The proposed 
method has been validated in different scenarios. The results of this 
study show the optimal performance and high efficiency of the proposed 
method in the optimal operation of the EH, taking into account various 
uncertainties. 

1.2. Research challenges 

1 In the structure of the EH, different equipment with different char-
acteristics such as linear, nonlinear, random and probabilistic are 
used. The characteristics of different equipment increase the various 
uncertainties of operation. Therefore, it is necessary to pay attention 
to various uncertainties such as technical, economic and environ-
mental uncertainty for modelling the EH.  

2 The use of RES is a suitable response to the challenges of energy 
systems and the concerns from the reduction of fossil fuel sources. 
However, when using RES, it should be noted that these resources 
have random and probability behaviour. For this reason, RES can be 
called stochastic resources. Therefore, to accurately model the 
behaviour of renewable resources, it is better to use probability tools. 
The probability behaviour of renewable resources and consequently 
its uncertainties are well modelled using probability tools.  

3 Considering that the subscribers in the EH structure have the ability 
to have a direct impact on the performance and optimal operation of 
the EH, therefore, this part of the EH can be used as a suitable op-
portunity to improve the operating conditions of the EH based on DR 
and demand side management programs. Therefore, accurate 
modelling of DR programs based on customer consumption patterns 
is another challenge of the EH. 

4 Since EH optimization problems are generally presented with line-
arization algorithms for simplification, the use of discrete and 
continuous problem-solving environments provides users with a 
more comprehensive view of EH behaviour.  

5 Given that the behaviour of the EH based on various stochastic 
equipment is described, the choice of stochastic-probability optimi-
zation algorithm will bring better performance. It is noteworthy that 
due to the range of stochastic-probability variables of EH, the 
optimal model of EH based on stochastic-probability algorithms has 
more complexities than definite methods. 

1.3. Innovation and objectives 

In this research, a stochastic-probability model based on optimal 
integrated operation and planning of EHs in discrete-continuous space is 
presented in two levels of optimization. At the primary level, the optimal 
EH planning model and the determination of the optimal capacity of the 
EH equipment based on the genetic algorithm (GA) are presented. Then, 
at the secondary level, the optimal operation of the EH is presented. The 
proposed method consists of two DR algorithms and three IDR algo-
rithms. The results of these algorithms are presented in different oper-
ating scenarios. The optimization problem is presented in this study 
based on a multi-objective function. In the optimization problem, the 
reduction of the index due to greenhouse gas emissions has also been 
modelled and formulated. The objective function of the optimization 
problem is planned and formulated based on reducing investment costs 
and reducing the operating cost of the EH. The proposed optimization 
problem, based on the mixed-integer linear programming method, is 
solved by considering different random and probability variables in two 
discrete and continuous spaces, and the results are compared in different 
scenarios. The proposed method is programmed based on increasing the 
use of the RES. Therefore, the probability model of the RES has been 
presented in order to analyse the behaviour of these sources in detail. 
Also in this research, in order to analyse the performance of the pro-
posed method in the face of uncertainties, electrical energy storage and 

probability loads are considered as EVs. EV is considered as a probability 
load at the time of connection to the EH and if it receives energy from the 
EH, and if EV injects power into the EH after connection to the EH, then 
it is considered as the energy storage source in the optimization 
equations. 

Therefore, the main contribution of this article can be categorized 
as follows:  

1 Develop and present the integrated model of optimal operation and 
planning of EHs, taking into account optimization objectives such as 
technical, economic and environmental goals.  

2 Provide a model and optimization platform based on DR and IDR 
algorithms, taking into account uncertainties caused by RES, prob-
ability loads and storage units.  

3 Develop and present the probability optimization model based on 
meta-heuristic algorithms with two problem-solving approaches in 
discrete-continuous space and present an optimal EH model by 
considering nonlinear, stochastic and probability indices. 

1.4. Article structure 

Section 2 presents the modelling, topology, equipment of the EH and 
the optimization problem. Section 3 presents the solution method. In 
Section 4, the results of different operation scenarios are presented along 
with discussion and comparison, and in Section 5, conclusions are 
presented. 

2. Modelling 

2.1. Energy hub equipment and stochastic-probability model of RES and 
EVs 

As shown in Fig. 1, the framework and equipment of the EH are 
presented. In the proposed structure, energy input carriers include an 
electrical network, natural gas network, and RES. Output carriers also 
consist of electrical demand, cooling load, and thermal load. The RES, 
electrical networks, CHP units, and EV’s batteries are responsible for 
electrical demand. While the boiler, CHP unit, electric heater, thermal 
storage, and electric heat pump are responsible for the thermal demand. 
Cooling demand is also provided by an absorption chiller and electric 
heat pump. The equipment model presented in the EH along with the 
equations and constraints of each equipment is in accordance with the 
reference [25] and in this section only the continuous and discrete 
probability model of RES along with the probability and random model 
of EVs are presented. 

2.1.1. Stochastic-probability model of RES 
Power generation by RES is a random process. The random process of 

power generation by RES is due to various conditions such as climate 
change and atmospheric conditions. Therefore, the power generated by 
RES is considered random. Given that the fluctuation of power genera-
tion by RES has a direct impact on the indicators of operation, mainte-
nance and investment costs, accurate modelling of these resources 
behaviour is necessary. Considering the probability behaviour of RES, 
the use of probability algorithms to explain the behaviour of these 
sources is efficient and effective. Therefore, it is important to choose a 
probability model based on the behaviour of RES. In this study, 
considering that the problem-solving space is analysed in two di-
mensions of discrete and continuous, the probability model to describe 
the behaviour of RES based on continuous and discrete probability al-
gorithms is presented. According to Fig. 2, the probability distribution 
functions (PDF) of beta (β), gamma (Γ) and beta-binomial distribution 
are presented to describe the continuous and discrete behaviour of RES 
[25]. The beta-binomial distribution probability function is a discrete 
probability distribution function with finite value support. According to 
Fig. 3, the beta and gamma probability distribution functions are 
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amongst the continuous probability distribution functions based on the 
limited support interval. 

Equations describing the probability behaviour of RES are equal to 
[25]: 

f(x|n, α, β) =
∫ 1

0
Bin(x|n, p)Beta(p|α, β)dp =

(
n
x

)
(B(x + α, n − x + β))

B(α, β)
(1)  

f(x, α, β) = 1
B(α, β)

xα− 1.(1 − x)β− 1

⃒
⃒
⃒
⃒
⃒
⃒
⃒

B=Γ(α+β)
Γ(α,β)

(2) 

Eq. (1) is a beta-binomial discrete probability distribution function 
based on a rewritten continuous beta probability distribution function. 
Eq. (2) also presents the beta continuous probability distribution func-
tion based on the gamma probability distribution function. Indicators x,
α, β are considered as decision variables in the random process and 
describe the behaviour of RES. In this study, wind and solar energy 

sources are considered as RES. The behaviour of wind and solar sources 
can be described according to Figs. 2 and 3 and Eqs. (1) and (2). 

2.1.2. Stochastic -probability model of EVs 
In the last decade, the use of EVs has increased dramatically. Due to 

the fact that the consumption of fossil fuels by cars have number of 
environmental hazards, EVs are a suitable alternative to diesel vehicles. 
Due to the change in the structure of electrical networks from the 
traditional framework to the modern framework, conditions have been 
provided for subscribers and consumers of energy (especially electricity) 
to become one of the actors and decision-makers in the energy industry. 
Therefore, by using demand-side management and DR algorithms, 
subscribers have the opportunity to play an important role in the 
optimal operation of the energy distribution system. EVs, due to their 
technical characteristics, have the ability to participate in DR programs. 
But it is important to note that in modelling of EVs, their operating 
conditions and performance must also be considered. There are two 
modes of operation of EV units. The first case is when the EV is con-
nected to the EH and receives electrical power from the hub. In this case, 
the EV model is considered in the operating equations as the electric 

Fig. 1. Framework and structure of the EH.  

Fig. 2. Beta-binomial distribution probability distribution function.  Fig. 3. Beta probability distribution function.  
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demand model. In the second mode, the EV connects to the EH and in-
jects the energy stored in the batteries into the EH. In the case of EVs, in 
the operating equations, it is considered as a supplier of electrical en-
ergy. Therefore, the most efficient tool for modelling EVs is the use of 
stochastic-probability models and algorithms. In modelling EVs, the 
normal probability distribution function and its different types are used. 
This function describes and models the behaviour of EVs [25,26]. 

To model EV units, three models of EV behaviour are modelled.  

1 EV connection time to EH and start charging or discharging process 
of battery (ta)  

2 The distance travelled by the EV unit in 24 h (dh)  
3 EV disconnection time from EH and finish charging or discharging 

process of battery (td) 

Therefore, according to Fig. 4 (a - c), the behaviour and performance 
of EVs can be expressed according to the normal probability distribution 
function and its generalized types. Eqs. (3) to (5) express the connection 
time, the distance travelled, and the disconnection time of the EV unit 
from the EH, respectively. Table 2 also shows stochastic iterative anal-
ysis to determine indicators appropriate to the behaviour of EVs. 

PDF
(
fta (t)

)
=

1
σta

(

1 + kta

(
d − μta

)

σta

)−

(

1+ 1
kta

)

.e
−

(

1+kta
(d− μta )

σta

)−

(

1
kta

)

, t > 0

(3)   

PDF
(
fdh (t)

)
=

1
σdh

(

1+ kdh

(
d − μdh

)

σdh

)−

(

1+ 1
kdh

)

.e
−

(

1+kdh
(d− μdh )

σdh

)−

(

1
kdh

)

, t> 0

(4)  

PDF
(
ftd (t)

)
=

β
α

( t
α

)(β− 1)
.e

−

(
t
α

)β

, t > 0 (5)  

2.2. Problem modelling of optimal energy hub planning and operation 

In this section, the two-level objective function of the optimization 
problem at the two levels of optimal energy planning and operation- 
maintenance of the EH is presented. At the first level, which includes 
the EH planning section, the main objectives include determining the 
optimal equipment capacity and reducing investment costs. In the sec-
ond level of the objective function, the optimal operation and mainte-
nance of the EH based on the uncertainty of RES and EV units are 
expressed. In this section, DR algorithms are modelled along with eco-
nomic and environmental indicators. The optimization problem is 
planned and designed based on the MILP method [17]. Eq. (6) shows the 
two-level objective function of the optimization problem. 

min : TCt,s
EH = ICOCt,s

EH + OMCt,s
EH (6)  

2.2.1. Optimal energy hub planning problem model 
Eqs. (7) to (9) show the first level of the objective function and the 

optimal planning problem. In this section, EH planning is programed 
based on the optimal capacity of the equipment and the minimum in-
vestment cost. The investment cost includes various equipment, topol-
ogy and structure of the EH. Eq. (7) shows the investment cost. It also 
expresses the investment cost of EH equipment based on the capacity of 
each equipment. Due to the fact that the optimal values of the capacity 
of the EH equipment are determined in the optimal planning problem, 
therefore, to solve the discrete space problem, Eq. (8), which is based on 
the binary index bEq, has been used [27]. Eq. (9) also shows the range of 
the binary index of discrete space. 

ICOCt,s
EH =

∑Eq

Eq=1

Ir(1 + Ir)hEq

(1 + Ir)hEq − 1
.ICt

Eq (7)  

ICt
Eq = ICCt

EqPmax,c
Eq

⃒
⃒
⃒
⃒
⃒
⃒Pmax,c

Eq =
∑C

c=1
PInstall,c

Eq .bEq

(8)  

0 ≤
∑C

c=1
bEq ≤ 1 (9)  

2.2.2. Optimal energy hub operation problem model 
Optimal operation of the EH is a multidimensional technical, eco-

nomic and environmental issue. In this study, three basic technical, 
economic and environmental indicators in the optimization of EH 
operation have been considered. The model of the optimal operation of 
the EH problem is planned over a period of one year [28]. Eq. (10) shows 
the objective function of the EH optimal operation.   

Fig. 4. Describing the behaviour of EV units based on the normal probability 
distribution function [24,25]. 

Table 2 
Parameters of normal distribution functions and proposed distribution functions 
[25,26].  

Parameter Normal distribution Proposed distribution 

(td) μNtd = 7.4843
σNtd = 0.4317 

α = 7.6745
β = 21.3812 

(dh) μNdh
= 21.4150

σNdh = 8.5871 
kdh = − 0.0523
μNdh

= 17.6568
σNdh = 7.1222 

(ta) μNta = 17.7170
σNta = 1.0138 

kta = − 0.0607
μNta = 17.27
σNta = 0.8483  
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OMCt,s
E =

(
Λgrid− Hub

buy .Pgrid− Hub
e (t, s) − ΛHub− grid

sell .PHub− grid
e (t, s)

)t,s

Δt
(11)  

OMCt,s
RES = (ΛRES × Pt,s

RES(t, s))
t,s
Δt

(12)  

OMCt,s
CHP,B =

(
Λg.PCHP

g (t, s) + Λg.PB
g (t, s)

)t,s

Δt
(13)  

OMCt,s
E/Th = ΛS

e

(
Pch

E (t, s) + Pdis
E (t, s)

)t,s
Δt
+ ΛS

Th

(
Pch

Th(t, s) + Pdis
Th (t, s)

)t,s
Δt

(14)  

OMCt,s
EM =

∑EM

em=1

(
ΛemEICHP

em .PCHP
g + ΛemEIB

em.P
B
g

)t,s

Δt
(15)  

OMCt,s
DR/IDR = ΛDR/IDR

z

(
PSh− up

e,Th,c (t, s) + PSh− down
e,Th,c (t, s)

)t,s

Δt
(16)  

OMCt,s
UEC = (ΛUEC.PUEC(t, s))t,s

Δt
(17)   

Where ρ(s)and d(se) show the probability of different scenarios as 
well as the days of each season. Eq. (11) shows the interaction of the EH 
and the electricity distribution network based on electricity market in-
dicators. Eq. (12) shows the operation cost of RES based on the uncer-
tainty of power generation of these resources. Eq. (13) shows the 
operation cost of CHP and boiler units based on the power of these two 
units and their natural gas capacity. Eq. (14) shows the operating cost of 
electrical and thermal energy storage units. Eq. (15) presents the emis-
sion cost of greenhouse gases based on three hazardous gases (NOx, CO2 
and SO2). Eq. (16) presents the implementing algorithm of the DR 
program for electrical, thermal and cooling demand. If the candidate 
subscribers do not implement DR programs, the penalty factor for the 
subscribers will be considered by the EH operator [29]. Eq. (17) shows 
the cost of unsupply of subscribers’ demand and the penalty of unsupply 
of demand. Eq. (18) also shows the operation cost of the EV as well as the 
interaction with the EH based on electricity market indicators. Accord-
ing to Eq. (18), the operating conditions of EVs can be expressed ac-
cording to the following equations. 

Et,s
EV =

(

ηEV,chPt,s
EV,ch(t, s) −

Pt,s
EV,dis(t, s)
ηEV,dis

)

+ Et− 1,s
EV (18–1)  

EEV − min ≤ Et,s
EV ≤ EEV − max (18–2)  

Pt,s
Hub− EV(t, s) = EEV − max,∀t = DT (18–3)  

Pt,s
EV,ch = Pt,s

Hub− EV (t, s) (18–4)  

Pt,s
EV,dis = Pt,s

EV − Hub(t, s) (18–5)  

SOCt,s
min ≤ SOCt,s

EV,ch ≤ SOCt,s
max,∀t = AT (18–6)  

Pt,s
EV − min(t, s).bEV ≤ Pt,s

EV,ch(t, s) ≤ Pt,s
EV − max(t, s).bEV (18–7)  

Pt,s
EV − min(t, s).bEV ≤ Pt,s

EV,dis ≤ Pt,s
EV− max(t, s).bEV (18–8)  

0 ≤ bEV ≤ 1, (18–9) 

Eq. (18–1) shows the charge status of EVs batteries in different sce-
narios, seasons and times. Eq. (18–2) describes the EVs battery charge 
range. Eq. (18–3) describes the reliability index for disconnection and 
exit of EV units from the parking lot at full charge and Td time. Eqs. 
(18–4) and (18–5) describe the interactions of EVs and EHs based on 
electricity market indicators. Eq. (18–6) describes the initial charge 
amount of EVs connected to the EH. Eqs. (18–7), (18–8) and (18–9) 
show the battery charge and discharge constraints and the binary index 
of EV units based on the problem-solving approach in discrete space. 

2.2.3. Constraints on the two-level problem of optimal energy hub planning 
and operation 

In this section, two-level constraints on the planning and optimal 

operation of EHs due to restrictions on the exchange and supply of en-
ergy in both electricity and natural gas, as well as the limitations of 
energy storage units are stated. 

2.2.3.1. Energy exchange and supply constraints. In the electrical sector, 
the operation problem is planned in such a way that the energy exchange 
between the EH and the electricity distribution network is bidirectional. 
This is while the operation model between the natural gas network and 
the EH is considered unidirectional from the natural gas network to the 
EH [29]. Eqs. (19) and (20) show the constraints of electrical power 
exchange between the EH and the electrical network based on electricity 
market indicators. Eq. (21) shows that the EH is not able to inject and 
absorb power from the electrical network at the same time. Eq. (22) also 
shows the natural gas supply constraints. 

Pe− min(t, s).bbuy
e ≤ Pgrid− Hub

e (t, s) ≤ Pe− max(t, s).bbuy
e (19)  

Pe− min(t, s).bsell
e ≤ PHub− grid

e (t, s) ≤ Pe− max(t, s).bsell
e (20)  

0 ≤ bbuy
e + bsell

e ≤ 1 (21)  

Pg− min ≤ PCHP,B
g (t, s) ≤ Pg− max (22)  

2.2.3.2. Energy constraints of electrical and thermal storage units. Eq. (23) 
describes the constraints of energy and the energy stored at different 
hours of operation. This equation is designed based on three indicators 
of charge, discharge and energy loss of electrical and thermal energy 
storage units [30]. Eqs. (24) and (25) show the power rate of energy 
storage units in the first and last hour of operation. Eq. (26) shows the 
energy loss constraints of an energy storage unit. Eq. (27) describes the 
minimum and maximum storage intervals of ES units. Eqs. (28) and (29) 
describe the minimum and maximum charge and discharge limits of 

OMCt,s
EH =

∑S

s=1
ρ(s).

∑Se

se=1
d(se).

∑T=24

t=1

[
OMCt,s

E +OMCt,s
RES +OMCt,s

CHP,B +OMCt,s
E/TES +OMCt,s

EM +OMCt,s
DR/IDR +OMCt,s

UEC +OMCt,s
EV

]
(10)   

OMCt,s
EV = min

∑S

s=1
ρ(s)

∑N

n=1
EVn

{
∑T=24

t=1
ΛHub− EV

sell .Pt,s
Hub− EV(t, s) − ΛEV− Hub

buy .Pt,s
EV− Hub(t, s))

t,s
Δt

}

(18)   
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energy storage units. Eq. (30) also shows that energy storage units are 
not able to charge and discharge simultaneously. 

ES
E/TES(t, s) = ES

E/Th(t − 1, s) + Pch
E/Th(t, s).ηch

E/Th −

(
Pdis

E/Th(t, s)
ηdis

E/Th
+ELoss

E/Th(t, s)

)

(23)  

ES
E/Th(t, s) = δmin

E/Th.P
max
E/Th∀t, s = 0 (24)  

ES
E/Th(t, s) = δmax

E/Th.P
max
E/Th∀t, s = 24 (25)  

ELoss
E/Th(t, s) = δLoss

E/Th.E
S
E/Th(t, s) (26)  

δmin
E/Th.P

max
E/Th ≤ ES

E/Th(t, s) ≤ δmax
E/Th.P

max
E/Th (27)  

δmin,ch
E/Th .Pmax

E/Th.b
ch
E/Th ≤ Pch

E/Th(t, s) ≤ δmax,ch
E/Th .Pmax

E/Th.b
ch
E/Th (28)  

δmin,ch
E/Th .Pmax

E/Th.b
dis
E/Th ≤ Pdis

E/Th(t, s) ≤ δmax,dis
E/Th .Pmax

E/Th.b
dis
E/Th (29)  

0 ≤ bch
E/Th + bdis

E/Th ≤ 1 (30)  

2.2.3.3. Power and energy balance constraints. Eqs. (31) to (33) show the 
power and energy balance in the EH structure based on different sce-
narios and time intervals. The stated equations show that with the 
implementation of DR programs, the energy injected into the EH by the 
energy storage units and the reduction of loads are not considered as 
power generation [30]. These two factors only compensate for the lack 
of power caused by inequality in energy generation and consumption. 
While increasing load at off-peak times, or charging energy storage units 
at off-peak times, are modelled as load consumption.   

Pc(t, s) + PSh− up
c (t, s) = ηAC

Th− cPAC
Th (t, s) + PEHP

c (t, s) + PSh− down
c (t, s) (33)  

2.2.3.4. Constraints of equipment and structure of energy hub. Eqs. (34) to 
(42) describe the operating constraints of various EH equipment such as 
the power purchased and sold to the electrical network, the constraints 
of CHP unit, boiler, absorption chiller, electric heat pump and electric 
heater [29,30]. 

0 ≤ ηTr
ee Pgrid− Hub

e (t, s) +
PHub− grid

e (t, s)
ηTr

ee
≤ PTr

max (34)  

0 ≤ ηCHP
ge .PCHP

g (t, s) ≤ PCHP
max (35)  

0 ≤ ηCHP
g− ThPCHP

g (t, s) ≤ PCHP
max (36)  

0 ≤ ηB
g− ThPB

g (t, s) ≤ PB
max (37)  

0 ≤ ηAC
Th− cP

AC
Th (t, s) ≤ PAC

max (38)  

0 ≤ PEHP
Th (t, s) ≤ ηEHP

Th .PEHP
max .b

EHP
Th (39)  

0 ≤ PEHP
c (t, s) ≤ ηEHP

c .PEHP
max .b

EHP
c (40)  

0 ≤ bEHP
h + bEHP

c ≤ 1 (41)  

0 ≤ ηHeater
e− Th .PHeater

e (t, s) ≤ PHeater
max (42)  

2.3. DR / IDR programs algorithms and modelling 

As mentioned, subscribers and consumers in multi-energy systems 
are effective actors in the optimal operation and distribution of energy. 
In this section, algorithms and modelling of DR and IDR programs are 
presented [31]. DR algorithms are presented based on two formats: 
technical (shiftable demand) and economic (price-based). IDR algo-
rithms are also based on the three formats of shiftable loads, fixed time 
range transferable loads and interruptible (cut-off) loads. Therefore, the 
equations of the DR and IDR programs are programmed based on 
technical and economic indicators. 

2.3.1. Modelling of DR algorithm with shiftable and price-based formats 
Because energy carriers have different prices during 24 h, subscribers 

are able to shift some of their loads to off-peak times in order to increase 
the profitability of the DR program executive. Thus, this algorithm not 
only introduces the subscribers as part of the actors in the optimal EH 
operation, but also, from a technical point of view, flattens the load 
curve at peak times [32]. Therefore, by implementing this algorithm, 

peak shaving of the load curve can be achieved at peak consumption. 
Eqs. (43) to (46) show the DR program algorithm for shiftable loads. The 
proposed algorithm is programmed based on shift up or shift down 
loads. Index bSh− up

e , bSh− down
e are a binary component (discrete) that are 

considered in the discrete solution space of the DR algorithm. 

∑T=24

t=1
PSh− up

e (t, s) =
∑T=24

t=1
PSh− down

e (t, s) (43)  

0 ≤ PSh− up
e (t, s) ≤ DPRSh− up.bSh− up

e .Pe(t, s) (44)  

0 ≤ PSh− down
e (t, s) ≤ DPRSh− down.bSh− down

e .Pe(t, s) (45)  

0 ≤ bSh− up
e + bSh− down

e ≤ 1 (46) 

The models of price-based DR algorithms are: increase or decrease of 
energy consumption based on the price of energy carriers. Accordingly, 
the decision of subscribers to reduce or increase consumption over a 

Pe(t, s) +
PHub− grid

e (t, s)
ηTr

ee
+ Pch

E (t, s) + PSh− up
e (t, s) +

PEHP
Th (t, s)
ηEHP

e− Th
+

PEHP
c (t, s)
ηEHP

e− c
+ PHeater

e (t, s) =

ηTr
ee Pgrid− Hub

e (t, s) + ηCHP
ge PCHP

g (t, s) + ηCon
ee PRES

e (t, s) + Pdis
E (t, s) + PSh− down

e (t, s) + PUEC
e (t, s)

(31)   

PTh(t, s) + Pch
Th(t, s) + PAC

Th (s, t) + PSh− up
Th (t, s) =

ηCHP
g− ThPCHP

g (t, s) + ηB
g− ThPB

g (t, s) + Pdis
Th (t, s) + PEHP

Th (t, s) + ηHeater
e− Th PHeater

e (t, s) + PSh− down
Th (t, s)

(32)   
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period of time depends on the price of the energy carrier at that time. 
Eqs. (47) to (52) describe the price-based DR algorithm and its con-
straints. Index bPr− up(t, s), bPr− down(t, s)are a binary component (discrete) 
that are considered in the discrete solution space of the DR algorithm. 

∑T=24

t=1
PPr− up

e (t, s) =
∑T=24

t=1
PPr− down

e (t, s) (47)  

PPr− up
e (t, s) ≥ ξupPe(t, s)

(

1 −
ΛOMC

e

Λbase
e

)

(48)  

PPr− down
e (t, s) ≥ ξdownPe(t, s)

(

1 −
ΛOMC

e

Λbase
e

)

(49) 

Fig. 5. Problem solving algorithm based on two discrete and continuous approaches.  
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0 ≤ PPr− up
e (t, s) ≤ DPRup.bPr− up.Pe(t, s) (50)  

0 ≤ PPr− down
e (t, s) ≤ DPRdown.bPr− down.Pe(t, s) (51)  

0 ≤ bPr− up + bPr− down ≤ 1 (52)  

2.3.2. Modelling of IDR algorithm with shiftable, transferable format with 
fixed time and interruptible (Cut-Off) demands 

The IDR algorithms are a suitable way to implement demand-side 
management programs at different loads such as electrical, thermal 
and cooling. This algorithm is an extended model of the DR algorithms 
that has the ability to manage different demands simultaneously [33, 
34]. Therefore, Eqs. (53) to (56) of the IDR program based on the 
shiftable loads format for electrical, thermal and cooling loads are pre-
sented. Index bSh− up

e,Th,c , I
Sh− down
e,Th,c are a binary component (discrete) that are 

considered in the discrete solution space of the IDR algorithm. 

∑T

t=1
PSh− up

e,Th,c (t, s) =
∑T

t=1
PSh− down

e,Th,c (t, s) (53)  

0 ≤ PSh− up
e,Th,c (t, s) ≤ DPRSh− up.bSh− up

e,Th,c .P
Sh− up
e,Th,c (t, s) (54)  

0 ≤ PSh− down
e,Th,c (t, s) ≤ DPRSh− down.bSh− down

e,Th,c .PSh− down
e,Th,c (t, s) (55)  

0 ≤ bSh− up
e,Th,c + ISh− down

e,Th,c ≤ 1 (56) 

Transferable loads with a fixed period of consumption are loads that 
can be transferred to other hours, but provided that the time required for 
consumption is also provided. In other words, the consumption time for 
transferable loads is fixed and unchangeable. Therefore, suppliers are 
obliged to supply power within the required time period of such loads 
[35]. Eqs. (57) to (60) show the IDR algorithm for transferable loads 
with a fixed time interval. Index bT− up

e,Th,c, IT− down
e,Th,c are a binary component 

(discrete) that are considered in the discrete solution space of the IDR 
algorithm. 

PT − up
e.Th.c(t, s) = PT − down

e.Th.c (t, s) (57)  

0 ≤ PT− up
e.Th.c(t, s) ≤ DPRT− up.bT − up

e.Th.c.P
T − up
e.Th.c(t, s) (58)  

0 ≤ PT− down
e.Th.c (t, s) ≤ DPRT− down.bT− down

e.Th.c .PT − down
e.Th.c (t, s) (59)  

0 ≤ bT − up
e,Th,c + IT − down

e,Th,c ≤ 1 (60) 

Interruptible loads are also loads that are interrupted by the operator 
or subscriber at peak times. This method is designed in such a way that 
subscribers are not able to consume energy at certain times of the day 
[36, 37]. This method is generally performed by users of energy distri-
bution systems. For example, the plug of some high-consumption 
equipment are disconnected at certain times of the day, and con-
sumers are unable to receive power from the network. The IDR algo-
rithm based on Interruptible loads is presented in Eqs. (61) to (64). Index 
bInt− up

e.Th.c , bInt− down
e.Th.c are a binary component (discrete) that are considered in 

the discrete solution space of the IDR algorithm. 

PInt,down
e.Th.c (t, s) = C1PInt− up

e.Th.c (t, s+ 1) + C2PInt− up
e.Th.c (t, s+ 2) + C3PInt− up

e.Th.c (t, s+ 3)
(61)  

0 ≤ PInt− up
e.Th.c (t, s) ≤ DPRInt− up.bInt− up

e.Th.c .P
Int− up
e.Th.c (t, s) (62)  

0 ≤ PInt− down
e.Th.c (t, s) ≤ DPRInt− down.bInt− down

e.Th.c .PInt− down
e.Th.c (t, s) (63)  

0 ≤ bCut− up
e.Th.c + bCut− down

e.Th.c ≤ 1 (64)  

3. Problem solving method and algorithm 

Because the optimal problem-solving space is programmed based on 
continuous and discrete solution space, in this study the hybrid real and 
binary coded genetic algorithm (HRBC-GA) method has been used [38, 
39]. In this method, two categories of variables are programmed. 
Discrete decision variables are considered as binary values based on "0′′

and "1′′ values, and continuous decision variables are programmed 
based on real values. The algorithm for implementing the proposed 
method is shown in Fig. 5. The proposed algorithm is simulated simul-
taneously and continuously by GAMS and MATLAB software with 8 GB 
RAM with Core i7 CPU configuration. As mentioned in Section 2, the 
optimization problem is planned at two levels. The first level is the issue 
of optimizing the capacity of EH equipment and reducing investment 
costs. This level is run by MATLAB software. The second level of opti-
mization problem includes minimizing the cost of operating the EH 
based on DR and IDR algorithms, which is also implemented in GAMS 
software. In this section, the HRBC-GA algorithm is presented in detail. 

3.1. Chromosome coding process 

Both binary and real approaches are used to encode the objective 
function variables based on the GA algorithm. The equations of the bi-
nary approach are: 

g1...gl...g(i− 1)l+1...gil...g(n− 1)l+1...gnl (65)  

gj ∈ {0, 1}, j= 1,..., nl (66)  

ηi = g(i− 1)l+120 + g(i− 1)l+221 + ...gil2l− 1 ∈
{

0, 1, ..., 2l− 1} (67)  

ζi =
ζi,max − ζi,min

2l − 1
ηi + ζi,min ∈

[
ζi,max, ζi,min

]
, i = 1, ..., n (68) 

The equations of the real coding approach are: 

g1...gn (69)  

gi ∈
{

0, 1, ..., 2l− 1}, j= 1,..., n (70)  

ζi =
ζi,max − ζi,min

2l − 1
gi + ζi,min ∈

[
ζi,max, ζi,min

]
, i = 1, ..., n (71) 

In these equations gi, gjshows genes and ζiare also continuous and 
discrete variables of problem solving space for the objective function. 

3.2. Selection operation process 

The selection process is planned based on the selection of good so-
lutions and the gradual elimination of poor solutions. Using the binary 
tournament selection operator, it selects two random solutions simul-
taneously from the initial population. Creates a temporary population 
(population mass) based on the best answer. This process continues until 
the temporary privileged population equals the initial population. 

3.3. Crossover process 

The task of the crossover operator in the GA algorithm is to use the 
optimal population generated by the selection operator, and to search 
the search space as well as to create new solutions. Therefore, this 
function is expressed by two approaches, binary and real. 

3.3.1. Binary variable crossover operator 
In this section, the two-point crossover operator is used to process the 

crossover of binary variables (Uit). In this operator, first two parent so-
lutions are selected from the generated population. A predefined prob-
ability (Qc) is then used to generate new solutions. Generating a new 
generation based on crossover performance is equivalent to choosing 
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two unequal intersections and creating two child solutions by random 
exchange. 

3.3.2. Real variable crossover operator 
In this section, the simulated binary crossover operator [38,39] is 

used to intersect the binary variables (Qit). The process of genration two 
solutions for a child from two parents is: 

Qc1
it =

1
2
[
(1 + θ)Qd1

it + (1 − θ)Qd2
it

]

Qc2
it =

1
2
[
(1 − θ)Qd1

it + (1 + θ)Qd2
it

]
(72) 

Where ck and dk represent the child and the parents, respectively. The 
θis also the random-probability distribution function is to implement a 
random intersection and are: 

θ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2u(n+1) u ≤ 0.5

(
1

2(1 − u)

) 1
n+1

otherwise
(73) 

Where n is a positive factor in the probability distribution function. 

3.4. Mutation operator process 

In order to execute the mutation operator with two approaches, bi-
nary and real variables can be done as follows.The mutation of binary 
variables (Uit) is determined by changing the state from "0′′ to "1′′ or vice 
versa.Real variable mutation (Qit) is defined based on the polynomial 
mutation operator. For a given polynomial index η > 0, and the random 
variable v, which is defined in the probability range (0 and 1), the 
mutation of the real variable can be defined as follows: 

Qit←Qit +
(
Qmax

i − Qmin
i

)
ω

ω

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[

2v + (1 − 2v).
(

Qmax
i − Qit

Qmax
i − Qmin

i

)] 1
η+1

v < 0.5

1 −

[

2(1 − v) + (2v − 1).
(

Qit − Qmin
i

Qmax
i − Qmin

i

)]
1

η+1

otherwise

(74) 

That the parameterωis determined from the probability distribution 
function of polynomials with the p(ω) = 1

2 (η +

1)(1 − |ω|)ηcharacteristic. 

4. Results and simulation 

4.1. Data and executive requirements 

In this section, the executive requirements, equipment specifications 
and topology of the EH along with the uncertainty model based on two 

problem approaches in the continuous-discrete problem space are pre-
sented. The topology of the energy distribution network in a residential 
complex is based on Fig. 1 and references [24–29]. According to Table 3, 

Table 3 
Scenarios with uncertainties.  

Scenario Solution 
space 

Uncertainties 
RES Electrical 

demand 
Thermal 
demand 

Cooling 
demand 

1 Continuous – – – – 
2 Continuous * – – – 
3 Continuous * * – – 
4 Continuous * * * – 
5 Continuous * * * * 
6 Discrete – – – – 
7 Discrete * – – – 
8 Discrete * * – – 
9 Discrete * * *  
10 Discrete * * * *  

Fig. 6. Demand and RES generation profiles.  

Fig. 7. Average price of electric energy carrier.  

Table 4 
Capacity and cost of installing EH equipment.  

Equipment Min- 
Capacity 
(kW) 

Max- 
Capacity 
(kW) 

Discrete 
Steps (kW) 

Installation costs 
($/kW) 

Tr 50 500 50 450 
CHP 100 500 50 990 
Boiler 50 500 50 450 
Electric 

Heater 
50 300 50 400 

EHP 50 300 50 500 
EC 50 500 50 470 
AC 50 500 50 470 
EES 50 300 50 250 
TES 50 300 50 250  

Table 5 
Specifications of different equipment in the EH structure.  

CHP Boiler 

ηCHP
ge ,ηCHP

g− Th 50, 40 (%) ηB
g− Th 88 (%) 

EICHP
em CO2=1.59 EIBem CO2=1.745 

NO2=0.008 NO2=0.0214 
SO2=0.44 SO2=0.614 

Electric Heater Converters and transformers 
ηHeater

e− Th 90 (%) ηTr,Con
ee 90 (%) 

AC EHP 
ηAC

Th− c 90 (%) ηEHP
e− Th− c 85 (%) 

IDR-DR Algorithm ESS/TES 
DPRSh− up 10 (%) ηch

E/Th ,ηdis
E/Th 90 (%) 

DPRSh− down 10 (%) δmin
E/Th, δ

max
E/Th 30 (%) 

ΛDR/IDR
z 0.02 ($/kWh) δmin,ch

E/Th ,δmax,ch
E/Th 

0–25 (%) 

ΛUEC 0.02 ($/kWh) δmin,dis
E/Th ,δmax,dis

E/Th 
10–90 (%) 

– – ΛS
e,Th 0.03 ($/kWh)  
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the uncertainties of electrical, thermal and cooling demands are pre-
sented in 10 scenarios. The problem-solving space is programmed based 
on two approaches of continuous and discrete analysis. According to 
Table 3, the results of scenarios 1 and 6 are presented without consid-
ering the uncertainties, while in other scenarios different uncertainties 
are considered. 

Fig. 6 shows the profile of electricity, thermal and cooling demands 
along with the profile of the power generation of RES in different sea-
sons. In order to simplify, the average of different demands as well as the 
generation of RES in a 24 h period is presented. The average electrical, 
thermal and cooling demands are 850 kW, 650 kW and 350 kW, 
respectively. Also, the power generated by RES is considered between 
the range of 200 kW to 300 kW and the variable. Fig. 7 also shows the 
average prices of different energy carriers in the seasons. Table 4 shows 
the capacity and installation cost of the EH equipment. Table 5 shows 
the specifications of different equipment in the EH structure. 

4.2. Results of optimal planning and operation of EH based on two 
problem solving approaches in continuous and discrete space 

According to Table 6, the optimal results of EH planning and oper-
ation are presented with two problem-solving approaches in continuous 
and discrete space. This table consists of two parts. In the first part, the 
cost of planning (ICOC) and operation-maintenance (O&M) of the 
optimal EH based on two continuous and discrete approaches are pre-
sented. In this section, the total cost of planning and optimal operation 
of the EH (TC) is also presented. In the second part, the optimal capacity 
of different EH equipment based on two approaches of continuous and 
discrete problem solving is presented. The difference between the results 
of the problem-solving approach in the continuous and discrete search 
space is due to the fact that the results presented in Table 6 and the 
continuous search space are exactly the optimal values obtained from 
the proposed algorithm. However, in the discrete search space section, 
the obtained values can be presented as the upper limit of the optimal 
values. The values obtained from discrete space can be the upper or 
lower limit of the values of continuous space. Because the values of the 
lower bound of continuous space are unacceptable, the values of discrete 

space include the upper limit of the values of continuous space. These 
conditions will have a margin of safety for the capacity of the various 
units and equipment of the EH to supply and convert energy. The results 
of optimal planning and operation of EHs based on the consideration of 
uncertainties are presented in Tables 3 and 6. 

In this study, according to Table 3, the uncertainties of different 
demands and the uncertainties caused by the generation of power by 
RES have been considered. According to Table 6 and the problem- 
solving approach in continuous space, because uncertainty is not 
considered in the first scenario, the cost of planning and optimal oper-
ation of the EH shows the lowest value compared to Scenario 5. Scenario 
5 contains the most uncertainty. These conditions also apply to the 
problem-solving approach in discrete space. However, taking into ac-
count uncertainties increases the indicators of reliability, flexibility and 
security of energy distribution systems, it also increases the costs of 
planning and operating an optimal energy distribution system. As can be 
seen from Table 6, scenarios 5 and 10, which have the most uncertainty, 
also include the highest planning and operation costs. According to 
Table 6, the cost of optimal EH programming based on the continuous 
space problem-solving approach is lower than the values obtained based 
on the discrete space problem-solving approach. This difference is due to 
the fact that the optimal capacity of the units and equipment of the EH is 

Table 6 
Optimal results of EH planning and operation with two approaches to problem solving in continuous and discrete space.  

Scenario Optimal planning and operation continuous problem solving approach Optimal planning and operation discrete problem solving approach  
1 2 3 4 5 6 7 8 9 10 

TC($) 648,068.321 721,439.18 727,628.07 730,585.53 734,160.46 649,247.6 723,433.35 731,095.29 738,061.12 747,663.37 
ICOC($) 171,207.041 177,272.76 179,850.74 182,407.93 185,037.46 175,341.82 182,813.77 185,813.77 190,186.09 199,351.69 
OMC($) 476,861.28 544,166.42 547,777.33 548,177.6 549,122.5 473,905.78 540,619.58 545,281.52 547,875.03 548,311.84 
Optimal capacity of EH equipment with continuous and discrete problem solving approach (Optimal planning) 
CHP (kW) 452.81 453.48 454.84 469.85 473.83 500 500 500 500 500 
Boiler (kW) 80.14 114.69 113.49 149.89 139.96 100 150 150 150 150 
EHP (kW) 50 50 50 50 50 50 50 50 50 50 
Electric Heater (kW) 99.78 62.68 50 53.04 50 100 100 50 100 50 
Tr (kW) 291.17 320.37 330.15 340.7 349.72 300 350 350 350 350 
AC&EC(kW) 324.28 324.28 324.28 324.28 346 350 350 350 350 350 
EES (kW) 50 69.54 82.97 83.26 83.52 50 100 100 100 100 
TES (kW) 50 50 50 65.62 65.71 50 50 50 100 100  

Fig. 8. Comparison of total optimal cost.  

Fig. 9. Investment cost comparison.  

Fig. 10. Comparison of operating costs.  
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programmed in a discrete approach based on the upper limit of the 
values of the continuous approach. Therefore, the values of scenarios 6 
to 10 are higher than scenarios 1 to 5. 

The results of optimal operation based on the problem-solving 
approach in continuous space are more than the results obtained 
based on the discrete approach. This difference is due to the fact that the 
optimal capacity of the units and equipment of the EH is programmed in 
a discrete approach based on the upper limit of the values of the 
continuous approach. The capacity difference between these approaches 
causes that during operation and especially when electrical energy is 
required, more power is generated by different units such as the CHP 
unit, and this condition reduces the power purchase from the electrical 
network. Therefore, when the capacity of different units and equipment 

of the EH is considered more, although it brings more investment costs, 
it reduces the operating costs. Figs. 8-10 show the comparison of the 
total optimal costs of the EH, the EH optimal planning and the EH 
optimal operation based on two approaches to solving the problem of 
continuous and discrete space, respectively. 

4.3. Results of optimal operation of energy hub equipment and 
environmental indicators based on continuous approach 

In this section, the index of equipment operation in different season 
and based on the problem-solving approach in continuous space is 
presented. As stated in Section 4.1, one day from each seasons, which 
includes the average demands, is considered. According to Fig. 11a, in 

Fig. 11. Equipment operation points in the EH topology.  

Fig. 12. Electric power purchased by the EH.  

Fig. 13. Electric power sold by the EH.  

Fig. 14. Charging and discharging status of electric storage unit and EVs.  

Fig. 15. Charging and discharging status of the thermal storage unit.  
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the spring, the CHP unit, RES, the AC unit, and the boiler are responsible 
for supplying electricity, thermal, and cooling demand. According to 
Fig. 11b, in the summer, when the most demand includes electrical and 
cooling power, CHP and AC units are responsible for supplying these 
demand. It should also be noted that the operation of the boiler unit in 
order to support the CHP unit in providing the required heat to the AC 
unit. The electrical distribution network also participates in the supply 
of electrical loads. However, the priority of power supply in the struc-
ture of the EH in order to reduce operating costs is the responsibility of 
the EH equipment. As shown in Fig. 11c and in the fall, the CHP unit and 
RES are responsible for customer demand. According to Fig. 11d, in the 
winter, the CHP units, the electric heater unit and the EHP, RES and 
boilers are responsible for supplying the subscribers. The structure of the 
EH is planned based on selling the excess power required to the energy 
market or purchasing the required power (in case the EH equipment is 
not able to supply the subscribers). 

As shown in Fig. 12, the electrical power purchased from the elec-
trical network to the EH is shown. Electricity is in greater demand in the 
middle of the day and at the beginning of the night. In the winter and 
autumn, the electrical demand is at its lowest. Fig. 13 shows the elec-
trical power sold from the EH to the grid. As mentioned, the demand for 
electricity is lowest in the winter and autumn, and therefore the EH 
operator is able to sell the excess electricity generated by RES and the 
CHP unit to the grid. Also, in summer and spring, when the price of 
electricity carriers is high, part of the electrical demand is supplied from 
the electrical network. In addition to the electricity grid, CHP units and 
RES are also responsible for providing subscribers’ demand. Fig. 14 also 
shows the charging and discharging status of electrical storage units, 
which mainly consist of separate batteries and EVs. Therefore, the 
participation of electrical energy storage units to supply the electrical 
demands of the EH is determined according to Fig. 14. The share of 
electric storage devices is higher in summer and spring, when the price 
of electricity carriers is high. Fig. 15 shows the performance of the 
charge and discharge status of the thermal energy storage unit. This unit 
also shows its greatest participation in the autumn and winter seasons 
when the price of natural gas increases. 

Table 7 shows the emission of greenhouse gases and its cost ac-
cording to the two equipments CHP and boiler. As shown in Table 7, the 

highest rates of greenhouse gas emissions occur in the winter and 
autumn. This is also due to the fact that CHP equipment and boilers are 
responsible for providing thermal demand in the winter and autumn. 
Therefore, these two equipments based on nominal values should be 
used. The CHP unit also produces more greenhouse gases because it has 
more nominal power. 

4.4. Optimal planning and operation of energy hub based on DR/IDR 
algorithms 

In this section, the effect of DR / IDR algorithms on the performance 
of the EH as well as the load curve and the change in the consumption 
pattern of the subscribers are investigated. The results of the perfor-
mance analysis of the DR / IDR algorithm are presented in Table 8. This 
table shows the different classifications of the DR / IDR algorithm and 
the performance of the various equipment during the execution of these 
algorithms.Tables 9 and 10 

Execution of DR algorithms is presented in the format of shiftable 
and price-based loads. The IDR algorithms are presented also based on 
the three formats of shiftable, transferable with fixed consumption time 
and interruptible loads. As shown in Table 8, with the implementation of 
DR / IDR algorithms, the cost of planning, operating costs and, conse-
quently, the total cost of the optimal EH is significantly reduced 
compared to when the DR / IDR algorithm is not implemented. It should 
also be noted that the operators of the EH are able to select different DR / 
IDR algorithms according to the topology, demands, different seasonal 
conditions, operating conditions as well as the planning conditions of 
the energy distribution system. However, it should be noted that the DR 
algorithm based on interruptible loads or load transfer to other times 
with a fixed consumption time interval has a higher cost than the 
implementation of the DR algorithm based on shiftable and price-based 
loads. 

Figs. 16-18 also show the implementation of DR / IDR algorithms for 
thermal, cooling and electrical loads. A noteworthy point in these fig-
ures is the change in the consumption pattern of subscribers compared 
to the implementation of different DR / IDR algorithms. As can be seen 
from the figures, the curve and load profile of the subscribers have been 
flattened by implementing DR / IDR algorithms. This is also because 
subscribers are changing their consumption patterns to maximize the 
benefits of implementing DR / IDR algorithms. The noteworthy point in 
Fig. 18 is that the candidates for participation in the implementation of 
the DR / IDR algorithm on electric loads are more in the spring and 
summer than in the autumn and winter. According to the electricity 
supplier’s point of view, the implementation of DR / IDR programs will 
reduce the costs of operating, servicing and maintaining power plant 
equipment. Therefore, in addition to subscribers, power suppliers 
(especially electrical power) also benefit from the implementation of DR 
/ IDR algorithms. 

Table 7 
Greenhouse gas emissions cost.  

Equipment Emissions Cost ($/day) 
Spring Summer Fall Winter 

CHP CO2= 3.783 CO2= 4.075 CO2=5.132 CO2=5.860 
NO2= 312.906 NO2=337.005 NO2=424.419 NO2=484.658 
SO2= 1.341 SO2=1.444 SO2=1.819 SO2=2.077 

Boiler CO2= 0.090 CO2=0.222 CO2=0.002 CO2=0.360 
NO2=9.585 NO2=23.514 NO2=0.261 NO2=38.117 
SO2=0.040 SO2=0.098 SO2=0.001 SO2=0.159 

Total Cost 327.746 366.357 431.634 531.231  

Table 8 
Results of DR / IDR algorithm.  

Scenario DR Algorithm Types IDR Algorithm Types 
Price-Based Shiftable Shiftable Transferable Curtailable 

TC ($) 639,443.46 644,971.79 629,645.66 646,930.97 646,923.64 
ICOC ($) 172,895.45 173,098.35 166,035.82 171,133.76 168,560.38 
OMC ($) 466,548.01 471,873.45 463,609.84 475,797.21 478,363.26 
Equipment      
CHP (kW) 447.94 447.55 462.76 451.55 452.16 
Boiler (kW) 94.35 97.13 60.69 91.30 85.56 
EHP (kW) 50 50 50 50 50 
Electric Heater (kW) 102.20 99.75 91.85 135.39 90 
Tr (kW) 280.96 283.45 276.33 265.20 271.76 
AC&EC (kW) 349.02 351.27 290.99 313.32 322.41 
EES (kW) 50 50 50 50 50 
TES (kW) 50 50 50 50 50  
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4.5. Description and discussion 

In this study, the optimal EH planning and operation model based on 
stochastic-probability indicators and considering demand response 
programs is presented. In recent years, due to the penetration of RES in 
providing power to consumers and also the upward trend of using EVs, 
the energy distribution systems have faced several challenges of the 
stochastic-probability behaviour of these equipment. Therefore, in this 
research, the stochastic-probability model of RES and EVs is presented 
with the aim of describing the precise behaviour of these equipment. 

In this research, the optimal planning and operation model is 

presented at two the primary and secondary levels. Algorithms for 
optimal planning and determining the optimal capacity of EH equip-
ment have been modelled at the primary level. Optimal operation based 
on the implementation of DR programs and also considering environ-
mental indicators is also presented in the secondary level. The optimi-
zation problem is solved based on Mixed Integer Linear Programming 
(MILP) and Binary Real-Coded Hybrid Genetic Algorithm (HRBC-GA). 

The process of implementing the optimization algorithms is as fol-
lows: first, the primary level, which includes the optimal planning model 
and determining the optimal capacity of the EH equipment, is imple-
mented. In this section, after determining the optimal capacity of the 
equipment and optimal planning, the information obtained from this 
section is sent to the optimal operation section of EH. It should be 
mentioned that the primary level (optimal planning and determining the 
optimal capacity of the equipment) is generally invariant with time. In 
other words, the optimal planning indicators do not change until 
changes occur in the topology and EH equipment. But on the other hand, 
the optimal operation of the EH varies with time. Decision-making 
variables (variable with time) at the secondary level cause optimal EH 
operation algorithms to be continuously analysed and implemented. 
Therefore, by levelling the implementation of optimization algorithms, 
the calculation time will decrease significantly. The reduction of 
calculation time is due to the fact that if the proposed model was pre-
sented at one level, with every change in the operating conditions, the 
entire proposed model, which includes planning and operation, must be 
re-analysed and calculated. Therefore, by using the two-level model, 
repeating the calculations of the optimal planning part is avoided, and 
this condition reduces the calculation time of the proposed algorithm. 

The proposed model is based on two approaches of discrete and 
continuous problem-solving space. In order to validate the proposed 
model, it has been analysed in 10 scenarios and in two parts of contin-
uous and discrete problem-solving space. The proposed model is plan-
ned in the optimal operation section based on the implementation of 
DR/IDR programs. Implementation of DR/IDR programs is presented 
with two objectives. The first goal is to change the consumption pattern 
of subscribers, which is to increase the profit due to the implementation 
of DR/IDR algorithms. The second objective is to improve the profile and 
flatten the load curve caused by changing the consumption pattern of 
subscribers. The implementation of DR programs causes a reduction of 
14.3% of the EH total cost, and the implementation of IDR programs also 
causes a reduction of 16.56% of the EH total cost. To validate the results 
obtained based on the proposed method, the results of Section 4.4 
(Optimal Planning and Operation of EH based on DR / IDR Algorithms) 
have been compared with other meta-heuristic algorithms [25] and 
[26]: 

Also, the following table shows the indicators of the implementation 
process of different algorithms. 

Table 9 
Comparison of the proposed method and other meta-heuristic algorithms.   

Scenario DR Algorithm Types IDR Algorithm Types  
Price-Based Shiftable Shiftable Transferable Curtailable 

HRBC-GA TC 639,443.46 644,971.79 629,645.66 646,930.97 646,923.64 
ICOC 172,895.45 173,098.35 166,035.82 171,133.76 168,560.38 
OMC 466,548.01 471,873.45 463,609.84 475,797.21 478,363.26 

PSO Scenario DR Algorithm Types IDR Algorithm Types 
Price-Based Shiftable Shiftable Transferable Curtailable 

TC 645,387.76 653,927.83 637,105.34 652,486.92 652,525.96 
ICOC 175,642.22 178,691.42 169,561.23 174,612.78 172,546.58 
OMC 469,743.54 475,236.41 467,544.11 477,874.14 479,979.38 

SFLA Scenario DR Algorithm Types IDR Algorithm Types 
Price-Based Shiftable Shiftable Transferable Curtailable 

TC 645,914.66 654,818.43 637,888.29 653,110.68 654,511.01 
ICOC 175,925.54 178,958.56 169,988.66 175,121.45 172,986.63 
OMC 469,989.12 475,859.87 467,899.63 477,989.23 481,524.38  

Table 10 
Comparison of characteristics of algorithms.   

Max FV Min FV Standard deviation Total runs TET 

HRBC-GA 3.1145 2.6321 0.0284 250 3.24(s) 
PSO 3.4546 3.7298 0.2626 250 4.35(s) 
SFLA 3.4966 3.7302 0.2893 250 4.68(s) 

*Fitness Values (FV). 
*Total Execution Time (TET). 

Fig. 16. Execution of DR / IDR programs on shiftable thermal loads.  

Fig. 17. Execution of DR / IDR programs on shiftable cooling loads.  
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5. Conclusion 

In this study, a two-level optimal planning and operation program 
based on uncertainty indices and stochastic-probability models is pre-
sented. Optimal planning and operation modelling is presented at both 
primary and secondary levels. The problem of optimal planning is 
designed in the primary and based on determining the optimal capacity 
of EH equipment and devices as well as optimizing the investment cost. 
The problem of optimal efficiency in the secondary is modelled and 
formulated based on optimizing the cost of operating the EH, examining 
the effect of implementing DR / IDR algorithms and changing the con-
sumption pattern of subscribers, minimizing the cost of greenhouse gas 
emissions and increasing the penetration of RES. The optimization 
problem model is developed based on the Hybrid Real and Binary Coded 
Genetic Algorithm (HRBC-GA) method and problem solving approaches 
in discrete and continuous space. 

In order to validate, the proposed model in the problem-solving 
approach in discrete and continuous space is analysed in 10 scenarios. 
The efficiency of the proposed method has been analysed by considering 
various uncertainties such as uncertainty of electrical demands, thermal 
and cooling demand, as well as uncertainties due to power generation by 
RES. In this study, in addition to the stated uncertainties, the EV prob-
ability model is also considered. EVs are considered in the structure of 
the EH and the problem of the optimal planning and operation in two 
ways. In the optimal planning and operation of the EH, the EVs unit are 
considered as an electric loads in some hours and in other hours as a 
backup unit to feed the electrical demands. Therefore, in this paper, EV 
unit probability modelling is used to investigate the exact behaviour of 
this equipment. In this study, the implementation of DR / IDR algo-
rithms has two results. The first result is a change in the consumption 
pattern of subscribers in order to increase profits from the imple-
mentation of DR / IDR algorithms. The second result is the improvement 
of the profile and the flattening of the load curve due to the change in the 
consumption pattern of the subscribers. The results of this study show 
the efficiency of the proposed method in the optimal planning and 
operation of EHs based on various uncertainties and changing the con-
sumption pattern of subscribers based on the implementation of various 
DR / IDR algorithms. 

The most important challenge of this research can be considered big 
data analysis and data feature extraction. In recent years, intelligent 
algorithms have shown good performance in managing and extracting 

data and information. Therefore, the use of intelligent algorithms based 
on artificial intelligence and intelligent data algorithms can be expressed 
as a research perspective. 
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