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A B S T R A C T   

This paper proposes multi-objective optimization framework to enhance the performance of demand response 
programs in distribution networks. The demand response programs are one of the main resources to enhance the 
flexibility of the energy systems to manage the uncertain behavior of renewable generation and demand loads. 
But, the uncoordinated response of customers creates a new peak in the load profile when the market prices are 
low. Therefore, we present a two-stage multi-objective framework that simultaneously reduces the operating 
costs and enhances the efficiency of demand response programs in the grid-connected microgrid systems. The 
first stage focuses on the optimal energy management of the grid-connected microgrid systems from the eco
nomic perspective. The second stage focuses on the demand-side flexibility to uniform the load profile. Also, we 
introduce the Average Power Flexibility during Peak Period Index (APFDPPI) to evaluate the energy flexibility of 
the demand response programs. The proposed model has been tested on a standard grid-connected microgrid, 
and the simulation results show that the proposed model improves the amount of energy not served by 22.12%. 
Also, the peak load and the load factor have been improved by 12.96% and 15.17%, respectively compared to 
uncoordinated demand response programs.   

1. Introduction 

1.1. Motivation 

The transition of the power systems to integrate renewable energy 
sources (RES) in the planning of power systems is one of the main 
strategies for system decarburization [1]. The high penetration of RES 
imposes new challenges in the operation of power systems because of 
their intermittent nature [2, 3]. If the power system is not well designed, 
the simultaneous effects of RES and the rapid growth of electricity load 
demand can jeopardize system reliability [4]. Increasing the system 
flexibility can cover the imbalance between generation and load de
mand to keep the system stable. System flexibility refers to the power 
system’s ability to manage changes, usually due to changes in the load 
demands or uncertain behavior of renewable resources [5, 6]. Various 
technologies can be integrated into the system to enhance the system’s 
flexibility. The required flexibility can be provided in two ways: 1. 
Generation-flexibility, 2. Demand-side flexibility. The generation 

flexibility is achieved through the battery energy storage system (BESS) 
and dispatchable resources as well as microturbines and diesel genera
tors. While demand-side flexibility is provided through demand 
response programs [7]. 

1.2. Literature review 

Several research works studied the role of flexible resources on the 
operation scheduling of the power system. The role of battery energy 
storage systems on the contingency energy management of the multi- 
microgrid system was presented in [8]. A bi-level framework had been 
suggested in [9] for energy management of isolated microgrids. The 
battery energy storage system was utilized to cover the uncertainty of 
RES and enhance the system flexibility. A hierarchical framework was 
presented in [10] to evaluate the impacts of energy storage systems on 
the optimal configuration of multi-microgrid systems. Two-stage risk 
management was developed in [11] for contingency management of the 
distribution system by creating a dynamic multi-microgrid system, 
where the battery energy storage system is integrated to improve energy 
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management performance. The battery energy storage systems are in
tegrated into the distribution systems to present cost-effective energy 
management [12]. However, the uncertainty of RES is not considered in 
the proposed model. A multi-objective optimization framework had 
been proposed in [13] to simultaneously optimize the operating costs 
and water extraction. Various energy storage systems such as water 
storage systems are integrated into the proposed model to provide the 
required flexibility for the studied system. However, the role of 
demand-side flexibility on the efficiency of the proposed model was not 
considered. A Markov chain Monte Carlo simulation was suggested in 
[14] to study the role of renewable energy resources on the operation of 
stand-alone microgrid systems. The battery energy storage systems and 
hydrogen storage systems were integrated into the proposed model to 

provide the required flexibility for the system. However, demand-side 
flexibility was not studied. 

The role of demand response programs (DR) on the operation 
scheduling of distribution systems is investigated in several research 
works. The impact of DR programs on the cooperative energy manage
ment of multi-carrier microgrids was investigated in [15]. The authors 
considered the electrical and thermal DR programs to provide the op
portunity for cost reduction for the MGs. A DR strategy was proposed in 
[16] to reduce the operating cost of the smart home considering 
different uncertainties. A cooperative energy scheduling had been pro
posed in [17] to evaluate the efficiency of electrical and thermal DR 
programs on the energy management of MGs. However, the uncertain 
behavior of RES was ignored. The role of DR programs on comfort 

Nomenclature 

Abbreviation 
RES renewable energy resources 
BESS battery energy storage system 
DR demand response 
MMG multi-microgrids 
MG microgrid 
MT microturbine 
FC fuelcell 

Sets 
m index of microgrids 
s index of scenarios 
t, h index of time 
p, q index of buses 
n segment indices in the cost of DG 

Parameters 
Bp,q susceptance of line p-q (per-unit) 
FMax

p,q capacity of line p-q (per-unit) 
Cng price of natural gas ($/m3) 
CGrid

t grid electricity price ($/kWh) 
CCL penalty factor for load curtailment ($/kWh) 
DTm&ITm minimum down & up time of DG m (h) 
DRm&IRm ramp-down & up limit of DG m (kW) 
DRMin

m &DRMax
m minimum and maximum DR (%) 

Em capacity of battery m (kWh) 
It,s&TOut

t sun irradiation at time t (kW/m2) & outside air 
temperature (C) 

ldrm,t the amount of shifted load from other load level to hth load 
level (kW) 

km cost of operating DG m at its minimum power generation 
($) 

KPV
O&M&KWT

O&M constant coefficient for O&M cost PVs and WTs ($/kW) 
KDG

O&M constant coefficient for O&M cost diesel generators ($/kW) 
KFC

O&MKMT
O&M constant coefficient for O&M cost FCs and MTs ($/kW) 

Lng low-hot value of natural gas (kWh/m3) 
PB

m,t base flexible load of MGs at time t (kW) 
PFC

m,r&PMT
m,r rated power of FCs and MTs (kW) 

PG max maximum power purchased from the main grid (kW) 
PWT

m,r rated power of WTs (kW) 

PInflex
m,t inflexible load of MGs at time t (kW) 

PCh
m &PDisch

m maximum charging & discharging power of battery m 
(kW) 

Pm,n upper limit of nth segment of the piece-wise linear power 
generation cost function of DG m (kW) 

PMin
m &PMax

m minimum and maximum power generation of DG m (kW) 
SoCmin

m SoCmax
m minimum & maximum SoC of battery m (kWh) 

SPV
m solar array area (m2) 

vco wind turbines cut-out speed (m/s) 
vci wind turbines cut-in speed (m/s) 
vr rated speed from WTs (m/s) 
vt,s wind turbines speed at time t (m/s) 
ρs probability for scenario s 
ηPV efficiency of PV 
ηCh

m &ηDisch
m charging & discharging efficiency of battery m 

πm,n linear power generation cost function of DG m ($/kWh) 
ΔT length of time slot 

Variables 
CostPV&CostWT total cost of PVs and WTs ($) 
CostPV

O&M&CostWT
O&M O&M cost of PVs and WTs ($) 

CostFC&CostMT total cost of FCs and MTs ($) 
CostFC

fuel&CostFC
O&M fuel and O&M cost of FCs ($) 

CostMT
fuel&CostMT

O&M fuel and O&M cost of MTs ($) 
CostDG total cost of DGs ($) 
CostDG

fuel,m&CostDG
O&M fuel and O&M cost of DGs ($) 

CostCL disadvantages of curtailment load ($) 
CostGrid cost of purchased power from main grid ($) 
DRm,t participation factor of load in the DR program at hth load 

level (%) 
Im,t&Vm, t&Ym,t commitment status, start-up & Shut down indicators 

of DG m at time t 
PGrid

t power purchased from the main grid at time t (kW) 
PPV

m,t output power of PVs at time t (kW) 
PWT

m,t output power of WTs at time t (kW) 
PPV

m,t,s&PWT
m,t,s output power of PVs and WTs at time t and scenario s 

(kW) 
PFC

m,t&PMT
m,t output power of FCs and MTs at time t (kW) 

PCL
m,t load curtailment of microgrid m at time t (kW) 

PCh
m,t&PDisch

m,t charging & discharging power of battery at time t (kW) 
PFlex

m,t flexible load of MGs (kW) 
PDG

m,t output power of DGs (kW) 
Pm,n,t planed power generation for DG m from the nth segment at 

time t (kW) 
SoCm,t state of charge Battery m at time t (kWh) 
XCh

m,t&XDisch
m,t binary variable of battery charging & discharging state 

θp,t voltage angle of bus p at time t (rad/s) 
ηFC

m,t&ηMT
m,t electrical efficiency of FC & MT (%)  
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optimization considering renewable energy resources was presented in 
[18]. However, the efficiency of battery energy storage systems was not 
evaluated on the performance of the proposed model. A two-stage en
ergy management was developed in [19] to minimize the operating cost 
of MGs in day-ahead scheduling. However, the efficiency of DR pro
grams as demand-side flexibility was not considered. A decentralized 
framework was suggested in [20] to evaluate the impacts of distributed 
energy resources and DR programs on P2P energy trading in the MG 
environment. Nevertheless, the uncertainty of RES was not handled. 
Zheng et al. in [21] coordinated the commercial prosumers by 
demand-side flexibility. However, the impact of RES uncertainty and 
peak load reduction was not studied. A day-ahead energy scheduling 
was proposed in [22] to evaluate different DR programs on the perfor
mance of multi-energy systems. The proposed model was formulated as 
a bi-level framework to integrate energy pricing and energy manage
ment. However, the uncertainty of RES and real-time management were 
ignored. A stochastic scheduling framework was addressed in [23] to 
consider the uncertainty of RES in the operation scheduling of microgrid 
systems. Different resources such as battery energy storage systems, 
hydrogen storage, and DR programs were integrated into the proposed 
model to enhance the system flexibility. However, reserve maximization 
and demand-side flexibility were not the objectives of the proposed 
model. 

1.3. Research gaps 

According to the best of our knowledge, the main research gaps are 
listed as follows:  

• Although DR programs are effective tools for demand-side flexibility, 
it was demonstrated when a set of microgrids works selfishly, new 
peak hours are likely to appear at times when electricity prices are 
low. As a result, uncoordinated demand response may reduce system 
flexibility. Therefore, it is necessary to present a novel framework to 
enhance demand-side flexibility.  

• A new index is needed to evaluate the demand-side flexibility for the 
multi-microgrid system in different conditions that have not been 
introduced in the previous research works.  

• Different models have been developed to handle multi-objective 
energy scheduling of multi-microgrid systems. In these methods, a 
trade-off between objectives has been performed to determine the 
best solution. Therefore, it is possible that the flexibility enhance
ment increases the operation cost of the multi-microgrid system. 
Therefore, a novel technique will be more critical to keep the oper
ating cost of the multi-microgrid system at the optimal point and 
increase the system flexibility simultaneously. 

1.4. Contributions 

In this paper, a coordinated DR program is proposed that prevents 
creating a new peak in the load profile. The proposed model is formu
lated as a min-max two-stage framework that simultaneously increases 
the efficiency of DR programs alongside cost reduction. The main con
tributions of this work are summarized, as follows: 

• A stochastic multi-objective framework is proposed that simulta
neously considers the operating cost and demand-side flexibility of 
the multi-microgrid systems. The proposed original multi-objective 
model is converted to a two-stage framework by the lexicography 
approach to prioritize the objective functions. The first stage de
termines the economic operation planning of multi-microgrid sys
tems, while the flexibility enhancement is provided through the 
second stage.  

• Proposing a min-max approach to model coordinated DR programs 
in order to enhance demand-side flexibility. The coordinated DR 
program provides the opportunity for cost-saving, load shedding 

reduction, flexibility enhancement, and peak-to-valley reduction for 
multi-microgrid systems.  

• A new index is introduced as the Average Power Flexibility during 
Peak Period Index (APFDPPI), which evaluates the energy flexibility 
of the proposed demand response programs.” 

1.5. Paper organization 

The rest of this paper is organized as follows: the description of the 
proposed model is presented in section II. The mathematical formulation 
of the proposed multi-objective energy management is provided in 
section III. The proposed two-stage model is described in section IV. The 
case studies are presented in section V. The sensitivity analyses are 
demonstrated in sections VI and VII. Finally, the conclusion is presented 
in section VIII. 

2. Description of the proposed energy management model 

A novel energy management framework is proposed to determine the 
day-ahead planning of multi-microgrid (MMG) systems. In the MMG 
system, microgrids are located in a close geographical area. Therefore, 
they can enjoy cooperative strategies. In this case, MGs share their local 
generation resources to reduce their total operating cost. Various dis
patchable energy resources and battery energy storage systems are in
tegrated into the MMG system to cover the uncertainty of RES. Also, 
demand response programs are incorporated to provide the opportunity 
for cost-reduction for MGs by load shifting. Demand response programs 
can reduce peak load and improve system flexibility by shifting the 
consumption of peak periods to off-peak periods. However, the unco
ordinated response of MGs to the signal prices may lead to a new load 
peak. This new peak will occur at times when electricity prices are low. 
So, although DR programs are an important tool for improving flexi
bility, they may have negative effects in some situations. Therefore, it is 
necessary to provide a model that can increase the efficiency of DR 
programs. This paper proposes a multi-objective optimization frame
work that simultaneously minimizes the operating cost of the MMG 
system and peak load. 

3. Mathematical formulation of the proposed model 

In this section, the mathematical formulation of generation units and 
battery energy storage systems are presented in detail. 

3.1. Battery energy storage system 

The following constraints are imposed on the operation planning of 
battery energy storage systems [24, 25]: 

SoCm,t+1 = SoCm,t + ΔT

(
ηCh

m PCh
m,t

Em
−

PDisch
m,t

EmηDisch
m

)

(1)  

SoCmin
m ≤ SoCm,t ≤ SoCmax

m (2)  

0 ≤ PCh
m,t ≤ XCh

m,tP
Ch
m (3)  

0 ≤ PDisch
m,t ≤ XDisch

m,t PDisch
m (4)  

XCh
m,t + XDisch

m,t ≤ 1 (5)  

SoCm,t1 = SoCm,t24 (6) 

The dynamic state of charge for BESS is presented in (1). The 
acceptable ranges of state of charge, charging power, and discharging 
power are shown in (2) to (4), respectively. Eq. (5) prevents simulta
neous charging and discharging. Finally, Eq. (6) shows that the initial 
and final stored energy in BESS should be the same. 
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3.2. Microturbine energy generation units 

The total operating cost of MT units consists of fuel and O&M costs 
are presented in (7). The efficiency of C65 capstone MT is shown in (8). 
Finally, the maximum and minimum generating power of MT units are 
demonstrated in (9) [26]. The efficiency of fuel cells and microturbines 
is not a fixed number and changes at the different operating points. 
Therefore, their efficiency can be presented as a function of generated 
power. The efficiency of these resources is experimentally obtained by 
the manufacturing companies at different operating points. Then, data is 
approximated as a linear or non-linear function by curve fitting. How
ever, in many studies, these efficiencies have been estimated with a 
constant coefficient for simplicity. 

CostMT =
∑M

m=1

∑T

t=1

[
CostMT

fuel +CostMT
O&M

]
=
∑M

m=1

∑T

t=1

[(
Cng

Lng

PMT
m,t

ηMT
m,t

)

+KMT
O&MPMT

m,t

]

(7)  

ηMT
m,t = 0.0753 ×

(
PMT

m,t

65

)3

− 0.3095 ×

(
PMT

m,t

65

)2

+ 0.4147 ×

(
PMT

m,t

65

)

+ 0.1068 (8)  

0 ≤ PMT
m,t ≤ PMT

m,r (9)  

3.3. Fuel cell energy generation units 

The total operating cost of FC units consists of fuel and O&M costs 
are presented in (10). The efficiency FC unit is shown in (11). Finally, 
the maximum and minimum generating power of FC units are demon
strated in (12) [26]. 

CostFC =
∑M

m=1

∑T

t=1

[
CostFC

fuel +CostFC
O&M

]
=
∑M

m=1

∑T

t=1

[(
Cng

Lng

PFC
m,t

ηFC
m,t

)

+KFC
O&MPFC

m,t

]

(10)  

ηFC
m,t = 0.023 × PFC

m,t + 0.6735 (11)  

0 ≤ PFC
m,t ≤ PFC

m,r (12)  

3.4. Diesel generator energy generation units 

The operating cost of diesel generators has been formulated as a 
linear function. The total operating cost of DG units consists of fuel and 
O&M costs are presented in (13). The fuel cost for the segment m is 
presented by (14). Also, the O&M cost is shown in (15) [27]. 

CostDG =
∑M

m=1

∑T

t=1

[
CostDG

fuel,m +CostDG
O&M

]
(13)  

CostDG
fuel,m

(
PDG

m,t

)
= kmIm,t + ΔT

∑Nn

n=1
πm,nPm,n,t (14)  

CostDG
O&M = KDG

O&MPDG
m,t (15) 

However, the following constraints are imposed on the operation 
planning of DG units: 

0 ≤ Pm,n,t ≤ Pm,n (16)  

PMin
m Im,t ≤ PDG

m,t ≤ PMax
m Im,t (17)  

PDG
m,t = PMin

m Im,t +
∑N

n=1
Pm,n,t (18)  

SUm,t = CUmYm,t (19)  

PDG
m,t − PDG

m,t− 1 ≤ IRm (20)  

PDG
m,t− 1 − PDG

m ≤ DRm (21)  

∑t+ITm − 1

h=t
Im,h ≥ ITm Ym,t (22)  

∑t+DTm − 1

h=t

(
1 − Im,h

)
≥ DTm Vm, t (23)  

Ym,t − Vm,t = Im,t − Im,t− 1 (24)  

Ym,t + Vm,t ≤ 1 (25) 

The generation limit for each segment is presented in (16). The total 
generation power of DG units has been limited by (17) and its value is 
calculated based on (18). The start-up costs of DG units have been shown 
in (19). The ramp-up and ramp-down of DG units are determined by (20) 
and (21), respectively. Other related constraints are presented in (22) to 
(25). 

3.5. Renewable energy generation units 

The operating cost of PV and WT units are presented in (26) and (27), 
respectively [17]. 

CostPV =
∑M

m=1

∑T

t=1

[
CostPV

O&M +CostPV
fuel

]
=
∑M

m=1

∑T

t=1
KPV

O&MPPV
m,t (26)  

CostWT =
∑M

m=1

∑T

t=1

[
CostWT

O&M +CostWT
fuel

]
=
∑M

m=1

∑T

t=1
KWT

O&MPWT
m,t (27) 

According to (26) and (27), the fuel cost of renewable energy re
sources is zero. Therefore, the generation costs of PV units and WT units 
only have O&M costs. The output power of renewable energy resources 
is presented in (28) – (31) [17, 27]. 

PPV
m,t,s = ηPV SPV

m It,s
(

1 − 0.005
(
TOut

t − 25
))

(28)  

PWT
m,t,s =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 0 ≤ vt,s ≤ vci or vco ≤ vt,s

PWT
m,r

v2
t,s − v2

ci

v2
r − v2

ci
vci ≤ vt,s ≤ vr

PWT
m,r vr ≤ vt,s ≤ vco

(29)  

PPV
m,t =

∑S

s=1
ρsP

PV
m,t,s (30)  

PWT
m,t =

∑S

s=1
ρsP

WT
m,t,s (31) 

The generation power of PV and WT units at time t and scenario s is 
determined by (28) and (29), respectively. A stochastic scenario- 
generation and scenario-reduction method had been utilized to 
generate the related possible scenarios by the Beta and Weibull proba
bility distribution function (PDF). The mathematical formulation of the 
stochastic framework can be found in [28]. Also, the normal PDF is 
applied to generate the related price scenarios and load scenarios. 
Considering all of the possible scenarios, the total generation of PV and 
WT units is demonstrated in (30) and (31), respectively. 

3.6. Demand response programs 

The load profile of MGs after DR participation is calculated by (32). 
The minimum and maximum DR level for each MG is shown in (33). 
Finally, Eq. (34) ensures that MGs only can shift their loads and load 
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shedding cannot be performed for flexible loads [27]. 

PFlex
m,t = PB

m,t

(
1 − DRm,t

)
+ ldrm,t (32)  

DRMin
m ≤ DRm,t ≤ DRMax

m (33)  

∑T

t=1
ldrm,t =

∑T

t=1
PB

m,t DRm,t ∀m ∈ MI (34)  

3.7. Network constraints 

Other related constraints are presented in (35) – (40). 

CostCL =
∑M

m=1

∑T

t=1
CCLPCL

m,t (35)  

CostGrid =
∑T

t=1

∑S

s=1
ρsC

Grid
t PGrid

t (36)  

0 ≤ PCL
m,t ≤ Pload

m,t (37)  

− PG max ≤ PGrid
t ≤ PG max (38)  

PGrid
t +

∑M

m=1

(
PPV

m,t + PWT
m,t + PFC

m,t + PDG
m,t + PMT

m,t + PDisch
m,t + PCL

m,t) =

∑M

m=1

(
PFlex

m,t + PInflex
m,t + PDisch

m,t

)
+
∑

p,q∈Ap
Bp,q
(
θp,t − θq,t

)
(39)  

− FMax
p,q ≤ Bp,q

(
θp,t − θq,t

)
≤ FMax

p,q ∀t, p, q (40)  

− π ≤ θp,t ≤ π ∀t, p (41) 

The penalty cost for load shedding of the inflexible load is shown in 
(35). The cost of purchasing energy from the upstream network is pre
sented in (36). The maximum and minimum bounds of load shedding 
and transactive energy with the upstream networks are modelled in (37) 
and (38), respectively. The power balance between generation and load 
consumption for each time slot is demonstrated by (39). The line power 
flow and voltage angle of buses are limited by (40) and (41), 
respectively. 

3.8. Objective functions 

The main objective of the MMG system is to minimize the total 
operating cost during the scheduling time horizon. The first objective 
function is shown by (42): 

Min Cost = Min
[
CostPV +CostWT +CostDG +CostFC +CostMT

+CostCL +CostGrid] (42) 

The first and second terms show the operating cost of renewable 
generation resources. The third term models represent the generation 
cost of DG units. The fourth and fifth terms show the operating cost of FC 
and MT units, respectively. Finally, the penalty cost for load shedding 
and purchasing cost from the upstream network are presented in the 
sixth and the last terms, respectively. The second objective function tries 
to uniform the load profile to reduce the peak load. This objective 
function is presented in (43). 

Min − Max
∑M

m=1

(
PFlex

m,t − PCL
m,t) (43) 

According to Eq. (43), the second objective function tries to reduce 
the maximum load during the scheduling time horizon to enhance the 
demand-side flexibility. 

4. Two-stage multi-objective framework 

As mentioned in the previous section, a multi-objective framework 
has been proposed to improve the operating costs and demand-side 
flexibility simultaneously. Various classic techniques had been devel
oped to solve multi-objective problems such as the epsilon constraint 
method, goal programming, fuzzy approach, weighted sum approach, 
compromise programming, bounded objective method, and lexicog
raphy approach. It should be noted that all of the classic techniques 
convert the multi-objective problem into a single objective. Some of 
these techniques such as the weighted sum approach and compromise 
programming need the coefficient weights of objectives to handle the 
problem. It should be noted that selecting the optimal weights is a 
challenge for each decision-maker. Also, in the compromise program
ming and fuzzy methods, the objective function should be normalized. 
The base value for normalization of the objective functions is the main 
disadvantage of these techniques. Besides, for a multi-objective prob
lem, the objective functions are conflicting and no single solution exists 
that optimizes each objective simultaneously. Therefore, if the multi- 
microgrid system decision-maker attempts to increase the demand- 
side flexibility, the operating cost exits from the optimal value. To this 
end, a hybrid bounded objective-lexicography approach is proposed in 
this paper to handle the multi-objective problem given that the oper
ating cost of the multi-microgrid systems remains at its optimum point. 
The proposed hybrid model converts the original multi-objective prob
lem to a multi-stage, where at each step a single objective problem is 
solved. Since two objective functions are considered, the original model 
is converted into the two-stage optimization problem [29] and [30]. 

In the proposed model, the operating cost and demand-side flexi
bility are prioritized based on the multi-microgrid decision-maker. The 
operating cost is the first priority of the decision-maker and optimizes in 
the first stage to determine the primary scheduling from the economic 
perspective. In the second stage, demand-side flexibility is considered as 
the objective function to perform the corrective actions on the primary 
scheduling in order to increase the efficiency of DR programs. The main 
advantage of the proposed model is that it does not need any normali
zation method and can consider objectives with different scales. Besides, 
it keeps the optimal cost of multi-microgrid systems at its optimum. 
Also, it does not need the weights of objectives. 

4.1. First-stage of optimization framework 

The first stage of the proposed model tries to minimize the total 
operating cost of the MMG system considering the uncertainty of RES. 
The optimization problem of the first stage is formulated in (44). 

Min Cost = Min
[
CostPV + CostWT + CostDG + CostFC + CostMT + CostCL

+ CostGrid] S. t

: Eqs.(1) − (40)
(44) 

At the end of this stage, the optimal cost is determined and enters the 
second stage. 

4.2. Second-stage of optimization framework 

At this stage, the MMG system tries to minimize the peak load by the 
rescheduling of primary energy management. The optimization problem 
of the second stage is formulated in (45). 

Minimum − Maximum
∑M

m=1

(
PFlex

m,t − PCL
m,t

)

S. t : Eqs.(1) − (41)

Cost ≤ a.Cost∗

(45) 

The cost* shows the optimal cost of the MMG system that is taken 
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from the first stage. Also, parameter α creates a safe margin for the 
second stage. If α = 1, the proposed model remains the operating cost of 
the MMG system at its optimum, but the research area will be small. If 
α > 1, the research area in the second stage will be increased, while it 
increases the operating cost. According to (45), the second stage is 
formulated as the min-max problem that can be replaced by (46). Fig. 1 
shows the flowchart of the proposed model. 

Fig. 1. The flowchart of the proposed model.  

Fig. 2. The structure of the standard test system.  

Fig. 3. Wind speed scenarios.  
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Min λ(t)

λ(t) ≥
∑M

m=1

(
PFlex

m,t − PCL
m,t)

S. t : Eqs.(1) − (41)

Cost ≤ a.Cost∗

(46)  

5. Simulation results 

The performance of the proposed two-stage model is tested on a 
standard case study consisting of three MGs. Fig. 2 shows the network 
structure, generation resources, and connection between MGs. The MGs 
are connected to the upstream network through bus 1 to create a bidi
rectional transaction with the main grid. 

Fig. 4. Solar radiation scenarios.  

Table 1 
BESS characteristics.  

BESS Efficiency 
(%) 

Charging 
power 
(kWh) 

Discharging 
power (kWh) 

Minimum 
SoC (kWh) 

Maximum 
SoC (kWh) 

MG1 75 50 50 50 450 
MG2 75 100 100 100 900 
MG3 75 100 100 100 900  

Table 2 
Diesel generator characteristics.  

DG Ramp 
(kWh) 

Minimum 
power (kWh) 

Maximum 
power (kWh) 

Start-up 
cost ($) 

Generation 
cost ($/) 

MG1 200 100 1000 20 130 
MG2 200 200 2000 30 120  

Table 3 
Performance of three case studies.  

Case 
study 

DR status Cost ($) ENS 
(MWh) 

APFDPPI Interrupts 
(No.) 

Case I No DR 29320 14.59 1.03 10 
Case II Uncoordinated 24702.64 2.26 1.5 2 
Case III Two-stage 24702.64 1.76 1.71 2  

Fig. 5. Load profile of the MMG system under case studies.  

Table 4 
Characteristic of load profile.  

Case 
study 

DR status Peak 
(MW) 

Valley 
(MW) 

LF 
(%) 

Peak to 
valley 

Energy 
(MWh) 

Case I No DR 14.8 7.7 81.25 1.92 288.61 
Case II Uncoordinated 15.66 8.96 80 1.75 300.94 
Case 

III 
Two-stage 13.63 8.96 92.14 1.52 301.44  

Fig. 6. Load profile of the MMG system under case studies.  

Fig. 7. Transactive energy with the upstream network.  

Fig. 8. Charging and discharging performance of BESS1 in case I.  
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The wind speed and solar radiation scenarios are presented in Figs. 3 
and 4, respectively. The cut-in, cut-out, and rated speeds of wind tur
bines are 5, 30, and 12 m/s, respectively. The maximum exchange 
power with the upstream network is assumed 7 MWh for each time slot. 
The maximum DR level for MG1, MG2, and MG3 is considered 18%, 

15%, and 16%, respectively. 
A microturbine C65 has been installed in MG3 that can generate 65 

kW at each time slot. The characteristics of BESS and diesel generators 
are demonstrated in Tables 1 and 2, respectively. Also, the maximum 
capacity of the fuel cell unit is 2000 kWh. 

To evaluate the performance of the proposed model on the perfor
mance of DR programs, three case studies are considered: 

Ø Case study I (without DRP): In this case, demand response pro
grams are not implemented and MGs cannot shift their loads to the 
off-peak period.  

Ø Case study II (uncoordinated DRP): In this case, MGs participate in 
the DR programs to shift some part of their loads from peak periods 
to the off-peak periods. However, the focus of MGs is cost minimi
zation and peak load reduction is not the aim of MGs.  

Ø Case study III (coordinated DRP): The efficiency of the two-stage 
proposed model is investigated in this case study. In this case, MGs 
try to simultaneously reduce the operating costs and peak load. The 
first stage focuses on the optimal operation of MGs from the eco
nomic point of view. While the second stage modifies the primary 
scheduling of MGs to enhance the efficiency of DR programs. Table 3 
shows the performance of three case studies. 

According to Table 3, the operating cost of the studied system in case 
study I is $ 29320, while it reduces to $ 24702.64 in case studies II and 
III. When MGs participate in DR programs, their loads are shifted from 
peak period to off-peak period. Therefore, their operating costs are 
reduced by 15.75%. However, the simulation results show that the DR 
implementation significantly reduces the amount of energy not supplied 
(ENS). The amount of ENS in case I is 14.59 MWh, while its value rea
ches 2.26 MWh and 1.76 MWh in cases II and III, respectively. Even an 
uncoordinated demand response program reduces the amount of ENS. It 
is noteworthy that the peak load is reduced without increasing the cost 
function in the proposed hybrid model. In another word, the proposed 
two-stage model reduces the peak load, while keeping the operating cost 

Fig. 9. Charging and discharging performance of BESS2 in case I.  

Fig. 10. Charging and discharging performance of BESS3 in case I.  

Fig. 11. Peak load in different ESSF.  

Fig. 12. Load factor in different ESSF.  
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Fig. 13. Operating cost of MMG system.  

Fig. 14. Load factor of MMG system.  

Fig. 15. Peak load of MMG system.  
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at the optimal value. Also the power flexibility of the MMG system is 
enhanced by the proposed model. The Average Power Flexibility during 
Peak Period Index (APFDPPI) is introduced which evaluates the energy 
flexibility of the case studies by (47). 

APFDPPI =
∑

m

∑

t∈peak period

(
PL

m,t − MGP
)

MGP
(47)  

where MGP refers to the maximum generating power of generation re
sources. The higher value of APFDPPI shows that the DR program cre
ates more energy flexibility for the MMG system during the peak period. 
The simulation results show in case I, the amount of APFDPPI is 1.03, 
while the proposed model increases APFDPPI to 1.71. The load profile of 
the MMG system in different case studies is shown in Fig. 5. 

As can be seen, case II created a new peak at time15, while the load 
profile in case III is better than others from the load factor perspective. 
The power flexibility of the MMG system is defined by the parameter PF 
that it shows the ability of the distribution network operator to control 
possible events. It can be seen when DR programs are not considered, the 
power flexibility during peak periods is low. However, the proposed 
two-stage model creates more power flexibility during the peak period. 
The characteristic of load profile in different case studies is demon
strated in Table 4. 

The simulation results show that the uncoordinated DR programs 
create a new peak at the off-peak period that is more than the first. When 
MGs did not participate in DR programs, the peak load is 14.8 MW, while 
in the uncoordinated DR mode, the peak load has increased by 5.49%, 
and reaches from 14.8 MW to 15.66 MW. Actually, the uncoordinated 
DR has a negative effect because MGs shift some part of their load to the 
off-peak period, where prices are low. On other hand, the peak load is 
significantly reduced by the proposed two-stage. In the proposed model, 
the peak load reaches from 14.8 MW to 13.63 MW because in the second 
stage, the proposed model tries to uniform the load profile. Therefore, 
the load factor improved from 81.25% to 92.14%. The simulation results 
show that the uncoordinated DR not only improved system flexibility 
but also has a negative impact on the demand-side flexibility. The 
amount of load shedding is presented in Fig. 6. 

According to Fig. 6, the amount of load shedding has been signifi
cantly reduced by the DR programs. Even when consumers participate in 
uncoordinated DR programs, some part of their consumption was 
reduced during peak periods that decreasing the amount of load shed
ding. The amount of load shedding in case I is 14.59 MWh, while its 
value decreases to 2.26 MWh and 1.76 MWh in cases II and III, 
respectively. Also, Fig. 6 demonstrated that most of the load shedding 
occurs at times 19–22 when the renewable generation is low. Actually, 
the operator is forced to cut part of the load to maintain the system’s 
stability due to the reduction of renewable generation. The purchasing 
energy from the upstream network is presented in Fig. 7. 

According to Fig. 7, the maximum value energy is imported by the 
MMG system during hours 11–23. In this period, renewable generation 
is low, while microgrids have maximum consumption. Therefore, the 
maximum energy is imported from the upstream network to MMG sys
tem can supply the required loads. It can be easily seen that the imported 
energy during the off-peak period in cases II and III is more than in case 
I. In cases II and III, the MMG system shifts some part of its load to the 
off-peak period. Therefore, the MMG system imports more energy to 
supply load demands. The performance of BESSs is shown in Figs. 8, 9, 
and 10. As can be seen, BESSs are charged during off-peak periods when 
the transactive prices are low. Also, the stored energy is discharged 
during peak periods to reduce the operating cost of MGs. 

6. Sensitivity analysis of the battery energy storage system 

In order to validate the performance of the proposed model, a 
sensitivity analysis is performed to evaluate the capacity of battery 

energy storage system on the optimal solution. Parameter ESSF (Energy 
Storage Scaling Factor) is a scaling factor to scale the base-case BESS in 
Table 1. Figs. 11 and 12 show the performance of the ESSF on the pro
posed model. 

The simulation results show that the proposed model significantly 
improves the peak load and load factor in different conditions. Also, the 
peak load decreases with increasing ESSF. By increasing storage ca
pacity, the operator has more control over the MMG system, and this can 
help improve the characteristics of the load profile. When ESSF is 3, the 
load factor reaches from 82.23% to 94.07% in the proposed model. 
Furthermore, the proposed model reduces the peak load from 14.8 MW 
to 13.34 MW when ESSF is 3. 

7. Sensitivity analysis on the parameter α 

In this section, the parameter α is changed from 1 to 1.2, and the 
operating cost, load factor, and peak load of the two-stage model are 
shown in Figs. 13, 14, and 15, respectively. 

By increasing α, the second stage has more ability to reduce the peak 
load. It should be noted that the higher value for α increases the 
searching area in the second stage. Therefore, the efficiency of the 
proposed model will be increased from the peak load and load factor 
point of view. However, the operating cost of the MMG system will be far 
from optimal. In the base DR case, for α = 1.2 the peak load is 12.48 MW 
and has been reduced by 8.8% compared to α = 1. However, compared 
to α = 1, the load factor has been increased by 4.24% when α is 1.2. The 
MMG operator can select different values for α based on its preferences. 
Therefore, a trade-off is needed between the primary and secondary. 

8. Conclusion 

This paper proposed a stochastic energy scheduling optimization to 
enhance the demand-side flexibility of the multi-microgrid systems. The 
proposed model has been formulated as a two-stage framework the first 
stage determines the best strategy for operation planning of the multi- 
microgrid systems in the grid-connected mode. In the second stage, 
the proposed model reschedules the primary energy management to 
increase the efficiency of demand-side flexibility by peak load reduction. 
The main advantage of the proposed model is that it guarantees the best 
economic solution. The simulation result shows that the proposed model 
reduces the peak load by 1.17 MW. Also, the PAR in the proposed model 
has been improved by 20.83%. In future work, we will evaluate the role 
of electric vehicles on the flexibility of the distribution system. 
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