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A B S T R A C T   

Aiming at the problem of the distributed generation (DG) planning caused by the strong spatiotemporal coupling 
between DG output and load demand in adjacent areas, a multi-objective planning model is proposed to describe 
the spatiotemporal correlation of sources. By combining the most weight supported tree (MWST) and depth first 
search (DFS), the method achieves the a priori requirement for constructing bayesian network (BN) structure 
using the K2 algorithm. Then, the MDK2-BN model is established through the measured data, which can describe 
the correlation between multi-dimensional wind-photovoltaic-load. A DG multi-objective programming model 
with maximum annual profit rate and minimum comprehensive operation risk is constructed. The results has 
three main advantages: (1) the MDK2-BN structure can achieve satisfactory results when dealing with small 
networks. (2) the MDK2-BN model conforms to the spatiotemporal correlation of the DG output, and the pro-
posed configuration can improve the access capacity of DG. (3) the favorable level of the DG’s grid connection 
can be effectively improved by considering the seasonal difference in performance and providing the planners 
with the decision-making references that balance the economic benefits, system operational safety, and envi-
ronmental benefits.   

1. Introduction 

1.1. Motivation 

DG has developed from marginal to a mainstream factor in the power 
grid [1,2]. However, intermittent DG has characteristics of randomness 
and correlation, which bring considerable challenges to the planning 
and operation of power grids. The optimal DG configuration depends on 
the economics of investment and operation, and the risks associated 
with the system operation [3–5]. Due to a strong spatiotemporal 
coupling of DG output and load in neighboring regions with similar 
environmental and meteorological conditions [6,7], it is necessary to 
develop a wind-photovoltaic-load output model and a reasonable 
planning model to achieve economic, operation safety, and environ-
mental benefits of operating power grid in the market environment. 

The nonlinear correlation between the DG output and load demand 
in adjacent areas is difficult to uniformly describe. The BN model that 
consider the coupling of variables in multi-dimensional data can be used 
to extract the correlation features and construct multivariate forecasting 

models [8,9]. In one of the recent studies [10], a BN model describing 
the correlation between wind speed, light intensity, and load, is estab-
lished and its effectiveness is verified. In another study [11], a BN 
conforming to the actual operating state of the wind turbine is estab-
lished using the multi-dimensional data to determine the correlation 
between multiple parameters and evaluate the machine capacity 
reduction at high temperatures. 

Although the aforementioned studies have proposed effective and 
accurate models, there have still been some constraints in BN model. 
First, the strength of the correlation between the chosen variables, but 
this is related to the strong correlation between the DG output and load 
demand in neighboring regions. The second constraint is how to deter-
mine the optimal BN structure using the data [12–15]. 

1.2. Literature review 

In order to address the planning issues of DG in the power grid, In 
Ref. [16,17], the negative correlation between the wind speed and load 
is considered and focused on the effects of correlation on generator 
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planning. In Ref. [18], the effects of active management is considered 
when a large-scale photovoltaic is connected to the grid, and a 
multi-objective model with the largest energy penetration rate and the 
smallest voltage deviation is established. In Ref. [19], the temporal 
correlation between the wind speed and load is studied and a site 
location and capacity model for wind power generators is established. In 
the mentioned studies, different mathematical models for 
multi-objective DG planning have been established from the perspec-
tives of investment interest, power grid operation safety, and environ-
mental factors. However, these models treat the DG connection 
explicitly, which makes them be too narrowly focused and disable them 
to satisfy the freedom of choice for the supply side and customers 
introduced by the reform of the power system. In order to construct a 
comprehensive spatiotemporally correlated wind–photovoltaic–load 
model to solve the problem of DG grid connection planning, In Ref. [20], 
joint probability distribution method and scenario-reduction technique 
are used to target the maximum DG capacity grid connection and a 
multi-scenario model by introducing active management constraints is 
built. However, this model considers only the grid connection by a single 
wind power generator or a single photovoltaic connection, which is not 
applicable to the planning of a large-scale DG grid-connection. In other 
studies [21–23], the effect of temporal fluctuation of the DG output on 
the grid configuration is analyzed using a clustered multi-scenario 
probability analysis method; however, the computation complexity of 
a multi-scenario situation is high, and the roughness of the generic 
clustering method adversely affects the overall optimization decision. 
The fitting degree between different variables can be assessed reason-
ably by the score-and-search method represented by the K2 algorithm. 

1.3. Contribution 

In this paper, a multi-objective DG planning model based on the 
MDK2-BN model is developed from the perspective of multi-dimensional 
data mining. First, the MWST and DFS are combined to satisfy the a 
priori requirement for constructing the BN structure using the K2 algo-
rithm, and then, an MD-K2 BN structure is defined. Next, the correlation 
analysis is conducted considering the BN requirements for wind speed, 
light intensity, and load demand of adjacent regions in order to achieve a 
more accurate generation of multiple scenarios. The scenarios are 
further compressed using a highly efficient H-K composite clustering 
algorithm [23]. By considering the spatiotemporal correlation of the 
source terminal and the indicators of the economy, system safety, and 
environmental benefit, a multi-objective DG planning model is con-
structed with the main objectives of maximum annual profit rate and 
minimum comprehensive operation risk. The constructed model is 
solved by an improved multi-objective particle swarm optimization 
(IMPSO) algorithm, and a nonlinear adjustment method is proposed to 
dynamically change the inertia weight and improve the global optimi-
zation ability. Finally, the model validity is verified by a simulation on 
IEEE 33-bus test systems. 

In specific, this work contributes to the literature in:  

◆ A method to solve the correlation analysis for wind speed, light 
intensity, and load demand of adjacent regions in order to ach-
ieve a more accurate generation of multiple scenarios. 

◆ A multi-objective DG planning model of considering the spatio-
temporal correlation, economic and system safety and environ-
mental benefits.  

◆ The effects of the seasonal difference on the favorable level of the 
DG’s grid connection have been investigated. 

Section II presents the probability model of distributed generation 
output, including wind turbine generators and photovoltaic generators. 
Section III describes MDK2-BN model as well as multi-scenario genera-
tion with the spatiotemporal correlation of wind-photovoltaic-load 
using the methodology. Section IV presents the multi-objective 

planning model, and Section V describes an IMPSO algorithm. Section VI 
generalizes reports the results and the conclusion is generalized in sec-
tion VII. 

2. Probability model of distributed generation output 

The active output power of wind turbine is mainly affected by wind 
speed. The prerequisite for analyzing the impact of wind power grid 
connection is to accurately describe the wind speed-power characteristic 
curve for wind turbine. 

2.1. Probabilistic model of wind turbine generators output 

The wind speed of wind turbine generators (WTG) is the main factor 
affecting the output active power. The wind speed-power characteristic 
curve is the basis of WTG planning and an important indicator for 
evaluating the performance and generation capacity. Assuming thatvr,vi 

andvoare rated wind speed, cut-in wind speed, cut-out wind speed, 
respectively, the relationship between WTG output power (PWTG) and 
rated output power (Pr

WTG) is established by parameter method as fol-
lows [24]: 

PWTG =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 , v ≤ vi or v > vo

Pr
WTG

v − vi

vr − vi
, vi < v ≤ vr

Pr
WTG , vr < v ≤ v

(1) 

Reactive power of WTG can be expressed as the relationship between 
power factor angle (φWTG) and PWTG as follows: 

QWTG = PWTGtanφWTG (2)  

2.2. Probabilistic model of photovoltaic generators output 

The output of a photovoltaic generators (PVG) is subject to many 
factors. The current research usually uses light intensity (E) to approx-
imate the output of PVG, and establishes the relationship between PVG 
output power (PPVG), rated output power (Pr

PVG) and rated light intensity 
(Er) by parameter method as follows: 

PPVG =

⎧
⎨

⎩

Pr
PVG

E
Er E ≤ Er

Pr
PVG E > Er

(3) 

Reactive power of PVG can be expressed as the relationship between 
power factor angle (φPVG) and PPVG as follows: 

QPVG = PPVGtanφPVG (4)  

3. Scene generation of wind-photovoltaic-load based on MDK2- 
BN model 

3.1. Basic theory of BN 

With the development of big data as a research field, the research on 
solving the uncertainty problems considering the combination of prob-
ability theory and graph theory has become a hot research topic. The BN 
represents a probabilistic graphical model for modeling complex sys-
tems with variables of different properties, which is capable of 
describing the uncertainty of variables and correlation between them. A 
complete BN includes the following two parts:  

(1) The network structure represents a directed acyclic graph (DAG) 
with n nodes (X1, X2, …, Xn). Through the directed edges of the 
structure, the DAG can describe the relationships between the 
nodes.  

(2) The conditional probability associated with all the nodes is 
expressed as a set p(Xi|

∏
(Xi)), where 

∏
(Xi) represents the direct 
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parent nodes of Xi. By applying the chain rule, the joint proba-
bility distribution can be obtained as follows: 

p(X1,X2,⋯,Xn) =
∏n

k=1
p
(

Xi

⃒
⃒
⃒
∏

(Xi)
)

(5)   

The investigation of BN mainly consists of structural learning and 
parametric learning [25–27]. For a given network structure, it is easy to 
acquire the relevant parameters from a large amount of data, but 
different characters of the input data pose a challenge to the network 
structure prediction. Thus, in the BN construction, the crucial thing is to 
construct a BN structure that represents relationships between input 
parameters accurately. 

3.2. Generation of MDK2-BN 

The K2 algorithm has often been used in the construction of a DAG 
structure [28]. In order to satisfy the a priori requirement that the K2 
algorithm depends on the maximum number of parent nodes and the 
order of nodes, the node order is optimized by the joint use of the MWST 
and the DFS and by analyzing the attribute relationship of two variables 
in the topological sequence. The MWST defines the dependence between 
variables through mutual signals. Namely, the magnitude of the mutual 
signal represents the strength of the correlation between variables. The 
mutual signal is calculated using the self-probabilities P(Xi) and P(Xj) of 
nodes i and j and their joint probability P(Xi, Xj): 

I
(
Xi;Xj

)
=

∑

XiXj

P
(
Xi,Xj

)
log

P
(
Xi,Xj

)

P(Xi)P
(
Xj
) (6) 

When I(Xi;Xj) > 0, nodes i and j have a dependence relationship. The 
dependence degree of variables is represented by nodes connected to 
undirected sides by traversing all the mutual signal values. The 
connection relationship between the MWST and the maximum nodes is 
presented in Fig. 1. 

Compared to a randomly searched node sequence, a topological 
sequence based on the DFS can effectively reduce the search space [29]. 
When the correct node sequence is maintained, the K2 algorithm can 
lead to an optimized network structure combined with DFS. For a given 
connection map, the basic steps of the DFS are as follows: 

Step 1: Access a vertex v and scan adjacent points of v; next, suc-
cessively perform the DFS with a search strategy to increase the vertical 
depth of the search map. 

Step 2: Begin to backtrack in the search and check whether there are 
other unvisited critical points on the previous path, and repeat step 1. 

Step 3: Repeat the Step 1—2 until all vertices are visited. 
In the route search process, the computation volume increases with 

the complexity degree of the map. For a flow map with n vertices, after 
entering the stack at vertex v, the time complexity to establish a chain 
stack is O(n). Next, the connection table of each node is scanned, having 
a complexity level of O(e) and the number of sides m in the undirected 
map (e = e1 + e2 + …+ ek). The total time complexity is O(n+e), and 
good results can be obtained without shrinking the search space when 
dealing with small networks. The DAG of the Bayesian network is 

determined by comparing the score value using the K2 algorithm. 
After determining the DAG of BN, the parameters of each node need 

to be determined, that is, a conditional probability table representing 
the degree of influence between various variables is established. This 
paper uses the maximum likelihood estimation (MLE) to calculate the 
conditional probability table of each node [30]. Assuming that the his-
torical data set is U = {U1,U2,⋯,Um}, and because the node variables in 
BN are usually discrete variables. First, the characteristic function is 
defined as follows: 

Hi,j,m,k =

{
1, [Xm = k, π(Xi) = j]
0, others (7) 

Therefore, the likelihood function is as follows: 

L =
∑

i

∑

m
log

∏

j,k
θi,j,m,kHi,j,m,k =

∑

i

∑

m

∑

j,k
Hi,j,m,klogθi,j,m,k

=
∑

i,j,k

∑

m
H[Xn = k, π(Xi) = j]logθi,j,m,k

(8)  

here, i is the node variable;θi,j,m,k = P(Xn = k|π(Xi)= j) represents the 
state parameter when the parent node takes j and the child node is equal 
to k, andθi,j,m,k = P(Xn = k|π(Xi) = j); and H[Xn = k, π(Xi) = j] records 
the number of occurrences of historical data [Xm = k,π(Xi) = j]. 

Finally, the MLE of θi,j,m,k can be calculated by lagrange multiplier 
method as follows: 

θi,j,m,k =

∑

m
H[Xn= k|π(Xi) = j]

∑

i

∑

m
H[Xn= k|π(Xi) = j]

(9)  

3.3. Multi-scenario generation with the spatiotemporal correlation of 
wind-photovoltaic-load 

This paper uses historical data to describe the randomness and 
spatiotemporal correlation of wind-photovoltaic-load. Assuming that 
there are already M groups of known data on wind speed, light intensity 
and load, the steps to generate spatiotemporal correlation samples are as 
follows:  

(1) Due to equipment malfunctions, data transmission limitations, 
and other reasons, the original dataset can miss certain data parts. 
Therefore, in order to preprocess the data, the data is processed 
by the mean interpolation method, and anomalous data points 
are deleted.  

(2) The edge distribution functions of the wind speed, light intensity 
and load, denoted as a set Y = [y1,y2,⋯,ym], are estimated by the 
kernel density estimation method. The Bayesian network 
modeling realizes the discretization of continuous data values. 
Datasets with continuous characteristics are processed by the 
classic data mining K-mean clustering algorithm to achieve data 
segmentation. 

(3) The MWST is established according to the sample data, and de-
pendencies between variables are determined based on the 
mutual signal so as to calculate the maximum number of parent 
nodes μ. The node topology sequence ρ is obtained by the DFS. 
The K2 algorithm is used to obtain the DAG of the BN, and the BN 
model is completed using the relevant parameters calculated 
according to the MLE.  

(4) Then, the network model is sampled, and the initial scenario of 
the wind–photovoltaic–load with the spatiotemporal correlation 
is generated by an inverse transformation Y− 1(⋅) of the edge 
distribution function. Finally, the number of scenarios is reduced 
by the HK compound clustering algorithm, and the wind-
–photovoltaic–load planning scenario is obtained from the 
probability model of distributed generation output. 

Fig. 1. Most weight supported tree and the most node connection.  
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4. Multi-objective planning model 

4.1. Objective function 

In order to satisfy the economic operation of distribution network 
and reduce the operational risk considering source-load uncertainty, and 
the objective functions of the multi-objective DG planning include 
maximizing the average annual profit rate of DG and minimizing the 
system risk. 

4.1.1. The average annual profit rate of DG 
The average annual profit rate of DG is numerically equal to the ratio 

of the average annual income of DG (IP) to the average annual invest-
ment cost (CY). 

maxf1 =
IP

CY
(10)  

the calculation formula of CY as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CY = CI + COM + CIL + CP

CI =
y0(1 + y0)

nWG

(1 + y0)
nWG − 1

∑N

i=1

(
cI

WGPr
WGi

)

+
y0(1 + y0)

nPG

(1 + y0)
nPG − 1

∑N

i=1

(
cI

PGPr
PGi

)

COM =
∑N

i=1

(
cOM

WGEWGi + cOM
PG EPGi

)

CIL = cIL

∑N

i=1
PILi

CP = cPEg

(11)  

here,CIrepresents the investment cost of DG converted to each year; 
COMmeans operation and management cost of DG; CILrepresents annual 
compensation of interrupted load; CPdetermines the cost of power 
supplement from substation; cI

WGandcI
PGare the per-unit investment cost 

of WTG and PVG; Pr
WGiandPr

PGiare the installed capacity of WTG and PVG 
at bus i; y0is the discount rate; nWGandnPGare the economic life of WTG 
and PVG; N is the number of grid buses;cOM

WGandcOM
PG are the per-unit 

operation and management cost of WTG and PVG; EWGiandEPGiare the 
annual power generation of WTG and PVG; cILdetermines the per-unit 
compensation of interrupted load; PILiis the annual interruption of 
interrupted load at bus i. the calculation formula ofIPas follows: 
{

IP = IS + IG + IR + IE
IE = Ve1 + Ve2 + Ve3

(12)  

here, IS and IG describe the annual income of net electricity and price 
subsidy of DG; IRis the annual income sold to users; IEis the environ-
mental benefits of DG energy conservation and emission reduction, 
specifically, and IEcan be equivalent to the sum of the value of fuel 
consumed by traditional power plants (Ve1), the environmental value of 
gas pollutants (Ve2) and heavy metal emission reduction (Ve3). 

4.1.2. The comprehensive operation risk of the system 
Since DG planning is based on forecast data of wind-photovoltaic- 

load, its strong uncertainty characteristics increase the over-limit 
probability of the state variables of the distribution network. Consid-
ering the correlation between the system bus and branch, the state 
variables tend to change in the same direction. Therefore, comprehen-
sively considering the risk of voltage over-limit of all buses and the 
power flow over-limit of all branches [31], the comprehensive opera-
tional risk index of the system is defined as follows: 

minf2 = α1Pu + α2Pl (13)  

here,PuandPlare the risk index of voltage over-limit and the power flow 
over-limit; α1andα2represent comprehensive operating weight coeffi-
cient, α1 + α2 = 1. 

Because the calculation method ofPuandPl are similar, the following 
uses Pu as an example to give the relevant calculation method, and the 
calculation process of B will not be repeated. 

Pu =

[
β1

N

∑

s

∑

i

⃒
⃒S
(
Us,i,t

)⃒
⃒+ β2max

s,i

⃒
⃒S
(
Us,i,t

)⃒
⃒

]

(14)  

here, the first term and the second term represent the average and 
maximum value of the risk index of voltage over-limit of all buses 
respectively; β1andβ2are the weight coefficient of voltage risk, β1 + β2 =

1, and the different values ofβ1andβ2can increase or decrease the in-
fluence of the average value and the maximum value, to eliminate the 
shadowing of indicators to the greatest extent; Us,i,tis the bus voltage at 
bus i for the sth scene,S(⋅)describes the loss severity of voltage over- 
limit. and, 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S
(
Us,i,t

)
= eλξ(Us,i,t) − 1

ξ
(
Us,i,t

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Ui,min − Us,i,t

Ui,max − Ui,min

)2

,Us,i,t < Ui,min

0, Ui,min ≤ Us,i,t ≤ Ui,max
(

Us,i,t − Ui,max

Ui,max − Ui,min

)2

,Us,i,t > Ui,max

(15) 

Here, ξ(⋅) is the voltage loss; Ui,minandUi,maxare the allowed lower and 
upper nodal voltage at bus i; λ is the penalty coefficient of voltage loss, 
which is used to reflect the degree of nonlinear relationship between S(⋅)
and ξ(⋅). 

4.2. Constraints 

4.2.1. Power flow equations 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

PGi − PLi − Ui

∑N

i=1
Uj
(
Gijcosθij + Bijsinθij

)
= 0

QGi − QLi − Ui

∑N

i=1
Uj
(
Gijsinθij − Bijcosθij

)
= 0

(16)  

here, PGiandQGiare the injection active power and reactive power of DG 
at bus i; PLiandQLiare the injection active power and reactive power of 
load; UiandUjare the nodal voltage at bus i and bus j; Gij and Bij are the 
corresponding real and imaginary part of the admittance matrix, 
respectively; θij is the angle difference between bus i and bus j. 

4.2.2. Security constraints of the power grid 
⎧
⎨

⎩

Ui,min ≤ Ui ≤ Ui,max
|Iij| ≤Imax
|Pij| ≤Pmax

(17)  

here, Imaxis the allowed upper of branch currentIij;Pmaxis the allowed 
upper of branch power Pij. 

4.2.3. Output constraints of adjustable and controllable resources 
⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ Pr
WGi ≤ Pmax

WGi

0 ≤ Pr
PGi ≤ Pmax

PGi

0 ≤ Pr
WGi + Pr

PGi ≤ Pmax
DGi

(18)  

{
QWGi = Pr

WGitan(φWGi)

QPGi = Pr
PGitan(φPGi)

(19) 
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0 ≤ PILi ≤ Pmax
ILi (20)  

here, Pmax
WGi,Pmax

PGi andPmax
DGiare the maximum allowed installation capacity of 

WTG, PVG and DG at bus i; Pmax
ILi is the allowed upper of interrupted load. 

5. IMPSO concept and methodology 

IMPSO is an intelligent optimization algorithm based on evolu-
tionary group, whose main principle is to keep the particle velocity and 
position of the search space to find the optimal solution [32–34]. 
Therefore, IMPSO has a good feature matching with the multi-objective 
programming problem, and its velocity and position update equations 
are as follows: 

v(t+1)
id = ωiv

(t)
id + c1r1

[
p(t)

idbest − x(t)id

]
+ c2r2

[
g(t)

dbest − x(t)id

]
(21)  

x(t+1)
id = x(t)id + v(t+1)

id (22)  

here, v(t)id and x(t)
id are the velocity and position of particle i at dth 

dimension in the tth iteration, respectively; p(t)idbest is the individual 

optimal position of particle i at dth dimension in the tth iteration; g(t)dbest is 
the global optimal position in the tth iteration; c1andc2 are the accel-
eration coefficient; r1,r2~U(0,1); ωi is the inertia weight. 

However, under the guidance of inertial weights or linearly 
decreasing weights, IMPSO tends to lose population diversity and fall 

into the trap of local optimality. In order to improve the efficiency of 
algorithm search, nonlinear adjustment is used to make ωi dynamically 
change according to the global optimal position and current position. 
The improved MOPSO updates the inertia weight as follows: 

ωi = ωmax − (ωmax − ωmin)
(

D(t)
i − 1

)2
(23)  

D(t)
i =

1
SNd

∑N

d=1

⃒
⃒
⃒x(t)id − g(t)

dbest

⃒
⃒
⃒ (24)  

here, D(t)
i is the difference between the current position and the global 

optimal position of particle i in the tth iteration; S is the allowed lower 
and upper of particle i; Nd is the spatial dimension; ωmin and ωmax are the 
initial and final values of ωi, respectively. 

In the calculation process, the cumulative rank fitness assignment 
strategy, the enhanced elite retention strategy and the crowding dis-
tance calculation strategy are introduced [35]. The enhancement of the 
elite retention strategy means that the elite individuals also participate 
in the renewal. If the fitness decreases after the renewal, the individuals 
before the renewal are retained, otherwise the renewed individuals 
participate in the evolution of the next generation. It can effectively 
improve the convergence ability of the algorithm while preventing 
premature population. The IMPSO algorithm process is shown in Fig. 2. 

In addition, the Pareto optimal solution is selected according to a 
fuzzy logic decision method, and the preference of the decision-maker is 
used to measure a near-optimal Pareto solution. For multiple objective 
sets, the membership degree ζs and the linear membership function 
τk(f s

k) are defined as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζs =
∑

k
ϖkτk

(
f s
k

)

τk
(
f s
k

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, f s
k < f D

k

f U
k − f s

k

f U
k − f D

k
, f D

k ≤ f s
k ≤ f U

k

0, f s
k > f D

k

(25)  

where f s
k is the i-th objective value of the s-Pareto solution; ϖkis the 

weight coefficient of the target, which satisfies 
∑

k
ϖk = 1; fD

k and fU
k are 

the upper and lower bounds of the kth target, respectively. 

6. Numerical results and analysis 

6.1. MDK2-BN structure accuracy verification 

6.1.1. The performance indexes of MDK2-BN structure 
The performance indexes include Bayesian information criterion 

(BIC) score and accuracy of DAG. 
BIC score function is used to evaluate the fitting degree of network 

structure. According to the decomposability of BIC scoring function, 
when the local structure in BN changes, in order to reduce the number of 
repeated calculations, only use Eq. (25) to calculate the score Bnew(G1,D) 
of the changed local structure G1, and then substitute Eq. (26) to get the 
overall score B(G,D). 

Bnew(G1,D) =
∑

i∈G1

B(Xi, π(Xi))

=
∑

i∈G1

⎛

⎜
⎜
⎝

∑qi

j=1

∑ri

k=1
θi,j,m,klog

θi,j,m,k
∑ri

k=1
θi,j,m,k

−
qi(ri − 1)

2
logm

⎞

⎟
⎟
⎠ (26)  

B(G,D) = Bnew(G1,D) + Bold(G2,D) (27) 

Fig. 2. Process of IMPSO algorithm.  
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where qi indicates that the value of π(Xi) has a total of qi combinations; ri 
means Xi has a total of ri values; m is the number of models. 

The performance indexes of DAG include: 

• Increasable edge (IE), represents the edge that the prediction struc-
ture is independent of the standard structure.  

• Missing edge (ME), represents the missing edge of the prediction 
structure compared with the standard structure.  

• Reversed edge (RE), represents the opposite edge of the predicted 
structure compared to the standard structure. 

6.1.2. Numerical results of MDK2-BN structure accuracy 
The operating environment is MATLAB 2016a, and the hardware 

configuration is a computer with CPU Intel Core i5-4210M 3.60GHz. 
In order to verify the Bayesian network DAG learning capability 

described in Section 3.2, structural learning is conducted on the stan-
dard Asia network. The small network has eight nodes and eight edges, 
and the corresponding a priori network and transformation relationship 
are shown in Fig. 3. Eight training sample datasets of different sizes are 
randomly generated. In order to reduce the effect of random data on the 
experiment, each training set is generated ten times and run ten times 
individually. The calculated average of 100 runs is used as the final 
result of the experiment. 

The results of the DAG evaluation index are shown in Fig. 4. The 
variation of the IE shows that the number of reverse edges gradually 
approached to zero as the number of datasets increased; thus, the to-
pological sequence obtained by the joint MWST and the node sequence 
obtained by the DFS are almost the same, so the number of reverse edges 
could be reduced after substituting into the K2 algorithm. Both the ME 
and RE indicators demonstrated the accuracy of the MDK2-BN structure 
and assured that the K2 algorithm could reach the actual Asian network 
once the node sequence is given. The SHD indicator is used as a measure 
of the overall match between the predicted and standard structures. This 
indicator decreased with the increase in dataset number and gradually 
stabilized when the sample size reached the value of 2500. Thus, when 
the sample size reaches 2500, it is reasonable to construct the BN 
structural model using the MDK2-BN structure. 

The variation of BIC score at different data sizes is presented in 
Table 1, where Bbest, Bwors, and Baver denote the best, the worst, and the 
average BIC scores after 100 calculations, respectively; and Bstan repre-
sents the BIC score of the standard structure. As presented in Table 1, 
after the sample size reached the value of 2000, the optimal structure 
score Bbest searched by our proposed method is almost the same as the 
score Bstan of the standard structure, which illustrates the effectiveness 
of proposed method in compressing the search space by constructing the 
largest support tree. When the sample size is less than 2000, there is a 
substantial difference between Bwors and Bstan. The main reason is that 
the small data size would reduce the accuracy of the maximum support 
tree orientation, but the joint DFS would gradually make up for the in-
accuracy in the maximum support tree orientation. On the whole, a 
reasonably-accurate Bayesian network structure can be achieved for 
small networks when the node sequence is optimized by the MWST and 
DFS algorithms, followed by performing the K2 algorithm using the 
optimized node sequence as a priori knowledge. 

6.2. Verification of effectiveness of wind–photovoltaic–load joint 
scenarios 

IEEE 33-bus test system is selected for simulation analysis, and the 
voltage level is 12.66kV. DG includes WTG and PVG, and the historical 
data of wind speed, light intensity and load measured in this paper 
comes from Gansu Province, China, including the wind speed and light 
intensity samples collected by 6 observatories in the region in one year 
and the load data obtained simultaneously, a total of 8760 groups. WTG 
access buses 5, 9, and 15 with a rated power of 500KW, and PVG access 

Fig. 3. Standard ASIA network and transfer relations.  

Fig. 4. DAG evaluation index results.  

Table 1 
BIC score under different amounts of data.  

The number of samplesin the dataset BIC score results 
Bbest Bwors Baver Bstan 

500 -1219.8 -1236.6 -1228.4 -1215.1 
1000 -2349.3 -2354.9 -2351.2 -2347.5 
1500 -3627.1 -3644.2 -3630.9 -3625.7 
2000 -4649.7 -4661.4 -4652.5 -4648.4 
2500 -5218.3 -5233.8 -5221.3 -5217.8 
3000 -6815.1 -6819.2 -6817.7 -6814.6 
3500 -7936.7 -7941.7 -7939.6 -7936.5 
4000 -9425.4 -9429.3 -9427.7 -9425.3  

Fig. 5. Digital characteristics of nodal voltage amplitude.  
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buses 3, 10, and 22 with a rated power of 500KW. The MDK2-BN model 
is used to generate 500 scenarios randomly, and then probabilistic 
power flow calculation is used to test whether the joint scenario can 
accurately and completely represent the nonlinear correlation of his-
torical wind speed, light intensity and load demand. The results of 
deterministic load flow calculation based on the 8760 sets of wind- 
photovoltaic-load power data are the benchmark. The results of the 
combined calculation of wind–photovoltaic–load joint scenario are 
compared with the reference values. The digital characteristics of 
different nodal voltages are shown in Fig. 5, and the error of all nodal 
voltage are shown in Table 2. 

The results in Fig. 5 and Table 2 show that the wind-photovoltaic- 
load joint scenario obtained by the MDK2-BN model is in good agree-
ment with the calculated results of the original sample. The achieved 
calculation accuracy also verifies the effectiveness of the MDK2-BN 
model; namely, the sample obtained by the model maintain the basic 
probability characteristics of the original sample and the correlation 
between wind, photovoltaic, and load. In order to further investigate 
whether the synthetic data retains the non-linear related information of 
the original data, Fig. 6 shows the two-dimensional scatter plots of the 
original sample 8760 groups and the synthetic sample 500 groups. The 
shape of the scatter plot, the distribution of the data points, and the 
accumulation area are basically consistent with the original data. 

6.3. Analysis of DG planning results 

The relevant basic parameters are consistent with Section 6.2. It is 
planned to build three WTG and three PVG in six buses, and the 
candidate buses for WTG = [8 9 15 16 17 21 24 30 31 33], for PVG = [7 
10 15 16 17 23 25 28 31 32]. The maximum allowable transmission 

capacity of the line is set to 3.81MVA, the nodal voltage is restricted to 
0.95~1.05p.u., and the load buses = [9 13 20 23 27] can be interrupted. 
The weight coefficients in Eq. (13) and Eq. (14) are both 0.5. The rele-
vant settings of the IMPSO algorithm are shown in Table 3. 

The proposed MDK2-BN model is used to generate 500 scenarios 
randomly, and then H-K composite clustering algorithm is used to 
compress them into 10 typical scenarios. Different planning schemes are 
set for analysis and comparison. 

Scheme 1: Use the planning model proposed in this paper to obtain a 
DG configuration scheme that considers the indicators of the economy, 
system safety, and environmental benefit. 

Scheme 2: Ignore the environmental benefits, and only consider the 
DG configuration solution for the economy and system safety. It is used 
to verify the effectiveness of the planning model considering environ-
mental costs for optimizing access capacity. 

Scheme 3: on the basis of the planning model in this paper, the 
location of DG grid connection is modified, according to the principle of 
high load level priority access, but the capacity of DG is limited within 
80% of nodal load. It is used to verify the effectiveness of the proposed 
planning model for DG access location and capacity. 

Table 4 shows that the configuration derived from Scheme 1 
improved the grid access and absorption capability of the DG. Compared 
to Scheme 2 and Scheme 3, CP in Scheme 1 decreased from 1.7083 
million dollars and 1.5486 million dollars to 1.2935 million dollars, 
respectively, with the maximum reduction of 24.3%. Additionally, while 
lowering the grid configuration cost, Scheme 1 also reduced the grid 
operation risk by taking environmental benefits into account. Overall, 
although the DG access volume, investment, and operation costs are 
higher for Scheme 1 than the other schemes, Scheme 1 is more suitable 
in terms of economy, operation safety, and environmental benefits. 

The interruption conditions of the load interruption points presented 
in Table 5 indicate that not all designated load interruption points are 
interrupted. For instance, bus-16 and bus-23 do not need to be 

Table 2 
Error of nodal voltage.  

Method Maximum 
deviation 

Maximum relative 
deviation /% 

Sum of 
deviations 

500 
scenes 

3.428 × 10− 3 0.369 5.681 × 10− 3  

Fig. 6. Scattered plot of original data and synthetic data.  

Table 3 
IMPSO algorithm related parameters.  

Population 
size 

Iterative 
number 

Update 
interval of ωi 

The acceleration coefficient 
C1 C2 

100 200 [0.4,0.9] 2.5 decreased 
to 0.5 

0.5 increasing 
to2.5  

Table 4 
Result analysis of the optimal planning results.  

Project Configuration result / MW (position) 
Scheme 1 Scheme 2 Scheme 3 

WTG 0.74(15),0.76 
(17),0.85(31) 

0.67(9),0.59 
(17),0.79(21) 

0.45(8),0.37 
(24),0.53(30) 

PVG 0.57(10),0.73 
(23),0.68(31) 

0.51(17),0.64 
(23),0.49(31) 

0.32(7),0.46 
(25),0.31(32) 

CI/(× 104 

$) 
12.61 10.87 7.21 

COM/(× 104 

$) 
6.03 4.69 3.52 

CIL/(× 104 

$) 
3.81 4.97 5.32 

CP/(× 104 

$) 
129.35 170.83 154.86 

IS/(× 104 $) 140.61 117.78 78.02 
IG/(× 104 

$) 
6.67 5.24 3.45 

IR/(× 104 

$) 
97.52 82.17 53.74 

IE/(× 104 

$) 
6.19 — 3.76 

f2 0.0479 0.0616 0.0645  

Table 5 
Interruptible load point results.  

Interruptible load position Total annual interrupted power /(MW⋅h) 

13 13.7 
16 0 
20 7.9 
23 0 
27 54.8  
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interrupted because the voltages at these nodes are severely affected by 
the terminal node generator, and the demand for high load could be 
controlled directly by the generator. In contrast, when demand for high 
load occurred at bus-13, bus-20, and bus-27, which are located farther 
away from the end node, and when the DG output is low, the inter-
ruption is necessary to ensure stable system operation. 

6.4. Effects of seasonal fluctuation on DG configuration 

In order to demonstrate the effects of changes in the DG output and 
seasonal fluctuation of load demand on the DG configuration planning, 
the DG volume is considered as the only decision variable and the 
planning results for summer and winter seasons are compared with the 
planning results for the whole year. The planning results of the DG ac-
cess capacity are shown in Table 6. The BN model for different DG 
variables is displayed in Fig. 7. 

By comparing the BN model connection in different seasons shown in 
Fig. 7, it is found that PWG and PVG had strong autocorrelation behavior 
under all three conditions; this is represented by line connections be-
tween wind speed and wind speed and between light intensity and light 
intensity. In the summer, due to abundant light resources, PVG#1 has a 
direct effect on PWG#2, and load demand L#1 is also constrained by 
PVG#3. In the winter, when wind resources are more abundant, PWG#3 
has a direct impact on PVG#1, while L1 shows a dependence relation-
ship with PWG#2 and PVG#2. Over the whole year, the region is 
dominated by the wind speed performance, and the wind speed influ-
ence the light intensity of the line at the three nodes’ locations. The 
regional wind–photovoltaic–load correlation characteristics are well 
preserved. 

The results in Table 6 show that the maximum allowable capacity of 
PVG obtained in the summer is significantly higher than that of WTG, 
while the maximum allowable capacity of WTG obtained in the winter is 
significantly higher than that of PVG. This indicates that considering the 
complementary effects of the wind speed and light intensity on the 
output power is necessary for the capacity configuration. Therefore, the 
highest DG access capacity plan can be obtained by considering the 
spatiotemporal correlation of different seasons of the year. Hence, the 
waste of energy and material resources can be reduced, and energy 

utilization can be improved only when a policy conforms to the com-
plementary nature of the actual DG output. 

The Pareto leading edge driven by annual data and obtained by 
mainly considering the technology, economics, and environmental 
benefits is presented in Fig. 8. As shown in Fig. 8, there is an antagonistic 
relationship between the average annual profit rate of DG and the 
comprehensive operation risk. As the position and capacity of the DG 
changed, the results of both targets are impacted. The antagonistic na-
ture of the two objectives makes it impossible to optimize both objective 
functions at the same time. The upward trends on the left- and right- 
hand sides of the marked point shows obvious differences. The 
average annual profit rate at the corresponding point is 1.93, and the 
system risk is 0.047. 

The results presented in this section reveal that, based on the annual 
data, the installation capacity of WTG is generally higher than the 
installation capacity of PVG. This indicates that, when a certain number 
of wind turbine fields and photovoltaic solar energy fields are installed 
in a region at the same time, the wind turbine will have a higher priority. 
The reason is that wind resources are more abundant than solar re-
sources. Increasing the wind power capacity can help to reduce the 
comprehensive annual cost for the investors and increase the revenue. 
As the annual average rate of return increases, the grid operation risk 
increases faster. Therefore, while focusing mainly on the high annual 
rate of return, the planners should also avoid instability in system se-
curity. A diverse feasible solution allows the planners to decide a suit-
able planning program from a dual perspective. 

7. Conclusion 

An innovative multi-objective DG planning model that 

Table 6 
DG optimization configuration.  

Type of season Maximum allowable capacity of DG / MW (corresponding position) 
WTG PVG Total 

Summer 0.52(9),0.43(15),0.64(25) 0.71(3),0.87(22),0.74(28) 3.91 
Winter 0.77(16),0.82(21),0.93 

(28) 
0.53(17),0.58(22),0.49 
(29) 

4.12 

Annual 0.74(15),0.76(17),0.85 
(31) 

0.57(10),0.73(23),0.68 
(31) 

4.33  

Fig. 7. BNs in different seasons.  

Fig. 8. Pareto optimal frontier  
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comprehensively considers the economy, operational safety, and envi-
ronmental benefits, is established. The seasonal changes in the correla-
tion of photovoltaic and wind power generation show uncertain 
differences. Therefore, the simultaneous consideration of the seasonal 
changes and the spatiotemporal correlation characteristics between DG 
variables can not only increase the DG penetration rate, but also provide 
decision makers with a helpful reference for constructing the planning 
scheme from different perspectives. Further, it provides a MDK2-BN 
model to handle the spatiotemporal correlation between different 
types of DG and between DG and load. The achieved accuracy of flow 
calculations meets the engineering requirements. This paper provides 
useful ideas for DG planning driven by multi-dimensional wind-
–photovoltaic–load data and pertinent theoretical support for solving 
the planning problems with a strong spatiotemporal coupling of DG in 
adjacent regions. 
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