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ABSTRACT
An energy management system incorporating a hybrid control scheme based on artificial neural networks
(ANN)-based controller and a classical proportional–integral (PI) controller is proposed for a DC microgrid
(DCMG) consistingof a fuel cell (FC) andahybrid energy storage system (HESS) under variable loaddemand.
The HESS incorporates a battery energy storage system (BESS) and a supercapacitor (SC) to cater high
energyandhigh-powerdemands, respectively. TheHESSwith theproposedcontroller andenergymanage-
ment strategy (EMS) admits improved time response for suddenandslowly varying loaddemands, resulting
in reduced battery stress with an improved battery life span. The microgrid configuration with a proposed
hybrid controller is simulated on the Simulink R© platform to establish its efficacy over a conventional con-
troller. The proposed controller effectivelyminimises peak overshoot, settling time and deviation inDCbus
voltage (DBV) , in comparison to the conventional one. Furthermore, simulation results are validated using
a real-time OPAL-RT platform to ascertain effectiveness of the proposed strategy.
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1. Introduction

Microgrids incorporating renewable energy sources (RESs) are
ubiquitous nowadays for their inherent advantages over their
conventional counterparts. They provide an economical alter-
native to establishing transmission corridors in remote areas
by harnessing renewable energy. Microgrids have been an
environment-friendly alternative to fast-depleting fossil fuels.
Microgrids harness RESs in remote areas near to loads and admit
negligible transmission losses resulting in increased efficiency
(Sahu et al. 2020b). In general, microgrids are of three types: AC,
DC, and hybrid AC–DC. Presently, DCMGs are gaining popular-
ity due to their low power loss, increased efficiency, improved
reliability, ease of control requiring no synchronisation, absence
of reactive power and easy interconnections to the utility (Vu
et al. 2017). However, DCMGs suffer from power quality chal-
lenges such as voltage fluctuations, flickers, unwanted harmon-
ics and load imbalance (Sahoo, Sinha, and Kishore 2018). The
common cause of voltage fluctuations or flickers in standalone
DCMG systems remains the integration of RESs such as wind
and photovoltaic cells, as energy produced by such RESs is sub-
ject to weather conditions (Kathiresan, Natarajan, and Jothimani
2020). To address these issues, energy storage devices (ESDs)
are employed in standalone microgrids to maintain a balance
in generation and load demand, thereby improving the power
quality of themicrogrid system (Sahu et al. 2020c). A standalone
microgrid comprising PV with a battery as ESD was proposed to
balance the demand-generation gap amid uncertainties (Bou-
joudar et al. 2020), and an ANN controller was used to control
the bidirectional DC/DC converter interlinking battery and DC
bus. Despite the use of a fast ANN-based controller, the battery
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was unable to handle fast fluctuations in PV generation and load
demand for its low power density, which resulted in increased
stress on the battery (Rahman et al. 2020). A combination of
different kinds of ESDs with diverse characteristics has been suc-
cessful in addressing the aforesaid issue under similar situations
(Bahloul and Khadem 2019; Xu et al. 2019). A combination of
battery and SC is prevalent nowadays and is used in microgrids,
electric vehicles and uninterruptible power supplies (Cabrane
et al. 2021). Batteries are low power devices, whereas SCs are
high power devices as shown in the Ragone plot in Figure 1
(Christen and Carlen 2000). The performance parameters with a
comparison of these ESDs are summarised in Table 1.

EMS along with suitable controllers is required to keep the
DBV regulatedwith balance in powermismatch between gener-
ation and demandmet through HESS. A sliding mode controller
(SMC) based on PWM for the boost converter controlling the
PV generation in a DCMG consisting of PV and battery was pro-
posed in (Singh and Lather 2018). However, the proposed con-
trol approach is difficult to design and relies heavily on device
parameters. In (Chettibi et al. 2018), an adaptive neural network-
based controller was reported to control hybrid AC–DC micro-
grid. Their proposed ANN-based controller swiftly tracks opti-
mum power from RESs; however, EMS based on fuzzy logic con-
trol (FLC) approachwasdifficult todesignwith accuracydepend-
ingon theexpert’s prior domain knowledge. EMS for power shar-
ing in an electric vehicle (EV) and FC-based microgrid with HESS
was discussed in (Marzougui et al. 2019). The proposed strat-
egy used FLC, flatness control and a rule-based algorithm and
was overall complex and difficult to design. In (Fu et al. 2019),
an EMS was proposed using hierarchical control to improve the
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Figure 1. Ragone plot.

Table 1. Performance metric comparison of battery and SC (Glavin et al. 2008).

SC Battery

Charge/discharge efficiency 85–98% 70–85%
Cycle life > 500,000 1,000
Discharge time 0.3–30 s 0.3–3 hr
Fast charge time 0.3–30 s 1–5 hr
Specific energy density 1–10 Wh/Kg 10–100 Wh/Kg
Specific power density < 10000 W/Kg < 1000 W/Kg

performance and fuel economy of hybrid EV. However, DBV reg-
ulation is not considered. The optimised operation and power
managementof a hybridmicrogridusing a stochastic framework
have been recently studied (Papari et al. 2019). However, con-
trol of power-sharing among various ESDs is not discussed. In
(Sinha and Bajpai 2020), an adaptive FLC-based EMS for a stan-
daloneDCMGutilising RESs andHESS comprising battery and SC
was proposed. The proposed strategy focuses on the over- and
under-utilisation of ESD in a scenario with multiple ESDs. How-
ever, power-sharing among the various units of the microgrid
is not discussed and FLC implementation depends on IF–THEN
rules requiring a-prior information of the system. In (Sankar and
Sekhar 2021), authors have compared three different configura-
tions of microgrid i.e. with PV-battery /PV-FC and PV-FC-battery
for performance testing, in terms of observed output power
under uncertainty in PV power generation. However, DBV reg-
ulation is not highlighted and the battery is unable to cope with
dynamic changes in demand or generated power. Power man-
agement for a low voltageDCMGusing anANN-based controller
was reported in (Singh and Lather 2019) to control DC/DC con-
verter interlinking battery and DC bus. For a DCMG consisting
of a FC, PV and a battery, an ANN-based MPPT controller design
and its performance were compared with regular perturb and
observation methods (Pradhan et al. 2021). In literature, ANN
controllers have been reported to be fast, stable, robust and
resilient due to their parallel and distributed nature. In contrast,
classical controllers like P, PI and PID are still the most exten-
sively used in the industry due to their simple representation,
ease of implementation, robustness due to model free nature,
simple and frequent online retuning capabilities etc. In addi-
tion, the three parameters in PID can be independently adjusted
to control the rise time, overshoot, steady-state error and set-
tling time of the system (Mishra et al. 2021b; Nouman, Asim,
and Qasim 2018). However, PID controllers may not achieve

satisfactory performance in case of non-linearity or complex sys-
tem structure. To address this issue, several researchers have
supplemented conventional PID controllers with computational
intelligence-based controllers resulting in hybrid controllers e.g.
swarm andWOA optimisation based fuzzy, fuzzy-PID, combined
PI-Slidingmode controller and ANFIS-PID controllers (Sahu et al.
2018; Sahu et al. 2020a; Mishra et al. 2021a; Singh and Lather
2020; Shaikh, AlGhamdi, and AlZaher 2018). The effectiveness
of these hybrid controllers has motivated the present study of
investigatingahybrid combinationof anANNcontrollerwith aPI
controller to achieve improved results in terms of time response
characteristics.

The proposed standalone DCMG configuration consists of
a FC and HESS consisting of a battery and SC, where the sur-
plus power of the FC is recycled using a battery as in (Xu et al.
2019). The objective of the present work remains to explore
the use of hybrid control techniques to improve DC bus regula-
tion with effective power sharing in DCMGs. To our best, hybrid
PI and ANN-based control techniques for DCMG consisting FC,
BESS and SC are not addressed in the literature yet. Here, the
ANN-based hybrid controller along with EMS strategy is pro-
posed for a grid-independent DCMG consisting of FC and HESS
incorporating BESS and SC with the following objectives:

1. Effective power-sharing among various energy sources and
HESS of the DCMG.

2. DBV (VDC) regulation in the face of sudden changes in power
generation/demand.

3. Regulation of the battery SOC to safeguard it from over-
charging and deep-discharging.

The rest of the paper is structured as follows. The system con-
figuration withmodelling of the DCMG is described in Section 2.
The proposed control strategy using hybrid control incorpo-
rating ANN-based and PI-based control loops is discussed in
Section 3. The simulation results, experimental results and per-
formance comparisonsbetween the conventional andproposed
controllers are presented in Section 4. The conclusion based on
the study with future directions is discussed in Section 5.

2. System configuration andmodelling

Figure 2(a,b) shows the considered configuration of standalone
DCMGwith load profile, HESS utilising battery and SC. The boost
converter links FC to the DC bus, while SCs are linked to bat-
tery modules through a DC/DC buck–boost converter pair. The
AC load is connected to the AC bus and is interlinked to the
DC bus via a three-phase inverter. The controller pulls addi-
tional currents from HESS to maintain the VDC and match the
power requirements of the load, in case, generation falls short
of those needs. The controller charges the HESS through surplus
generation if generation exceeds load demand.

2.1. FCmodelling

FCs are silent, portable and have efficiency up to 45%. Their ver-
satility makes them ideal for small/micropower, transportation,
large-scale fixed power systems and distributed power produc-
tion (Dicks and Rand 2018).
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Figure 2. (a) Overall schematic of standalone DCMG (b) AC and DC load profile.

The cell output voltage relation is givenby (Bracco et al. 2018)

E = Eoc − NA ln
(
ifc
i0

)
.

1
sTd
3 + 1

(1)

Vfc = E − Rohm.ifc (2)

where, Eoc is open-circuit voltage, i0 denotes exchange current
(A), Rohm is internal resistance (�), A denotes Tafel slope (in V),
Vfc is FC voltage (in V), Td denotes cell settling time (secs) and N
denotes numbers of cells in series. Specifications of the FCmodel
are listed in Table 2.

2.2. SCmodelling

The operation of an SC is identical to a typical capacitor, but
with a larger capacity and more energy storage. The SC model
is based on the sternmodel, which is a hybrid of Helmholtaz and
Guoy–Chapmanmodels. The capacitance relations of the SC are
as follows:

C =
[
1
CH

+ 1
CGC

]−1

(3)

Table 2. Parameters of FC model.

Parameters Specifications

Stack power 10.28 kW
Number of cells 65
Stack efficiency 50%
Resistance of FC 0.024535 Ω
System temperature 318 kelvins
Nominal air flow rate 732 lpm
Nominal fuel flow rate 114.9 lpm
NOMINAL CONSUMPTION
Hydrogen (H2) 98.98%
Oxidant (O2) 42.88%
NOMINAL UTILISATION
Air 269.5 slpm
Fuel 113.2 slpm

CH = Ne ∈ ∈0Ai
d

(4)

CGC = FQc

2NeRT
sinh

(
Qc

Ne
2Ai

√
8RT ∈ ∈0C

)
(5)

where CH is Helmholtz capacitance; CGC is Gouy-Chapman
capacitance; ∈0 denotes permittivity of free space, ∈ denotes
permittivity of electrolyte material; Ai denotes inferential area
between electrode and electrolyte; Ne denotes the number of
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Figure 3. Equivalent circuit of SC.

Table 3. Parameters of SC model.

Parameters Specifications

Rated capacitance 15.6 F
Number of capacitors in series 108
Number of capacitors in parallel 1
Equivalent DC series resistance 0.150 Ω

electrode layers; c ismolar concentration andQc denotes electric
charge of cell; The total capacitance of an SCmodule is given by

CT = Np

Ns
.C (6)

with losses in the resistance. SC Voltage is given as

Vsc = NsQTd

NpNe ∈ ∈0Ai
+ 2NeNsRT

F
ar sinh

(
QT

NpNe
2 ∈ ∈0Ai

√
8RT ∈ ∈0C

− isc.Rsc

)
(7)

with

QT =
∫

iscdt (8)

where Ns and Np are the number of series and parallel cells,
respectively;QT is electric charge; Rsc is total resistance of the SC
module and isc is the current of the SC module. The model of SC
is shown in Figure 3. Parameters of the utilised SC model have
been enlisted in Table 3.

2.3. Batterymodelling

The battery model based on the Shepherd curve fitting model
is used in the proposed work. The voltage of battery can be
written as

VBat = E0 − K

(
Q

Q − it

)
.it − iRb − Abe

−B.it − K

(
Q

Q − it

)
.i∗

(9)

SOCB = 100
(
1 − 1

Q

∫ t

0
i(t)dt

)
(10)

where E0 is constant voltage of the battery (in V), K is polarisa-
tion constant (in Ah−1), it denotes extracted capacity (in Ah),Q is
the maximum capacity of the battery (in Ah), i∗ is low-frequency
current dynamics (in A), Rb is internal resistance of the battery,
B is exponential capacity (in Ah−1) and Ab is exponential voltage
(in V). Parameters of the battery are tabulated in Table 4. Figure 4
shows the equivalent circuit of the battery.

Table 4. Parameters of battery.

Parameters Specifications

Rated capacity 40 Ah
Nominal voltage 48 V
Internal resistance 0.012 Ω
Initial SOC 65%

Figure 4. Equivalent circuit of battery.

2.4. DC/DC convertermodel

DC/DC converter connects FC and battery systems to DC bus,
which allows and controls conversion of battery/ FC current
and DBV (from low/high voltage to high/low voltage). DC/DC
converters can be modelled as either a switching model or an
average-value model. Such models are widely used for the pur-
pose of accurate design along with the investigation of PWM
switching harmonics and losses. However, the simulation of
switching model-based DC/DC converters takes a considerably
large simulation time. Figure 5(a,b), shows DC/DC converters
used to interlink the battery with the DC bus. This converter
pair employs a parallel combination of DC/DC isolated buck and
boost converter for charging and discharging the battery. Con-
verter interlinking FC to DC bus has an efficiency of 89.25%,
while boost andbuck converter pair has an efficiency of 87%and
87.97%, respectively.

2.5. PI controller for battery

PI controller regulates DBVby charging/ discharging the battery.
If VDC exceeds its reference value (V∗

DC), the PI controller sends
a filtered reference current (I∗BatC) signal to an isolated DC/DC
buck-converter to charge the battery. If VDC falls below V∗

DC,
the PI controller sends reference current (I∗BatD) to an isolated
DC/DC boost converter for discharging the battery. PI controller
for battery charging/discharging is shown in Figure 6.

2.6. Invertermodelling

Figure 7 shows the model of the inverter used. A three-
phase 200 V, 400Hz voltage signal is used as a reference for
voltage-controlled sources. Input current is generatedusingDBV
and the output power.
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Figure 5. DC-DC converters (a) Buck (b) Boost.

Figure 6. P-I controller for charging/discharging of battery.

3. Proposed control strategy

Figure 8(a), represents a block diagram of the conventional
controller (Soumeur et al. 2020) while Figure 8(b) shows the
schematics with the proposed controller. In a conventional con-
trol scheme, the PI controller is used for generating a current ref-
erence for FC. In contrast, the proposed control technique uses
anANN-based FC controller to control FCoutput for bridging the
energy gap between load demand and ESDs.

3.1. Principle of ANN training

ANNs mimic biological neurons and provide a parallel and dis-
tributed computing architecture tomodel any general nonlinear
(static as well as dynamic) relations between inputs and out-
puts. ANNs are able to learn these general relations in terms
of weights and biases spread over multiple layers and nodes
(artificial neurons). The input layer of ANN connects to system
inputs andprojects theweighted input signal to the next hidden
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Figure 7. Inverter.

layer and so on. Finally, the output layer collects the weighted
signals from the previous layer to produce ANN output. The
ANN is trained using the Levenberg–Marquardt backpropaga-
tion learning technique, which effectively trains themodel using
a chain rule method. The output of nth node in jth layer is
calculated as (Brandt and Lin 1999)

x(j)
n = f (j)n (net(j)n ) = f (j)n

(
N∑
i=1

wix
(j−1)
i

)
(11)

where f (j)n and x(j)
n represents the activation function and output

of nth node in jth layer. wi is connection weight from ith input to
nth node, x(j−1)

i is ith input of nth node. N is the number of inputs
to the jth layer.

The objective of training is to minimise a quadratic cost func-
tion E, which is the sum of the square of errors in the output
layer, as

E = 1
2

(
m∑
i=1

e2n

)
(12)

where

en = x(j)
n − dn (13)

Here, x(j)
n and dn are the actual and desired outputs of nth neu-

ron, respectively. m represents the number of output neurons.
Using the LM backpropagation learning technique, the weights
are updated as

Δwi = f (j)
′

n (netjn)
x(j−1)
i

xjn

P∑
i=1

wolΔwol

− γ f (j)
′

n (net(j−1)
n )x(j−1)

i enΔwi

= f (j)
′

n (netjn)
x(j−1)
i

xjn
(14)

where γ > 0 is the coefficient of adaption and P denotes the
number of neurons in the next layer. wol is the connection
weight interlinking oth neuron with lth neuron.

Figure 9 shows schematics of the ANN-based controller. The
hidden layer uses the following tan-sigmoidal function as activa-
tion:

xi = f (j)n (net(j)n ) = 1 − e−net(j)n

1 + e−net(j)n
(15)

3.1.1. ANN-based FC controller
The proposedANN controller configuration consists of three lay-
ers: an input layer, a hidden layer and an output layer. The input
and output layers consist of one neuron each corresponding to
single input and single output respectively, while the hidden
layer consists of 10 neurons. In Figure 8(b), reference battery
power is generated as the output of the ANN-based controller,

Figure 9. Network diagram of ANN controller.

Figure 8. FC controller (a) Conventional controller (b) Proposed controller.
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and is compared to AC load power to generate power reference
for the FC. When SOCB exceeds SOC∗

B the battery provides max-
imum power, and during this time, the FC power output is mini-
mal.WhenSOCB is less thanSOC∗

B, FCprovidesmajor loadpower.
The proposed ANN controller has been trained, tested and vali-
dated iteratively using 250000 data samples. The proposed con-
troller is trained, tested and validated iteratively to optimise it
using the deep learning toolbox of Matlab R©. The training sam-
ple consists of 70% of available data, whereas the rest 30% of
the available data is equally divided for testing and validation
purpose samples, for which, the network diagram is shown in
Figure 9. Regression R values measure how well outputs and

goals match up. If the R value is 1, the relationship is close, and
if it is 0, the relationship is random. The R value attained is 1 as
shown in Figure 10, which validated that the data fits well and
the controller is trained in the best possible manner. Figure 11
shows the overall training and testing accuracy of backpropa-
gation classifier-trained neural network. The simulations were
done using Matlab R© on a desktop PC with Dell Optiplex 5050
with Intel 7th Generation i7-7700 CPU, 16 GB RAM with inte-
grated Intel R© HD 630 graphic processor. The HIL operations on
OPAL-RT included Lenovo Laptop with 10th-generation Intel R©

i5 – 1035G1 CPU, 8GB RAM and integrated Intel R© Iris R© Xe
graphics.

Figure 10. Training, validation, testing and set of all performance for ANN controller.

Figure 11. Best validation performance of ANN controller.
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3.2. ANN-based energymanagement

The prime objective of an EMS is to maintain the power-balance
between different DCMG units and load. Since the battery reg-
ulates DBV, SC power is not taken up in optimization problem
formulation. As SC depletes, it is replenished from the battery
and the AC load energy is solely shared between the battery and
FC for any specific load cycle. The power balance considering
losses can be given as

PFC + PBat + Psc − PLoad − PLoss = 0 (16)

Here,

PLoad = PAC + PDC (17)

wherePFC is powergeneratedbyFC,PBat andPsc are thepowerof
battery and SC during charging/discharging. PLoad, PDC and PAC
are total power and power consumed by DC and AC load. PLoss
represents the overall system losses.

The proposed EMS flowchart is shown in Figure 12. The EMS
operating actions depend on the status of DBV and SOCB. The
EMS is designed in such a way that SOCB remains inside bound-
aries, e.g. 20% ≤ SOCB ≤ 90%, respectively, and SC boundaries,
e.g. 0% ≤ SOCsc ≤ 100%.

3.3. Real-time simulation ofmicrogrid on RT-LAB

RT-LAB is a set of model-based test application platforms
developed by Opal-RT. It divides the complex Simulink model
into multiple subsystems that operate simultaneously. These

subsystems can then be distributed across multiple CPU nodes
to form a distributed and parallel real-time simulation system.
The structure of the system is shown in Figure 13.

The proposed simulated model in Simulink environment is
bifurcated into two subsystems named as SM_subsystem and
SC_subsystem. The SM_subsystem is used for computationswhile
the SC_subsystem is used as a graphical interface. The compu-
tation subsystems can further be divided into subsystems. Each
computation subsystem is executed parallelly on a separate
CPU core. Communication between computational subsystems
is synchronous while that between computational subsystem
and GUI subsystem is asynchronous. Figure 14 depicts the sim-
ulation flow of RT-Lab real-time simulation system. OpComm
block is required to communicatebetween the computation and
GUI subsystems. Fixed step solver ismandatory for real-time due
to the lack of determinism in variable step solvers. Figure 15(a)
shows the preparedmodel for RT-Lab inMatlab Simulink. Insight
of the model under the SM_subsystem and the SC_subsystem is
shown in Figure 15(b,c).

Figure 13. RT-Lab structure diagram.

Figure 12. Flowchart of energy management algorithm of DCMG.
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Figure 14. Simulation flow of RT-Lab simulation in real-time.

4. Results and discussion

4.1. Simulations results

The considered microgrid model along with the proposed EMS
utilisingANNandPI-based control strategies has been simulated
using SimscapeTM dynamic module of Matlab R©. The simulation
involves a run for 250 s with a sample time of 100 μs to compute
the model state at the next time step as an explicit function of
the current state value and state derivatives using the 4th order
Runge–Kutta method. The system performance is analysed in
terms of regulation in DBV and active power balance among
various componentsofDCMG includingESDsunderdesired con-
straints. To verify the simulation results, system performance
was further validated using an experimental setup consisting an
FPGA-based real-time simulator opal-RT (OP 5700 RTS), mixed-
signal oscilloscope, UPS supply and a host PC. The proposed
microgrid setup shown in Figure 16 is tested for the following
two conditions:

4.1.1. Case-I, step increments in AC load demand
To examine the effectiveness of the proposed configuration, a
simulation study is carried out with step increments in AC load.
In contrast, DC load remains constant throughout the operation
at 48 Ω, consuming 1.5 kW power. In Figure 17(b), the AC load
suddenly changes from 0 to 2 kW at T1 instant. Consequently,
VDC dips proportionately to 268.94 V as in Figure 17(a). From
Figure 17(b) it is clear that SC delivers excess powermomentarily
while FC generates 0.88 kW in steady-state, which is the mini-
mum power produced by FC when SOCB is greater than 60%, as
shown in Figure 18(b). The discrepancy in power is met from SC
andbattery; as a result, VDC is restored to 270 V. AC load changed
swiftly to 3 kW at T2 moment as shown in Figure 17(b). FC deliv-
ers minimum power i.e. 0.88 kW as SOCB is above its reference
value. Battery and SC deliver power through discharging. How-
ever, after 117.4 sec, SOCB reaches below 60%, but the battery
still delivers for deficit power by discharging. FC generation as
shown in Figure 17(b) takes more time to reach its steady-state
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Figure 15. (a) Prepared model for RT-Lab (b) Undermasking view SM_subsystem (c) Undermasking view of SC_subsystem.

as it is a low power density device and power generation from
it increases to 4.73 kW at 131.2 s from 0.885 kW at 117.1 s. The
battery enters in charging zone at 134 s. VDC drops to 264.27 V
as shown in Figure 17(a). SC tries to fix VDC at 270 V by quickly
delivering excess power, while the battery takes a longer time
to deliver additional power as shown in Figure 17(b). SC deliv-
ers instantaneous power whenever there is a sudden change
in load, thus reducing battery stresses and enhancing its life-
time. Themaximum deviation is 5.72 V, which falls under the 5%
band prescribed under IEEE standards. Figure 18(a,b) represents
battery voltage and SOCB variation with time.

4.1.2. Case-II, step decrements in AC load demand
In this case, the DC load remains constant throughout the oper-
ation at 48 Ω. AC load is decreased in a stepped manner at T3

Figure 16. Experimental setup with FPGA- based real-time simulator.
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Figure 17. (a) Simulation results for DBV variations (b) Simulations results for variation in powers.

Figure 18. (a) Battery voltage (b)Battery SOC (%).
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and T4 to 2 and 1 kW, respectively, as shown in Figure 17(b). As
a result, DBV increases to 270.20 and 270.66 V at T3 and T4, as
shown in Figure 17(a). SC momentarily absorbs excess power
provided by FC, and thus, DBV is restored to 270 V. In response
to a stepped decrease in the AC load at T3 and T4, FC deliv-
ers 3.69 and 2.63 kW power in steady-state while battery and
SC compensate for additional power by charging/discharging
in a complementary manner. As shown in Figure 17(b), FC pro-
vides power to load, while battery and SC, charge and discharge
in a complementary manner. Figure 18(a,b) represents varia-
tion in battery voltage and SOCB against time. The maximum

deviation inDBV is∼= 0.66V, which iswithin±5%band as per the
IEEE std.

4.2. Experimental results

The proposed DCMG incorporating battery and SC as HESS is
evaluated using an experimental setup. The experimental desk
comprises a host PC, digital signal oscilloscope (DSO), target
(OPAL-RT) simulator and UPS supply. Figure 16 shows an exper-
imental setup utilised to validate the robustness of simulation
results for the proposed control scheme. Figure 19(a–c) shows

Figure 19. (a) Experimental results for DBV variation (b) Experimental results for power-sharing among DC, AC load and FC (c) Experimental results for power-sharing
between battery and SC.
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Figure 19. Continued.

experimental results forVDC, power-sharing amongvarious units
of DCMG, respectively. Instant T1 and T2 indicate an increase
in the AC load indicated for Case-I above. AC load increases
at moments T1 and T2 while keeping the DC load constant as
VDCdips proportionately. However, SC compensates swiftly and
maintains the VDC constant. Battery compensates for balance
deficits in power by discharging and FC produces minimum
poweruntil SOCB is greater than60%. FC increases its production
when SOCB drops below 60%. Instant T3 and T4 represent the
Case-II scenario with a decrease in load. Due to the decrease in
load, VDC increases proportionally and SC absorbs surplus power
instantaneouslygeneratedbyFC. In Figure 19 (c), thebattery and
SC alternately get charged/discharged to compensate surplus
power production.

4.3. Performance comparisons between the conventional
and proposed controllers

Figure 20(a) shows the generation power of FC with the con-
ventional and proposed ANN controllers demonstrating that
the proposed controller outperforms the conventional one in
regulating FC power generation. Time response metrics, peak
overshoot and settling time in FC power have been analysed for
Case-I andCase-II to verify theeffectivenessof theproposedcon-
trol. Figure 20(b,c) depicts a graphic representation of the com-
parison between the conventional and proposed controllers. It
is evident from Figure 20(b,c) that the proposed controller has
less overshoot and faster settling time in comparison to the
conventional controller.

4.4. Performance comparisons with andwithout sensor
noise

The performance has been compared in terms of deviations
in DBV. A noise signal (zero means unit variance white noise)

amounting to 1.5 percent of maximum battery SOC as shown in
Figure 21, is added to the battery SOC sensor output signal. It
is clear from Figure 22(a,b) that the proposed controller outper-
forms the conventional one in terms of DBV regulation for noisy
or degraded information. It is very clear from Figure 22(b) that
the proposed ANN controller effectively regulates DBV seam-
lessly without and with noisy or degraded information. Further-
more, Figure 22(b) shows that the proposed ANN controller
works well to control DBV even when the information is noisy
or bad, and noise has almost no effect on the actual DBV.

5. Conclusion

EMS and hybrid control strategies comprising ANN and PI con-
trollers formaintaining a constantDBV and effective power shar-
ing among FC, battery and SC were proposed in this paper. An
ANN-based controller is designed for controlling FC generation,
whereas a PI controller is designed to maintain a constant DBV.
EMS for effective power sharing between FC and battery was
designed to increase the battery life. The effectiveness of the
proposed EMS and hybrid controllers was studied under sud-
den variations in AC load with and without degraded or noisy
information cases. The proposed strategy maintains DBV effec-
tively at its reference value under all situations. The battery and
SC are shown to compensate for disparity in power. The ANN
controller regulates power generation from FC by varying the
duty cycle of the DC/DC boost converter. The proposed EMSwas
simulated using Simulink R© module of Matlab R©. The simulation
results show a maximum overshoot of 0.5% and a settling time
of 80ms, confirming a significant improvement over the con-
ventional controller. The simulation results also demonstrate the
effectiveness of the proposed controller in terms of maximum
DBV regulation of 2.11% i.e. within± 5% as per IEEE standard
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Figure 20. (a) Simulation results for FC power (b) Performance comparison between conventional and proposed controller for overshoot in FC power (c) Performance
comparison based on settling time.

Figure 21. Sensor noise signal.
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Figure 22. DC bus voltage comparison (a) Conventional controller (b) Proposed controller.

519-1992. The simulation results have been validated using the
real-time FPGA-based simulator HIL OPAL-RT (OP5700).

Disclosure statement
No potential conflict of interest was reported by the author(s).

ORCID
Amit Kumar Rajput http://orcid.org/0000-0001-5936-1300

References
Bahloul, M., and S. K. Khadem. 2019, Sept. “Impact of Power Shar-

ing Method on Battery Life Extension in HESS for Grid Ancillary
Services.” IEEE Transactions on Energy Conversion 34 (3): 1317–1327.
doi:10.1109/TEC.2018.2886609.

Boujoudar, Y., M. Azeroual, H. El Moussaoui, and T. Lamhamdi. 2020. “Intel-
ligent Controller-Based Energy Management for Stand-Alone Power Sys-
tem Using Artificial Neural Network.” International Transactions on Electri-
cal Energy Systems 30: e12579. doi:10.1002/2050-7038.12579.

Bracco, Stefano, Federico Delfino, Angela Trucco, and Stefano Zin. 2018.
“Electrical Storage Systems Based on Sodium/Nickel Chloride Batteries:
A Mathematical Model for the Cell Electrical Parameter Evaluation Vali-
dated on a Real Smart Microgrid Application.” Journal of Power Sources
399: 372–382. doi:10.1016/j.jpowsour.2018.07.115.

Brandt, Robert D., and Feng Lin. 1999. “Adaptive Interaction and its Applica-
tion to Neural Networks.” Information Sciences 121 (3–4): 201–215. ISSN
0020-0255. doi:10.1016/S0020-0255(99)00090-0.

Cabrane, Zineb, Jonghoon Kim, Kisoo Yoo, and Mohammed Ouassaid.
2021. “HESS-based Photovoltaic/Batteries/Supercapacitors: Energy Man-
agement Strategy and DC bus Voltage Stabilization.” Solar Energy 216:
551–563. ISSN 0038-092X. doi:10.1016/j.solener.2021.01.048.

Chettibi, N., A. Mellit, G. Sulligoi, and A. Massi Pavan. May 2018. “Adap-
tive Neural Network-Based Control of a Hybrid AC/DC Microgrid.” in IEEE
Transactions on Smart Grid 9 (3): 1667–1679. doi:10.1109/TSG.2016.259
7006.

Christen, Thomas, andMartinW. Carlen. 2000. “Theory of RagonePlots.” Jour-
nal of Power Sources 91 (2): 210–216. ISSN 0378-77. doi:10.1016/S0378-77
53(00)00474-2.

Dicks, Andrew L., and David A. J. Rand. 2018. Fuel Cell Systems Explained. Fuel
Cell Systems Explained. Wiley. doi:10.1002/9781118706992.

Fu, Zhumu, Zhenhui Li, Pengju Si, and Fazhan Tao. 2019. “A Hierarchi-
cal Energy Management Strategy for Fuel Cell/Battery/Supercapacitor
Hybrid Electric Vehicles.” International Journal of Hydrogen Energy 44 (39):
22146–22159. ISSN 0360-3199. doi:10.1016/j.ijhydene.2019.06.158.

Glavin, M. E., P. K. W. Chan, S. Armstrong, and W. G. Hurley. 2008. “A Stand-
Alone Photovoltaic Supercapacitor Battery Hybrid Energy Storage Sys-
tem.” 13th International Power Electronics and Motion Control Confer-
ence, 2008, 1688–1695. doi:10.1109/EPEPEMC.2008.4635510.

Kathiresan, J., S. K. Natarajan, and G. Jothimani. 2020. “Energy Management
of Distributed Renewable Energy Sources for Residential DC Microgrid
Applications.” International Transactions on Electrical Energy Systems 30:
e12258. doi:10.1002/2050-7038.12258.

Marzougui, Hajer, Ameni Kadri, Jean-Philippe Martin, Mansour Amari,
Serge Pierfederici, and Faouzi Bacha. 2019. “Implementation of Energy
Management Strategy of Hybrid Power Source for Electrical Vehicle.”
Energy Conversion and Management 195: 830–843. ISSN 0196-8904.
doi:10.1016/j.enconman.2019.05.037.

Mishra, Debashish, Prakash Chandra Sahu, Ramesh Chandra Prusty, and
Sidhartha Panda. 2021a. “A Fuzzy Adaptive Fractional Order-PID Con-
troller for Frequency Control of an Islanded Microgrid Under Stochas-
tic Wind/Solar Uncertainties.” International Journal of Ambient Energy.
doi:10.1080/01430750.2021.1914163.

Mishra, Debashish, Prakash Chandra Sahu, Ramesh Chandra Prusty, and
Sidhartha Panda. 2021b. “Power Generation Monitoring of a Hybrid

http://orcid.org/0000-0001-5936-1300
https://doi.org/10.1109/TEC.2018.2886609
https://doi.org/10.1002/2050-7038.12579
https://doi.org/10.1016/j.jpowsour.2018.07.115
https://doi.org/10.1016/S0020-0255(99)00090-0
https://doi.org/10.1016/j.solener.2021.01.048
https://doi.org/10.1109/TSG.2016.2597006
https://doi.org/10.1016/S0378-7753(00)00474-2
https://doi.org/10.1002/9781118706992
https://doi.org/10.1016/j.ijhydene.2019.06.158
https://doi.org/10.1109/EPEPEMC.2008.4635510
https://doi.org/10.1002/2050-7038.12258
https://doi.org/10.1016/j.enconman.2019.05.037
https://doi.org/10.1080/01430750.2021.1914163


718 A. K. RAJPUT AND J. S. LATHER

Power System with I-GWO Designed Trapezoidal Type-II Fuzzy Con-
troller.” International Journal ofModellingandSimulation 42: 5, 797–5, 813.
doi:10.1080/02286203.2021.1983744.

Nouman, K., Z. Asim, and K. Qasim. 2018. “Comprehensive Study on Perfor-
mance of PID Controller and its Applications,” 2018 2nd IEEE Advanced
Information Management,Communicates,Electronic and Automation
Control Conference (IMCEC), 1574–1579. doi:10.1109/IMCEC.2018.846
9267.

Papari, B., C. S. Edrington, I. Bhattacharya, and G. Radman. 2019. “Effec-
tive Energy Management of Hybrid AC–DC Microgrids With Storage
Devices.” in IEEE Transactions on Smart Grid 10 (1): 193–203, January.
doi:10.1109/TSG.2017.2736789.

Pradhan, C., M. K. Senapati, S. G. Malla, P. K. Nayak, and T. Gjengedal.
2021. “Coordinated Power Management and Control of Standalone
PV-Hybrid System With Modified IWO-Based MPPT.” in IEEE Systems
Journal 15 (3): 3585–3596, September. doi:10.1109/JSYST.2020.3020
275.

Rahman, Md Mustafizur, Abayomi Olufemi Oni, Eskinder Gemechu, and
Amit Kumar. 2020. “Assessment of Energy Storage Technologies: A
Review.” Energy Conversion and Management 223: 113295. ISSN 0196-
8904. doi:10.1016/j.enconman.2020.113295.

Sahoo, S. K., A. K. Sinha, and N. K. Kishore. June 2018. “Control Tech-
niques in AC, DC, and Hybrid AC–DC Microgrid: A Review.” in IEEE Jour-
nal of Emerging and Selected Topics in Power Electronics 6 (2): 738–759.
doi:10.1109/JESTPE.2017.2786588.

Sahu, Prakash Chandra, Reetimukta Baliarsingh, Ramesh Chandra Prusty,
and Sidhartha Panda. 2020c. “Novel DQN Optimised Tilt Fuzzy Cas-
cade Controller for Frequency Stability of a Tidal Energy-Based AC
Microgrid.” International Journal of Ambient Energy 43 (1): 3587–3599.
doi:10.1080/01430750.2020.1839553.

Sahu, Prakash Chandra, Sonalika Mishra, Ramesh Chandra Prusty, and Sid-
hartha Panda. 2018. “Improved-salp SwarmOptimized Type-II Fuzzy Con-
troller in Load Frequency Control of Multi Area Islanded AC Microgrid.”
Sustainable Energy, Grids and Networks 16: 380–392. ISSN 2352-4677.
doi:10.1016/j.segan.2018.10.003.

Sahu, Prakash Chandra, Ramesh Chandra Prusty, and Sidhartha Panda.
2020a. “Frequency Regulation of an Electric Vehicle-Operated Micro-
Grid Under WOA-Tuned Fuzzy Cascade Controller.” International Journal
of Ambient Energy 43: 1, 2900–1, 2911. doi:10.1080/01430750.2020.178
3358.

Sahu, Prakash Chandra, Ramesh Chandra Prusty, and Sidhartha Panda.
2020b. “Optimal Design of a Robust FO-Multistage Controller for
the Frequency Awareness of an Islanded AC Microgrid Under i-SCA
Algorithm.” International Journal of Ambient Energy 43 (1): 2681–2693.
doi:10.1080/01430750.2020.1758783.

Sankar, Yannam Ravi, and K. Chandra Sekhar. 2021. “Design and Control of
Hybrid EnergyMicrogrid SystemUsing Renewable Energy Sources.” Inter-
national Journal of Ambient Energy, doi:10.1080/01430750.2021.1909653.

Shaikh, U. A., M. K. AlGhamdi, and H. A. AlZaher. 2018. “Novel Product ANFIS-
PID Hybrid Controller for Buck Converters.” The Journal of Engineering,
730–734. doi:10.1049/joe.2018.0113.

Singh, P., and J. S. Lather. 2018. “A PWM-Based SlidingMode Voltage Control
of DC-DC Boost Converter for DC Microgrid.” IEEE 8th Power India Inter-
national Conference (PIICON), 2018, 1–5. doi:10.1109/POWERI.2018.870
4456.

Singh, Prashant, and J. S. Lather. 2019. “Artificial Neural Network-Based
Dynamic Power Management of a DC Microgrid: A Hardware-in-Loop
Real-Time Verification.” International Journal of Ambient Energy 43 (1):
1730–1738. doi:10.1080/01430750.2020.1720811.

Singh, Prashant, and J. S. Lather. 2020. “Dynamic Current Sharing, Volt-
age and SOC Regulation for HESS Based DC Microgrid Using CPISMC
Technique.” Journal of Energy Storage 30: 101509. ISSN 2352-152X.
doi:10.1016/j.est.2020.101509.

Sinha, Smita, and Prabodh Bajpai. 2020. “Power Management of Hybrid
Energy Storage System in a Standalone DC Microgrid.” Journal of Energy
Storage 30: 101523. ISSN 2352-152X. doi:10.1016/j.est.2020.101523.

Soumeur, Mohammed Amine, Brahim Gasbaoui, Othmane Abdelkhalek,
Jamel Ghouili, Tofik Toumi, and Abdeselem Chakar. 2020. “Comparative
Study of Energy Management Strategies for Hybrid Proton Exchange
Membrane Fuel Cell Four Wheel Drive Electric Vehicle.” Journal of
Power Sources 462: 228167. ISSN 0378-7753. doi:10.1016/j.jpowsour.2020.
228167.

Vu, Tuyen V., Dallas Perkins, Fernand Diaz, David Gonsoulin, Chris S. Edring-
ton, and Touria El-Mezyani. 2017. “Robust Adaptive Droop Control for DC
Microgrids.” Electric Power Systems Research 146: 95–106. ISSN 0378-7796.
doi:10.1016/j.epsr.2017.01.021.

Xu, D., Q. Liu, W. Yan, and W. Yang. 2019. “Adaptive Terminal Sliding Mode
Control for Hybrid Energy Storage Systemsof Fuel Cell, Battery and Super-
capacitor.” in IEEE Access 7: 29295–29303. doi:10.1109/ACCESS.2019.289
7015.

https://doi.org/10.1080/02286203.2021.1983744
https://doi.org/10.1109/IMCEC.2018.8469267
https://doi.org/10.1109/TSG.2017.2736789
https://doi.org/10.1109/JSYST.2020.3020275
https://doi.org/10.1016/j.enconman.2020.113295
https://doi.org/10.1109/JESTPE.2017.2786588
https://doi.org/10.1080/01430750.2020.1839553
https://doi.org/10.1016/j.segan.2018.10.003
https://doi.org/10.1080/01430750.2020.1783358
https://doi.org/10.1080/01430750.2020.1758783
https://doi.org/10.1080/01430750.2021.1909653
https://doi.org/10.1049/joe.2018.0113
https://doi.org/10.1109/POWERI.2018.8704456
https://doi.org/10.1080/01430750.2020.1720811
https://doi.org/10.1016/j.est.2020.101509
https://doi.org/10.1016/j.est.2020.101523
https://doi.org/10.1016/j.jpowsour.2020.228167
https://doi.org/10.1016/j.epsr.2017.01.021
https://doi.org/10.1109/ACCESS.2019.2897015

	1. Introduction
	2. System configuration and modelling
	2.1. FC modelling

	2. System configuration and modelling
	2.2. SC modelling

	2. System configuration and modelling
	2.3. Battery modelling
	2.4. DC/DC converter model
	2.5. PI controller for battery
	2.6. Inverter modelling

	3. Proposed control strategy
	3.1. Principle of ANN training

	3. Proposed control strategy
	3.1. Principle of ANN training
	3.1.1. ANN-based FC controller


	3. Proposed control strategy
	3.2. ANN-based energy management
	3.3. Real-time simulation of microgrid on RT-LAB

	4. Results and discussion
	4.1. Simulations results
	4.1.1. Case-I, step increments in AC load demand


	4. Results and discussion
	4.1. Simulations results
	4.1.2. Case-II, step decrements in AC load demand


	4. Results and discussion
	4.2. Experimental results

	4. Results and discussion
	4.3. Performance comparisons between the conventional and proposed controllers
	4.4. Performance comparisons with and without sensor noise

	5. Conclusion
	Disclosure statement
	ORCID
	References

