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Abstract: This article suggests a hybrid DC microgrid (HDCMG) with different levels of DC bus
voltages to use for various types of loads. The available sources in the HDCMG are wind generating
systems (WGSs), photovoltaic (PV) systems, battery banks, and the AC grid for emergencies. The
various levels of the DC bus voltages are 760 V, 380 V, and 48 V for different application uses such
as electric vehicles and home applications. In addition, the controller plays an important role in the
proposed system to achieve the desired DC bus voltage levels and extract the maximum power point
(MPP) from the WGS and PV systems. In order to check the power continuity for the critical loads
and improve the overall system performance, a suggested energy management strategy (SEMS) is
developed. The SEMS is based on the optimum generated power and the state-of-charge (SOC) of the
battery banks. Further, the SEMS is developed as a way to prevent battery storage from overcharging
and deep discharging. The mathematical relations of the proposed HDCMG and MPP tracking are
described. The bidirectional 3-Φ inverter connects the 760 V bus voltage to the AC grid for regulating
this DC bus by absorbing the excess power or supplying the required power during the shortage in the
generation and the low SOC of the battery storage. Buck converters with controlled duty cycles rather
than constant duty cycles are used to obtain 380 V and 48 V from 760 V to achieve better dynamic
responses. The overall HDCMG is evaluated using the MATLAB/Simulink package under different
working cases to verify the capability of the control system and the PEMS. The obtained results
are discussed and show the good performance and the capability of the overall system under the
different scenarios, including (i) a comparison between variable duty and constant duty; (ii) high/low
generated power and the SOC of the battery in the acceptable region; (iii) high/low generated power
and the SOC of the battery in the critical region; and (iv) high/low generated power and the SOC of
the battery in the overcharging region.

Keywords: renewable energy resources; DC microgrid; standalone system; grid-connected system;
coordinated control; energy management strategy

1. Introduction

Greenhouse gas emissions need to be lowered to save the planet from further damage
caused by rising temperatures caused by global warming. Renewable energy sources (RESs)
are mature power generators that do not emit carbon dioxide compared to fossil fuels. The
incorporation of RESs is resulting in structural adjustments being made to the existing
structure of the electric distribution grid. In the past few decades, more academicians
and industries in the power electronics industry have become interested in DC and AC
microgrids as part of an effort to develop technological innovations and solve technical
problems such as frequency and power balance through the integration of renewable
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energy sources and distribution grids [1,2]. These strategies lower the CO2 emissions while
protecting the energy supply’s security and meeting consumer demand [3–6].

In addition, microgrids play an important part in the formation of future intelligent
power systems because they make it easier to combine distributed energy resources, loads,
and energy storage devices [7–10]. DC microgrids have several benefits that make them
more appealing than AC microgrids, including a reduction in the conversion stage and an
absence of distortions caused by harmonics and voltage synchronization, reducing the cost
of the system, making it more efficient and reliable, and not having any issues regarding
the reactive power and frequency control and synchronization. However, many existing
systems require an AC supply and the transmission of AC voltage is well-established
compared to DC voltage transmission [11].

Therefore, power management strategies are considered one of the most important
parts of DC microgrids and this is discussed in different articles [12–18]. The two-level
energy management strategy is implemented in [12] to balance the operational stability
of the PV–fuel cell–battery-based DC microgrid. This is accomplished by dividing the
control levels of the devices and the system. In order to equitably distribute the system’s
net power between the battery and the fuel cell, the proposed method uses a strategy that
minimizes the amount of equivalent consumption. In [13], the presentation of a new energy
management control technique is outlined that is based on the fuzzy logic controller and
high-order sliding mode. This technique is intended for use with smart DC microgrids.
The energy sources used by the microgrid are the battery bank, wind, PV, and tidal. It is
proposed to implement a source-side intelligent control in order to improve power quality
and extract the maximum amount of energy from hybrid sources. The controller that has
been suggested ensures that there will be no disruptions in service.

By employing the global optimization solver BARON [14], a new energy management
method is proposed, which takes into account the distribution grid’s no-load, nonlin-
ear losses, and the costs associated with starting up and shutting down the DG. The
optimization method that has been suggested ensures accuracy and robustness during
multi-objective operation scenarios, as well as those involving minimum price and min-
imum emission. Meanwhile, [15] discusses autonomous microgrid power management
strategies for distributed generation (DG) units in multiple-DG systems. These strategies
deal with real and reactive power, respectively. In order to investigate the impact of power
management on the dynamics of a microgrid, especially after islanding incidents, we need
to evaluate DG unit–network interactions, study the eigenstructure of a three-DG microgrid,
determine whether or not the microgrid is stable, design and optimize control parameters,
and design and implement microgrid control. In [16], the power management system (PMS)
for DC microgrids is suggested as being straight forward and ideal. A power switching
circuit is used by the system to connect the energy storage system (ESS), DC load, and
each nanogrid (NG) of the DCMG. Ref. [17] describes a system with bidirectional AC/DC
converters (BADCs) and bidirectional DC/DC converters (BDDCs) that connect several
subgrids to a single bus. In order to have the interacting subgrids run in cooperation and
assist one another, this study suggests a decentralized power management strategy for
the hybrid microgrid. Ref. [19] suggests combining a hybrid alternative energy system
with a standalone AC microgrid. The overall strategy of power management works to
optimize the flow of power, and the FC works to compensate for any power shortages
that may occur. The reduction in daily operating costs is the primary objective of this
research [20]. This will be accomplished by applying predictive model control to errors
in power generation and load prediction. The optimization technique makes day-ahead
energy management much more efficient. By continuously bringing the control values up
to date, the intraday rolling horizon energy optimal management strategy can correct any
forecasting errors that may have occurred. This study uses model predictive control to cut
down on daily operating costs by reducing the error that occurs between the prediction
of load and the generation of power. Energy management is optimized for the day ahead
by using intraday rolling horizon energy management and optimizing control values to
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compensate for errors in forecasting [21]. Multiple battery energy management systems for
a microgrid are presented in [22] that rely primarily on photovoltaic and diesel generators
as they are primary sources of electricity. The strategy that is being proposed is to lessen the
amount of time that the DGs are actively working, concurrently manage multiple batteries
with distinct properties, and cut down on power fluctuations caused by photovoltaic cells.
Additionally, the operating hours of the DGs would be cut down, and the battery’s lifespan
would be extended by controlling the battery charge and discharge rate. The results of this
study, which focuses on the potential impact of demand response on a microgrid’s total
system emissions and economics, are demonstrated in [23].

Further, ref. [24] outlines the presentation of an advanced control scheme for multia-
gent systems that are based on a hierarchical management and control structure. The hybrid
energy generation system is made reliable, stable, and efficient in terms of cost thanks
to a hierarchical management and control scheme that is based on multiagent systems.
A new energy management strategy is proposed [25] for medium-voltage DC systems.
This strategy makes use of two-time-scale coordinates in order to deal with the effects of
uncertainty as well as the widespread utilization of renewable energy sources. Through the
simultaneous co-optimization of operating points and droop coefficients, both productivity
and safety can be brought to their highest possible levels. Coordination, operation, and cost
distribution of the proposed energy management system among members of the coalition
are all handled through the medium of a cooperative game. Every microgrid composed of
multiple agents is an effective energy saver. When compared to alternative strategies, the
optimal policy results in an 87.86% reduction in operating costs for the MG [26].

All of the research articles just discussed were primarily centered on designing and
controlling novel architectures for use in a single microgrid, with or without the use of
fossil fuel as a source. The majority of microgrid solutions, on the other hand, are designed
for hybrid (DC/AC) systems. The multiagent/level energy management is also discussed
in various research papers [27–33]. Also, the objective of the multiagent system is to
connect and coordinate all of the microgrids through a variety of new control algorithms
and energy management strategies. Nevertheless, the majority of research is focused
on managing demand response, time control, cost reduction, and other related topics.
Only a handful of studies have looked at the power quality of DC microgrids [34,35]. In
addition, many researchers have suggested an energy management for different systems
such as [29–34]. In [36], authors proposed a standalone microgrid (PV/Battery hybrid)
with a power management strategy. The PV/Battery system acts as a voltage source
using an adaptive droop management method to meet load demands while controlling
battery charging and discharging activities. However, the droop control methods have
been used in the microgrids which consist of PV/Battery systems, and they have a lot of
disadvantages including poor transient performance and poor power sharing accuracy [37].
Further, in [38], the system is small and only contains the PV and the battery to supply the
DC load where there is no priority to the load and only a low level of DC bus voltage is
used. Also, in [39], a networked controller with a virtual impedance droop architecture
for energy management and load sharing is presented. This strategy, however, calls for
communication channels between the ESS devices. A DC microgrid energy management
and SoC balancing method is described in [40]; however, it is not appropriate for hybrid
ESS because the droop parameters are taken into account as a time constant which could
lead to ineffective power sharing. Meanwhile, in [41], an energy management system
is proposed for a DC microgrid based on the voltage compensation and the battery SoC
management algorithm.

In this investigation, the suggested system must be able to fast charge the electric
vehicles, meet the power demand of home appliances both critical and noncritical, and use
the low-voltage LED, as well as inject/consume electricity into/from the mains. Moreover,
a user-friendly algorithm for managing demand response based on the priority of critical
loads is being developed. Briefly, this article brings a new look to the existing literature in
the following areas: (I) renewable energy sources, (II) hybrid DC microgrid systems, (III)
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applied control algorithms for DC link voltage and MPPT, and (IV) power management
strategies. Therefore, the following are the study’s main contributions:

• A comprehensive model is established to generate the power from the PV system and
the wind generating system as well as the characteristics of the MPPT.

• An adaptable architectural design to meet the electricity requirement.
• Three voltage buses primarily use the major bus (760 V) for fast-charging EVs, the

secondary bus (380 V) to distribute power to each home appliance, and the third bus
(48 V) for low-voltage appliances and LEDs.

• Instead of static switches, this development transfers power across buses using bidi-
rectional power converters, making it feasible to set the buses’ voltages.

• Three levels of control algorithms are designed: (i) bidirectional inverter control for
grid synchronization; (ii) a DC-DC algorithm for photovoltaic systems; and (iii) an
AC-DC algorithm for wind energy generation.

• The first level of control consists of the following components: (i) a DC-AC three-
phase inverter with grid synchronization; (ii) a maximum power point tracking (MPPT)
algorithm for the PV system that makes use of IC; and (iii) a diode front end (DFE) for
the WGS generating system that uses the maximum power point algorithm using the
PI controller.

• A coordinated control technique is carried out to regulate the current and power as
part of the second level of control.

• The third level of control utilizes an EMS method equipped with a user-friendly
algorithm to determine the suitable set points for all power sources following their
respective operational targets. In addition to being efficient in supplying the electrical
power for both critical and noncritical DC loads where complex algorithms are avoided,
it has a simple implementation in the hardware and it does not require high processing,
as it is based on ON/OFF switching, assisting the control in regulating the DC bus
voltage at the required levels, and improving the stability of the proposed system by
injecting the excess power into the grid or absorbing the shortage power from the
main grid.

The article is organized as follows. Section 2 discusses the proposed DC microgrid
system mathematical modeling. Section 3 presents the detailed description of the proposed
control techniques for the suggested HDCMG. Section 4 describes the suggested energy
management strategy. Section 4 evaluates the proposed HDCMG along with their inter-
pretation. Meanwhile, Section 5 makes a comparison between the proposed system and
the literature on the DC microgrid systems. Section 6 presents the final conclusions of the
research, indicating its limitations, and future directions of research in this field.

2. The Proposed DC Microgrid System Mathematical Modeling

As shown in Figure 1, the proposed hybrid renewable energy system consists of four
major components: PV system, WGS, battery storage (BS) system, and grid. The generated
power supplies both critical and noncritical loads. The ratings of all system components are
listed in Table 1. Each part of the hybrid microgrid energy (HME) system has a control unit
that executes particular operations under distinct circumstances. The subsections are orga-
nized after the technical specifications and each component’s mathematical representations.

2.1. Mathematical Representation of the WGS

Within the WGS, the wind turbine (WT) is coupled to the permanent magnet syn-
chronous generator (PMSG). A DFE is used to manage the generator’s output power,
or MPPT, and comprises an unregulated rectifier followed by a boost converter to con-
vert alternating current (AC) to direct current (DC). In [42], Table A1 in the Appendix A
lists the technical specifications of the WT under study. It depends on several factors,
expressed in (1), including what percentage of the generated power comes from the WT.
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The WT power output can be calculated in real time as a function of the wind speed turbine
coefficients and using (2) [43].

PWT = 0.5AρV3
WTηWTCp(β, λ) (1)

PWT =

{
PWT,R

(
VW−VC−in
VR−VC−in

)
if VC−in < VW < VR

PWT,R if VR < VW < VC−o f f
(2)

TWT =
PWT
ωWT

(3)
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Table 1. Installed capacities for all generation units, energy storage units, and loads.

Parameter Capacity

PV system 20 kW

Wind energy conversion system 6 kW

Battery storage system 300 Ah or 6 kW

Critical home appliances 10 kW

Critical electric vehicle 3 kW

Critical LED 1.5 kW

Noncritical home appliances 6 kW

Noncritical electric vehicle 3 kW

Noncritical LED 1.5 kW

Main grid Infinity
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In the meantime, the WT’s wind power coefficient is represented by the following
formulations [44,45]:

Cp(β, λ) = Ca(
Cb
λi

− Cc − Cdβ)e
C f
λi + Cgλ (4)

λ =
ωrR
Vωd

, λi
−1 =

1
0.08β + λ

− 0.035
β3 + 1

(5)

where

Ca = 0.51760 Cb = 116.0 Cc = 5.0

Cd = 0.40 Cf = 21.0 Cg = 0.00680

Meanwhile, the mathematical model of the PMSG is expressed by the following relations.

vds = Rsids + pλds − ωeλqs (6)

vqs = Rsiqs + pλqs + ωeλds (7)

λds = Lsids + λm (8)

λqs = Lsiqs (9)

Te =
3
2

Pλmiqs (10)

TWT = Te + Bωm + J
dωm

dt
(11)

2.2. The Mathematical Model of the PV System

One of the main sources for the planned HDCMG system is a PV array. The monocrys-
talline silicon flat plate SunPower-305-SPR PV model used in the proposed study has
an a peak efficiency of 18.7% and an average power rating of 305 watts [46]. Based on
manufacturing data [46], Table A2 in the Appendix A depicts the technical details of the PV
module used. In order to display the PV output power and the actual PV cell temperature,
the following relation is used [47,48].

PPV = fPV PPVn [1 + βr(TPV − TPV,STC)]×
(

GT
GT,STC

)
(12)

TPV = (TNOCT − 20)
(

GT
GT,STC

)
+ Tair (13)

2.3. The Mathematical Model of the PV System

The energy in the battery storage (BS) is restricted by the SOC boundaries as expressed
in the following relations [49].

EBS,min ≤ EBS(t) ≤ EBS,max (14)

EBS,max = SOCBS,max × (NBS × VBS × CBS) (15)

EBS,max = SOCBS,max × (NBS × VBS × CBS) (16)
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2.4. Mathematical Representation of the LED

Although there are many other kinds of lighting sources, light-emitting diodes (LEDs)
are anticipated to take up a significant percentage of the lighting market for the foreseeable
future due to their high luminous efficiency [50]. There are many advantages of using LEDs
such as long lifetime, low power consumption, small size, easy dimming, environmentally
friendly, and so on [51,52]. The packaging and thermal management of the LED module,
which is made up of numerous low-power LED units, limit the rating power of each
individual LED unit. The cost of LEDs has significantly decreased due to advancements in
LED manufacturing technology, and as a result, they are widely employed in many diverse
applications, including display backlighting, residential illumination, traffic lighting, and
urban landscape lighting [53,54]. The different mathematical model and simulation of the
street lamp is discussed in detail in [55], where the rated voltage and power are 18 V and
25 W. Among the five methods, the six-term Gaussian fitting method has the best fitting
performance and it is expressed by

f (x) = a1e−(
x−b1

c1
)

2

+ a2e−(
x−b2

c2
)

2

+ a3e−(
x−b3

c3
)

2

+a4e−(
x−b4

c4
)

2

+ a5e−(
x−b5

c5
)

2

+ a6e−(
x−b6

c6
)

2 (17)

where

a1 = −88.72 b1 = 19.98 c1 = 1.929
a2 = −0.05488 b2 = 15.49 c2 = 0.8177
a3 = 0 b3 = 0.2712 c3 = 2.239
a4 = 98.00 b4 = 20.12 c4 = 2.017
a5 = −0.02065 b5 = 17.28 c5 = 0.3815
a6 = −0.01613 b6 = 16.80 c6 = 0.4395

2.5. Mathematical Representation of the AC Grid

The linking converter is typically used to transfer power between MG systems that
are AC and DC. A general model of the prime power converter (PPC) was created. The
converter rating should, in accordance with [56], be more than the combined produced
power, as given by

Pconv ≥ ηDFE·PWT(t) + ηB·PPV(t) (18)

Meanwhile, the terminal voltage of the PPC in the dq-axis coordinates is given by

vdPPC = vdG + R f idPPC + L f pidPPC − ωGL f iqPPC (19)

vqPPC = vqG + R f iqPPC + L f piqPPC + ωGL f idPPC (20)

3. Proposed Control Techniques for the Suggested HDCMG

The detailed analysis of the whole control methods used in the systems and converters
will be discussed in the following subsection.

3.1. Extracting the Maximum Power from the PV System

High temperatures cause a reduction in PV power and efficiency, despite an increase
in these two parameters due to high PV radiation levels. Even when the temperature and
radiation change, the peak power point (Vmpp) solar output voltage must be kept constant.
Numerous papers have looked into how MPPT approaches might be used to achieve this.
The MPPT approaches can be classified into two primary classes: direct approaches, such
as perturbation and observation (P&O), incremental conductance (IC), and sophisticated
techniques like fuzzy logic-based schemes and ANN, and indirect approaches, such as
the open-circuit and short-circuit methods [57]. It is challenging to correctly monitor the
MPP using indirect approaches at any cell temperature or solar energy level because it
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necessitates prior knowledge of the PV system’s operational characteristics. On the other
hand, in the direct approaches, the signal that serves as a reference for a DC-DC converter
is modified in order to manage the voltage levels of both PV and the DC bus. The key
benefits of using P&O or IC technologies are their lower cost, their interoperability with
industrial inverters and digital controllers, and the fact that no prior understanding of the
PV system is required [58]. The voltage oscillation caused by brief changes in the weather
is the P&O method’s principal drawback. The IC technique, however, enhances tracking
speed and accuracy issues [59]. However, despite their complexity and high application
costs, applying intelligent approaches has increased tracking speed and precision over
direct ones. To improve the system characteristics, the IC approach is used in conjunction
with a direct control method [60]. The PV array’s MPPT control is in current control mode
and is shown schematically in Figure 2, showing the diagram where the reference current
is generated based on the IC flowchart shown in Figure 3. The PI control is utilized to
boost calculation precision and lower ripple oscillation and hence the tracking accuracy
can be improved.
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3.2. Extracting the Maximum Power from the WGS

Due to their capacity for achieving maximum power and a wide range of speeds,
DFIG and PMSG have been frequently utilized in WGSs [61]. There are three types of wind
generating systems: full-controlled variable speed, variable speed with pitch control, and
WT fixed speed [62]. Power signal feedback (PSF), wind speed measurement (WSM), and
P&O are the three categories into which the MPPT techniques for variable speed WTs are
categorized in the literature. For the MPP to be tracked using the shaft speed control, the
maximum power curve must be communicated to the controller using the PSF approach.
The P&O approach does not require prior knowledge of the maximum WT power at various
wind speeds or generator data [63]. Although the P&O approach is highly reliable, it is
inefficient. The wind and turbine speeds are employed as the two feedback signals in
the WSM technique to determine the tip speed ratio (TSR). Consequently, this method is
often referred to as the TSR [64]. The variable speed turbine (VST) uses pitch angle control
(PAC) to maintain the WT’s rated output power and minimize overloading [62]. As the
DFE is adopted in this study, two cascaded PI controllers are used to protect the generator
against overcurrent and generate the duty cycle for the DC-DC boost converter and hence
extract the maximum power from the wind speed. The optimal power is extracted when
the wind power coefficient is 0.48 for the used WT parameters [65]. Figure 4 depicts the
MPPT technique from the adopted WGS.
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3.3. DC Bus Control Based on BES

The primary goal of the BES is to keep the DC bus voltage constant at 760 V under
various operating conditions. As shown in Figure 1, this objective is attained by using
the battery banks that are controlled by a bidirectional buck-boost converter. The battery
voltage level in these converters can be set lower than the intended reference value [66].
The buck-boost converter’s control function entails adjusting, monitoring, and supervising
battery functioning during the day and night. Depending on the control action, the BES
can be in any mode of three: discharging, charging, or standby. The control is made up of
two cascaded PI controllers, as shown in Figure 5, where the first one, the outer voltage
control loop, is in charge of creating the reference signal for the intended battery current in
order to limit the battery from the maximum discharge. The input for this PI controller is
the DC bus voltage error. Meanwhile, the second PI controller, the inner current control
loop, is responsible for regulating the BS current and the output signal is the duty cycle
which determines the mode of operation. This mode is primarily determined by the DC bus
voltage level that corresponds to the necessary 760 V. To create the necessary pulses for the
converter switches, this duty cycle is compared to the carrier signal. In the case of higher
generated power from the WGS and the PV system, the BS is in the bucking/charging
mode when the DC bus voltage is higher than 760 V. On the other hand, if there is lower
generated power from the HRES, the BS works in discharging/boosting mode to maintain
the DC bus voltage at 760 V.
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3.4. DC Bus Control Based on the Main Grid

During emergency situations, low generated power from the HRES, and when there is
not enough energy stored in the battery, the critical load should be supplied from the main
grid. Further, in the case of high generated power, there being more excess power over the
critical and noncritical load, and the BS being fully charged, the main grid has to absorb
the extra power to make the system stable. As a result, the grid’s goal is to control the DC
bus voltage by absorbing excess power or giving the necessary power to the loads. Based
on the mathematical representation of the main grid in (19) and (20), two PI controllers
are used to regulate the active and reactive power (i.e., the dq-axis currents) through the
adjusting values of the dq-axis voltages (vdi, vqi), in addition to one PI controller to regulate
the DC voltage. Meanwhile, the output of this PI controller serves as the reference d-axis
current where the input is the DC bus voltage error. The analysis starts with the balance
between the input and output power as expressed by [67]

3
2

(
vqgiqg + vdgidg

)
= C·vdc·

dvdc
dt

(21)

By adopting the voltage-oriented control, vqg = 0, Equation (22) is updated to

3
2

vdgidg = C·vdc·
dvdc
dt

(22)
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By linearizing (23) around the equilibrium point and neglecting the higher-order and
steady-state terms, it becomes as follows

3
2

v̂dg Idg +
3
2

Vdg îdg = C·Vdc·
dvdc
dt

(23)

It is observed that the d-axis output current value influences the value of the DC bus
voltage. The block diagram of the DC bus voltage control is shown in Figure 6.
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4. Suggested Energy Management Strategy

The generated power might either be higher or lower than the load demand due to the
variable nature of renewable energy sources of wind and solar power. Therefore, a PEMS
is needed to enhance the HDCMG system’s performance and capability under different
circumstances and conditions. Based on the proposed HDCMG system, shown in Figure 1,
a new EMS is presented as illustrated in Figure 7. The main objectives of this EMS are:

• Managing the total generated power across all generating sources.
• Supplying both critical and noncritical loads with the most power possible from each

generating unit using MPPT techniques.
• Assisting in stabilizing the DC bus voltage under different working conditions.
• Giving the priority to the critical loads and the battery storage system.
• Connecting or disconnecting the grid during extreme working cases to ensure the

system is safe and stable.
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More details about this new EMS are discussed in the flowchart.
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5. Comparison between the Proposed System and the Literature on the DC
Microgrid Systems

In this section, the proposed system is compared with the numerous studies of the DC
microgrid where different levels of DC voltage are adopted in many different applications,
where telecommunication applications require 48 V and transport applications like camping
cars work with 12–24 V [68]. A 250 W DC solar nanogrid with a 24 V DC distribution bus
was designed for residential applications using a 24 V DC bus and was presented in [69].
In some of the literature, a small-scale DG system, such as a single house or structure,
is referred to as a nanogrid; nevertheless, the term “microgrid” is used in this article
in a broader sense. In the data center literature, a different voltage range of 380–400 V
was examined. In [70], a 380 V DC test system that was built in Obihiro, Japan, was
demonstrated. It was determined that the system enabled the creation of an autonomous
community energy system in addition to reducing the environmental load and increasing
energy efficiency. The authors of [71] have constructed a DC microgrid experimental
platform with a 380 V bus voltage level. The system consists of a PV array, a WT, a lithium
battery pack and a supercapacitor energy storage system, LED lighting, and regulated
electric loads. Furthermore, the high voltage level is adopted for fast charging the electric
vehicle. Some of the well-known producers of electric vehicles have recently switched to
higher-voltage batteries in order to gain the advantages of lower current, greater power
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density, and quicker charging times [72]. In addition, in Saudi Arabia, the metrology and
quality organization (SASO) has adopted Standard IEC 61851-1 as a Saudi standard with
modification for EC charging modes. Table 2 shows electric vehicle charging modes based
on the Saudi Arabia Standard [73].

Table 2. Electric vehicles charging modes based on Saudi Arabia Standard.

Charging Node Voltage Time for Recharging Maximum Charging Power

Mode 1 230 V AC 5 h 3.7 kVA (3.3 kW)
Mode 2 400 V AC 0.5 h 44 kVA (3.3 kW)
Mode 3 300–1000 VDC 6 min 40–350 kWh

Based on the previous discussion and the survey, Table 3 illustrates a brief comparison
of the DC microgrids among the different references and the proposed one. Meanwhile,
Table 4 shows different DC loads with their voltage level and power rating ranges. Finally,
Table 5 makes a comparison between the proposed DC microgrid and the literature in terms
of voltage levels and the tested appliances.

Table 3. A brief comparison of DC microgrids among the different references.

Ref. PV Wind Battery Grid Different
Voltage Levels

DC Electric
Vehicles

DC Home
Appliances

DC
LED Year

[74]
√

x x x x x
√

x 2016
[69]

√
x x x x x

√ √
2017

[75]
√

x
√

x x x
√ √

2017
[76]

√
x

√
x x x

√
x 2018

[68]
√ √ √

x x x
√ √

2019
[77]

√
x

√ √
x x

√ √
2020

[13]
√ √ √

x x
√

x x 2021
[78]

√ √ √
x x x

√ √
2021

[14]
√ √ √ √

x x
√ √

2021
[48]

√ √ √
x x x x x 2022

[79]
√

x
√

x x x x x 2022
[80]

√
x

√ √
x

√
x x 2023

[81]
√

x
√ √ √

x
√ √

2023
Proposed system

√ √ √ √ √ √ √
2023

Table 4. Different DC loads with their voltage level and power rating ranges [3,72,73,80–82].

Appliance
Rated Voltage

Power Range
12 V 24 V 48 V 380 V 760 V

LED lamp
√ √ √

3–50 W
Fan

√ √ √
3–36 W

Refrigerator
√ √ √

40–150 W
Microwave

√
660–1100 W

Coffee maker
√ √

900–1200 W
Computer

√ √
21–300 W

Television
√ √ √

65–120 W
Washing machine

√ √
70–360 W

Iron
√

130–1200 W
Rice cooker

√ √
600 W

Water heater
√ √ √

1000 W
Electric kettle

√ √ √
1500 W

Air conditioner
√ √

444–1300 W
Electric vehicle

√ √ √
3–350 kW
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Table 5. Comparison of DC microgrids in terms of voltage levels and the tested appliances.

Ref. Applications DC Output
Voltages Remarks Year

[83] Induction heating cooktop 380 V

Although the scientists obtained much higher
efficiency when the supply voltage was 380 V

DC rather than 230 V AC, the study only
evaluated induction heating.

2013

[84] Lights, chargers 48 V

Although the authors obtained a considerable
reduction in THD when the supply was 48 V
DC rather than 220 V AC, the DC appliances
in the study were fed via a DC-DC converter.

2015

[74]
The wet-grinder and the

dough-maker for net-zero
energy Homes (NZEH).

5, 48, and 120 V Two different types of appliances have been
modified for improved performance with DC. 2016

[82]

Air conditioner, microwave
oven, DC fan, cloth washer,

refrigerator, air cooler, water
pump, electronic appliances

48 V

The use of BLDC (brushless DC) motors is
suggested for 48 V DC rotary appliances in
place of universal and induction motors, by

means of a DC-DC converter.

2017

[85] DC fan, mobile charger,
laptop, LED light 48, 5, 19, and 72 V

A DC-DC converter was employed to supply
the DC appliances in the study; the authors
found that the efficiency was substantially

higher when the supply was DC than 240 V
AC.

2018

[86]

Space heating, water heating,
space cooling, lighting,

refrigeration, electronics, wet
cleaning, cooking, computers

24, 48, 170
and 380 V

Only a summary of recent initiatives in the
area of DC power distribution system

energy/efficiency.
2019

[87] Electronic loads 200 V

In order to provide a DC load with the
necessary voltage values, this work employed
a newly built DC-DC converter, the so-called
two-tier converter (TTC), in the photovoltaic

(PV) system.

2022

[88] DC fan, mobile charger,
laptop, LED light 48 V

The modeling and control of non-isolated,
non-inverting four-switch buck-boost (FSBB)
synchronous converters, which connect to a
variety of low-power electronic appliances,

are expanded upon in this work.

2023

[81]

Electronic loads in every
office; lighting system of the

place; driver LEDs for
specific area lighting.

48, 190, and 380 V

In order to distribute power in DC using a
variety of buses at various voltage levels, the

multibus functionality has been upgraded.
The idea is thought to be validated by a

building housing the offices of instructors that
also contains a charging station for electric
vehicles (EVs). The system uses different

topologies of power electronics converters
(PECs) to perform particular jobs and provide

isolation between bus and end loads.

2023

Proposed
system

DC fan, mobile charger,
laptop, LED light,

refrigerator, washing
machine, fast charger for

electric vehicles

48, 380, and 760 V

The author proposes three different levels of
DC voltage to cover all kinds of DC

applications. Moreover, the connection of the
EV to the high DC bus voltage level for faster

charging is proposed. Finally, a power
management strategy to supply the critical

load and noncritical load is suggested.

2023
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6. Evaluation of the Proposed HDCMG

The proposed hybrid DC microgrid with the overall control techniques and the pro-
posed energy management system is evaluated in this section. This evaluation is developed
via MATLAB/Simulink. The evaluation includes four main objectives: extracting the maxi-
mum power from both the PV and wind systems; regulating the three different DC-link
voltage constants at the reference values; ensuring uninterrupted power to the critical loads;
and validating the capability of the proposed energy management system. It has to mention
that the wind generating system starts to inject power after 2 s, where it starts without
load to reach the steady state. Meanwhile, the PV system injects the power from the first
instance, where it is a static system. In the following section, the technical evaluations are
discussed and analyzed with the help of four different scenarios.

6.1. Comparison between the Use of PI Controller and Constant Value for the Duty Cycle

In this case, the wind speed is constant at 6 m/s while the radiation value changes as
illustrated in Figure 8. The value of the 760 V DC-link voltage is regulated either with the
help of the cascade PI controllers for the battery storage system or the grid-side converter
according to the generated switching state from the proposed EMS. The adopted control
technique for extracting the MPP from the WS and the PV system succeeded without any
difference when using a constant or regulated duty cycle as shown in Figures 9 and 10,
respectively. Meanwhile, the three different levels of the DC-link voltages have different
responses, where the profile of the actual value of the 760 V based on the controlled
duty reaches the reference value and has a higher overshot during the step response in
comparison with the constant duty as illustrated in Figure 11. It can be noticed that this
difference is due to the indirect influence of the controlled duty for the other two DC-
link voltages. The direct use of the controlled duty on 380 V and 48 V DC-link voltages
compared to the constant duty is shown in Figures 12 and 13, where the use of controlled
duty is much better than the use of constant duty. The advantage of controlled duty is that
it prevents the directly connected load from over- and undervoltage and hence increases
the lifetime of the application as illustrated from the critical home and LED power loads
indicated in Figures 14 and 15, respectively. On the other hand, the EV load power is
smooth due to the use of controlled duty based on the SOC in the two cases, as is clear in
Figure 16.

6.2. Constant Wind SPEED and Variable Solar Radiation

The overall system behavior based on the control techniques and the proposed EMS
is tested in this case under a constant wind speed of 6 m/s, initial SOC value of 70%, and
variable radiation, as illustrated in Figure 17. Figure 18 shows the maximum generated
power from the wind speed and the PV under different radiations. The connection or
disconnection of the battery storage, grid, critical load is determined by the proposed EM
strategy. The priority of the EM is to deliver the required power to the critical loads. The
critical load demand powers are offered in Figure 19. Based on the total amount of the
generated power, the load demand power of the critical loads, and the value of the SOC of
the battery storage illustrated in Figure 20, the switching states from the proposed EM are
shown in Figure 21. It can be observed that the switches of the three critical loads and the
battery storage are ON while the switches of the grid and the main noncritical loads are
OFF, which means that the SOC is less than 90 and the generated power is greater than the
load demands. Due to the change in the generated power, the battery status of charging or
discharging with a different sharing power is shown in Figure 22. The dynamic response of
the three DC bus voltages is depicted in Figures 23–25.
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6.3. Variable Wind Speed as Well as Solar Irradiance

This scenario is offered to check the proposed HDCMG with the proposed EM strategy
under variable solar radiation and wind speed as illustrated in Figures 26 and 27, respec-
tively. The corresponding generated power to this variation and the critical load power
are shown in Figures 28 and 29, respectively. The SOC of the battery storage is depicted in
Figure 30. The switching states generated from the proposed EM are clarified in Figure 31.
It can be seen that when the generated power is less than the load demand and the SOC
is less than 20%, the switch of the battery storage is OFF and the switch of the grid is ON
to prevent the battery from deep discharging as demonstrated in Figures 32–34. Figure 32
shows the active and reactive power supplied to the critical load from the grid where the
value of the active power decreases with the increase in the generated power, but the total
generated power is still lower than the load power. Meanwhile, when the generated power
is greater than the load demand, the switch of the grid is OFF and the battery storage is
ON; hence, the grid power becomes zero and the battery starts to charge. The values of the
760 V, 380 V, and 48 V DC-link voltages are displayed in Figures 35–37, respectively.
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6.4. Effect of the Proposed PEMS

In this case, the overall system with the proposed EM strategy is discussed under a
6 m/s wind speed and 500 W/m2 solar irradiance. The WS is connected after 4 s. The wind
power coefficient tracks the reference value as shown in Figure 38 while the maximum
generated power from both WS and PV systems is illustrated in Figure 39. For the first 2 s,
the generated power supplies the critical loads, and the proposed EM is turned off to make
sure that the critical load is supplied with the appropriate power, and it is activated after 2 s.
The switching states after activation of the EM strategy are shown in Figure 40, where the
noncritical loads switch to having an ON status. The noncritical load power, battery storage,
and SOC are shown in Figures 41–43, respectively. It can be observed from Figure 43 that
when the EM strategy is activated, the noncritical load is switched ON and the battery
starts to discharge the power to these loads to prevent the battery from overcharging. This
confirmed that the adopted EM increases the lifetime of the battery. Finally, the values of
the 760 V, 380 V, and 48 V DC-link voltages are displayed in Figures 44–46, respectively.
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7. Conclusions

This work suggested a complete hybrid DC microgrid system, where this system
contains different levels of DC bus voltages including high, medium, and low values
for different real applications. There are two kinds of renewable energy sources that are
adopted in the suggested system, which are PV and wind energy conversion systems.
The mathematical models of the overall system components are discussed in detail in
the presented work. The overall HDCMG system is improved by the adopted control
techniques of MPPT for both the WGS and PV systems. Moreover, the adoption of variable
duty cycles regulates the DC bus voltages. A detailed analysis of the whole control methods
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used in the systems and converters is discussed. After that, more enhancements to the
HDCMG system are attained by proposing a power management strategy. The generated
power from the renewable energy sources aided with the battery storage or main grid and
is used to supply critical and noncritical loads based on the suggested PEMS. Moreover,
the system with the control and PEMS is simulated and tested under four circumstances
representing seasonal effects (i.e., comparison between the use of PI controller and constant
value for the duty cycle, constant wind speed and variable solar radiation, variable wind
speed as well as solar irradiance, and effect of the proposed PEMS during constant wind
speed and solar irradiation). The results confirmed the fast and good dynamic response
while using variable duty instead of constant duty. In addition, the capability of the PEMS
to keep the system stable by supplying the extra power to the noncritical load or consuming
power from the main grid, which increases the lifetime of the battery and prevented
overcharging or under-discharging, was discussed in case 5.3 and case 5.4. Finally, this
work can be extended and has future work prospects such as:

• Applying sliding mode control techniques for regulating the DC bus voltage.
• Using different topologies of the DC-DC converters to achieve higher boosting or

lower bucking compared to the traditional DC-DC converter.
• Adopting an AI technique for maximum power extraction from both PV and wind

generating systems.
• Extending the system by adding AC loads.
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Nomenclature

DFE Diode front end
EMS Energy management strategy
HESs Hybrid energy systems
DC Direct current
FC Fuel cell
AC Alternating current
MG Microgrid
PI Proportional integral
P&O Perturb and observe
PLL Phase-locked loop
PSF Power signal feedback
RERs Renewable energy resources
STC Standard test conditions
TSR Tip-speed ratio
VSI Voltage source inverter
WS Wind system
WT Wind turbines
PV Photovoltaic
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SOC State of charge
BES Battery energy system
Abbreviations
PWT Wind power
A Swept area
ρ Air density
VWT Wind speed
VC-in Cut in wind speed
VR Rated wind speed
VC-off Cut off wind speed
R Blade radius
ηWT Wind turbine efficiency
TWT Wind turbine torque
ωWT Angular wind speed
λ Tip-speed ratio
Cp Wind power coefficient
Te Generator torque
B Generator friction
J Moment of inertia
TPV PV actual temperature
Tair PV ambient temperature
TPV, STC PV temperature at STC
TNOCT PV operating temperature at nominal
GT PV average hourly solar radiation at the working temperature
GT,STC Solar radiation (SR) at STC (1 kW/m2)
EBS Energy collected in the BS
NBS Number of the BS
VBS BS’ voltage in volts
CBS BS’ rated capacity in Ahr
Pconv power of PPC size in kW
ηDFE efficiency of the DFE
ηB efficiency of the boost converter
Lf filter inductance
Rf filter resistance
ωG grid angular frequency

Appendix A

Table A1. Technical specification of the WECS.

Parameters Amount

Rated speed 12 m/s

Rated power 20 kW

Rated torque 905 Nm

Radius 2.5 m

Inertia 0.2 kg·m2

Stator resistance 0.1764 Ω

Stator inductance 4.48 mH

Table A2. Technical specifications of the PV module.

Parameters Amount

Rated power 305 W

Short circuits current 5.96 A
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Table A2. Cont.

Parameters Amount

Open circuits voltage 64.2 V

Temperature coefficient −0.386%

Capital cost 1000 $/kW

Lifetime 25 years
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