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A B S T R A C T

This paper investigates the energy management problem of the energy Internet under time-varying conditions .
In the context of coupled multi-energy networks, the energy Internet is considered to be composed of multiple
energy bodies and requires collaborative planning of multiple energy networks. A model for distributed
energy management with a non-smooth cost function and line congestion constraints is proposed, with the
goal of reducing overall operating costs and improving customer benefits while considering load as a time-
varying factor. Then, a neurodynamic time-varying algorithm for addressing the energy management problem
executed in a fully distributed manner is proposed. On the one hand, the predictive effect of the differential
feedback term is exploited and embedded in the implementation of the proposed algorithm, thus speeding up
the convergence. On the other hand, the algorithm is executed in a distributed manner, and only limited
information is exchanged among the agents to complete the optimal operation locally, thus reducing the
communication burden and ensuring privacy and robustness. Finally, theoretical proofs guarantee the stability
of the proposed algorithm, and simulation experiments illustrate the effectiveness and robustness of the
proposed algorithm.
1. Introduction

Increasing environmental pollution and energy crisis have placed
higher demands on current energy systems [1]. For this reason, it is
imperative to conduct research on multi-energy systems. Research for
multi-energy systems has been dedicated to making full use of the mu-
tual aid and complementarity of different forms of energy, improving
system economy, enhancing system flexibility and increasing system
reliability [2,3]. In recent years, the concept of Energy Internet (EI)
has emerged, based on the multi-energy system (MES), using advanced
power electronics, information technology and intelligent management
technology, interconnecting energy networks such as smart grid (SG),
heating network and gas supply network to achieve energy and in-
formation sharing, which is considered as a clean and efficient future
energy system [4–6].

As a component of EI, the SG has been a hot research topic in
recent years, in which a great deal of research work has been carried
out by scholars related to the voltage optimization problem (VOP)
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and economic dispatch problem (EDP) of SG. A two-stage optimization
approach is proposed in [7] to solve the problem of optimizing the VOP
in the distribution network, the first stage uses an offline centralized
algorithm to optimize the difference between the bus voltage at the
pilot node (PN) and the reference value, and the second stage uses
an online distributed algorithm to optimize the PN voltage in each
weakly coupled voltage control zone. In [8], a novel voltage optimiza-
tion procedure using a decentralized control strategy is proposed to
optimize the VOP of a radially operating distribution system. In [9],
the voltage quality of an N-stage neutral point clamped (NPC) inverter
reconfigured after a fault is analyzed and an optimization method is
proposed to mitigate the voltage quality degradation. [10] proposes a
multi-level coordinated voltage control strategy based on a sensitivity
approach for facilitating distributed residential demand response to
optimize network voltage. With the aim of improving the safety and
stability of high-voltage and medium-voltage distribution networks
and achieving optimal operation of continuous and discrete voltage
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regulation devices, [11] proposes a hierarchical distribution voltage
optimization method. [12] designed a smart grid real-time distributed
voltage control method to cope with the risk of voltage violation caused
by the increased proportion of distributed energy access in SG. For EDP
of MES, [13] proposes a distributed optimization algorithm with faster
convergence speed and lower communication burden. [14] proposes
a two-level optimization model for MES considering operational and
carbon emission constraints, where the upper-level model studies the
optimal resource allocation of MES and the lower-level model explores
the stable operation of MES under low carbon emission. With respect
to dynamic economic dispatch problem (DEDP) in SG scenarios, [15]
proposes a new alternating direction method of multipliers algorithm
based on distributed consistency theory. Based on the singular ingestion
system and Hysteretic Q-learning, [16] proposes a novel distributed
reinforcement learning solution to address EDP and DEDP in the SG
context. In response to the prevalence of communication link delay
in communication networks, [17] proposes a distributed economic
scheduling protocol with constant delay to explore the impact of delay
on scheduling performance. To effectively cope with the lack of prior
knowledge of DEDP in SG, [18] proposes a new distributed reinforce-
ment learning optimization algorithm. [19] investigates the problem
of resource allocation for communication over strongly connected di-
rected graphs and proposes a continuous-time projection algorithm that
operates in a distributed manner. Based on EDP, [20] considers the
demand response problem at the user side and discusses EMP with
the goal of maximizing social welfare in the context of EI, as well as
proposes a new distributed algorithm based on ADMM. On the basis
of [20]’s work, [6] considers energy transactions of EI on directed
graphs and proposes a new distributed algorithm based on the Newton
method. In view of the existing ADMM convergence speed needs to be
improved, [21] proposes a distributed optimization method with faster
convergence speed and can effectively address the EMP of SG.

During the work mentioned above, various distributed algorithms
have been well studied and developed for the optimization problem of
MES and SG. Nevertheless, they do not consider that the cost functions
and constraints formulated for energy supply devices in MES and
SG may be described as non-smooth functions, and there are many
time-varying factors in the actual system operation, neither do they
discuss the stability of the formulated algorithms under time-varying
problems. Consequently, in this paper, we focus on the EMP under time-
varying conditions in the EI scenario and solve it in a fully distributed
manner, which poses some challenges. From the optimization problem
perspective, the strong coupling between multiple energy networks in
EI and the need to fully consider the demand response problem at
the user side make the formulation of the model difficult. From the
algorithmic point of view, the proposed cost function and constraints
are non-smooth functions and there are time-varying conditions in the
constraints, which require good convergence and robustness of the
proposed algorithm.

To tackle the above challenges, an optimization model for dis-
tributed energy management under multi-energy coupling is proposed,
which contains nonsmooth cost functions and coupled inequality con-
straints, as well as time-varying loads. To address the EMP, we propose
a distributed neurodynamic time-varying algorithm (DNTA) executed
in a fully distributed manner. The following are the key contributions
of this paper.

∙ In this paper, a model for EI in a time-varying load scenario is
proposed for optimal energy allocation among EBs integrating re-
newable energy, flexible loads, and multi-energy coupling, while
trading energy. The EMP is further formulated as a distributed
time-varying optimization problem with non-smooth objective
functions and constraints, allowing the intelligences in the EBs
2

to perform their optimal operations locally. 𝑥
∙ A neurodynamic algorithm implemented in a fully distributed
manner that enjoys hardware implementation and parallel com-
putation is proposed in this paper. The algorithm can effectively
tackle EMPs with non-smooth objective functions and constraints
under time-varying conditions. Moreover, experimental results
indicate that the algorithm proposed in this paper exhibits better
robustness and convergence speed compared to the work in [22,
23].

This paper is organized as follows. In Section 2, some basic con-
cepts related to convex optimization are introduced. Section 3 outlines
the mathematical model of EMP in the EI scenario. In Section 4, a
distributed neurodynamic time-varying algorithm designed to tackle
the EMP is presented. The results of the performance evaluation are
provided in Section 5, and the conclusions of this paper are presented
in Section 6.

2. Preliminaries

2.1. Graph theory

The messages exchanged between the agents in the communication
network can be represented by  =

(

 , 𝜉
)

, where  = {1, 2,… , 𝑛} is
he set of nodes, and 𝜉 ⊆  ×  is the set of edges. If (𝑗, 𝑖) ∈ 𝜉 and
gent 𝑗 belongs to the set of neighbors of agent 𝑖  = {𝑗|(𝑗, 𝑖) ∈ 𝜉},

then it means that agent 𝑖 can obtain information from agent 𝑗. If and
nly if (𝑖, 𝑗) ∈ 𝜉 and (𝑗, 𝑖) ∈ 𝜉,  is called an undirected graph.

Define the adjacency matrix of a graph  as 𝐴 = [𝑎𝑖𝑗 ] with 𝑎𝑖𝑗 = 1
f 𝑗 ∈  and 𝑎𝑖𝑗 = 0 otherwise. The Laplacian matrix of a graph  is
= 𝐷−𝐴, where 𝐷 is the degree matrix of 𝐴 and is a diagonal matrix

omposed of 𝐷𝑖𝑖 =
∑𝑛

𝑗=1 𝑎𝑖𝑗 .

.2. Projection operator

Definition of the projection operator as

𝛺(𝜍) = argmin
𝜎∈𝛺

‖𝜍 − 𝜎‖

ne can obtain the following properties about 𝑃𝛺(𝜍).

emma 1 ([24]). Suppose 𝛺 is the closed convex set, in which case the
ollowing inequality with respect to P holds.

𝑃𝛺(𝜍) − 𝜍)𝑇 (𝑃𝛺(𝜍) − 𝜎) ≤ 0, 𝜍 ∈ ℜ𝑚, 𝜎 ∈ 𝛺, (1)

𝑃𝛺(𝜍) − 𝑃𝛺(𝜎))𝑇 (𝜍 − 𝜎) ≥ ‖𝜍 − 𝜎‖2, 𝜍 ∈ ℜ𝑚, 𝜎 ∈ 𝛺. (2)

2.3. Nonsmooth analysis

The differential inclusion is defined as follows:

�̇�(𝑡) ∈ 𝛤 (𝑡, 𝑥(𝑡)), 𝑥(0) = 𝑥0, 𝑡 ≥ 0, (3)

here 𝛤 is a set-valued mapping to a compact, non-empty, convex
ubset. When the solution of (3) defined on [0, 𝜏] ⊂ [0, ∞) is an
bsolutely continuous function 𝑥 ∶ [0, 𝜏] → ℜ𝑚, the system (3) holds
or almost all 𝑡 ∈ [0, 𝜏] with 𝜏 > 0. Define 𝑥∗ ∈ ℜ𝑚 to be the equilibrium
oint of (3) and such that 0𝑚 ∈ 𝛤 (𝑥∗). If and only if the constant
unction 𝑥(⋅) = 𝑥∗ is a solution of (3), 𝑥∗ is the equilibrium point of
3). Denote 𝑥 ∶ [0, + ∞) → ℜ𝑚 as a solution of (3), then if 𝜒 is a
luster point of 𝑥(𝑡) and also a Lyapunov stable equilibrium of (3), it
ollows that lim𝑡→∞𝑥(𝑡) = 𝜒 .

emma 2 ([25]). Let 𝛤 be a set-valued mapping from ℜ𝑚 to ℜ𝑚. 𝛺 is a
losed convex subset and 𝑁𝛺 is the normal cone of 𝛺 at 𝑥. It is a solution
f (5) if and only if 𝑥(⋅) is a solution of (4).

̇ ∈ 𝛤 (𝑥) −𝑁𝛺(𝑥), 𝑥(0) = 𝑥0 ∈ 𝛺, (4)

̇ ∈ 𝑃 (𝑥 − 𝛤 (𝑥)) − 𝑥, 𝑥(0) = 𝑥 ∈ 𝛺. (5)
𝛺 0
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Assume that 𝑉 is locally Lipschitz continuous and let 𝜕𝑉 (𝑧) be
denoted as the Clark’s generalized gradient of 𝑉 (𝑧) at 𝑧. 𝑉 with respect
to the set-valued Lie derivative 𝐿𝛤𝑉 of the function 𝛤 is defined as
𝐿𝛤𝑉 ∶= {𝓁 ∈ ℜ ∶ exists 𝑎 ∈ 𝛤 (𝑧) such that 𝑣𝑇 𝑎 = 𝓁 for all 𝑣 ∈ 𝜕𝑉 }.
The maximum element of 𝐿𝛤𝑉 is denoted by max𝐿𝛤𝑉 when 𝐿𝛤𝑉 is
non-empty. Assuming that 𝜑(⋅) is a solution of (3) and that 𝑉 is locally
Lipschitz and regular, then �̇� (𝜑(𝑡)) exists at any point and �̇� (𝜑(𝑡)) ∈
𝐿𝛤𝑉 (𝜑(𝑡)) holds.

The following lemma gives the invariance principle for nonsmooth
regular functions.

Lemma 3 ([26]). In the case of (3), it is assumed that 𝛤 is upper
semicontinuous and locally bounded, and 𝛤 (𝑥) takes compact, nonempty
and convex values. Suppose 𝑉 is a function of local Lipschitz and regularity,
𝐻 is strongly invariant and compact to (3), and A is denoted as a solution
of (1). 𝑅 = {𝑥 ∈ ℜ𝑚 ∶ 0 ∈ 𝐿𝛤𝑉 (𝑥)}. Define 𝑀 to be denoted as the
largest weakly invariant subset of �̄� ∩ 𝐻 , where �̄� is the closure of 𝑅. If
max𝐿𝛤𝑉 ≤ 0 for all 𝑥 ∈ 𝐻 , and then dist(𝜑(𝑡), 𝑀) → 0 as 𝑡 → +∞.

2.4. Convex analysis

If the function 𝑓 ∶ ℜ𝑚 → ℜ satisfies 𝑓 (𝜃𝑥 + (1 − 𝜃)𝑦) ≤ 𝜃𝑓 (𝑥) +
(1 − 𝜃)𝑓 (𝑦) for all 𝑥, 𝑦 ∈ ℜ𝑚 and 𝜃 ∈ [0, 1], then 𝑓 ∶ ℜ𝑚 → ℜ is a
convex function. If the function 𝑓 ∶ ℜ𝑚 → ℜ satisfies 𝑓 (𝜃𝑥+ (1− 𝜃)𝑦) ≤
𝜃𝑓 (𝑥)+ (1−𝜃)𝑓 (𝑦) for all 𝑥, 𝑦 ∈ ℜ𝑚, 𝑥 ≠ 𝑦 and 𝜃 ∈ (0, 1), then 𝑓 ∶ ℜ𝑚 →
ℜ is a strongly convex function. 𝜕𝑓 (𝑥) denotes the subdifferential of
𝑓 (𝑥) at 𝑥 ∈ ℜ𝑚 that is defined as 𝜕𝑓 (𝑥) ∶= {𝑔 ∈ ℜ𝑚 ∶ 𝑔𝑇 (𝑥 − 𝑦) ≤
𝑓 (𝑥) − 𝑓 (𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈ ℜ𝑚} and the element of 𝜕𝑓 (𝑥) is called the
subgradient of 𝑓 (𝑥) at point 𝑥. The (𝜕𝑓 (𝑥) − 𝜕𝑓 (𝑦))𝑇 (𝑥 − 𝑦) > 0 can be
easily obtained by the properties of strictly convex functions.

3. Problem formulation

To facilitate the delineation of the different regions, EI is considered
to be composed of multiple energy bodies (EBs), whose structure is
presented in Fig. 1. Seen from different application scenarios, in case EI
is considered as a city, EB may be one of the towns; in case EI is consid-
ered as a town, EB may be one of its communities. Each EB operates in
island mode or interconnected mode, where EBs are connected through
energy and communication networks, and enable energy transactions
and information interaction with their neighbor EBs. The interior of EB
is composed of multiple energy supply units and energy loads (ELs).
The energy supply units are mainly composed of fuel generators (FG),
renewable energy generators (REG), power storage equipment (PSE),
combine heat and power (CHP), fuel boilers (FB), renewable heating
equipment (REHU), heat storage equipment (HSE) and natural gas
suppliers (NGS). ELs are composed of electricity load, heat load and
gas load, and each load is composed of equivalent flexible load and
fixed load. Energy networks and communication networks in EI are
considered as actual networks. And there are interactions of energy and
information among EBs in EI, so several different EIs interconnected
actually form a larger EI.

3.1. EB model

3.1.1. Cost function
To facilitate the description of the model of EI, we use an agent to

represent the energy supply unit or EL in the EB.
(1). Both FG and FB burn fuel to obtain electric or heat, and their

cost functions are mainly used to describe the cost of fuel and the cost
of treating the emitted polluted gas. FG cost functions can be modeled
as

𝐶𝑝𝑓
𝑖𝑗

(

𝑝𝑓𝑖𝑗
)

= 𝑎𝑓𝑖𝑗
(

𝑝𝑓𝑖𝑗
)2

+ 𝑏𝑓𝑖𝑗𝑝
𝑓
𝑖𝑗 + 𝑟𝑓𝑖𝑗 exp

(

𝑢𝑓𝑖𝑗𝑝
𝑓
𝑖𝑗

)

(6)

where 𝑝𝑓𝑖𝑗 represents the active power output of FG labeled 𝑗 in the 𝑖th
EB; 𝑎𝑓 and 𝑏𝑓 are positive cost coefficients; exp function represents the
3

𝑖𝑗 𝑖𝑗
Fig. 1. System architecture of EI.

penalty for treating polluted gas; 𝑟𝑓𝑖𝑗 and 𝑢𝑓𝑖𝑗 are penalty parameters. Just
like FG, the cost function of FB can be modeled as

𝐶ℎ𝑓
𝑖𝑗

(

ℎ𝑓𝑖𝑗
)

= 𝛼𝑓𝑖𝑗
(

ℎ𝑓𝑖𝑗
)2

+ 𝛽𝑓𝑖𝑗ℎ
𝑓
𝑖𝑗 + 𝛾𝑓𝑖𝑗 exp

(

𝜇𝑓
𝑖𝑗ℎ

𝑓
𝑖𝑗

)

(7)

where ℎ𝑓𝑖𝑗 is the heating power of FB labeled 𝑗 in the 𝑖th EB; 𝛼𝑓𝑖𝑗 and 𝛽𝑓𝑖𝑗
are positive cost coefficients; exp function represents the penalty for
treating polluted gas; 𝛾𝑓𝑖𝑗 and 𝜇𝑓

𝑖𝑗 are positive penalty parameters.
(2). The cost of REG and RHE with renewable energy as input

mainly comes from the maintenance of labor and equipment. The REG
cost function is

𝐶𝑝𝑟
𝑖𝑗

(

𝑝𝑟𝑖𝑗
)

= 𝑏𝑟𝑖𝑗𝑝
𝑟
𝑖𝑗 + 𝑟𝑟𝑖𝑗 exp

⎛

⎜

⎜

⎝

𝑢𝑟𝑖𝑗
𝑝𝑟,max
𝑖𝑗 − 𝑝𝑟𝑖𝑗

𝑝𝑟,max
𝑖𝑗 − 𝑝𝑟,min

𝑖𝑗

⎞

⎟

⎟

⎠

(8)

where 𝑝𝑟𝑖𝑗 represents the active power output of REG labeled 𝑗 in the 𝑖th
EB; 𝑏𝑟𝑖𝑗 is a positive cost coefficient; exp function is used to balance the
feasibility and optimality of REG power supply; 𝑟𝑟𝑖𝑗 and 𝑢𝑟𝑖𝑗 are positive
coefficients; 𝑝𝑟,max

𝑖𝑗 and 𝑝𝑟,min
𝑖𝑗 are the feasible maximum and minimum

values of 𝑝𝑟𝑖𝑗 , respectively. In the same way, the cost function of RHE
can be defined as

𝐶ℎ𝑟
𝑖𝑗

(

ℎ𝑟𝑖𝑗
)

= 𝛽𝑟𝑖𝑗ℎ
𝑟
𝑖𝑗 + 𝛾𝑟𝑖𝑗 exp

⎛

⎜

⎜

⎝

𝜇𝑟
𝑖𝑗

ℎ𝑟,max
𝑖𝑗 − ℎ𝑟𝑖𝑗

ℎ𝑟,max
𝑖𝑗 − ℎ𝑟,min

𝑖𝑗

⎞

⎟

⎟

⎠

(9)

where ℎ𝑟𝑖𝑗 is the heating power output of RHE labeled 𝑗 in the 𝑖th EB; 𝛽𝑟𝑖𝑗
is positive cost coefficient; The feasibility and optimality of exp function
for balancing RHE heating; 𝛾𝑟𝑖𝑗 and 𝜇𝑟

𝑖𝑗 are positive coefficients. The
feasible Maximum and minimum values of ℎ𝑟𝑖𝑗 are expressed by ℎ𝑟,max

𝑖𝑗
and ℎ𝑟,min

𝑖𝑗 , respectively.
(3). Similar to FG and FB, the cost of CHP mainly comes from fuel,

and its cost function is

𝐶𝑐
𝑖𝑗

(

𝑝𝑐𝑖𝑗 , ℎ
𝑐
𝑖𝑗

)

= 𝑎𝑐𝑖𝑗
(

𝑝𝑐𝑖𝑗
)2

+ 𝑏𝑐𝑖𝑗𝑝
𝑐
𝑖𝑗 + 𝜅𝑐

𝑖𝑗𝑝
𝑐
𝑖𝑗ℎ

𝑐
𝑖𝑗

+ 𝛽𝑐𝑖𝑗ℎ
𝑐
𝑖𝑗 + 𝛼𝑐𝑖𝑗

(

ℎ𝑐𝑖𝑗
)2

+ 𝑙𝑐𝑖𝑗 (10)

where 𝑝𝑐𝑖𝑗 and ℎ𝑐𝑖𝑗 are the active power output and heating power of
CHP labeled 𝑗 in the 𝑖th EB, respectively; 𝑎𝑐𝑖𝑗 , 𝑏

𝑐
𝑖𝑗 , 𝜅

𝑐
𝑖𝑗 , 𝛽

𝑐
𝑖𝑗 , 𝛼

𝑐
𝑖𝑗 and 𝑙𝑐𝑖𝑗 are

positive cost factors.
(4). Major users of energy storage devices balance the randomness

and volatility of renewable energy and load. Instead, in the process of
energy storage and release, there will inevitably be some loss. Construct
the following cost function to describe the loss of PSE

𝐶𝑝𝑠
(

𝑝𝑠
)

= 𝑏𝑠 |

|𝑝𝑠 || + 𝑎𝑠
(

𝑝𝑠
)2

+ 𝜍𝑝𝑝𝑠 (11)
𝑖𝑗 𝑖𝑗 𝑖𝑗
|

𝑖𝑗
|

𝑖𝑗 𝑖𝑗 𝑖𝑗
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where 𝑝𝑠𝑖𝑗 is the active power of the PSE labeled 𝑗 in the 𝑖th EB; 𝑏𝑠𝑖𝑗 and
𝑠
𝑖𝑗 are positive cost coefficient and loss coefficient respectively; 𝜍𝑝 is
lectricity price. Construct the following cost function to describe the
oss of HSE.

ℎ𝑠
𝑖𝑗

(

ℎ𝑠𝑖𝑗
)

= 𝛽𝑠𝑖𝑗
|

|

|

ℎ𝑠𝑖𝑗
|

|

|

+ 𝜍ℎℎ𝑠𝑖𝑗 + 𝛾𝑠𝑖𝑗 exp
⎛

⎜

⎜

⎝

𝜇𝑠
𝑖𝑗

ℎ𝑠,max
𝑖𝑗 − ℎ𝑠𝑖𝑗

ℎ𝑠,max
𝑖𝑗 − ℎ𝑠,min

𝑖𝑗

⎞

⎟

⎟

⎠

(12)

here ℎ𝑠𝑖𝑗 represents the thermal power of HSE labeled 𝑗 in the 𝑖th EB;
𝑠
𝑖𝑗 is a positive loss coefficient; 𝜍ℎ is the heat price; Feasibility and
ptimality of exp function used to balance heat storage; 𝛾𝑠𝑖𝑗 and 𝜇𝑠

𝑖𝑗 are
positive coefficients.

(5). The cost function of NGS is [20]

𝐶𝑔
𝑖𝑗
(

𝑔𝑖𝑗
)

= 𝑎𝑔𝑖𝑗𝑔
3
𝑖𝑗 + 𝑏𝑔𝑖𝑗𝑔

2
𝑖𝑗 + 𝑐𝑔𝑖𝑗𝑔𝑖𝑗 + 𝜐𝑔𝑖𝑗 (13)

here 𝑔𝑖𝑗 is the output gas power of NGS labeled 𝑗 in the 𝑖th EB; 𝑎𝑔𝑖𝑗 ,𝑔
𝑖𝑗 , 𝑐

𝑔
𝑖𝑗 and 𝜐𝑔𝑖𝑗 are non-negative cost factors.

.1.2. Utility function
(1). EL is regarded as an equivalent flexible load that can be sched-

led and an uncontrollable fixed load [27]. Flexible load is considered
s the load of public utilities, which can be transferred to a certain
xtent. Fixed load is considered as the load of the vast number of users,
hich is difficult to control. We use the following benefit function to
escribe the scheduling of flexible load
𝐿
𝑖
(

𝑡, 𝑒𝑝𝑖 , 𝑒
ℎ
𝑖 , 𝑒

𝑔
𝑖
)

= 𝑈 𝑙𝑝
𝑖
(

𝑡, 𝑒𝑝𝑖
)

+ 𝑈 𝑙ℎ
𝑖

(

𝑡, 𝑒ℎ𝑖
)

+ 𝑈 lg
𝑖
(

𝑡, 𝑒𝑔𝑖
)

(14)

𝑈 𝑙𝑝
𝑖
(

𝑡, 𝑒𝑝𝑖
)

= 𝑎𝑝𝑖
(

𝑒𝑝𝑖
)2 − 𝑏𝑝𝑖

(

𝑒𝑝𝑖 + 𝓁𝑝
𝑖 (𝑡)

)

𝑈 𝑙ℎ
𝑖

(

𝑡, 𝑒ℎ𝑖
)

= 𝑎ℎ𝑖
(

𝑒ℎ𝑖
)2 − 𝑏ℎ𝑖

(

𝑒ℎ𝑖 + 𝓁ℎ
𝑖 (𝑡)

)

𝑈 lg
𝑖
(

𝑡, 𝑒𝑔𝑖
)

= 𝑎𝑔𝑖
(

𝑒𝑔𝑖
)2 − 𝑏𝑔𝑖

(

𝑒𝑔𝑖 + 𝓁𝑔
𝑖 (𝑡)

)

where 𝑒𝑝𝑖 , 𝑒ℎ𝑖 and 𝑒𝑔𝑖 are equivalent flexible loads of electricity, heat
and gas, respectively; 𝓁𝑝

𝑖 (𝑡), 𝓁
ℎ
𝑖 (𝑡) and 𝓁𝑔

𝑖 (𝑡) are equivalent fixed loads
of time-varying electricity, heat and gas respectively; 𝑎𝑝𝑖 , 𝑎

ℎ
𝑖 , 𝑎𝑔𝑖 , 𝑏𝑝𝑖 , 𝑏

ℎ
𝑖

and 𝑏𝑔𝑖 are negative benefit coefficients.

Remark 1. During a dispatch period, the value of fixed load is
generally predicted based on historical data, but in practical application
scenarios, the value of fixed load fluctuates with time. In addition,
uncontrollable equipment failure, line damage and other factors will
cause the load to change drastically in a short time. Therefore, it is
more practical to describe the fixed load as a time-varying value.

(2). The EBs have mutual energy transactions, and a single EB
will have some local energy supply and demand mismatch (surplus or
shortage). The energy mismatch in a single EB is defined as

⎧

⎪

⎨

⎪

⎩

𝐩𝐦𝑖 (𝑡) = 𝑝𝑓𝑖𝑗 + 𝑝𝑟𝑖𝑗 + 𝑝𝑐𝑖𝑗 + 𝑝𝑠𝑖𝑗 − 𝑒𝑝𝑖 − 𝓁𝑝
𝑖 (𝑡)

𝐡𝐦𝑖 (𝑡) = ℎ𝑓𝑖𝑗 + ℎ𝑟𝑖𝑗 + ℎ𝑐𝑖𝑗 + 𝑝𝑠𝑖𝑗 − 𝑒ℎ𝑖 − 𝓁ℎ
𝑖 (𝑡)

𝐠𝐦𝑖 (𝑡) = 𝑔𝑖𝑗 − 𝑒𝑔𝑖 − 𝓁𝑔
𝑖 (𝑡)

During the transaction, EB will generate certain profit or deficit. The
following benefit function is used to describe the energy transaction
between EBs.

𝑈𝑅
𝑖 = 𝜍𝑝𝐩𝐦𝑖 (𝑡) + 𝜍ℎ𝐡𝐦𝑖 (𝑡) + 𝜍𝑔𝐠𝐦𝑖 (𝑡) (15)

3.1.3. System operating constraints
(1). Capacity constraints: The active power of FG, REG and PSE shall

meet the following capacity constraints

0 < 𝑝𝑓,min
𝑖𝑗 ≤ 𝑝𝑓𝑖𝑗 ≤ 𝑝𝑓,max

𝑖𝑗 (16)

0 < 𝑝𝑟,min
𝑖𝑗 ≤ 𝑝𝑟𝑖𝑗 ≤ 𝑝𝑟,max

𝑖𝑗 (17)
|

|

|

𝑝𝑠𝑖𝑗
|

|

|

≤ 𝑝𝑠,max
𝑖𝑗 (18)

where 𝑝𝑓,max
𝑖𝑗 and 𝑝𝑓,min

𝑖𝑗 are the feasible upper and lower limits of the
active power of 𝑝𝑓𝑖𝑗 , respectively; 𝑝𝑠,max

𝑖𝑗 is the maximum charge and
discharge power.
4

The power supply and heating power of CHP shall meet the follow-
ing linear inequality constraints

𝑢1𝑖𝑗,𝑘𝑝
𝑐
𝑖𝑗 + 𝑢2𝑖𝑗,𝑘ℎ

𝑐
𝑖𝑗 + 𝑢3𝑖𝑗,𝑘 ≤ 0, 𝑘 = 1, 2, 3 (19)

where 𝑢1𝑖𝑗,𝑘, 𝑢2𝑖𝑗,𝑘 and 𝑢3𝑖𝑗,𝑘 are positive power limiting coefficients.
The heating power of FB, REHU and HSE shall meet the following

capacity limits

0 < ℎ𝑓,min
𝑖𝑗 ≤ ℎ𝑓𝑖𝑗 ≤ ℎ𝑓,max

𝑖𝑗 (20)

0 < ℎ𝑟,min
𝑖𝑗 ≤ ℎ𝑟𝑖𝑗 ≤ ℎ𝑟,max

𝑖𝑗 (21)
|

|

|

ℎ𝑠𝑖𝑗
|

|

|

≤ ℎ𝑠,max
𝑖𝑗 (22)

where ℎ𝑓,max
𝑖𝑗 and ℎ𝑓,min

𝑖𝑗 are the upper and lower bounds of the feasible
power of ℎ𝑓𝑖𝑗 , respectively; ℎ𝑠,max

𝑖𝑗 is the maximum heat storage and heat
dissipation power.

The output of NGS should meet

0 ≤ 𝑔min
𝑖𝑗 ≤ 𝑔𝑖𝑗 ≤ 𝑔max

𝑖𝑗 (23)

where 𝑔max
𝑖𝑗 and 𝑔min

𝑖𝑗 represent the maximum and minimum natural gas
output power respectively.

(2). Ramp rate constrains: In PSE and HSE, the power ramp rate
constraint in the process of energy storage and release can be described
as

− 𝑝𝑠,𝑟𝑎𝑖𝑗,𝜏 ≤ −𝑝𝑠𝑖𝑗,𝜏 − 𝑝𝑠𝑖𝑗,𝜏−1 ≤ 𝑝𝑠,𝑟𝑎𝑖𝑗,𝜏 (24)

− ℎ𝑠,𝑟𝑎𝑖𝑗,𝜏 ≤ −ℎ𝑠𝑖𝑗,𝜏 − ℎ𝑠𝑖𝑗,𝜏−1 ≤ ℎ𝑠,𝑟𝑎𝑖𝑗,𝜏 (25)

where 𝑝𝑠,𝑟𝑎𝑖𝑗,𝜏 and ℎ𝑠,𝑟𝑎𝑖𝑗,𝜏 are ramp rate constraints of PSE and HSE, respec-
tively.

(3). Flexible load scheduling constraints: The feasible interval of
schedulable flexible constraints is

0 ≤ 𝑒𝑝𝑖 ≤ 𝑒𝑝,max
𝑖 − 𝓁𝑝

𝑖 (𝑡) (26)

0 ≤ 𝑒ℎ𝑖 ≤ 𝑒ℎ,max
𝑖 − 𝓁ℎ

𝑖 (𝑡) (27)

0 ≤ 𝑒𝑔𝑖 ≤ 𝑒𝑔,max
𝑖 − 𝓁𝑔

𝑖 (𝑡) (28)

where 𝑒𝑝,max
𝑖 , 𝑒ℎ,max

𝑖 and 𝑒𝑔,max
𝑖 are the maximum schedulable flexible

electrical load, flexible thermal load and flexible gas load, respectively.
(4). Energy transmission line constraint: Power supply network,

heating network and gas supply network are prone to congestion on
some lines when transmitting energy. The following nonlinear con-
straints are used to describe the line congestion limit.
𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
𝜌𝑝𝑓𝑖𝑗

|

|

|

𝑝𝑓𝑖𝑗
|

|

|

+ 𝜌𝑝𝑟𝑖𝑗
|

|

|

𝑝𝑟𝑖𝑗
|

|

|

+ 𝜌𝑝𝑐𝑖𝑗
|

|

|

𝑝𝑐𝑖𝑗
|

|

|

+ 𝜌𝑝𝑠𝑖𝑗
|

|

|

𝑝𝑠𝑖𝑗
|

|

|

≤ 𝑃𝑙 (29)
𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
𝜌ℎ𝑓𝑖𝑗

|

|

|

ℎ𝑓𝑖𝑗
|

|

|

+ 𝜌ℎ𝑟𝑖𝑗
|

|

|

ℎ𝑟𝑖𝑗
|

|

|

+ 𝜌ℎ𝑐𝑖𝑗
|

|

|

ℎ𝑐𝑖𝑗
|

|

|

+ 𝜌ℎ𝑠𝑖𝑗
|

|

|

ℎ𝑠𝑖𝑗
|

|

|

≤ 𝐻𝑙 (30)
𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
𝜌𝑔𝑠𝑖𝑗

|

|

|

𝑔𝑠𝑖𝑗
|

|

|

≤ 𝐺𝑙 (31)

where 𝜌𝑝𝑓𝑖𝑗 , 𝜌𝑝𝑟𝑖𝑗 , 𝜌𝑝𝑐𝑖𝑗 and 𝜌𝑝𝑠𝑖𝑗 are non-negative electric power coefficients,
and 𝑃𝑙 is the congestion limit of transmission lines; 𝜌ℎ𝑓𝑖𝑗 , 𝜌ℎ𝑟𝑖𝑗 , 𝜌ℎ𝑐𝑖𝑗 and
ℎ𝑠
𝑖𝑗 are non-negative heating power coefficients, and 𝐻𝑙 is the line
ongestion limit of heating network; 𝑔𝑖𝑗 is a non-negative gas supply
ower coefficient, and 𝐺𝑙 is the congestion limit of gas supply pipeline.

.2. Problem statement

With regard to EI, the EMP is described as the search for the overall
owest operating cost of EI while satisfying the supply–demand balance
f each energy network, the power constraints of each energy supply
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unit/EL, and the transmission line congestion constraints. It is defined
as follows

min
𝑛
∑

𝑖=1

𝑚
∑

𝑗=1

(

𝐶𝑝𝑓
𝑖𝑗 + 𝐶ℎ𝑓

𝑖𝑗 + 𝐶𝑝𝑟
𝑖𝑗 + 𝐶ℎ𝑟

𝑖𝑗 + 𝐶𝑝𝑠
𝑖𝑗

+𝐶ℎ𝑠
𝑖𝑗 + 𝐶𝑔

𝑖𝑗

)

− 𝑈𝐿
𝑖 − 𝑈𝑅

𝑖

)

(32a)

𝑠.𝑡.
𝑛
∑

𝑖=1
𝐩𝐦𝑖 (𝑡) = 0,

𝑛
∑

𝑖=1
𝐡𝐦𝑖 (𝑡) = 0,

𝑛
∑

𝑖=1
𝐠𝐦𝑖 (𝑡) = 0 (32b)

𝑎𝑛𝑑 (16)–(31) (32c)

where 𝑛 indicates that the EI consists of 𝑛 EBs, the 𝑚 represents the
maximum number of agents in the EB, and 0 denotes the zero vector
of the corresponding dimension.

For simplifying the description, we use more concise symbols to
describe the EMP of EI. The 3-dimensional vector 𝑥𝑖𝑗 ∈ R3 represents
the power output of each energy supply unit or the flexible load of
EL, and is distinguished by 𝜔𝑖𝑗 . When 𝑥𝑖𝑗 represents the flexible load,
𝜔𝑖𝑗 is −𝐼3, otherwise it is 𝐼3. Let 𝛷(𝑥, 𝑡) represents the cost function
or utility function, and the set 𝛺𝑖𝑗 represents the constraint (16)–(28).
Divide the multi-energy fixed load of the 𝑖th EB into 𝑚 parts equally,
and define 𝓁𝑖𝑗 (𝑡) ∈ R3 as a three-dimensional vector composed of the
𝑗th multi-energy fixed load of the 𝑖th EB. And let 𝜑𝑖𝑗 (𝑥𝑖𝑗 ) represent the
congestion constraint of the 𝑗th nonlinear transmission line of the 𝑖th
EB. Eventually, EMP (32) is simplified to the following time-varying
optimization problem.

min 𝛷(𝑥, 𝑡) =
𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
𝛷𝑖𝑗 (𝑥, 𝑡) (33a)

𝑠.𝑡.
𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
𝜔𝑖𝑗𝑥𝑖𝑗 =

𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
𝓁𝑖𝑗 (𝑡) (33b)

𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
𝜑𝑖𝑗 (𝑥𝑖𝑗 ) ≤ 0 (33c)

𝑥𝑖𝑗 ∈ 𝛺𝑖𝑗 (33d)

4. Distributed algorithm

Noted that EMP (32) is a time-varying optimization problem with
time-varying conditions and nonsmooth objective functions and con-
straints, which places higher demands on the performance of the al-
gorithm. Accordingly, we propose the following distributed neural
dynamics time-varying algorithm (DNTA) to track the optimal solution
of the EMP in a fully distributed manner.

𝜀�̇�𝑖𝑗 ∈ 𝛺𝑖𝑗

(

𝑥𝑖𝑗 − 𝜕𝛷𝑖𝑗 (𝑥𝑖𝑗 ) + 𝜔𝑇
𝑖𝑗𝜆𝑖𝑗 − 𝜕𝜑𝑇

𝑖𝑗 (𝑥𝑖𝑗 )
𝜂𝑖𝑗
+

)

− 𝑥𝑖𝑗 (34a)
𝜀�̇�𝑖𝑗 = 𝓁𝑖𝑗 (𝑡) − 𝜔𝑖𝑗 (𝑥𝑖𝑗 + �̇�𝑖𝑗 ) − 𝜎

∑

𝑖𝑗∈
𝑎𝑖𝑗,𝑖𝑗

(

𝜆𝑖𝑗 − 𝜆𝑖𝑗
)

− 𝜎
∑

𝑖𝑗∈
𝑎𝑖𝑗,𝑖𝑗

(

𝑦𝑖𝑗 − 𝑦𝑖𝑗
)

(34b)

𝜀�̇�𝑖𝑗 = 𝜎
∑

𝑖𝑗∈
𝑎𝑖𝑗,𝑖𝑗

(

𝜆𝑖𝑗 − 𝜆𝑖𝑗
)

(34c)

𝜀�̇�𝑖𝑗 ∈ 𝜂𝑖𝑗
+ − 𝜂𝑖𝑗 (34d)

𝜀�̇�𝑖𝑗 = 𝜎
∑

𝑖𝑗∈
𝑎𝑖𝑗,𝑖𝑗

(

𝜂𝑖𝑗
+ − 

𝜂𝑖𝑗
+

)

(34e)

𝜂𝑖𝑗
+ =

⎡

⎢

⎢

⎣

𝜑𝑖𝑗 (𝑥𝑖𝑗 ) − 𝜎
∑

𝑖𝑗∈
𝑎𝑖𝑗,𝑖𝑗

(

𝜂𝑖𝑗
+ − 

𝜂𝑖𝑗
+

)

−𝜎
∑

𝑖𝑗∈
𝑎𝑖𝑗,𝑖𝑗

(

𝑧𝑖𝑗 − 𝑧𝑖𝑗
)

+ 𝜕𝜑𝑇
𝑖𝑗 (𝑥𝑖𝑗 )�̇�𝑖𝑗

⎤

⎥

⎥

⎦

𝜂𝑖𝑗

+

(34f)
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Fig. 2. Internal logic design of DNTA (34).

where 𝜆, 𝑦, 𝜂 and 𝑧 are Lagrange multipliers that assist the decision
variable 𝑥 to converge to the optimal trajectory; 𝜀 and 𝜎 are positive
bounded gains, which can effectively improve the convergence speed
and stability of the algorithm; 𝛺𝑖𝑗

(𝑠) is the projection of 𝑠 to the set
𝛺𝑖𝑗 , ensuring that 𝑥 converges to the set 𝛺𝑖𝑗 ; 𝜂𝑖𝑗

+ (𝑠) is the positive
projection of 𝑠 onto a non-negative real number field, i.e. 𝜂𝑖𝑗

+ (𝑠) = 𝑠
for 𝜂𝑖𝑗 > 0 or 𝑠 < 0, otherwise 𝜂𝑖𝑗

+ (𝑠) = 0; 𝜕𝛷𝑖𝑗 (𝑥𝑖𝑗 ) and 𝜕𝜑𝑖𝑗 (𝑥𝑖𝑗 ) are
the subdifferentials for 𝛷𝑖𝑗 (𝑥𝑖𝑗 ) and 𝜑𝑖𝑗 (𝑥𝑖𝑗 ), respectively.

Fig. 2 depicts the internal logic design of DNTA, which can also be
seen as the computational logic of an agent labeled as 𝑖𝑗. As can be
seen from the figure, the agent labeled 𝑖𝑗 exchanges information about
the multipliers (𝜆, 𝑦, 𝜂, 𝑧) with the neighboring agents. The decision
variable 𝑥, on the other hand, is only computed locally and is not
exchanged with other agents. This effectively protects the privacy of
each agent and reduces the communication requirements. To conve-
niently describe the implementation flow of the algorithm, the DNTA
is discretized using the Euler method, i.e., a suitable step size 𝜈 is
chosen such that 𝑠𝑘+1 = 𝑠𝑘 − 𝜈

(

𝜕𝐹 (𝑠𝑘)
)

is equivalent to �̇� = 𝜕𝐹 (𝑠).
The flow chart of the implementation of algorithm (34) is illustrated in
Fig. 3. In preparation, the relevant parameters of the objective function
and constraints as well as the communication connectivity among the
agents are determined. Firstly, take arbitrary bounded initial values for
the all variables

(

𝑥𝑖𝑗 , 𝜆𝑖𝑗 , 𝑦𝑖𝑗 , 𝜂𝑖𝑗 , 𝑧𝑖𝑗
)

. Let the number of updates 𝑘 be
0 and the Lagrange multipliers

(

𝜆𝑖𝑗 , 𝑦𝑖𝑗 , 𝜂𝑖𝑗 , 𝑧𝑖𝑗
)

exchange information
with their neighbors. Then the variables take parallel computation
and are updated corresponding to the Eulerian discrete versions of
(34a), (34b), (34c), (34d) and (34d), respectively. The algorithm stops
updating when all variables converge, otherwise the number of updates
is increased by one and the update operation is repeated.

Remark 2. The proposed algorithm DNTA decouples the coupling
constraints in a fully distributed manner with favorable robustness and
stability. With the concept of subgradient and differential inclusion, the
DNTA is able to tackle non-smooth objective functions and constraints.
With respect to 𝜔𝑖𝑗 �̇�𝑖𝑗 and 𝜕𝜑𝑇

𝑖𝑗 (𝑥𝑖𝑗 )�̇�𝑖𝑗 in Eqs. (34b) and (34d). From the
control point of view they are based on differential feedback design and
act as damping terms; from the optimization point of view, they help
𝜆𝑖𝑗 and 𝜂𝑖𝑗 point to the future direction of motion and have a predictive
role. Therefore, DNTA has the ability to track the time-varying optimal
trajectory of EMP (see Fig. 3).

Define 𝑥 = [𝑥𝑇11,… , 𝑥𝑇𝑛𝑚]
𝑇 and define the 𝜆, 𝑦, 𝜂, 𝑧, 𝜔 and 𝓁(𝑡) in

the same way. Let  be the Laplacian matrix of the communication
connectivity graph  of agents. The compact form of DNTA is expressed
as follows

𝜀�̇� ∈ �̃�
(

𝑥 − 𝜕𝛷(𝑥) + 𝜔𝑇 𝜆 − 𝜕𝜑𝑇 (𝑥)𝜂
+
)

− 𝑥 (35a)

𝜀�̇� = 𝓁(𝑡) − 𝜔(𝑥 + �̇�) − 𝜎𝜆 − 𝜎𝑦 (35b)
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Fig. 3. Algorithm implementation flow chart for Eulerian discrete version of DNTA
(34).

𝜀�̇� = 𝜎𝜆 (35c)

𝜀�̇� ∈ 𝜂
+ − 𝜂 (35d)

𝜀�̇� = 𝜎𝜂
+ (35e)

𝜂
+ =

[

𝜑(𝑥) + 𝜕𝜑𝑇 (𝑥)�̇� − 𝜎𝜂
+ − 𝜎𝑧

]𝜂
+ (35f)

Theorem 1. Suppose the problem (33) always has an optimal trajectory
within the constraints, and the graph  is undirected connected at any
moment.

(i). There exists (𝜆∗, 𝑦∗, 𝜂∗, 𝑧∗) such that (𝑥∗, 𝜆∗, 𝑦∗, 𝜂∗, 𝑧∗) is the equilib-
rium trajectory of the DNTA (35) when and only when the optimal
trajectory of the problem (33) is 𝑥∗.

(ii). The DNTA (35) is globally stable in the sense of Lyapunov, and 𝑥 will
converge to the optimal trajectory of the problem (33).

See appendix for the proof of Theorem 1.

5. Simulation performance results

The performance of DNTA in a simulated EI test system is tested in
a simulation experiment. Fig. 4 depicts the layout of the test system
for EI with four EBs. The test parameters for each energy supply device
and EL are given by [20].

5.1. Stability performance analysis

In the case 1 study, the convergence of DNTA in 20 s is first tested
to demonstrate the stability of the algorithm. Fig. 5 depicts the
generation/consumption of the 4 EBs under load determination, and
it is easy to see from subplots (a), (b), (c), and (d) that the estimated
generation/consumption trajectories of all agents in the 4 EBs tend to
be stable within 2𝑠. In addition, the four subplots of Fig. 6 show the
heat generation/consumption in each of the 4 EBs. Fig. 7 demonstrates
the gas generation/consumption of all EBs, where 𝐸𝐿1 indicates the gas
energy consumption of EL in EB1; 𝑁𝐺𝑆4 indicates the gas generation
of 𝑁𝐺𝑆 in EB4; and the same for the others.

We visualize the optimal operation performed by each agent using
the energy mismatches ∑𝑛

𝑖=1 𝐩
𝐦
𝑖 (𝑡),

∑𝑛
𝑖=1 𝐡

𝐦
𝑖 (𝑡) and ∑𝑛

𝑖=1 𝐠
𝐦
𝑖 (𝑡) for elec-

tricity, heat and gas, and the experimental results are shown in Fig. 8.
6

Fig. 4. EI system with four EBs.

Fig. 5. Simulation results of electricity generation/consumption.

It is clear from the figure that the mismatch of the three energy sources
tends to zero within 1s, which reflects that the operation performed by
each agent makes the demand of the load to be satisfied.

In addition, in the EI scenario, energy trading is possible among EBs,
and EBs with local energy surpluses are allowed to sell energy to EBs
with local energy deficits. Figs. 9–11 demonstrate the trading among
EBs, with positive values indicating the profit gained during the trading
process and negative values the expenditure for purchasing energy. The
experimental results reveal that the DNTA proposed in this paper has
favorable stability.

5.2. Robust performance analysis

During the operation of the EI system, some undesirable factors
may cause impacts on the stable operation of the system, such as
blocked communication, line failure and equipment damage. For this
reason, in the case 2 study, we tested the robustness of DNTA with the
same parameters as case 1 except for the communication connection
relationship and load.

Firstly, the robustness of DNTA in case of communication blockage
is tested. To perform the test, the communication network among the
agents is assumed to change abruptly under the influence of undesir-
able factors, and the mutating communication networks is presented
in Fig. 12. In the simulation experiments, to visualize the results,
energy mismatch is used to demonstrate the performance of DNTA
in the changing communication network. Communication link 1 is
used between the EBs at moment 𝑡1, communication link 2 is used
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Fig. 6. Simulation results of heat generation/consumption.

Fig. 7. Simulation results of gas generation/consumption.

Fig. 8. Energy mismatch.

between moment 𝑡1 and moment 𝑡2, and communication link 3 is used
after moment 𝑡2. The experimental results are presented in Fig. 13,
which shows that the energy mismatch fluctuates briefly at moment
𝑡1 and after moment 𝑡2 affected by the change of the communication
network, but soon converges to zero again. It is worth noting that
energy mismatch reflects whether the energy supply unit effectively
meets the demand of the load. Overall, although energy storage devices
are capable of storing a certain amount of excess energy, a large-
scale energy mismatch over a long period of time will inevitably result
in a large amount of wasted resources and may also cause energy
disconnection, i.e., power and gas outages, which seriously affects
7

Fig. 9. Electricity trading.

Fig. 10. Heat trading.

Fig. 11. Gas trading.

the economy and safety of the system. And the algorithm may lead
to failure and non-convergence if it cannot adapt to the mutating
communication network in a short time. The proposed DNTA maintains
favorable effectiveness even in the mutating communication network,
and minimizes the adverse effects on the system operation.

After that, the performance of DNTA in terms of plug-and-play is
tested. Assume that PSE and FB in EB1 and FG in EB3 are suddenly
disconnected from the system due to line failure and equipment dam-
age. The experimental results are depicted in Figs. 14–15, from which
it can be seen that after 10𝑠, the electrical power of PSE and the heat
power of FB in EB1 and the heat power of FG in EB3 drop to 0. At
the same time, the production/consumption of other energy supply
devices and EL are adaptively changed to compensate for the power gap
caused by the sudden disconnection of the devices, and finally converge
to a new optimal operation. As can also be seen from the energy
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Fig. 12. Mutating communication networks.

Fig. 13. Energy mismatch under mutating communication networks.

Fig. 14. Simulation results of electricity generation/consumption in plug-and-play case.

mismatch in Fig. 16, the energy mismatch fluctuates briefly at 10 s due
to the disconnection of the device, but quickly converges to 0. This
demonstrates the favorable performance of DNTA in plug-and-play.

In addition we tested the performance of DNTA under time-varying
loads. Assuming a scheduling period of 1 h and different values of
load in different dispatch periods, the experiments tested the energy
production/consumption for 6 dispatch periods. Figs. 17–19 show the
production/consumption of electricity, heat and gas for each EB, re-
spectively. It can be seen from the figures that the operation of each
intelligent body also changes adaptively due to the change of load. The
above experiments clearly show that the DNTA proposed in this paper
has good robustness under undesirable factors.

Translated with www.DeepL.com/Translator (free version)

5.3. Contrast performance analysis

In this case study, the DNTA proposed in this paper is compared
with the distributed algorithm (DA) proposed in [22] and the dis-
tributed recurrent neural network (DRNN) proposed in [23]. To facil-
itate and visualize the energy generation/consumption profiles of the
8

Fig. 15. Simulation results of heat generation/consumption in plug-and-play case.

Fig. 16. Energy mismatch in plug-and-play case.

Fig. 17. Simulation results of electricity generation/consumption under varying fixed
load.

three algorithms, the following average computational accuracy (ACA)
is used to measure the convergence speed of the algorithms

𝐴𝐶𝐴 = log
(

‖𝑥 − 𝑥∗‖2
𝑁

)

(36)

where 𝑁 is the number of variables. Under the same experimental
conditions, the experimental results are presented in Fig. 20. The results
reveal that DNTA achieves higher accuracy in the same time. This
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𝜔

Fig. 18. Simulation results of heat generation/consumption under varying fixed load.

Fig. 19. Simulation results of gas generation/consumption under varying fixed load.

indicates that DNTA achieves optimal operation with faster conver-
gence compared to DA and DRNN. In addition, the energy mismatch
of DNTA, DA and DRNN under mutating communication networks is
observed on a logarithmic scale to visually demonstrate the advantage
of DNTA in terms of robustness. The same setup as in case 2 is used
to change the communication connection at 𝑡1 = 20𝑠 and at 𝑡2 = 40𝑠.
The experimental results are shown in Fig. 21, from which it is clearly
observed that the energy mismatch fluctuation of DNTA is smaller at
the moment 𝑡1 and 𝑡2 when the communication connection is mutated,
and DNTA maintains a higher accuracy in the same time. This fully
illustrates that the DNTA proposed in this paper has better robustness
compared to DA and DRNN.

6. Conclusions

In the context of multi-energy coupling, this paper addresses the
EMP in EI scenario for collaborative planning of multiple energy net-
works. Firstly, the physical structure of EI is introduced, and a dis-
tributed energy management model for EI is proposed based on the
characteristics of energy supply devices and loads. To address the
EMP containing time-varying loads, nonsmooth cost functions and con-
straints, a DNTA executed in a fully distributed manner is proposed, and
a rigorous proof for the optimization and stability of the algorithm is
given. Simulation experimental results indicate that the proposed DNTA
exhibits favorable stability under communication network mutation,
plug-and-play, and time-varying load scenarios. In addition, the DNTA
possesses better convergence speed and robustness compared to some
9

Fig. 20. Results of convergence speed comparison test.

existing works. In future work, energy management of EI in scenarios
such as network attacks and delayed communication will be considered
to further expand the application scenarios of DNTA.
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Appendix

The proof of state (𝑖): The Lagrange function of the problem (32)
is

𝐿
(

𝑡, 𝑥, 𝜆𝑜, 𝜂𝑜
)

= 𝛷(𝑥, 𝑡) − 𝜆𝑜 (�̃�𝑥 − 𝓁(𝑡)) + 𝜂𝑜�̃� (𝑥) (A.1)

Define 𝑥∗ is the optimal trajectory of the problem (33), and 𝜆∗𝑜
and 𝜂∗𝑜 are the corresponding optimal multipliers, the KKT condition
of problem (33) is

𝜕𝛷(𝑥∗) − 𝜆∗𝑜 �̃� + 𝜂∗𝑜 𝜕�̃�
(

𝑥∗
)

∈ N�̃�
(

𝑥∗
)

(A.2a)

̃𝑥∗ = 𝓁(𝑡) (A.2b)

�̃�
(

𝑥∗
)

⩽ 0, 𝜂∗𝑜 ⩾ 0, 𝜂∗𝑜 �̃�
(

𝑥∗
)

= 0 (A.2c)

Let the optimal trajectory of the DNTA be
(

�̄�, �̄�, �̄�, �̄�, �̄�
)

, that is,
satisfy

0 ∈ �̃�

(

�̄� − 𝜕𝛷(�̄�) + 𝜔𝑇 �̄� − 𝜕𝜑𝑇 (�̄�) �̄�
+

)

− �̄� (A.3a)

0 = 𝓁(𝑡) − 𝜔�̄� − 𝜎�̄� (A.3b)

0 = 𝜎�̄� (A.3c)

0 ∈  �̄�
+ − �̄� (A.3d)

0 = 𝜎�̄� (A.3e)

For the left multiplication
(

1𝑛𝑚 ⊗ 𝐼3
)

of formula (A.3b), on the basis
of the properties of Laplace matrix and Kronecker product, so that

( )
0 = 1𝑛𝑚 ⊗ 𝐼3 (𝓁(𝑡) − 𝜔�̄� − 𝜎�̄�) (A.4a)
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𝑥

𝜂

Fig. 21. Robustness comparison test results.
0 = 𝓁(𝑡) − �̃��̄� (A.4b)

By complementary relaxation conditions [28], (A.3d) is equivalent
to

�̄�𝑇 (�̃�(�̄�) − 𝜎�̄�) = 0 (A.5a)

�̄� + �̃�(�̄�) − 𝜎�̄� ⩽ 0 (A.5b)

�̄� ⩾ 0 (A.5c)

Multiply
(

1𝑛𝑚 ⊗ 𝐼3
)

on the left of (A.5b) to get �̃� (�̄�) ⩽ 0. We can
get ∀�̄�𝑜 so that �̄� = 1⊗ �̄�𝑜 holds true according to (A.3e). Furthermore,
(A.5a) and (A.5c) are left multiplied by I to obtain

�̃� (�̄�) ⩽ 0, �̄�𝑜 ⩾ 0, �̄�𝑜�̃� (�̄�) = 0

From (A.3c)’s point of view, the fact that ∀�̄� makes �̄� = 1⊗ �̄�𝑜 hold
explains

̄ − 𝜕𝛷(�̄�) + 𝜔𝑇 �̄� − 𝜕𝜑𝑇 (�̄�) �̄�
+

= �̄� − 𝜕𝛷(�̄�) + 𝜔𝑇 (

1⊗ �̄�𝑜
)

− 𝜕𝜑𝑇 (�̄�)
(

1⊗ �̄�𝑜
)

= �̄� − 𝜕𝛷(�̄�) + �̄�𝑜�̃� − �̄�𝑜𝜕�̃� (�̄�) (A.6)

On the basis of the lemma 2.38 of [29], (A.3a) implies 𝜕𝛷 (�̄�)−�̄�𝑜�̃�+
̄𝑜𝜕�̃� (�̄�) ∈ N�̃� (�̄�).

In summary, if
(

�̄�, �̄�, �̄�, �̄�, �̄�
)

is the equilibrium trajectory of the
DNTA, �̄� is the optimal trajectory of the problem (33). Obviously, if 𝑥∗
is the optimal trajectory of the problem (33), there is an equilibrium
trajectory in which (𝜆∗, 𝑦∗, 𝜂∗, 𝑧∗) makes (𝑥∗, 𝜆∗, 𝑦∗, 𝜂∗, 𝑧∗) satisfy the
DNTA.

The proof of state (𝑖𝑖): Construct the following candidate Lyapunov
function

𝑉 (𝑡, 𝑥, 𝜆, 𝑦, 𝜂, 𝑧) = 𝑉1 (𝑡, 𝑥) + 𝑉2 (𝜆, 𝑦, 𝜂, 𝑧) (A.7)

where

𝑉1 (𝑡, 𝑥) = 𝐿
(

𝑡, 𝑥, 𝜆∗𝑜 , 𝜂
∗
𝑜
)

− 𝐿
(

𝑡, 𝑥∗, 𝜆∗𝑜 , 𝜂
∗
𝑜
)

+ 1
2
‖

‖

𝑥 − 𝑥∗‖
‖

2

𝑉2 (𝜆, 𝑦, 𝜂, 𝑧) =
1
2
‖

‖

𝜆 − 𝜆∗‖
‖

2 + 1
2
‖

‖

𝑦 − 𝑦∗‖
‖

2

+ 1
2
‖

‖

𝜂 − 𝜂∗‖
‖

2 + 1
2
‖

‖

𝑧 − 𝑧∗‖
‖

2

Apparently, 𝑉 (𝑡, 𝑥, 𝜆, 𝑦, 𝜂, 𝑧) is positive definite, local Lipschitz and
regularity. 𝑉1(𝑡, 𝑥) trajectory along (35) satisfies

𝐿𝛤𝑉1 =
(

𝜕𝛷 (𝑥) − 𝜔𝑇 𝜆∗ + 𝜕𝜑 (𝑥) 𝜂∗ + 𝑥 − 𝑥∗
)𝑇 �̇�

+
(

𝜆 − 𝜆∗
)𝑇𝜔�̇� −

(

𝜂
+ − 𝜂∗

)𝑇 𝜕𝜑 (𝑥) �̇� (A.8)

On the basis of Lemma 1, we can get

𝐿𝛤𝑉1 ⩽ −
(

𝑥 − 𝑥∗
)𝑇 (

𝜕𝛷 (𝑥) − 𝜔𝑇 𝜆 + 𝜕𝜑 (𝑥)𝜂
+
)

− ‖�̇�‖2 −
(

𝜂
+ − 𝜂∗

)𝑇 𝜕𝜑 (𝑥) �̇�

+
(

𝜆 − 𝜆∗
)𝑇𝜔�̇�
10
= −
(

𝑥 − 𝑥∗
)𝑇 (

𝜕𝛷
(

𝑥∗
)

− 𝜔𝑇 𝜆∗ + 𝜕𝜑
(

𝑥∗
)

𝜂∗
)

− ‖�̇�‖2 −
(

𝑥 − 𝑥∗
)𝑇 (

𝜕𝛷 (𝑥) − 𝜕𝛷
(

𝑥∗
))

−
(

𝑥 − 𝑥∗
)𝑇 (

𝜕𝜑 (𝑥)𝜂
+ − 𝜕𝜑

(

𝑥∗
)

𝜂∗
)

+
(

𝜆 − 𝜆∗
)𝑇𝜔�̇� −

(

𝜂
+ − 𝜂∗

)𝑇 𝜕𝜑 (𝑥) �̇�

+
(

𝑥 − 𝑥∗
)𝑇𝜔𝑇 (

𝜆 − 𝜆∗
)

(A.9)

According to the fact that 𝛷 (𝑥) is a convex function, we can get

𝐿𝛤𝑉1 ⩽ −
(

𝑥 − 𝑥∗
)𝑇 (

𝜕𝜑 (𝑥)𝜂
+ − 𝜕𝜑

(

𝑥∗
)

𝜂∗
)

+
(

𝑥 − 𝑥∗
)𝑇𝜔𝑇 (

𝜆 − 𝜆∗
)

+
(

𝜆 − 𝜆∗
)𝑇𝜔�̇�

−
(

𝜂
+ − 𝜂∗

)𝑇 𝜕𝜑 (𝑥) �̇� (A.10)

𝑉2 (𝜆, 𝑦, 𝜂, 𝑧) trajectory along (35) satisfies

𝐿𝛤𝑉2 =
(

𝜆 − 𝜆∗
)𝑇 �̇� +

(

𝑦 − 𝑦∗
)𝑇 �̇� +

(

𝜂 − 𝜂∗
)𝑇 �̇�

+
(

𝑧 − 𝑧∗
)𝑇 �̇�

=
(

𝜆 − 𝜆∗
)𝑇 (𝓁(𝑡) − 𝜔 (𝑥 + �̇�) − 𝜎𝜆 − 𝜎𝑦)

+ 𝜎
(

𝑦 − 𝑦∗
)𝑇𝜆 +

(

𝜂 − 𝜂∗
)𝑇 (

𝜂
+ − 𝜂

)

+ 𝜎
(

𝑧 − 𝑧∗
)𝑇𝜂

+ (A.11)

In the light of the equilibrium trajectory (A.3) and Lemma 1, we get

𝐿𝛤𝑉2 =
(

𝜆 − 𝜆∗
)𝑇𝜔

(

𝑥∗ − 𝑥
)

−
(

𝜆 − 𝜆∗
)𝑇𝜔�̇�

− 𝜎𝜆𝑇𝜆 − ‖

‖

�̇�‖
‖

2 +
(

𝜂
+ − 𝜂∗

)𝑇 (

𝜂
+ − 𝜂

)

⩽
(

𝜆 − 𝜆∗
)𝑇𝜔

(

𝑥∗ − 𝑥
)

−
(

𝜆 − 𝜆∗
)𝑇𝜔�̇�

+
(

𝜂
+ − 𝜂∗

)𝑇𝜑 (𝑥) − 𝜎
(

𝜂
+ − 𝑧∗

)𝑇𝜂
+

− 𝜎𝜆𝑇𝜆 +
(

𝜂
+ − 𝜂∗

)𝑇 𝜕𝜑 (𝑥) �̇� (A.12)

Thus,

𝐿𝛤𝑉 ⩽ −
(

𝑥 − 𝑥∗
)𝑇 (

𝜕𝜑 (𝑥)𝜂
+ − 𝜕𝜑

(

𝑥∗
)

𝜂∗
)

− 𝜎𝜆𝑇𝜆 +
(

𝜂
+ − 𝜂∗

)𝑇𝜑 (𝑥)

− 𝜎
(

𝜂
+ − 𝑧∗

)𝑇𝜂
+

=
(

𝜑 (𝑥) − 𝜎𝑧∗ −
(

𝑥 − 𝑥∗
)𝑇 𝜕𝜑 (𝑥)

)𝑇
𝜂
+

−
(

𝜑 (𝑥) −
(

𝑥 − 𝑥∗
)𝑇 𝜕𝜑

(

𝑥∗
)

)

𝜂∗

− 𝜎𝜆𝑇𝜆 − 𝜎
(

𝜂
+
)𝑇𝜂

+

⩽
(

𝜑 (𝑥) − 𝜑
(

𝑥∗
)

−
(

𝑥 − 𝑥∗
)𝑇 𝜕𝜑 (𝑥)

)𝑇
𝜂
+

−
(

𝜑 (𝑥) − 𝜑
(

𝑥∗
)

−
(

𝑥 − 𝑥∗
)𝑇 𝜕𝜑

(

𝑥∗
)

)

𝜂∗

− 𝜎𝜆𝑇𝜆 − 𝜎
(

𝜂
+
)𝑇𝜂

+ (A.13)

By the fact that  is a positive semidefinite matrix and 𝜑 (𝑥) is a

convex function, it is shown that 𝐿𝛤𝑉 ≤ 0.
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