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A B S T R A C T   

This paper aims to introduce deep learning to the power quality community by reviewing the latest applications 
and discussing the open challenges of this technology. Publications covering deep learning to power quality are 
stratified in terms of application, type of data, and learning technique. This work shows that the majority of the 
deep learning applications to power quality are based on unrealistic synthetic data and supervised learning 
without proper labelling. Some applications with deep learning have already been solved by previous machine 
learning methods or expert systems. The main barriers to implementing deep learning to power quality are 
related to lack of novelty, low transparency of the deep learning methods, and lack of benchmark databases. This 
work also discusses that even with automatic feature extraction by deep learning methods, power quality expert 
knowledge is still needed to implement and analyse the results. The main research gaps identified in this work 
are related to the applications of semi-supervised learning, explainable deep learning and hybrid approaches 
combining deep learning with expert systems. Suggestions for overcoming the present limitations are: providing 
a stronger collaboration among the grid stakeholders and academy to keep track of power quality events; proper 
labelling and enlarging of datasets in deep learning methods; explaining the end-to-end decision making of deep 
learning methods; providing open-access databases for comparison purposes.   

1. Introduction 

The electric power sector is continuously modernising to become 
more environmentally friendly, economical, and reliable. The modern
isation goals are reached by, for instance, integrating renewable energy, 
installing new devices in both supply and demand ("smart grid equip
ment"), the deregulation of the sector, and the advancement in 
measuring infrastructures. However, the ongoing increase of equipment 
based on power electronics has an impact on the probability of inter
ference through changes in emission, immunity, and transfer of power 
quality (PQ) disturbances [1,2]. Many of the power grid stakeholders 
perform continuous PQ monitoring to obtain information on the supply 
and equipment performance [3,4]. Long-term PQ measurements result 
in a large amount of data. For instance, [5] shows that a two-year PQ 
measurement campaign at five different locations resulted in 250 GB of 
data. The true value of PQ monitoring depends on its ability to analyse 
and interpret voluminous raw data obtained from that monitoring. 
Manual analysis of this data type is possible; however, it is time 
consuming. Proper analytical tools are needed to accelerate the "PQ big 
data" interpretation process. 

The term "PQ big data" refers to a large amount of data resulting from 

continuous PQ monitoring. The term "big data" itself is not very clearly 
defined [6]. For instance, in terms of size, big data for the internet is 
measured in terms of exabytes 1018 and zettabytes 1021 [7] while PQ 
data is in MB or GB [6]. However, the consensus definition is that big 
data is a massive amount of data with specific complexities, the so-called 
4V’s: Volume, Variety, Velocity, and Veracity [8]. Although PQ big data 
is smaller than internet big database, both types of data are complex and 
difficult to process by employing traditional methods. 

Artificial intelligence (AI) has been applied in many fields to handle 
analytics in big data. The first applications of AI were based on expert 
systems making decisions through rules defined by human expertise [9]. 
However, since the 1970s, a new subset of AI called machine learning 
(ML) has made computers capable of learning without explicit pro
gramming [10]. By employing ML to analyse and learn large amounts of 
existing data, computers can find patterns, predictions, and judgments 
to assist humans in making decisions [11]. 

Driven by the vast improvements in computer processing, a subset of 
ML based on artificial neural networks (ANNs) has been developed to 
tackle increasingly complex problems without human intervention. The 
initial ANNs still required significant human involvement for selecting 
and defining suitable features. However, the so called deep learning (DL) 
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applications can automatically extract optimal features from raw data 
[8]. DL approaches are usually implemented in pattern recognition 
systems due to the capability of DL to extract optimal information from 
high-dimensional data. DL methods have shown very promising results, 
especially in computer vision and image analysis, and performance is 
shown to be comparable to or even surpassing the conventional ML 
methods that use handcrafted features defined by human experts [8,12]. 

Most of the review papers on this subject only cover signal processing 
and AI techniques to classify and identify PQ disturbances [13–16]. 
Moreover, most of the existing review papers were published before DL 
popularity, as in [15] or, even later, they do not fully address DL 
methods [16,17]. This paper is the first to consider a comparative 
overview of the literature applying DL to PQ data. The paper also in
troduces big data from a PQ perspective and used the information from 
the literature to propose a DL workflow for PQ. 

After this introduction, the basic concepts concerning artificial in
telligence and big data are introduced in Section 2. Section 3 distin
guishes between the informatics-related terms used in this paper: AI, 
ML, and DL. Both Sections 2 and 3 aim to provide the readers from the 
PQ community with the terminology used in the AI community. Section 
4 provides a workflow for applying DL to PQ. Section 4 also describes 
briefly the most common DL methods and their applications to PQ data. 
Section 5 provides a literature overview of AI techniques applied for the 
processing of PQ data, emphasising the present applications with DL. 
Section 6 presents a critical discussion and recommendations regarding 
applications of DL to PQ. Finally, Section 7 concludes the paper. 

2. Power quality big data 

2.1. Concepts of big data 

The term big data was first used by John Mashey [18] to refer to 
handling and analysing massive datasets. The concept of big data gained 
strength in the early 2000s when Doug Laney [19] defined big data by 
the "3V’s": volume, velocity, and variety. By this definition, "big data" 
refers to a large amount of data that increases fast and is difficult or even 
impossible to handle by traditional methods. The most common way of 
defining big data nowadays is by the "4V’s" which adds veracity to the 
"3V’s" [20]. The list below details each of the "4V’s" based on [21] and 
[22]:  

(a) Volume: refers to the amount, size, and scale of the data. The 
amount of data reaches such a level that it cannot be managed 
without dedicated analytic tools. The size can be defined either 
vertically by the number of samples in a dataset or horizontally 
by the number of features.  

(b) Velocity: refers to the speed by which the data is generated and 
how fast the data should be processed.  

(c) Variety: refers to the heterogeneity of the data. Big data often 
comes from different sources, which can be diverse in type, 
format, semantics, and volume.  

(d) Veracity: refers to the quality of the collected data. It is related to 
biases, noise, and abnormality in data. The accuracy of any an
alytic process applied to the data depends greatly on the veracity 
of the source data. 

2.2. Power quality big data 

The raw data of PQ monitoring consists of voltage and current 
samples in the time domain. The PQ monitors pre-process such raw data 
to detect and extract events such as voltage dips and transients. Besides, 
the raw data is pre-processed by mathematical transformations to obtain 
indexes to characterise waveform distortion, deviations from the ideal 
voltage magnitude, and other variations. Both raw and pre-processed PQ 
data can be considered big data because it contains the 4V’s complex
ities. The following details each of the 4V’s of PQ data. 

2.2.1. Volume 
PQ monitoring results in a large amount of data. For instance, 

waveform measurements contain 256 samples per cycle, considering a 
sampling frequency of 12.8 kHz in 50 Hz. For each hour of measure
ment, this results in 1 080 000 samples (3 voltages and 3 currents). This 
volume complexity also holds for the pre-processed data. For example, 
harmonic values are obtained by Fourier transform and are aggregated 
every 10 min to simplify the data analysis. However, even with the 
aggregated values, one year of monitoring results in about 31 million 
data points per location considering 39 harmonics and 40 inter
harmonics (3 voltages, 3 currents, 10 min values). 

2.2.2. Velocity 
The velocity of data is related to the set sampling frequency in the PQ 

monitor. Considering the previous example of 256 samples per cycle, a 
new sample in every voltage and current channel is obtained every 
78.125 μs. The velocity complexity is also related to the PQ data analysis 
streams: offline and online analysis. Offline analyses are mainly suitable 
for system performance evaluation, problem characterisation, and sys
tems diagnosis. For online analysis, results are convenient when actions 
must be taken immediately. 

2.2.3. Variety 
Even though the raw data comes from only two signals (voltage and 

current), it is diverse in terms of measurement sources. PQ monitors are 
installed in distinct voltage levels and locations of a power system to 
obtain enough data for understanding and characterising PQ phenom
ena. Besides, PQ data is collected from many other monitoring devices 
on the system (intelligent relays, smart meters, digital fault recorders, 
phasor measurement units, etc.) [23]. In addition to the multiple data 
sources, the pre-processed PQ data is heterogeneous. Depending on the 
monitor settings, the pre-processed data can contain, for example, har
monic values and THD obtained each 10 min, voltage dips and transient 
waveforms with 256 samples per cycle, and rms voltage over 150 cycles 
of the power-system frequency. Although there are standardised 
methods to extract the data, as IEC 61000-4-30 [24], PQ monitors can 
also be configured with different settings, which results in data with 
different sampling, formats, and sizes. To reduce this complexity, the 
IEEE 1159.3 PQDIF Task Force has developed a standard format called 
Power Quality Data Interchange Format (PQDIF) [25]. 

2.2.4. Veracity 
According to the standard IEC 61000-4-30 [24], PQ measurement 

devices must comply with specific accuracy requirements (class A re
quirements). In particular, for harmonics, accuracy requirements are 
defined in IEC 61000-4-7 [26]. This accuracy is influenced by many 
factors, which include external sensors (e.g. instrument transformers, 
Rogowski coils), A/D converters, or measurement algorithms (e.g. ali
asing, leakage) [27]. The requirements in [24] for PQ measurements 
point out the veracity complexity of PQ data. 

2.3. Big data analytics 

Big data analytics is the process of extracting information and 
detecting patterns from datasets with the 4V’s complexity [22]. 
Conventionally, statistical methods, data mining, and visualisation 
techniques were the most used tools for big data analytics. Recently, ML 
methods (artificial intelligence) have gained attention in analysing big 
data. In the context of big data analytics, the exploration of time-varying 
data remains a key challenge in informatics [28]. Time-varying data is 
defined as spatiotemporal volumetric data, which means that each 
variable exhibits different values at particular time intervals. Several 
methods have been applied to extract patterns of time-varying data, 
such as visualisation tools, clustering, and feature extraction [28]. 
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2.4. PQ monitoring and analytics of PQ big data 

PQ monitoring is the process of gathering, analysing, and interpret
ing voltage and current measurements into useful information [52,53]. 
The continuous PQ monitoring allows the network operators to obtain 
information about the performance of utilities and customer facilities 
[54]. Moreover, the analysis of continuous measurements from PQ 
monitoring allows researchers to obtain knowledge of the PQ 
phenomena. 

Several tools are available for reducing large data volumes from PQ 
monitoring; this is mainly done through indices and reporting formats, 
like the ones defined in IEC 61000-4-30 [24] and the recommendations 
by CIGRE C4.112 [29]. The IEC document defines 10 min values, for 
among others, harmonics and interharmonics. With a large number of 
monitors and several years of data, this could still result in large 
amounts of data. 

Reports employing classical statistical techniques in 10 min values 
might hide important information about variations with time. In some 
cases, shorter time scales should be employed instead of the 10 min 
values [30]. For instance, 10 min values of the harmonic voltage might 
not be proper for PV installations because the distortion varies over 
shorter time scales, depending, among others, on the solar irradiance 
and dynamic changes caused by fast cloud passages [45–48]. A more 
recent example is the charging of electric buses, where the charging is 
rarely longer than 10 min. The resulting data can be even larger if 
shorter time scales are employed instead of the 10 min values. In some 
cases, the shorter time scales should be considered to proper addressing 
PQ. 

Analysis of PQ variations over time is essential to identify, for 
instance, excessive waveform distortion on power systems as a function 
of load and system characteristics (e.g. resonance conditions) [23]. 
Many approaches have been proposed to analyse and visualise 
time-varying events, such as Kalman filter [31], Parseval’s [32], Hil
bert–Huang Method [33], S-transform [34], and Wavelets [35]. An 
overview of such methods can be found in [36, 37]. In addition, 
graphical methods [38], expert systems [39], ML, and DL [40–43] have 
been applied to PQ measurements to extract additional information and 
provide better visualisation of the raw data. One of the remaining 
challenges is detecting the dynamic changes and the selecting important 
time intervals on a large amount of PQ measurements. 

3. Artificial intelligence: expert systems, machine learning, and 
deep learning 

The term AI refers to the entire universe of computing technology 
that exhibits anything resembling human intelligence [44]. In other 
words, AI is the enterprise of constructing an intelligent artefact. The 
most accepted definition of AI is one by Alan Turing, a computer can be 
said to possess AI if it can mimic human responses under specific con
ditions [45]. 

Since 1956 [46], AI has been considered an interdisciplinary subject 
to meet human intelligence. The period between the 1950s and 1960s is 
known as the first AI wave when many theoretical developments were 
made. However, the computers were not mature enough to process large 
neural networks, and not enough data was available for developing 
purposes. The following period is known as the first winter of AI. A 
second wave started in the 1980s with the development of expert sys
tems that were based on rules defined by human experts. AI faced the 
second winter in the late 1980s and early 1990s mainly because expert 
systems required specialised hardware, and commercial vendors failed 
to provide an ample assortment of applications. In the same period, the 
development of the backpropagation algorithm played an important role 
in the progress of training multilayer neural networks [47]. A major 
milestone of AI is related to IBM’s Deep Blue in 1997 [48], an AI system 
designed specifically for playing chess. Deep Blue was the first machine 
to beat a world champion in chess. The development of Deep Blue 

inspired researchers to create AI approaches that could tackle other 
complex problems. Since then, AI has faced a new wave associated with 
three main factors: availability of large amounts of data, advancements 
in computer processing, and massive investment from the industry [49]. 

AI can be grouped into six main categories [11]: game theory, 
decision-making algorithms, statistical models, search/optimisation 
methods, expert systems, and learning methods (ML and DL). AI also 
covers or shows overlap with other fields such as robotics, sentimental 
analysis, and artificial emotion. In this work, we limit ourselves to those 
AI algorithms that are or can be applied to PQ. To this point, Fig. 1 il
lustrates these AI techniques for PQ, showing that ML is a subset of AI 
while DL is a subset of ML. The first applications of AI were based on 
expert systems which make decisions through rules based on expert 
knowledge [9]. On the other hand, ML and its subset DL have made 
computers capable of learning without explicit programming [10]. 

3.1. Expert systems 

Expert systems are a type of AI that relies on expert knowledge and 
an inference engine. The basic idea behind expert systems is that the 
expert knowledge is transferred to a computer program through an 
inference engine. The inference engine is a set of "if-then" rules: if some 
condition is true, then a specific inference can be made, or action can be 
taken [50]. Due to the inference engine, expert systems are also called 
rule-based systems. The rules can be based on Boolean logic or Fuzzy 
logic. In Boolean logic, the rules incorporate only two values: “0” or “1”. 
Fuzzy logic presents a gradual transition from “0” to “1” by expressing a 
set of values between the two logic states [51]. The main benefit of 
expert systems over ML is the explanation facility. A decision taken from 
an expert system can be explainable through the rules. The main limi
tations of expert systems are in creating inference rules; experts do not 
always agree, they are not always able to explain their reasoning, and 
some rules may be difficult to implement in terms of computational 
costs. Section 5.1 lists the applications that have employed expert sys
tems in PQ field. 

3.2. Machine learning 

ML using a large amount of data is a small subset within AI [10]. 
Conventional ML methods rely on human expertise to design the best 
features from the data for various tasks, such as classification, predic
tion, and regression. The general idea behind most ML applications is 
that a computer learns to perform a task by studying a training set of 
examples. Two main strategies can be employed in ML: supervised and 
unsupervised learning. Two other categories can also be incorporated 
into ML: semi-supervised learning and reinforcement learning. 

3.2.1. Supervised learning 
In supervised learning, the training set contains data and the correct 

output of the task with that data [10]. Supervised learning can be 
employed by logic regression, support vector machines, classification 
trees, random forests, artificial neural networks (ANNs), among others. 

3.2.2. Unsupervised learning 
The training set in unsupervised learning contains data but not the 

outputs, which means that the computer must find the solutions inde
pendently [10]. Unsupervised learning includes clustering algorithms as 
k-means, dimensional reduction techniques as principal components 
analysis, and ANNs. 

3.2.3. Semi-supervised learning 
Semi-supervised learning is a type of ML that is between supervised 

and unsupervised. Its training combines a small amount of labelled data 
with a large amount of unlabelled data. To this point, semi-supervised 
learning is convenient when the ground-truth labels are available only 
for part of the data. Furthermore, the combination of labelled and 
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unlabelled data can improve the classification of new instances. Exam
ples of semi-supervised learning are restricted Boltzmann machines and 
deep belief networks. 

3.2.4. Reinforcement learning 
Reinforcement learning is a type of ML that can be trained by 

interacting with a real-time environment. A solution is found by the 
computer employing trial and error to a given problem. The learning 
system is referred to agent, which can observe the environment, select 
and perform actions, and get rewards or penalties in return. The agent’s 
objective is to maximise the total reward, and the best action is called 
policy [52]. This type of ML has been applied to robotics, game theory, 
and data science [53]. 

3.3. Deep learning 

Driven by the huge improvements in computer processing, a subset 
of ML-based on ANNs has been developed to tackle evermore-complex 
problems without human intervention. These so-called DL applications 
can perform a specific task by automatically extracting essential features 
from raw data [8]. A deep learning method is composed of a multilayer 
stack of simple models that maps non-linearly its output by its input 
[54]. Each layer further refines the previous layer’s outputs that enables 
to increase both the selectivity and the invariance of the representation 
[54]. The mapping is learned from the input data by adapting the 
weights of each neuron by using an algorithm called backpropagation 
[63]. The weights are adapted based on the gradient of the error at the 
output. The backpropagation algorithm calculates the gradient of the 
error and distributed it back in terms of weights to the previous layers. 
The objective is to minimise the error in the output, and this weight 
adapting process is repeated over many iterations. 

DL approaches are usually implemented in pattern recognition sys
tems due to the power of DL to extract abstract concepts from high- 
dimensional data. Section 4.4 provides an overview of the main DL ar
chitectures used in PQ. 

4. Deep learning workflow for power quality 

This session summarises the steps in applying DL to a PQ problem. 
The workflow provided in this session should not be considered a strict 
practice. Instead, this workflow aims to give a guideline for the useful 
implementation of DL for PQ. The workflow proposed here is inspired by 
DL guidelines presented for other fields such as computer science [55], 
space weather [56], and medicine [57]. 

4.1. Problem formulation 

The first step in applying DL is to formulate the problem and map the 
specific needs that require DL. Then, the use of DL should be justified by 
indicating the limitations of traditional methods for solving this specific 
problem. 

In this stage, the need for data should be addressed; where no or 
insufficient data are available, there is a need to perform new PQ 
measurements. Traditional methods of presenting and analysing PQ 
measurements can help to provide directions for selecting a DL method. 
For instance, it can help verify the type of training that suits better for a 
DL algorithm. Supervised learning is suitable if labels are either avail
able for the data or if manual labelling is possible. On the other hand, 
unsupervised learning is the best choice when no labels are available. 
Semi-supervised learning is an option if part of the data set contains 
labels. Linking the measurements with other data sets can be used for 
labelling. For instance, labels or sequences can be correlated by the 
simultaneity among PQ events or variations with their causes and ef
fects. The algorithm should be selected once a decision is made between 
supervised, semi-supervised, and unsupervised. 

4.2. Data pre-processing 

Once the raw data from the PQ measurements are available, they 
should be pre-processed to transform them into useful data features for 
the DL application. Pre-processing consists of three main steps: cleaning, 
normalisation, and splitting. 

4.2.1. Cleaning 
Failures in the measurements can result in missing data points. 

Malfunctions in the measurement systems can also produce outliers, 
which are erroneous values in the data set. A common practice in pre- 
processing is to fill in the missing values and remove or minimise the 
effects of outliers. For DL applications, it is essential to assess beforehand 
if the method for handling missing data and measurement errors could 
impact the results. Recommendations for handling both missing data 
and outliers can be found in [58]. 

4.2.2. Normalisation 
Data normalisation is the pre-processing step that transforms the 

data into a common range, making an equal contribution to each 
feature. The main objective of normalisation is to minimise the effect of 
features with higher numerical contributions than others. In case the 
importance of the features is not known, the importance of the features 
will be assumed equally distributed. Different normalisation methods 

Fig. 1. Artificial intelligence groups and examples of some techniques.  
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can be implemented and mathematical details and recommendations are 
presented in [59]. 

4.2.3. Splitting and reshaping 
The data is usually split into three sets for supervised learning: 

training, validation, and testing. The DL learning model is trained with 
the training data set. The validation data set is the one to proceed with 
evaluating the DL method during the DL model training. The testing data 
set is used to verify the performance of the trained and validated DL 
model. 

In this stage, the imbalance of the dataset should be verified, i.e., if 
some classes have more data instances than others. A common approach 
is to correct the imbalance in the training data to reduce the biases to
ward the predictions. The different methods for correcting the imbal
ance in data sets are summarised in [60]. 

For unsupervised learning, data reshaping can help provide the most 
proper input for the DL model. Data reshaping consists of rearranging 
the data form without changing the content of the dataset. An example is 
the transformation of yearly time-series into daily time-series [42]. 

4.3. Algorithm selection 

The algorithm choice should be based on the class of problem 
addressed, i.e., supervised, unsupervised, or semi-supervised. A 
comprehensive overview of the most appropriate algorithms for each 
class of problem is presented in [61]. Methods employed for supervised 
learning are deep neural network (DNN), convolutional neural network 
(CNN), deep belief network (DBN), recurrent neural network (RNN), 
and its variants such as long short-term memory (LSTM). For unsuper
vised learning, common algorithms are deep autoencoder (DAE), 
generative adversarial network (GAN), self-organising map (SOM), 
restricted Boltzmann machine (RBM), and deep belief network (DBN). 
For semi-supervised learning, GAN is often applied as a method to es
timate unknown labels. The forthcoming sections contain a brief 
description of the most common DL methods and their applications to 
PQ data: DNN, CNN, DBN, RNN, LSTM, GAN, and DAE. For more details 
and other techniques, the reader is referred to [54, 61]. 

4.3.1. Deep neural network (DNN) 
DNN are essentially neural networks with multiple hidden layers, 

each of which further refines the previous layer’s outputs [62]. The term 
deep comes from the fact that the network contains more layers (is 
deeper) than conventional neural networks [63]. Because of this, con
ventional ANNs are also called shallow ANNs. DNN is applied to power 
quality in classification of disturbances [64] and microgrids dynamic 
stability [65]. 

4.3.2. Convolutional neural network (CNN) 
CNN is a multichannel input DL structure composed of learnable 

weight and bias. The term "convolutional" indicates using convolution 
instead of matrix multiplication in at least one layer. The simplest CNN 
architecture contains one convolutional and one pooling layer, option
ally followed by a fully connected layer for supervised prediction. 
Pooling layers are applied to reduce the data dimensions by combining 
the outputs of a group of neurons at one layer into a single neuron in the 
next layer. CNN is applied in PQ mostly for classification of PQ events 
[66–85], voltage dip classification [40,86,87], recognition of voltage dip 
causes [88,89], prediction of harmonics [41, 90], and control of voltage 
unbalance in microgrids [91]. 

4.3.3. Deep belief network (DBN) 
DBN are composed of multilayers of Restricted Boltzmann Machine 

(RBM). In turn, RBM is a type of ANN that can learn a probability dis
tribution from its input [92]. DBN are applied in PQ for classification of 
PQ events [93,94]. According to [93,94], DBN avoid global fine-tuning 
and improve the accuracy of power quality disturbance classification 

compared to traditional ML methods. 

4.3.4. Long-short-term memory (LSTM) 
LSTM is a variant of recurrent neural network (RNN), composed of a 

cell, an input gate, and a forget gate. RNN is a DL structure similar to a 
feedforward neural network that allows exhibiting temporal dynamic 
behaviour. However, unlike a feedforward neural network, RNNs can 
use their memory to process variable-length sequences of inputs. The 
unit is called a long short-term memory block because the program uses 
a structure founded on short-term memory processes to create longer- 
term memory. Each layer of the LSTM categorises some level of infor
mation, refines it, and passes it along to the next layer. It uses long short- 
term memory blocks to provide context for how the program receives 
inputs and creates outputs. The LSTM block is a complex unit with 
various components such as weighted inputs, activation functions, in
puts from previous blocks, and eventual outputs. LSTM is applied to 
classification of PQ events [95,71–74], recognition of voltage dip causes 
[96], voltage dip classification [97], harmonic prediction [41,98,99], 
and islanding detection in microgrids [100,101]. 

4.3.5. Generative adversarial network (GAN) 
A GAN is a network that consists of a generator and a discriminator. 

The generator learns certain data distributions and generates synthetic 
data according to the distributions. The discriminator distinguishes be
tween the true and synthetically generated data. GAN is applied to the 
classification of PQ events [75,76] and voltage dip labelling [102]. 

4.3.6. Deep autoencoder (DAE) 
DAE is an unsupervised learning architecture composed of three 

main parts: encoder, codings and decoder. The encoder takes the input 
data and transforms it into a smaller dataset in the codings layer. The 
decoder takes the dimensional reduced dataset and reconstructs a 
similar representation of the encoder input and its output. DAE is trained 
to reduce the reconstruction error. The encoder and decoder contain 
several fully connected layers instead of a single one; the number of 
layers and the number of neurons is symmetric between the encoder and 
decoder. The main application of AE and DAE is to obtain the principal 
features of a dataset. The applications in PQ are for feature extraction as 
part of the classification of PQ events [103–105]; and unsupervised 
feature learning for clustering of daily harmonics variations at a single 
location [42], multiple locations [106], spectral data [107], and ana
lytics of waveform distortion in railway installations [108]. 

4.4. Tuning the hyperparameters 

Once the method is chosen, the DL architecture (number of layers 
and the number of neurons per layer) and the hyperparameters should 
be selected, depending on the chosen method and application. Hyper
parameters are values that control the learning process, such as the 
number of epochs, learning rate, and batch size. Although there are 
benchmark methods for some types of data, such as AlexNet for images 
[109], there is no standard way to determine the DL architecture and 
hyperparameters. Therefore, a common practice is manually tuning the 
method by trial and error [110]. Some recommendations for defining 
this task are found in [111]. In addition, automatic tuning based on 
optimisation methods has started being proposed in the literature [112]. 

4.5. Training, validating, and testing 

During the training stage, the values of the DL model are adjusted to 
fit the training data. The adjustable parameters (weights) define the 
input-output function of the DL model. A typical DL model contains 
millions of adjustable weights. Optimisation methods based on sto
chastic gradient descent are often employed to update the weights to 
minimise the error in estimating the outputs. During the training, the 
validation plays a role in providing an unbiased evaluation of the DL 
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model. After training, the performance of the DL model is evaluated 
through the testing data set. The test aims to generalise the ability of the 
DL model to produce outputs based on inputs that were not seen in the 
training stage. 

A DL model with good performance in the training stage can present 
worse performance on estimating outputs with unseen instances. This is 
called overfitting, and it often occurs due to insufficient amount of data. 
The opposite phenomenon is underfitting when the DL model fits neither 
the training set nor the testing set. Underfitting is mainly a consequence 
of the low complexity of the DL model. Both overfitting and underfitting 
should be avoided. Overfitting can be solved either by reducing the 
complexity of the DL model by using a lower number of neurons and 
layers or by using regularisation techniques such as dropout. Under
fitting can be avoided by increasing the complexity of the DL method by 
adding more neurons and layers. 

4.6. Deployment 

This step defines how the model will be deployed as an application 
tool. Providing transparency to the DL model is important in this step; in 
other words, ensuring that the results can be interpretable, and the DL 
method does not appear as a closed box. A possibility is to explain the 
features extracted by the DL models and their role in estimating the 
outputs. In this step, it is also important to define how the tool would be 
delivered to users, in this case, typically PQ engineers, and how they can 
use it. 

5. Review of AI applications for PQ 

Fig. 2 shows that the number of publications related to AI and PQ 
increased a lot from 1992 to 2021 in the Scopus Database. The legend of 
Fig. 2 shows the logic structures used for the search. The blue colour in 
Fig. 2 indicates the number of occurrences of references that included 
the term “power quality” together with any of the AI terms: “deep 
learning”, “machine learning”, “artificial intelligence”, “expert system”. 
The red colour indicates only the number of references that included the 
terms “power quality” and “deep learning”. The search considers the 
keywords and abstract of the publication. 

Although most AI methods have been developed before, the appli
cation of AI to PQ started only after 2000. The main driver of this growth 
was the improvements in computer processing. In the DL context, the 
works with the keyword "deep learning" were all published after 2017. 

Fig. 3 show a general view of the contents of the publications from 
Fig. 2 by employing text data mining [113] on the Scopus database for 
the period before DL in Fig. 3(a) and after the introduction of DL in Fig. 3 

(b). The text data mining from [113] produces a visualising tool that 
groups words from the title, abstract, and key-words of the different 
publications. If a group of words appears at least five times, it is 
considered as a cluster. Each cluster is represented by a colour and il
lustrates the most correlated word in the analysed periods. In this 
perspective, the keywords are related to the diverse AI and 
signal-processing techniques that have been implemented to detect, 
extract, and analyse PQ variations and events. Section 5.1 details the 
techniques and applications before 2017 and Section 5.2 after 2017. 
Section 5.3 details and compares the applications in the literature of DL 
to PQ. 

5.1. Techniques and applications from 1992 to 2017 

The blue cluster in Fig. 3(a) represents the first applications that 
were based on expert systems that make decisions through rules based 
on human expertise [114]. Such methods were applied to PQ data to 
perform the classification and recognition of PQ events until 2010 [9,39, 
115–117]. Signal processing methods (magenta and yellow clusters in 
Fig. 3(a)) play an important role in signal decomposition and feature 
extraction. The two techniques appearing most were Wavelet and 
S-transform; these were mentioned in Section 2.4 to analyse and visu
alise time-varying events. Moreover, signal-processing methods are 
combined with expert systems or ML tools. For instance, [118] applies 
wavelet and fuzzy support vector machines for the classification of PQ 
disturbances; [119] applies S-transform and ML for automatic recogni
tion of PQ disturbances; [120] employs S-transform for the feature 
extraction stage and support vector machines for the pattern recognition 
problem of non-intrusive load monitoring. 

Learning algorithms (green cluster in Fig. 3(a)) have been applied for 
similar applications as the expert system, i.e. for the classification and 
recognition of different events [121–126]. Most algorithms are based on 
supervised learning that requires pre-labeled data, e.g., shallow neural 
networks [93–95, 98], and support vector machines [96,97]. Few works 
apply unsupervised learning to find patterns in PQ data without prior 
knowledge: [127] applies principal component analysis and [128] 
k-means clustering. The work in [128] was the first attempt to find 
patterns of PQ big data by applying an unsupervised method. However, 
[128] did not extract the principal features for clustering, and the 
analysis is limited to the correlation among harmonics. Moreover, [128] 
did not allow to obtain the typical daily patterns of time-varying 
distortion and did not result in a user-friendly orientation to further 
analyse the data. 

Optimisation algorithms also appear as a trend for AI applications to 
PQ. This cluster, represented in red in Fig. 3(a), is related to optimisation 
methods as genetic algorithms mostly for decision-making on the 
placement of capacitor banks [129] and active filters [130]. 

5.2. Techniques and applications from 2018 to 2021 

For the period between 2018 and 2021, the techniques explained in 
Section 5.1 also appear in the clusters of Fig. 3(b). However, those 
techniques appear primarily in hybrid approaches. For example, the red 
cluster contains approaches that apply fuzzy logic combined with opti
misation, mainly for control systems [131–133]. Moreover, methods 
combining optimisation with ML are found in the green cluster. For 
instance, [134] combines metaheuristics with ANNs and support vector 
machines to detect, segment, and classify voltage dips. In addition to the 
green cluster, the group of learning algorithms presents two more sub
groups in Fig. 3(b): ML in magenta, DL in blue and in yellow (the latter 
with the keyword “convolutional neural network”). In the context of DL 
(blue), the keywords "classification", "disturbance classification", and 
"power quality disturbances" are found together with "deep learning". 

Fig. 2. The number of publications related to PQ and AI from 1992 to 2021.  
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5.3. Applications of deep learning for PQ 

The analysis by the text mining in Fig. 4 gave a general overview of 
the DL applications to PQ. In order to obtain more detailed information, 
Table 1 stratifies 46 references concerning the type of application, type 
of data, learning technique, and DL method. The publications were 
found by searching "power quality" and "deep learning" in the Scopus 
database and refining the engineering/energy fields search. The refer
ences in Table 1 cover the period from January 2018 to September 2022. 

Table 1 shows that most of the publications are related to the clas
sification and recognition of PQ disturbances. This points out that, even 
with the possibility of automatic feature extraction, the applications of 
DL in the literature are still largely the same as the applications of expert 
systems or the earliest ML tools. Moreover, most of the published studies 
are based on synthetically generated data and on supervised techniques. 
Other applications are voltage dip classification, voltage dip estimation, 
recognition of voltage dip causes, prediction of harmonics, recognition 
of patterns in daily harmonic variations, identification of spectral pat
terns, control of voltage unbalance in microgrids, islanding detection in 
microgrids, and dynamic stability in microgrids. 

6. Discussions and recommendations 

6.1. Lack of novelty 

Many publications have proposed the automatic classification of PQ 
records by DL. This trend was also identified for PQ applications with 
signal processing [135]. However, the classification of PQ disturbances 
does not present any novelty when the classes are individual PQ dis
turbances such as swell, sag, interruption, harmonics, and transients. 
Standards such as IEEE 1159, IEC 61000-4-30 and EN 50160 define 
methods for classifying PQ events based on characteristics such as 
spectral content, duration, and voltage magnitude. This type of 

application is already present in PQ monitors and their commercial 
computing platforms; there is no need for DL applications to replace 
classification methods defined in standards. 

6.2. Training based on synthetic data sets 

A substantial part of the approaches within the literature is based on 
synthetically generated and often non-realistic data. There is a risk of 
overfitting in case synthetic data is used, and in this case, the test error 
seems high even for low training error [6]. 

There are several reasons for using synthetic data in supervised DL by 
PQ researchers. One is the non-availability and inadequacy of real or 
realistic power system data, for example, from field devices. With PQ 
data obtained from measurements, the class labels from PQ data se
quences needed to develop a classification system are typically un
known. The use of synthetic data does not suffer from this disadvantage 
as the labels for the data are known according to the process by which 
the data sequences are generated. A synthetic set would be better in 
covering all classes, but it would not be an appropriate statistical rep
resentation of the population of disturbances in reality. 

The performance of grid measurements in AI methods trained by 
synthetic data has been evaluated for ML and DL. In the context of ML 
for PQ, [137] has tested a support vector machine by employing mea
surements from two different power networks and synthetic data. The 
classifier presented a good detection rate when trained by data from one 
power network and tested with measurements from another network. 
However, the training employed with synthetic data did not produce 
acceptable results when tested with measured data. Combining mea
surements and synthetic data improved the performance, but the 
detection rate was still low compared to the classifier trained with 
measurements. About DL for PQ, the training of a LSTM for classification 
of voltage dip types with synthetic data and testing with real data has 
been done in [138]. It was concluded by [138] that the DL model had a 

Fig. 3. Bibliographic text mining of the keywords related to PQ and AI: (a) period from 1992 to 2017, and (b) period from 2018 to 2020.  

Fig. 4. Comparison between DL-based and traditional ML methods in reconstructing a current waveform. Source: [108].  
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low performance when trained with synthetic data and tested with real 
data. 

6.3. Enlarging datasets by adding Gaussian noise 

An example of non-realistic data generation is the application of 
noise to the datasets. A large group of publications adds noise to the data 
to evaluate the robustness of the methods or to enlarge the input datasets 
[67,71,72,75,77–80,85,93,96,103,104,139–141]. However, the noise is 
Gaussian and does not correspond to real noise in the electrical power 
grid [142]. Such Gaussian noise might comprise the decision-making of 
DL algorithms due to the addition of frequency components that do not 
appear in reality. 

Studies considering the effect of Gaussian noise instead of real noise 
are needed in the DL context. Efforts to make available open datasets 
with real noise can benefit the PQ research community. 

6.4. Lack of benchmark databases 

One of the challenges of DL in PQ applications is comparing the 
performance of the different algorithms. The lack of a standard database 
that can be used as a benchmark has been reported in [143]. Although 
some efforts have been made to provide public databases, they are 
limited in terms of application. Most of the available data are without 
labels. An example of a raw database is the one provided by the IEEE PES 
Subcommittee on Big Data & Analytics for Power Systems [144] which 
contains 1380 files of current, voltage, and active power measurements. 
In addition, some databases are suitable for studies of only one type of 
disturbance. For instance, [145] presents a collection of PQ real-life 
impulsive events, and [22] is a data set that contains waveforms of 
voltage dips. Also, some databases are for a specific type of application; 
for example, [146] contains measured voltage and current waveforms of 
railways, and [147] has harmonic measurements for an installation with 
electric vehicles. In sum, the public databases do not follow a standard, 
presenting different disturbances, sampling, and applications. 

An attempt to establish a reference dataset for DL classifiers is pre
sented in [143] by proposing an open-source software to enable the 
generation of synthetic data. However, the tool is appropriate only for 
the applications that concern events classification in terms of distur
bance type. Furthermore, the authors of [143] also emphasise that such 

a dataset should be explicitly used to compare PQ disturbances classi
fication algorithms. In other words, this tool might be proper for testing, 
not for training algorithms. 

The grid stakeholders and academia should make efforts to provide 
one or more reference databases to compare DL applications to PQ. 
Suggestions for databases are waveforms of PQ events with labels, long- 
term measurements of PQ variations, and sub-10 min values of PQ 
variations [30] for different power installations and voltage levels. 

6.5. Learning strategies and labelling 

Most of the applications of DL to PQ are based on supervised 
learning, which requires labelled data. This trend is also observed for 
ML, deep or not, in most applications in different research fields [54]. 
Controversially, most of the available PQ data is non-labelled. Non-
labelled data sets are suitable for unsupervised learning but not for su
pervised learning. Only a few works have explored unsupervised 
learning [41, 106, 107, 98], which are also among the few ones that 
applied measurements instead of synthetic data. The supervised training 
trend can be again due to the non-availability of field measurements for 
researchers and scholars. One, yet unsolved, issue is the ver
ification/testing of unsupervised learning of PQ variations. 

Most DL models for PQ are based on supervised learning with syn
thetic data. As discussed in Section 6.2, synthetic data is easier to label as 
the process of synthetic data generation is known. However, the class 
choices for supervised learning should represent reality in measure
ments, but that is often not the case. In addition to the classes of indi
vidual PQ disturbances, some works propose classes for combined 
disturbances, such as swell with harmonics, dip with harmonics, dip 
with transients, and so on. With field measurements, events such as 
voltage dips always occur in combination with harmonics and transients 
[148]. Moreover, events can exist of multiple stages: the transient can be 
the starting, the dip can present many segments, and even it can occur as 
the initiating event for an interruption [149]. 

Instead of event classes, the labelling for supervised learning should 
be based on the origins and consequences of the event. The main limi
tation against precise PQ classification is the need for ground-truth an
notated data [102]. No large ground-truth labelled datasets are 
available, and it is even more complicated with a large amount of 
measurements [102]. There is an uncertainty in the labelling process, 

Table 1 
Overview and comparison of recent publications covering the application of DL to power quality big data.  

Application Type of data Learning technique DL method Ref.  
Synthetic Measurement Supervised Unsupervised Semi-supervised  

X X X   DNN [64] 
Classification of PQ events X  X   CNN [66–68] [78–85] 

X X X   CNN [69,70] 
X  X   LSTM [95] 
X  X   DBN [93,94] 
X  X   DAE [103–105] 
X  X   CNN+LSTM [71–74] 
X    X CNN+GAN [75,76] 
X  X   DAE+CNN [77] 

Voltage dip or fault classification X  X   CNN [86,87]  
X X   CNN [40] 

X X X   LSTM [97] 
Voltage dip estimation X  X   CNN [136] 
Recognition of voltage dip or fault causes X  X   LSTM [96]  

X X   CNN [88, 89] 
Pre-detection/ Prediction/Estimation of Harmonics  X X   CNN [90]  

X X   LSTM [98, 99]  
X X   CNN+LSTM [41] 

Recognition of Patterns in Daily Harmonics variations  X  X  DAE [42, 106] 
Identification of spectral patterns  X  X  DAE [107] 
Analytics of waveform distortion in Railway installations  X  X  DAE [108] 
Voltage Unbalance Control in Microgrids X  X   CNN [91] 
Islanding Detection in Microgrids X  X   LSTM [100, 101] 
Dynamic stability in Microgrids X  X   DNN [65]  
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which can be associated with incorrect labelling by power systems op
erators, or to the automatic method used for labelling, samples close to 
the borders, samples polluted with noise, and so on [102]. The grid 
stakeholders should make an effort to keep track of the events and 
correctly annotate the data. 

Annotated data can serve as a basis also for semi-supervised learning. 
In semi-supervised learning, the algorithms can deal with partially 
labelled data. In the literature, only [102] has applied DL 
semi-supervised learning for automatic labelling of voltage dip se
quences by using a small set of ground-truth labelled data. The method 
based on GAN, described in Section 5.4.5, was applied to a large set of 
measured dips; it presented 83% average accuracy with a 3.2% false 
alarm rate. 

Generating synthetic data has not been used yet for unsupervised 
learning. However, the application of synthetic data might assist in 
understanding the feature extraction in unsupervised learning. 

6.6. Low transparency 

Users of ML and DL algorithms, like experts in PQ, might find it hard 
to trust the results from such an algorithm due to low transparency in the 
DL process. The core obstacle to the practical use of DL is that most DL 
algorithms appear like closed boxes. With DL, human experts do not 
select the features, but those features are obtained by using a learning 
procedure. It is different from an open box as physical models and expert 
systems, in which the process of defining an output is explainable in 
terms of mathematical equations and logic rules, respectively. The 
explanation of the decision-making process of DL methods can make 
them transparent. By increasing the explainability of DL, human experts 
can benefit through new rules in a decision-making problem. 

According to [150], one of the difficulties in interpreting deep neural 
networks is related to the activation process of neurons. The activation 
of some neurons can occur for a few data instances, whereas the acti
vation of other neurons can be more globally. In this way, the output is a 
function of both local and global effects. Therefore, this makes it difficult 
to map an equivalent function that explains the prediction by DL for the 
data. 

The lack of explanation in the DL decision-making has been pointed 
out as the main obstacle in sensitive fields such as precision medicine, 
law, and financial sector [150]. For power systems, this discussion has 
been considered in the context of ML [151], emphasising the major 
barrier of providing trust in ML models such as neural networks and 
adopting them in practice. A first trial for measuring the explainability 
and trustworthiness of DL methods for PQ disturbances is presented in 
[152]; however, the discussion covers only the classification in terms of 
the type of disturbances. So far, there is no well-defined optimal method 
for explaining DL [153]. Some suggestions for increasing the explain
ability of DL, in general, are presented in [153]. It includes indexes and 
methods to evaluate the contribution of features to the predictions. 
Further efforts are needed to make DL more transparent to be more 
broadly applied in the PQ field. 

6.7. Expert knowledge and development of hybrid approaches 

In most applications, even with the possibility of automatic feature 
extraction and settings, PQ knowledge is still needed to interpret 
correctly and provide appropriate solutions based on DL results. As 
discussed in [43], the results provided by DL can be used to decide about 
further manual analysis of the PQ data. However, there is no standard 
method available yet for the additional manual analyses. Reference [43] 
suggests developing a hybrid method that combines the results given by 
DL with an expert system. The logic rules in the expert system could be 
defined to take some of the decision-making away from the human 
expert. However, some level of expert involvement will remain needed, 
as every case is unique. Approaches that combine DL and expert systems 
are not yet explored in the literature. Therefore, it is suggested to 

develop logic-based rules to make the interpretation of DL results at least 
partly automatic. 

6.8. Providing a stronger collaboration among the grid stakeholders and 
academy 

Close cooperation between the PQ research community and the grid 
stakeholders can be a path for specifying the remaining needs for the 
automatic analysis of PQ data. It would avoid replicating works that 
apply unrealistic data and methods that have no practical applications. 
Furthermore, a collaboration between the grid stakeholders and the 
academy is needed to keep track of PQ events. Moreover, such close 
cooperation would allow the training of PQ experts in the industry to 
interpret results from DL algorithms. 

6.9. Gains of DL over traditional ML methods 

The gains of DL over traditional ML methods have started to be re
ported in the PQ literature recently. Concerning supervised learning, DL 
has outperformed traditional ML methods. For example, [40] demon
strates that deep convolutional neural networks achieved higher clas
sification accuracy and fewer false alarms than traditional supervised 
learning methods. The main reason for such DL achievement is its effi
cient automatic feature extraction that enables better prediction accu
racy and generalisation ability [154]. Although there are methods for 
automatic feature extraction in traditional ML, such as principal 
component analysis (PCA), their generalisation is poor compared to DL 
[155]. As illustrated in [108], waveform patterns extracted by a 
DL-based method present higher fidelity than traditional ML based on 
PCA. Fig. 3 demonstrates such a gain of DL by comparing the recon
struction of a current waveform. The DL-based method results in a 
reconstruction similar to the original waveform due to better genera
tions in the feature extraction. To this point, the DL-based method can 
extract other waveform characteristics such as its distortion. On the 
other hand, the traditional ML method presents a poorer generalization 
than DL, and the reconstruction only presents the changes in the 
fundamental component. 

6.10. Research gaps and future scope 

The main identified research gaps in this work are related to the 
applications of semi-supervised learning, explainable DL, and DL hybrid 
approaches with expert systems. 

To overcome the limitation of the present DL applications, the 
following is recommended: 

• Providing a stronger collaboration between the power grid stake
holders and academy. 

• Research towards application of semi-supervised learning for auto
matic labelling of PQ data.  

• Work towards proper labelling and enlarging of datasets for the 
development and testing of DL methods;  

• Research towards the use of explainable AI tools for providing 
transparency to the DL and providing details of the end-to-end de
cision making of DL methods.  

• Creating and maintaining open-access databases for comparison 
purposes.  

• Research towards combination of DL with expert systems to make the 
results more automatic and explainable. 

• Research towards creating generating synthetic data suitable to un
derstand the feature extraction in unsupervised learning.  

• Research towards providing recommendations on minimum data 
amount needed for supervised and unsupervised learning. 
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7. Conclusions 

This review has covered the latest applications of DL to PQ big data. 
DL can be a solution to turn raw PQ measurements into a much more 
valuable asset. However, a large group of publications has limitations 
related to innovation and applicability. Even with the possibility of 
automatic feature extraction, most proposed DL algorithms execute the 
same task as expert systems or the early ML tools (classification, 
recognition of events, and underlying causes). 

By stratifying the publications in terms of application, learning 
technique, and type of data, this paper has demonstrated that:  

• Most publications apply DL to problems solved by expert systems and 
early ML tools. Although such works still contribute to the knowl
edge on DL methods, the practical applicability is limited.  

• A large number of works apply synthetic datasets that do not 
represent the reality in PQ data, limiting the practical applicability of 
those works.  

• Few works have provided new solutions to perform analytics to PQ 
big data; some examples of new solutions are predicting PQ data, 
extracting daily patterns, and automatic data labelling.  

• In most applications, even with the possibility of automatic feature 
extraction and settings, PQ knowledge is still needed to correctly 
interpret the results and provide appropriate solutions to PQ issues. 
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