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Abstract
Power quality is one of the most important research eras for the energy sector. Suddenly dropped voltages or suddenly rising 
voltages and harmonics in energy should be identified. All of these distortions are called power quality disturbances (PQDs). 
Deep learning based convolutional artificial neural networks with an attention model approach has been carried out. The 
main idea is to develop a new approach to convolutional neural network (CNN) based which classifies a particular power 
signal into its respective power quality condition. The attention model approach is based on the idea that the best solution 
will be taken from the newly produced data pool obtained by rescaling the available data according to the total number of 
pixels before the average data pool is created and then deep CNN processes will continue. In the attention model approach, 
all data is multiplied by the number of elements by the number of epoch time sixty-six tensors. The dataset used here con-
tains signals which belong to one of the 9 classes. This means that each signal is characterized by 622 data points and 5600 
data parameters. All signals provided are in time domain. Power quality (PQ) is directly depending on power disturbances’ 
absence or scarcity. The accuracy and error values of the developed model were obtained according to both the number of 
epochs and the number of iterations.

Keywords  Deep learning · Power quality · Power transmission · Attention model

1  Introduction

Countries are constantly investing to meet the increasing 
consumer energy demand. However, sudden increases in 
this demand and some malfunctions in energy systems cause 
various deteriorations in power systems. In the literature, 
many methods have been researched and applied to describe 
and classify these distortions [1]. Voltage sag, voltage swell, 
fluctuations of voltages, harmonics, interruption, transient 
and others deteriorate the energy quality [2]. It is necessary 
to analyse and identify these deteriorations and to do this 
very quickly. The main reason to do this is to provide high 
quality and sustainable energy.

Non-linear loads, generation of energy faults or trans-
mission faults and dynamic transient effects deteriorate the 
energy quality [3, 4]. At the same time, the necessity of 

keeping energy quality deteriorations within a certain stand-
ard is another detail that should be remembered today. These 
standards set the limits of energy quality.

1.1 � Motivation

The basic motivation is to develop a fast and efficient new 
method for classifying disturbances affecting power qual-
ity. In the literature, it is stated which standards should be 
obeyed by the deteriorations affecting the power quality. It is 
to realize a new approach that uses this standard information 
mainly in deteriorations identification. Well known PQDs, 
their standards and ratio values can be shown in Table 1.

IEEE1159 defines power quality disturbances, values, 
and their limits [5]. IEC61009 defines over currents appli-
cations in power systems and IEEE519 defines harmonics in 
power systems [6]. IEEE1100 defines power faults in power 
systems [7]. The limit values used in the developed new 
approach are within the limits of these standards. *	 Ismail Topaloglu 
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1.2 � Literature Review

PQDs are classified using one versus one (OVO) based sup-
port vector machine (SVM). This method classifies each 
image parameter information by correlating it with an error-
free known reference [8]. In another study, independent 
component analysis with the SVM classification method was 
investigated. Each data compared with an independent part 
of the relevant incorrect image to be classified [9]. Matlab 
Simulink model and analysis of power quality deteriorations 
were performed [10]. The power quality disturbances were 
produced experimentally in the laboratory environment [11]. 
The parameter optimization technique was investigated by 
using random forest method to classify PQDs [12]. Another 
study end to end automatic classification developed with a 
weighted convolutional neural network (CNN) [13]. The pat-
tern recognition technique is used for classification of PQDs 
[14]. An experimental testing methodology was developed 
to obtain disturbances dataset [15]. S-transform and kernel 
SVM is used for the classification of PQDs [16].

A decision tree-based algorithm is used to classify 
PQDs [17]. In many reviews, the types and classifica-
tion methods of PQDs have been explained in detail [18]. 
Temporal spectral Images and CNN-LSTM based clas-
sification methods used newly for determination of PQDs 
[19]. Gated recurrent unit and probabilistic neural network 
methods are also used for classification of PQDs [20].

All the research described above produce good results 
in classification in the last two decades. But since power 
systems must deal with these faults in a very short time. 
Methods and algorithms with faster responses will always 
be attractive to researchers.

1.3 � Contribution

For the classification of power quality disturbances, a rapid 
classification approach in line with international standards 

has been carried out in this study. For the sample applica-
tion, a model of the power system was created in Matlab 
Simulink. 5600 data were collected from 622 signal points 
for 9 disturbances classes. The developed approach first 
runs the image processing model and pre-processing in 
data. The attention model provides creates a new data pool 
by multiplying image pixels. Data processing and clas-
sification are carried out over the data pool that is gen-
erally available in the literature. On the contrary, in this 
approach, a new pool is created each time by retraining the 
image pixel data in the data pool. This process continues 
until the error rate reaches the desired level in the network.

2 � Methodology

In classical CNN method, input image data passes through 
convolution, relu and pooling process. After these processes, 
the data trained in the classification is classified by a classifier. 
Unlike other classification methods in the literature, in this 
study, PQDs data passes through pre-processing stages. Then 
the attention model comes into play and unlike the classical 
CNN structure, the image data is multiplied by the pixel val-
ues and trained in a new data pool. A new value is calculated 
in each kernel based on the weight function in all layers. This 
process takes through 5 hidden layers. If the error rate is not at 
an acceptable value, attention model networks do not produce 
output. Image data input shape is 256 × 256 × 3. The image 
processing model creates 66 tensor data to train from input 
image. Actual values obtained from Matlab Simulink model. 
As a result, the model produces results when an acceptable 
error rate is reached in the attention model. The optimizer 
evaluates these error results, and a classification is performed. 
In this developed approach, 99.92% accuracy was obtained.

2.1 � PQDs Simulations

PQDs simulations have been carried out with matlab Sim-
ulink. It can be seen in Fig. 1. Three phase power line for 

Table 1   PQDs-standards and 
ratio values in total

Disturbances The standard to be followed The ratio of total 
disturbances in PQ 
(%)

Voltage Swell IEEE1159, IEC61009 24
Voltage Sag IEEE1159, IEC61009 24
Voltage interruption IEEE1100, IEC61009 5
Voltage harmonics IEEE519, IEC61000 24
Voltage transients IEEE1159, IEC61000 6
Voltage ground faults IEEE1100 10
Voltage fluctuations, Oscillations, 

notching effect
IEEE1159, IEC61009 5

Load side effects – 2
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fault measurement consists of two fault blocks. One is the 
generation side the other one is load side. Total power line 
distance is 500 km. total power is 1500 MW and low voltage 
side is 13.8 kV and high voltage side is 380 kV. Also, the 
system has two series compensation units. To produce inter-
ruption and ground fault system has two circuit breakers.

Table 2 presents synthetic PQDs signals mathematical 
model which produced by matlab Simulink environment. 
Each deterioration mathematical model and their limits 
suitable with IEEE and IEC standards. This mathematical 
model expression refers to only one disturbance. The math-
ematical models of different distortion combinations are 
not included so that they do not affect the readability of the 
work. The limits chosen for some distortions are in line with 
international standards but are chosen randomly. In addition, 
the study was carried out with the assumption that the data 
obtained here are not affected by the measurement machine 
noise and environmental factor effects. The aim here is to 

ensure that real and erroneous data can be produced for the 
networks to be used in our deep learning-based classification 
method. Also, an s-transform is not required.

Obtained input data from matlab simulink simulation can 
be seen in Fig. 2. These data signals consist of time-domain 
pure sinusoidal wave, harmonics, sag disturbance, swell 
disturbance, interruption, transient, swell + harmonics and 
sag + harmonics. The decay signal periods are selected in a 
single interval so that they are shown in the same sampling.

2.2 � PQDs Dataset

PQDs dataset obtained from matlab Simulink model. The 
dataset used here contains signals which belong to one of 
the 9 classes. This means that each signal is characterized by 
622 data points and 5600 data parameters. The data lengths 
are the period of the data obtained because of the simula-
tion. It is not a structure that comes one after another, or in 

Fig. 1   Three-phase power line Matlab-Simulink model for fault measurement

Table 2   PQDs mathematical 
equations and their limits

Parameters Mathematical equations Parameters limits

Sinusoidal Voltage V sin �t − � � ∈ [−�,�],� = 2�f , f = 50Hz

Harmonics V
�
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∑9

n=3
�n sin n�t − vn
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other words, one end to the other. Each parameter data was 
obtained in the time domain during the period. All PQDs 
image data was obtained from Matlab Simulink model. This 
image file data is not affected by the noise and environmen-
tal factor effects.

3 � Deep Learning Model

Equations In this study, the deep learning model was used in 
the attention model, which includes the TensorFlow infra-
structure and the weight approach. The PQDs image data 
forms a 256 × 256 matrix. It multiplies it with 3 × 3 feature 
detectors to make it smaller. In this way, the speed of the 
process is increased. 256 × 256-pixel input image file mul-
tiplied by it feature detector. At this stage, using the linear 
activation function may obtain the best features from input 
file in the model. At this time, the image data is subjected 
to max-pooling and sample boxes are placed on the left and 
right corners. This process is carried out in two stages. First, 
the data is reduced to 64 × 64 matrix shape, then 32 × 32 
matrix shape data. There are five hidden layers in the model. 
With the latest 128 feature detectors produced the new train-
ing and validation dataset. Then they were sent to the atten-
tion model. The attention model part will also be explained 
in detail. It can be seen in Fig. 3 deep learning general algo-
rithm view for purposed approach.

In the deep learning model, GPU support provided by 
TensorFlow infrastructure is used. In order to reach the clas-
sification result, a deep learning model was created from two 
parallel arms. In the first branch, reading the input image 
data and starting the process with the basic classification 
process and continuing with its training and transferring it 
to the attention model, in the same algorithm, the trained 
model data in the second parallel arm is transferred to the 
attention model in a labelled form. The main difference from 
other deep learning models in the literature is due to this 
parallel processing. Evaluation of results data carried out by 
using a confusion matrix. Before this process error values 
were calculated, and Adam optimizer applied the result data 
for classification optimization. As a result, PQDs are clas-
sified and separated according to their respective classes.

The resulting instantaneous power sampling starts with 
separating the parts of the images that contain no colour or 
parts that are completely black. In case of need, the pictures 
are rotated and positioned to be compatible with the reference. 
It is resized or cropped if necessary. The aim here is to obtain 
easily trainable image data free from external factors.

3.1 � Attention Model Approach

Attention model approach can be seen in Fig. 4. Consideration 
components are proposed to advance the execution of code 
analysis demonstrations for deep learning interpretation. The 
concept behind the consideration tool is to allow most used 
code parser important part of the input grouping adaptively 
through a weighted combination of all encoded input vectors, 
a very important vector being considered the most notable 
weight. The attention mechanism was introduced by Bahdanau 
et al. [21], to address the bottleneck created using fixed-length 
encoded vectors, where the decoder has limited access to the 
information provided by the input. The final classification is 
made after the neural network generated error is minimized, 
which is fed with double-sided processed data [22]. The Atten-
tion model can also be used in this way in PQDs.

The pseudocode of the designed new approach is shown in 
Fig. 5. Each subprocess is not provided in pseudo code. This 
code is expected to describe the essence of the work done in a 
logical framework and close to the daily spoken language. It 
can be seen in pseudocode, which is clearly explained without 
using a special programming language. The Attention model 
approach also is in pseudocode. After using dense function in 
the classic neural networks, which is generally recommended 
to reach the result with an optimization algorithm, the training 
data is shared with the attention model and the classification 
result is obtained by applying the latest data from there to the 
optimization process with the dense function in Fig. 4.

All weights in neural network in attention model are com-
puted every iteration in model. If model error limitation is 
satisfactory, then weight calculation in every layer will stop 
and global average pooling function will produce a new image 
data pool. It can be seen in Fig. 5.

3.2 � Model Mathematical Architecture

In order to explain the mathematical model of the proposed 
method, it is necessary to know the classical artificial neural 
network method well. Equations 1, 2 and 3 describe the func-
tion and processing structure of classical neural networks.

x is input image data, g is number of hidden layers, f_i is 
ith activation function and F(x) is the output of network in 
Eq. 1, x, y, z is location of pixels, jk is convolution filter, Wk 

(1)F(x) = fg
(

fg−1
(

…
(

f1(x)
)))

(2)
jk(x, y) =

∑r

u=−h

∑s

v=−k

∑t

w=−l

Wk{(r, s, t), (x − r, y − s, z − t}

(3)h(x) = max (0,max) ← max imum pooling

Fig. 2   PQDs matlab Simulink view a pure sinusoidal wave, b har-
monics, c Sag disturbance, d Swell disturbance, e Interruption, f 
Transient, g Swell + harmonics, h Sag + harmonics

◂
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is weight of kth kernel and r, s, t are height, width and depth 
respectively in Eq. 2. h(x) is ReLU function of maximum 
pooling in Eq. 3.

Weight function can be expressed by Eq. 4. Newly pro-
duced image data map can be expressed in Eq. 5. In Eq. 5 G 
is global average pool and GAPnew is increased new global 
average pool. λ is multiplication factor which produced total 
old image data value and the newly produced image data 
value in Eq. 6.

In attention model power quality class and target val-
ues are expressed by Eq. 7. For the era of the mimicked 
dataset, a Simulink demonstration of the lattice has been 
utilized. With this show it has been conceivable to create a 
few PQDs unsettling influences and organize them in a cell 
array. The unsettling influences that were executed within 
the Simulink demonstrate are the voltage droop, the voltage 
rise, the consonant twisting, the transient, the score and the 
interference. After the Simulink simulation is completed, a 
dataset is created. Consequently, the information is assem-
bled with a script which generates a structured cell cluster. 
Once the method is completed, each blame is labelled with 
a target number as appeared in Eq. 7. To prepare the neural 
network arrangement, the information for the classes and 
target are rearranged together in arrange to get a generalized 
arrangement for the organize.
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Fig. 3   Deep learning model general algorithm view for purposed 
approach

Fig. 4   Attention model with CNN general view for purposed 
approach

Fig. 5   Pseudocode of purposed method
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4 � Results and Discussion

Training and validation data accuracy value versus epoch 
number and versus iteration number can be seen in Fig. 6a 
and b, respectively. Attention models provide quick classifi-
cation with trained data. After the 12th epoch, the accuracy 
value reaches 99.92%. Purposed method needs approxi-
mately 1000 iterations in each loop.

Factors such as the fact that the data obtained from the 
sampling studies are in the time domain, that they can be 
classified without the need for an external process, and that 
the labelling process of PQDs is certain, have improved 
the accuracy value. After all the intermediate operations 
are done, there is almost no noise or environmental factor 
error in the training data. This high accuracy value can be 
obtained in the model without these factors. Even if a very 
small noise factor affects the classification process, the accu-
racy of the results is greatly reduced. For this reason, pre-
processing should inevitably be used in these cases. The pro-
posed method has been tested in different features with the 
metrics defined for its overall performance. The loss value 
of purposed method can be seen Fig. 7a and b, respectively.

Table 3 show that attention model and other method of 
comparison. Previously used methods and their classifier 
with the number of PQDs parameters and dataset parameters 

number and their accuracy value. DCNN, FAWT, S-trans-
form, CNN, Wavelet transform, and Hilbert transform 
were used previously. The classification value ratios of all 
methods are over 90%. Improvements in methods can now 
be made in the decimal places. It can be observed that the 
proposed method produces better accuracy than previous 
studies.

4.1 � Evaluation Metrics

P is precision value of purposed method output, R is recall 
value, ACC​ is accuracy value, F1 shows the harmonic mean 
of Precision and Recall values. TP is true positives of confu-
sion matrix, TN is true negatives of confusion matrix, FP is 
false positives and FN is false negatives of confusion matrix, 
respectively in Eq. 8.

Confusion matrix value of predicted and classified data 
accuracy value and PQDs parameters can be seen in Fig. 8. 
PQDs parameters equals 9e + 02. This means 900 for all 
parameters. If this value is divided by PQDs parameters 
number 9, we could get accuracy value of each parameter. 
Almost accuracy value for all PQDs parameters in classifi-
cation process output is 1. This means that 100% accuracy 
value. Since the F1 value was obtained with data that is far 
from environmental factors and without noise, it was pos-
sible to obtain high in the proposed method. If our deep 
learning method was to classify by processing the raw data, 
the results would not be so good. However, since the input 
image data is extracted and labelled with pre-processing, the 
results are close to the most accurate. Evaluation metrics of 
purposed method are presented in Table 4.

Beta loss shows that purposed method of its effectiveness. 
While the beta loss value was large when the first training 
data obtained. The beta loss value decreased as the number 
of epochs increased. The low loss obtained is an indication 
of the effective working of the proposed method. It can be 
seen from Fig. 9 beta loss value versus epoch number.

The normalization process can also be used as an 
evaluation criterion in data classification. Normalization 
values of the proposed method are expected to be at or 
close to the exact value of 1.0 when the process is fin-
ished. As can be seen in the Fig. 10, the normalization 
values approached 1.0 as the epoch number increased. 
After the data obtained from the latest attention model, 
which is optimized with the adam method, it can be seen 
that the output data obtained is 100% correct classification 
for almost every PQDs class. The software code used to 
understand the effectiveness of the method developed in 

(8)
P =

TP

TP + FP
, R =

TP

TP + FN
,

ACC =
TP

TP + FP + TN + FN
, F1 = 2 ∗

P ∗ R

P + R

Fig. 6   Accuracy value of purposed method a versus epoch number, b 
versus iterations
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Fig. 7   Loss value of purposed method a versus epoch number, b) versus iterations



85Journal of Electrical Engineering & Technology (2023) 18:77–88	

1 3

Table 3   Attention model and 
other method comparison

Previously used method Classifier Number of power 
quality classes

Dataset 
parameters

Accuracy (%)

DCNN-FDCT SoftMax 9–22 6600 99.52
FAWT​ Bagging 5 – 95.33
S-transform Decision tree 10 300 96.67
Wavelet transform PSA 7–4 880 95.83
Hilbert transform ANN 6–2 320 94.6
CNN [200 × 200] CNN 6–3 3600 97.84
[Attention model]-Purposed CNN 9–22 5600 99.92

Fig. 8   Confusion matrix of purposed method

Table 4   Evaluation metrics of purposed method

Class number Train 
accuracy 
(%)

Test 
accuracy 
(%)

Precision F1 value Recall

Sinusoidal 99 100 99 0.99 99
Harmonics 100 99 99 0.99 99
Fluctuations 97 100 98 0.98 98
Notching 100 100 100 1.0 100
Interruption 100 100 100 1.0 100
Sag 98 100 99 0.99 99
Swell 100 98 99 0.99 99
Oscillatory 100 99 99 0.99 99
Transient 99 100 99 0.99 99

the classification process was recalculated and graphed 
after each epoch. When the graphs obtained are examined, 
it is clearly seen that both the normalization data and the 
error rate in this process decreased after the 13th epoch. 
This is a measure of the effectiveness of the used method. 
When we subject it to the dense function and after minor 
errors are excluded, this value means accuracy value is 
99.92%. It can be seen in Fig. 11.

4.2 � Hardware

Nvidia Tesla K80 CUDA Cores Graphic Cards (GPU) 
and i7-9800 × 3.80  GHz microprocessor used for this 
study. This hardware provides us for calculation and 

implementation of all process 4992 CUDA cores and 
2 × GK120 GPUs.

4.3 � Memory

GPU has 24 GB memory and test platform has approxi-
mately 100 GB free memory for the implementation of the 
study. Total hard drive memory is 2 TB.

4.4 � Time

The total training processing time was 1520 s. This equates 
to approximately 16.88 min. When training is finished 
classification time is under 40 s.

5 � Conclusion

In this study, a new approach has been developed because 
of the attention model for the classification of disturbances 
in power quality. For the test of the developed model, a 
sample application was carried out with the PQDs dataset 
obtained in the Matlab Simulink environment. The evalua-
tion parameters of the developed method and the results of 
these parameters are presented in the study. The mathemat-
ical infrastructure of the developed model was examined, 
and the algorithm was clearly explained in the study. The 
main idea is to develop a new approach to convolutional 
neural network (CNN) based which classifies a particular 
power signal into its respective power quality condition. 
This aim was successfully achieved in the study. In future 
studies, it can be predicted from the obtained results that 
the processing time can be shortened even more with more 
advanced processors and memory hardware. The accuracy 
value 99.92% obtained in this study is also compatible and 
superior in parallel with the studies in the literature.
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Fig. 9   Purposed method beta loss value versus epoch number

Fig. 10   Purposed method normalization values of data versus epoch number
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bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.
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