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A B S T R A C T   

This paper addresses the issue of optimal day-ahead scheduling of a plug-in electric vehicles (PEVs) aggregator 
that participates in the electricity market and offers an out-of-market balancing service to the local renewable 
power penetrated distribution system in a snow-prone area. The proposed balancing service provides a reliable 
source of flexibility for the extra real-time energy demand of the distribution system operator (DSO) which 
originates from the difference between its day-ahead bids and the actual demand. The problem is investigated on 
a snowy day when the DSO’s day-ahead decisions encounter more uncertainty due to the considerable effect of 
snow loss on the DSO’s photovoltaic plant performance. The aggregator’s scheduling is formulated as two-stage 
stochastic programming which minimizes the PEVs’ charging cost. Monte Carlo simulation and K-means clus-
tering are implemented to generate scenarios of driving patterns and real-time energy market prices, respec-
tively. Offering the balancing service requires day-ahead predictions of the photovoltaic power and the grid load 
demand which are modeled using long short-term memory networks. The problem is formulated as mixed- 
integer linear programming. The results show that the proposed scheduling approach reduces the PEVs’ 
charging cost by 53% and guarantees the grid normal operation. Moreover, the balancing service can reduce the 
expected PEVs’ charging cost and the DSO’s real-time cost by 12% and 14%, respectively. 

© 2017 Elsevier Inc. All rights reserved.   

1. Introduction 

In the past few years, renewable energy resources (RERs), such as 
solar photovoltaic (PV) systems, and plug-in electric vehicles (PEVs) 
have attracted much attention to address environmental concerns of 
global warming. The intermittent nature of RERs together with the un-
certain and large charging load of PEVs in high penetration levels de-
mand a highly flexible power grid. This flexibility, however, can be 
effectively achieved by applying a smart charge and discharge man-
agement to the PEVs so that the vehicles are considered not only as 
controllable loads, that can be shifted to off-peak hours but also as 
distributed generation units, that can provide technical support for the 
power grid through the vehicle-to-grid (V2G) technology [1]. This 
charge-discharge management, which requires the infrastructure of a 
smart grid, can be performed either in a passive way by the PEV owners 
with the help of financial incentives, or in an active way by the power 
grid operators and PEVs aggregators with the aim of reducing the 
operation cost [2], increasing the profit [3], improving the power grid 

operation condition [4], reducing the environmental footprints, or a 
combination of them [5][6]. With the number of PEVs increasing on the 
road, a competitive market is emerging for PEVs aggregators that, as 
independent entities, provide smart charging solutions for the PEV 
owners. This has made the optimal decision-making of a PEVs aggre-
gator an interesting research topic in the past few years [7]. 

In this context, the optimal day-ahead scheduling of a PEVs aggre-
gator participating in day-ahead electricity markets has been widely 
addressed in the literature. The day-ahead energy market enables the 
participants to avoid significant price volatility in the real-time energy 
market by locking in energy prices before the operating day. Thus, 
deploying an optimal day-ahead schedule is a vital part of optimizing the 
operation of an electricity market participant. However, there are un-
certain variables that can affect day-ahead schedules. As an example, the 
availability of PEVs the next day to receive charge/discharge control 
signals is a source of uncertainty that a PEVs aggregator has to deal with. 
A well-known and reliable solution to consider the effects of un-
certainties in day-ahead decision-making problems is multi-stage sto-
chastic programming where the uncertain variables are modeled as a set 
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of possible scenarios and corrective actions are taken at each stage after 
the realizations of the scenarios are known [8]. The multi-stage sto-
chastic programming has been implemented in many studies to obtain 
optimal day-ahead schedules of PEVs aggregators. 

In [9], the optimal bidding strategy of a PEVs aggregator partici-
pating in the day-ahead and real-time energy markets and the frequency 
regulation market is modeled as a two-stage stochastic programming 
approach. It aims at minimizing the aggregator’s costs considering the 
PEV- and market-related scenarios. The authors of [3] investigate the 
optimal scheduling of a PEVs aggregator bidding in the day-ahead en-
ergy and reserve markets. The uncertainties are characterized using 
two-stage stochastic programming that maximizes the aggregator’s 
profit. A two-stage hierarchical profit-enhancing PEV-aggregation sys-
tem is proposed in [10] for the day-ahead scheduling and real-time 
operation of a PEVs aggregator. This approach minimizes the energy 
consumption cost in electricity markets while enhancing the profits of 
both PEV owners and energy suppliers. The authors of [11] investigate 
the day-ahead scheduling of a parking lot aggregator using a three-stage 
stochastic-based structure by modeling three trading floors of the elec-
tricity market including day-ahead, adjustment, and balancing markets. 
The problem is split into three layers where the electricity market model, 
parking lot aggregator model, and PEVs model constitute the layers. In 
[12], a stochastic and dynamically updated two-stage multi-period 

optimal bidding strategy is developed for a PEVs aggregator. The au-
thors of [13] propose a two-stage programming approach for the 
day-ahead scheduling of a parking lot aggregator that is developed as a 
two-level model. It maximizes the aggregator’s profit in the first level 
and minimizes the grid operation cost in the second level. In [14], the 
day-ahead scheduling of a PEVs aggregator participating in the energy 
and ancillary service markets is addressed by a two-stage stochastic 
programming approach. A risk-constrained stochastic approach is pro-
posed in [15] for a PEVs aggregator’s optimal participation in day-ahead 
and reserve markets by involving the risk-related uncertainties through 
the downside risk constraints. This provides the aggregator with de-
cisions that are made by considering various quantities for risk. Sto-
chastic programming has been widely used for optimal scheduling of 
PEVs aggregators, however, the published literature either does not 
consider both the night charging at home and the intraday charging at 
public charging stations or they do not present a clear methodology for 
that. 

The integration of PEVs into power grids provides a great opportu-
nity to exploit the charge-discharge controllability and flexibility of the 
vehicles in grid-support services and facilitate higher penetrations of 
renewable energies in power systems. In this context, PEVs’ participa-
tion in market-based services, such as reserve or frequency regulation 
services, has been widely investigated in the literature [16] [7]; 

Nomenclature 

Index 
d Plug-in electric vehicle (of set D). 
i/j Grid’s node (of set N). 
l Grid’s line (of set L). 
ll Segment in linearization (of set LL). 
lll Segment in discretization (of set LLL). 
t Time interval (of set T). 
ω Scenario (of set Ω). 

Parameters 
A, A’ Auxiliary matrices. 
AER All-electric range of a PEV (km). 
cb, cL Battery cost ($/kWh), labor cost for battery replacement 

($). 
CapBatt. Battery capacity (kWh). 
DOD, Lc Depth of discharge (unitless), life cycle of a battery 

(number of charge-discharge cycles). 
E PEV’s energy consumption on road (kWh/km). 
g, b Conductance/susceptance of a grid’s line (pu). 
M A big constant. 
Mil Trip mileage (km). 
Pcharger Nominal rate of a charger (kW). 
PriceDAM Day-ahead energy market prices ($/kWh). 
PriceR™ Real-time energy market prices ($/kWh). 
r, x Resistance/reactance of a grid’s line (pu). 
SoCFinal Guar. Guaranteed final SoC at the end of the day (%). 
SoCArr, SoCLDep SoC at arrival/last departure time (%). 
TariffBalancing Price (tariff) of balancing service ($/kWh). 
α, β Slope and length of linear segments. 
πω Probability of a scenario. 
φ, γ Risk aversion parameter and confidence level. 
ηch Charge/discharge efficiency. 

Variables 
BidDAM Aggregator’s bids in DAM (kW). 
BidR™ Aggregator’s purchases from RTM (kW). 
CostBatt. Deg. Battery degradation cost for all PEVs ($). 

CostDAM Cost of purchasing energy from DAM ($). 
CostR™ Cost of purchasing energy from RTM ($). 
h, h+, h− Auxiliary binary variables. 
Pch, Pdch Charging/discharging power (kW). 
Pg, Qg, Pd, Qd Active/reactive power generation/demand (pu). 
ploss, qloss Active/reactive power loss in a grid’s line (pu). 
ps, qs Active/reactive power flow in a grid’s line (pu). 
PdchPEVs Total discharging power of PEVs providing balancing 

service (kW). 
PposBalancing DSO’s requested balancing power (kW). 
RevenueBalancing Revenue from the balancing service ($). 
s, ξ Risk-associated continuous variables ($). 
SoC State-of-charge of a battery (%). 
V, δ Voltage magnitude/angle of a grid’s node (pu). 
β+, β− Auxiliary continuous variables. 

Abbreviations 
CVaR Conditional value-at-risk. 
DAM Day-ahead energy market. 
DAMCPs Day-ahead energy market clearing prices. 
DSO Distribution system operator. 
GHI Global horizontal irradiance. 
LSE Load serving entity. 
LSTM Long short-term memory. 
MILP Mixed-integer linear programming. 
MSEs Mean squared errors. 
PCSs Public charging stations. 
PDF Probability density function. 
PEV Plug-in electric vehicle. 
PV Photovoltaic. 
RERs Renewable energy resources. 
RTC Real-time cost of DSO. 
RTM Real-time energy market. 
RTMCPs Real-time energy market clearing prices. 
TCC Total charging cost of PEVs. 
TOU Time-of-use. 
V2G Vehicle-to-grid.  
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however, a limited number of papers address the capabilities of inde-
pendent PEVs aggregators in providing out-of-market energy services 
for local distribution grids or other energy entities by investigating the 
affordability of such services for both sides [17]. These out-of-market 
services can also be beneficial in case market participation is not 
achievable for PEVs aggregators due to the market structure or the 
aggregated PEVs’ capacity size. In [18], the day-ahead scheduling of a 
PEVs aggregator offering balancing services for a wind power producer 
(WPP) is investigated. The authors of [14] investigate the optimal 
charging strategy of a PEVs aggregator under the incentive and regu-
latory policies of the distribution system operator (DSO). The aggregator 
provides voltage regulation and power loss cost reduction services for 
the local DSO. The joint operation of a fleet of PEVs with a wind power 
producer is studied in [19], in which the PEVs aggregator counterbal-
ances WPP fluctuations. In [20], the day-ahead scheduling of a renew-
able power producer is addressed where the real-time deviations from 
the day-ahead bids are compensated by demand response and PEVs 
aggregators. A similar method is proposed in [21] for a wind farm where 
the formation and scheduling of a virtual power plant by integrating the 
electric vehicles and flexible loads is investigated. The proposed method 
aims to minimize the deviation of the wind power generation capacity 
from the final amount of cleared power in the electricity market. A 
flexible penalty contract between a PEV charging station and a DSO in 
terms of voltage security is introduced in [22]. The authors of [23] 
propose a strategy to provide voltage regulation services by PEVs 
aggregators for a distribution grid with a grid-connected PV plant. In 
[4], a coordinated management system is proposed for PEVs that enables 
the aggregator to offer grid-support services to avoid grid overload and 
local voltage violation issues. The authors of [24] develop a PEVs 
aggregator scheduling approach as a bilevel optimization framework 
that minimizes distribution system congestion. A distributed privacy 
retaining model for PEVs’ charge and discharge management in the 
presence of distributed generators in a distribution network is proposed 
in [25] where the network losses reduction, the aggregator’s cost 
minimization, and the distributed generators’ profit maximization are 
considered in a single framework. In [26], an optimal scheduling algo-
rithm for an aggregator based on the benefits of the distribution 
network, aggregator, and PEV owners is proposed. The algorithm 
maximizes the aggregator’s profit while satisfying the minimum re-
quirements of the demand response capability set by the grid operator 
and the satisfaction required by the PEV owners. An important design 
issue in some of the aforementioned services is the lack of a reasonable 
definition for the interactions between the PEVs aggregators and the 
service receivers. It is important to note that an independent PEVs 
aggregator is not responsible for the grid operation condition and 
providing grid-support services unless it is beneficial for the PEV 
owners. Considering the potential created by the PEVs’ integration into 
the grid, there is also an opportunity to design new grid-support services 
to benefit both the aggregator/PEV owners and the grid operator the 
most and reduce the challenges originating from the intermittency of 
renewable energy resources, which is investigated in this paper. 

One of the sources of uncertainty in day-ahead scheduling problems 
originates from the intermittent power output of RERs that can be 
effectively tackled by means of computational intelligence techniques. 
Using computational intelligence techniques to predict the hourly PV 
plant power generation has been widely addressed in the literature [27]. 
In this context, short-term power generation prediction for 
snow-covered PV panels is more complicated due to the significant effect 
of snow on the performance of the panels which depends not only on the 
snow depth but also on snow type, snow cover shape, etc. [28]. 
Short-term PV power prediction regarding snow-related input variables 
has been addressed in [29–31], in which an empirical model, a neural 
network-based model, and a convolutional neural network-based 
weather classification model are developed, respectively. However, 
either the results show large errors or no result is presented for 
snow-covered panels. Other papers such as [32] do not consider snow 

cover in their models and only refer to the effect of snow as an error in 
the prediction. 

In this paper, the optimal day-ahead scheduling of a PEVs aggregator 
offering a novel grid-support service is investigated. The proposed ser-
vice is designed based on the participation profitability, meaning that 
the aggregator provides the support as far as it is beneficial for the PEV 
owners. The objective is to minimize the total daily charging cost of the 
vehicles, by participating in the day-ahead energy market (DAM) and 
the real-time energy market (RTM), and fulfill the PEV owners’ charging 
demand. This is achieved by developing a two-stage stochastic pro-
gramming approach to tackle uncertain driving patterns and real-time 
market clearing prices (RTMCPs). Day-ahead market clearing prices 
(DAMCPs) can be estimated with high accuracy due to being close to the 
market clearing process. It is assumed that the local DSO owns a grid- 
connected PV plant. The DSO’s day-ahead predictions of the hourly 
PV power generation may not be accurate, especially on a snowy day. 
Snow loss affects the output of PV systems significantly and has a highly 
uncertain nature. The DSO’s inaccurate day-ahead market bids, which 
originate from errors in day-ahead load and PV power predictions, 
confront the DSO with the highly volatile RTMCPs. To deal with this 
issue, a novel local out-of-market balancing service is proposed in this 
paper which enables the aggregator to provide the extra energy 
demanded by the grid in real-time and reduce the PEVs’ charging costs 
by the profit earned through the service. Integrating the proposed 
balancing service into the aggregator’s day-ahead scheduling requires 
day-ahead predictions of the hourly values of the grid load demand and 
the PV power generation which are obtained by developing two 
computational intelligence-based predictors. A risk assessment is also 
performed by integrating the risk-averse equations into the optimization 
problem. The main contributions of the paper are as follows:  

• Proposing a snow loss-aware deep learning-based short-term PV 
yield predictor using long short-term memory (LSTM) networks to 
model the hourly power generation of snow-covered PV systems 
based on meteorological parameters; 

• Developing a stochastic programming approach with a comprehen-
sive availability model of PEVs for both residential night-charging 
and public intraday-charging for optimal day-ahead scheduling of 
an independent PEVs aggregator;  

• Proposing and validating a novel local balancing service offered by 
the PEVs aggregator to the DSO in order to provide the extra real- 
time energy demand of the grid by the PEVs and benefit the PEV 
owners financially. 

The rest of the paper is organized as follows. Section 2 discusses the 
main framework of the problem. The formulation of the proposed 
approach is presented in Section 3. Section 4 describes the modeling of 
the uncertain input variables. Case studies and numerical results are 
investigated in Section 5. Finally, Section 6 is devoted to the conclusion. 

2. Main framework 

A PEVs aggregator, as an intermediate entity between the PEV 
owners and the power grid, offers high-tech smart solutions to reduce 
the charging costs for the PEV owners. This can happen by taking control 
of the charging or even discharging processes of the vehicles and 
applying a smart strategy utilizing the smart grid communication 
infrastructure. In this paper, the optimal day-ahead scheduling of an 
independent PEVs aggregator providing smart charging solutions for the 
PEVs in a town in a snow-prone region is investigated. The distribution 
grid operated by the local DSO is equipped with a large PV plant. The 
aggregator is assumed to be able to participate in the day-ahead and 
real-time energy markets through the local DSO in order to provide 
affordable services for its customers. The direct participation of such a 
small-scale PEVs aggregator in the market is assumed to be impractical 
due to the market structure and requirements in terms of the minimum 
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size of the participants. Instead, the aggregator is committed by the local 
DSO to avoid charging surges and grid overloads due to the simulta-
neous charging of a large number of PEVs. Such an agreement is bene-
ficial for the aggregator financially and for the DSO technically. This 
requires the aggregator to adapt its charging policy to the technical 
limitations of the grid. The main framework of the problem indicating 
the interactions between all the participants is shown in Fig. 1. 

The structure of the energy market is assumed to be similar to that of 
the New York Independent System Operator (NYISO). The DSO, as a 
load-serving entity (LSE), can purchase energy by submitting hourly 
bids to the DAM. Considering the market rules in terms of the minimum 
size of the participants, the aggregator submits its energy requirements 
through the local DSO. So, the hourly aggregated values of the grid’s net 
energy demand and the PEVs’ charging/discharging power are sub-
mitted as the day-ahead bids. The differences in the load consumption of 
the LSEs as compared to the day-ahead bids are settled at the RTM. 
Therefore, the DSO has to purchase the extra real-time energy demand 
(for both the grid and PEVs if there is a difference between the day- 
ahead bids and the real-time demand) at the RTMCPs. 

Before the DAM closure, the aggregator needs to submit its day- 
ahead hourly energy requests to the DSO. In order to obtain an 
optimal day-ahead schedule, the aggregator implements a computa-
tional intelligence-based approach to minimize its expected cost for the 
next operating day. Considering the uncertain nature of the driving 
patterns and energy market prices, the aggregator’s decision-making is 
developed by a two-stage stochastic programming approach [8]. This is 
a reliable method to address uncertainties by means of probable sce-
narios of the input variables. The objective is to minimize the charging 
cost of the vehicles while it is constrained to the satisfaction of the PEV 
owners in terms of the final battery state of charge (SoC) at the departure 
time. 

From the DSO’s viewpoint, the inevitable errors in the day-ahead 
predictions of the hourly PV power generation (especially for a snowy 
day) and the hourly load demand of the grid cause inaccuracy in the 
DSO’s day-ahead scheduling. In the case of underestimating the net load 
of the grid (the aggregated customers’ load minus the PV power gen-
eration) and a consequent difference between the actual demand and the 
day-ahead bids, and due to the lack of flexibility, the DSO has to pur-
chase the extra amount of the demanded energy from the RTM. This 
exposes the DSO to highly volatile RTMCPs. In this condition, the PEVs 
aggregator is able to provide the extra energy demanded by the grid 
locally through an out-of-market balancing service which is proposed in 
this paper. This can happen by manipulating the charging and dis-
charging processes of the vehicles in real-time thanks to the flexibility in 
the PEVs’ charging demand. The aggregator provides this service as far 
as it is beneficial for the PEV owners in terms of the charging cost. The 
day-ahead bids of the DSO together with the actual values of the grid 

load demand and the PV plant power generation determine the extra 
energy demanded by the DSO in real-time. The proposed balancing 
service requires the aggregator to consider the uncertain nature of both 
the grid load demand and the PV power generation as the realization of 
the probable scenarios in its day-ahead scheduling problem. Before 
submitting the bids into the DAM, the DSO notifies the aggregator of its 
bids. Considering the DSO’s day-ahead bids, the probable scenarios of 
the uncertain variables, and the balancing tariff (that the DSO pays to 
the aggregator for the energy provided by the vehicles in real-time to 
support the grid), the aggregator submits its optimal decisions for pur-
chasing/selling energy to the DSO. In real-time, the aggregator notifies 
the DSO of the supported percentage of the grid’s energy shortage that 
can be provided by the vehicles through the balancing service. This local 
out-of-market service is expected to be a suitable tool for small-scale 
PEVs aggregators that cannot participate directly in the markets, to 
reduce the charging costs of their customers, and to ensure a good source 
of flexibility for the DSO in providing its real-time extra energy demand 
and avoiding highly fluctuating RTMCPs. 

3. Mathematical formulation of the problem 

This section presents the mathematical formulation of the aggre-
gator’s day-ahead scheduling problem as a two-stage stochastic pro-
gramming approach. The developed approach consists of two stages, 
namely here-and-now (the first stage) and wait-and-see (the second 
stage). Each stage represents a point in time where decisions are made or 
where uncertainties partially or fully vanish [8]. In the first stage, 
optimal decisions of purchasing/selling energy from/to the DAM are 
made before the realization of the scenarios. In the second stage, optimal 
decisions on (i) the charging/discharging rates of the connected PEVs, 
(ii) purchasing energy from the RTM, and (iii) providing the balancing 
service for the DSO, are made after knowing the actual realization of the 
scenarios. Each decision in the first stage is represented by a single 
variable, while there are separate variables for each decision in the 
second stage considering the realization of the scenarios. The inputs of 
the developed approach are the values of DAMCPs, characteristics of the 
PEVs, in terms of the battery capacity, nominal charging rate, etc., to-
pology of the grid, and a set of scenarios for each uncertain variable, 
including RTMCPs, driving patterns, load demand of the grid, and PV 
plant power generation. Fig. 2 shows the schematic of the proposed 
two-stage stochastic programming approach in detail. The problem is 
formulated as a mixed-integer linear programming (MILP) approach. 
The subscripts d, t, ω, l, and i/j represent PEV, time step, scenario, grid 
line, and grid node numbers belonging to the sets D, T, Ω, L, and N, 
respectively. The objective function and the constraints forming the 
proposed stochastic programming approach are as follows: 

Fig. 1. Main framework of the problem.  
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3.1. Objective function 

The objective of the problem is to minimize the expected total daily 
charging cost of all PEVs. The revenue obtained from providing the 
proposed balancing service is added to the objective function. The 
deterministic equivalent of the stochastic programming approach is as 
follows: 

MinimizeZ = CostDAM+

∑Ω

ω=1
πω ×

[
(
CostRTM

ω + CostBatt.Deg.
ω

)
−
∑T

t=1
RevenueBalancing

ω,t

]
(1)  

where Z is the objective function. CostDAM and CostR™ are the costs ($) 
of purchasing energy from DAM and RTM, respectively. CostBatt. Deg. is 
the battery degradation cost for all PEVs due to discharging ($). Rev-
enueBalancing is the revenue obtained by providing the proposed 
balancing service ($). πɷ is the probability of each scenario ɷ. The terms 
of the objective function (Z) are as follows:  

• Day-Ahead Market Cost 

CostDAM =
∑T

t=1

(
PriceDAM

t

)
×BidDAM

t (2)   

where PriceDAM is DAMCP ($/kWh). BidDAM is the hourly bid of the 
aggregator in the DAM. This cost is positive/negative if energy is pur-
chased/sold. The aggregator’s bids are added to the DSO’s bids and then 
submitted to the market.  

• Real-Time Market Cost 

CostRTM
ω =

∑T

t=1

(
PriceRTM

ω,t

)
×BidRTM

ω,t ,∀ω (3)   

where PriceR™ is RTMCP ($/kWh). BidR™ is the aggregator’s hourly bid 
in the RTM. In the case that the aggregator cannot meet its hourly 
commitment in real-time based on the day-ahead sold energy, this is 
considered as an increase in the LSE’s demand in real-time. So, the 
RTMCPs should be paid by the aggregator to the RTM through the DSO 
for this deviation from the commitment. This cost is considered to be 
always positive because the DSO participates in the market as an LSE 
and normally submits the major part of its bids in the DAM.  

• Battery Degradation Cost 

CostBatt.Deg.
ω =

∑D

d=1

∑T

t=1

(
cb × CapBatt.

d + cL

Lc × CapBatt.
d × DoD

)

×
Pdch

ω,d,t

ηch , ∀ω (4)   

Discharging causes degradation of the batteries and its cost can be 
calculated based on the discharging power using Eq. (4) [15]. cb, cL, Lc, 
DoD, CapBatt., ηch, and Pdch represent the battery cost ($/kWh), labor cost 
for replacing the old battery with a new one ($), the life cycle of the 
battery, depth of discharge, battery capacity, charger efficiency, and the 
discharging power, respectively.  

• Balancing Service 

In order to integrate the proposed balancing service to the scheduling 
problem of the aggregator, a revenue term is added to the objective 
function that reduces the total charging cost of the PEVs based on the 
amount of energy they provide for this service. This allows the PEVs to 
provide part of the extra energy demanded by the DSO in real-time 
which is beneficial for them based on the structure shown in Fig. 3. 
The effect of this revenue can be applied later as a reduction to the 
charging bills of those PEVs participated in the service in the billing 
calculation process. The following equations form the mechanism of the 
proposed service. 

RevenueBalancing
ω,t ≤

∑LLL

lll=1
Tariff Balancing

ω,lll,t ×PposBalancing
ω,lll,t ,∀ω, t (5)  

∑D

d=1

(
Pdch

ω,d,t − Pch
ω,d,t

)
+
(

BidDAM
t +BidRTM

ω,t

)
= PdchPEVs

ω,t ,∀ω, t (6)  

PdchPEVs
ω,t =

∑LLL

lll=1
PposBalancing

ω,lll,t −
∑LLL

lll=1
PnegBalancing

ω,lll,t , ∀ω, t (7)  

BidDAM
t + BidRTM

ω,t ≤
∑D

d=1

(
Pch

ω,d,t

)
, ∀ω, t (8)  

where RevenueBalancing is the revenue obtained by offering the balancing 
service to the DSO ($). PposBalancing is the hourly supplied power by the 
PEVs into the grid exclusively for the balancing service. TariffBalancing, as 
the tariff of the service, can be determined using a pricing mechanism 

Fig. 2. Structure of the developed stochastic programming approach for the aggregator’s day-ahead scheduling.  

Fig. 3. Structure of the proposed balancing service.  
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that maximizes the obtained profit by the service. lll denotes the segment 
number for PdchPEVs in Fig. 3 (here, LLL = 2). The revenue of the 
balancing service is simply calculated in (5) by multiplying the service 
tariff by the hourly supplied power by the PEVs into the grid exclusively 
for this service. In order to be able to calculate this supplied power, the 
PEVs’ market participation is also needed to be considered and distin-
guished from the PEVs’ participation in the service. Moreover, the rev-
enue has to be calculated for the supplied power up to the requested 
power by the DSO so that PposBalancing ≤ the requested power by the DSO. 
These are formulated in Eqs. (6)-(8). The equations needed to divide the 
values of PdchPEVs into two segments using auxiliary variables are added 
to the problem. 

3.2. Constraints 

The presented objective function is constrained to the following 
equations.  

• Charging and Discharging Rates 

Pch
ω,d,t ≤ Pcharger

d andPdch
ω,d,t ≤ Pcharger

d × ηch,∀ω, d, t (9)   

Pch and Pdch are both positive variables and are limited by the nominal 
charging rate of the battery charger.  

• State of Charge Variations 

SoCω,d,t = SoCω,d,t− 1 +

(
Pch

ω,d,t × ηch − Pdch
ω,d,t

/
ηch
)

CapBatt.
d

× 102,∀ω, d, t (10)   

The battery SoC at each hour is determined by the SoC at the pre-
vious hour and the energy exchange with the grid, which depends on the 
charging/discharging power of the battery at that hour.  

• State of Charge Bounds 

20 ≤ SoCω,d,t ≤ 100,∀ω, d, t (11)   

In general, it is recommended to avoid discharging a battery if its SoC 
is lower than 20% due to battery degradation.  

• PEV Owners’ Satisfaction in Terms of Final SoC 

SoCArr
ω,d +

∑T

t=1

(
Pch

ω,d,t × ηch − Pdch
ω,d,t

/
ηch
)

CapBatt.
d

× 102 = SoCFinalGuar.
ω,d , ∀ω, d

(12)   

This constraint is applied to the vehicles that are connected long 
enough to the grid to reach the desired SoC. These vehicles will be fully 
charged and get ready for the next trip. The other vehicles will be 
charged with a constant charging rate.  

• Aggregator’s Bids 

BidDAM
t + BidRTM

ω,t ≥
∑D

d=1

(
Pch

ω,d,t − Pdch
ω,d,t

)
, ∀ω, t (13)   

This constraint guarantees that the aggregator’s hourly bids meet the 
total hourly energy demand of the PEVs; so that, the total energy pur-
chased from the DAM and RTM at each hour has to cover the charging 
load of the vehicles.  

• Power Flow Equations 
⎧
⎨

⎩

ps
l,t,ω = glVi,t,ω − glVj,t,ω + (1/2)ploss

l,t,ω − blδi,t,ω + blδj,t,ω;

qs
l,t,ω = − blVi,t,ω + blVj,t,ω + (1/2)qloss

l,t,ω − glδi,t,ω + glδj,t,ω;
∀l, t,ω (14)  

⎧
⎪⎪⎨

⎪⎪⎩

Pg
i,t,ω − Pd

i,t,ω −
∑

l∈L
Ail.ps

l,t,ω −
∑

l∈L
A′

il.ploss
l,t,ω = 0;

Qg
i,t,ω − Qd

i,t,ω −
∑

l∈L
Ail.qs

l,t,ω −
∑

l∈L
A

′

il.qloss
l,t,ω + qshunt

i = 0;
∀i, t,ω (15)  

⎧
⎪⎪⎨

⎪⎪⎩

ploss
l,t,ω =

((
ps

l,t,ω

)2
+
(

qs
l,t,ω

)2
)

× rl;

qloss
l,t,ω =

((
ps

l,t,ω

)2
+
(

qs
l,t,ω

)2
)

× xl;

∀l, t,ω (16)   

The linearized AC power flow model is extracted from [33]. The 
active-reactive power flows through the grid’s lines and the 
active-reactive power equilibrium in the grid’s nodes are formulated in 
(14) and (15), respectively. Eq. (16), which calculates the 
active-reactive power losses in the grid’s lines based on the flowing 
power and the resistance-reactance of the lines, will be linearized using 
the piecewise linear approximation method based on the following set of 
equations [33]. 

ps
l,t,ω =

∑LL

ll=1
β+

ll,l,t,ω −
∑LL

ll=1
β−

ll,l,t,ω,∀l, t,ω (17)  

(
ps

l,t,ω

)2
=
∑LL

ll=1
αll × β+

ll,l,t,ω +
∑LL

ll=1
αll × β−

ll,l,t,ω,∀l, t,ω (18)  

(
ps

l,t,ω

/
M
)
≤ hl,t,ω ≤ 1+

(
ps

l,t,ω

/
M),∀l, t,ω (19)  

{
0 ≤ β+

ll,l,t,ω ≤ hl,t,ω × β

0 ≤ β−
ll,l,t,ω ≤

(
1 − hl,t,ω

)
× β

, ∀ll, l, t,ω (20)  

⎧
⎪⎨

⎪⎩

(
β+

ll,l,t,ω − β
)/

M ≤ h+
ll,l,t,ω ≤ 1 +

(
β+

ll,l,t,ω − β
)/

M
(

β−
ll,l,t,ω − β

)/
M ≤ h−

ll,l,t,ω ≤ 1 +
(

β−
ll,l,t,ω − β

)/
M

, ∀ll, l, t,ω (21)  

{
β+

ll,l,t,ω ≤ h+
ll− 1,l,t,ω × β

β−
ll,l,t,ω ≤ h−

ll− 1,l,t,ω × β
,∀ll, l, t,ω (22) 

Eqs. (19)-(20) and (21-22) guarantee the upper and lower bounds of 
the linear sections and the connection of the sections, respectively. 
Similar equations are also used for the reactive power flows.  

• Grid Normal Operation Commitment 

ps
1,t,ω ≤ Pmax , ∀t,ω (23)   

As mentioned earlier, the aggregator is committed to maintaining the 
normal operation of the grid by avoiding the main transformer overload 
due to the PEVs’ charging load. This helps keep the load peak of the grid 
low and prevents excessive voltage drops in the grid. 
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3.3. Risk assessment 

Despite the aforementioned risk-neutral decision-making formula-
tion, a risk assessment using the popular conditional value-at-risk 
(CVaR) as the risk measure is performed to evaluate the proposed 
approach considering the risk of variability associated with the aggre-
gator’s cost [8]. The objective function of the risk-averse approach is 
defined in Eq. (24). All the constraints of the risk-neutral formulation 
together with Eqs. (25) and (26) constitute the new optimization 
problem. 

Min.Zrisk− averse = (1 − φ) × Z + φ ×

((
1

1 − γ

)
∑Ω

ω=1
πω × sω − ξ

)

(24)  

CostDAM + CostRTM
ω + CostBatt.Deg.

ω −

∑T

t=1
RevenueBalancing

ω,t + ξ ≤ sω, ∀ω ∈ Ω
(25)  

sω ≥ 0,∀ω ∈ Ω (26)  

4. Modeling of uncertain input variables 

Concerning the aggregator’s scheduling as a stochastic programming 
approach, two scenario generation methods for driving patterns and 
RTMCPs are presented. Considering the proposed balancing service, two 
predictors for the load demand of the grid and PV power generation are 
proposed. The data used for the modeling is available in: https://drive. 
google.com/file/d/1d8oIxLk8y-4n8L6MjzCbaatXLd5pkLPa/view. 

4.1. Driving patterns of PEV owners 

The uncertain driving patterns can be modeled by three attributes 
namely the arrival and departure times (when a PEV arrives/departs at/ 
from a charging station), and the daily mileage (total distance a PEV 
travels on a day). All PEVs can get connected to the grid through resi-
dential chargers and some are randomly selected to get connected in 
public charging stations (PCSs) during the day. Two types of PCSs, i.e. 
business center PCSs and shopping center PCSs, are considered. The 
arrival and departure times of the PEVs are generated randomly based 
on the widely used normal probability density functions (pdfs). Daily 
mileages are generated using a Lognormal pdf. The parameters of the 
pdfs for each type of charging station are presented in Table 1. 

The stochastic driving patterns are generated using a Monte Carlo 
simulation based on the proposed flowchart shown in Fig. 4. At first, 
arrival and departure times at/from home are generated for all vehicles. 
Then based on the number, type, and capacity of the PCSs, some PEVs 
are randomly selected to get charged at PCSs. The arrival and departure 
times of the selected PEVs at/from the PCSs are finally generated 
considering the previously generated arrival and departure times. 

The state of charge (SoC) of a PEV’s battery at its arrival time is 
calculated based on the generated driving patterns: 

SoCArr =

⎧
⎪⎨

⎪⎩

SoCLDep −
Mil × E
CapBatt. × 100,Mil < 0.8AER

20%,Mil > 0.8AER
(27)  

4.2. Real-Time market clearing prices (RTMCPs) 

Considering the participation of the aggregator in the RTM, the 
probable scenarios of RTMCPs should be integrated into the problem. 
The RTMCPs are normally highly volatile since they depend on many 
factors including the uncertain behavior of the market participants. 
Thus, K-means clustering is implemented to generate the scenarios 
based on K centroids of the clusters over historical data. The probability 
of each scenario is calculated based on the number of members of each 
cluster. This method enables the aggregator to consider all various 
probable RTMCP patterns in a historical dataset. 

The historical data of the NYISO is used for this purpose [34]. A 
one-time market clearing process at the beginning of the 24-hour 
scheduling horizon is considered to reduce complexity. 23 Feb. 2015, 
which is a winter day, is arbitrarily chosen as the operating day. The 
hourly RTMCPs for 15 days before that date constitute the dataset and 
5-means clustering is applied to that. 

4.3. Load demand of the grid 

Integrating the proposed balancing service to the scheduling prob-
lem of the aggregator demands day-ahead predictions of the hourly load 
demand of the grid which are obtained here using a computational in-
telligence technique. In order to provide real historical data on the 
hourly load demand of a town, a dataset corresponding to the city of 
Dayton, Ohio is extracted [35] which was the closest city to New York 
with a publicly available dataset. 23 Feb. 2015 (Monday) is chosen as 
the operating day. Considering the periodic patterns in the load demand 
of the grid, its high correlation with ambient temperature, days of the 
week, and months of the year, and its lower uncertainty compared to 
other uncertain input variables in this study, the load demand prediction 
model is built based on a historical data containing the most similar data 
points to the operating day. This enables us to build a model faster with 
the most relevant data in a smaller dataset. In this way, the model can be 
rebuilt for each operating day by shifting the dataset by one day. To this 

Table 1 
Parameters of pdfs related to driving patterns.  

Station Residential Business PCSs Shopping PCSs Daily 
Mileage Parameter Arr. 

Time 
Dep. 
Time 

Arr. 
Time 

Dep. 
Time 

Arr. 
Time 

Dep. 
Time 

Mean 20 7.5 8.5 14 16 18 3.715 
Stand. 

Dev. 
1.5 0.75 0.5 0.5 1 1 0.6  

Fig. 4. Flowchart of stochastic driving patterns of PEV owners.  
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end, the data for 30 days before the operating day, and 30 days before 
and 30 days after the same date in the previous year (2014) constitute 
the dataset that covers measurements over 3 months. The hourly values 
of ambient temperature are extracted for the city of Dayton [36]. The 
attribute and target variables are:  

- Att. 1: Weekday/weekend numbers (1 for Monday to 7 for Sunday);  
- Att. 2: Hours (1 to 24);  
- Att. 3: Temperature;  
- Target: Hourly load demand of the grid. 

The line graphs of the load and temperature in the dataset are shown 
in Fig. 5. Considering the nature of the data as time series, Long Short- 
Term Memory (LSTM) network, as a recurrent deep learning model, is 
used to build the load demand predictor [37] which can capture 
long-term dependencies in the data. The first 2016 data points (84 days) 
are used to train the model and the next 168 data points (the next 7 days) 
are used as the validation set. Bayesian optimization is implemented to 
select optimal hyperparameters based on the validation set. Then, the 
model is used to make a prediction on the unseen data of the operating 
day. The mean squared errors (MSEs) together with the optimal 
hyperparameters of the model are presented in Table 2. The line graphs 
of the real and predicted normalized values of the target variable on the 
validation set and the test set are shown in Figs. 6(a) and 6(b), respec-
tively. The MSE value on the test set is 0.00204. The figures demonstrate 
the ability of the model to predict the load demand of the grid. 

4.4. PV power generation 

Another source of uncertainty considering the proposed balancing 
service originates from the PV plant. PV yield prediction can be even 
more challenging on a snowy day, not only due to the errors in the day- 
ahead predictions of the meteorological parameters but also because of 
the complexity of obtaining the exact values of the power generation for 
snow-covered PV panels. Snow loss can be very large and variable 
depending on several factors such as the snow depth, the type of snow, 
the shape of the snow cover, etc. Therefore, a computational 
intelligence-based snow loss-aware PV power generation predictor is 
built that allows the aggregator to consider all probable scenarios for the 
next snowy day. 

Historical data of the hourly PV yield and the meteorological pa-
rameters are extracted for a PV system in New York [38]. A snowy 
winter day (17 Feb. 2015) is chosen as the operating day. Considering 
the periodic patterns in the power generation of a PV system over years 
and due to the significant dependence of the PV power on weather 
conditions and meteorological parameters, the PV power prediction 
model in this paper is built based on historical data containing data 
points in the most similar weather conditions to the operating day. To 
this end, the data of 30 days before the operating date, and 30 days 
before and 30 days after the similar date in the past year (17 Feb. 2014) 

and the past 2 years (17 Feb. 2013) are selected to constitute the dataset, 
which covers measurements over 5 months. This approach to building 
the dataset has been validated after training models based on datasets 
with different sizes and comparing their performance. Since the data is 
gathered over three consecutive years, the annual trend, such as the 
effect of increasing system power losses, is also maintained. The attri-
bute and target variables are:  

- Att. 1: Hours of the day (1 to 24);  
- Att. 2: Hourly ambient temperature;  
- Att. 3: Hourly global horizontal irradiance (GHI);  
- Att. 4: Daily snowfall;  
- Att. 5: Daily snow depth;  
- Target: Hourly PV power generation. 

The line graphs of the electrical and meteorological parameters in 
the dataset are shown in Fig. 7. The last 24 data points (the last day) are 
used as the test set. 720 data points (30 days) before the operating day 
are used as the validation set. The first 2928 data points (122 days) are 
used as the training set. The LSTM network together with the Bayesian 
optimization is implemented to build the optimal model. Then, the 
model is used to make a prediction on the unseen data of the operating 
day in the test set. The mean squared errors (MSEs) together with the 
optimal hyperparameters of the model are presented in Table 2. The line 
graphs of the real and predicted normalized values of the target variable 
on the validation set and the test set are shown in Figs. 8(a) and 8(b), 
respectively. The MSE value on the test set is 0.00055. 

5. Case studies and numerical results 

The topology of the 20.8 kV distribution grid, where PEVs are 
distributed, is adapted from the IEEE 34-node test system [39]. The main 
feeder is connected to the upstream grid by a 5.5 MW transformer. Three 
business PCSs (connected to nodes 5, 10, and 19) and two shopping PCSs 
(connected to nodes 14 and 18) are considered in the grid. Personal 
residential chargers are connected to the other nodes (except nodes 1 
and 24). A 2.3 MW PV plant owned by the DSO is connected to node 24. 

In order to generate the scenarios of the hourly PV power generation 
and the hourly load demand of the grid, 1000 scenarios of each uncer-
tain attribute variable including temperature, GHI, snowfall, and snow 
depth are generated by adding a random value from a normal distri-
bution to the real recorded values on the operating day. It is assumed 
that the predicted values of temperature are more accurate for the first 
hours of the day (± 1 ◦C) compared to the last hours (± 4 ◦C). Moreover, 
the variations of the hourly GHI at noon (± 200 W/m2) are assumed to 
be bigger than the variations after sunrise or before sunset (± 50 W/m2). 
It is also assumed that the values of daily snowfall may change between 
0 and 15 cm. The snow depth can be simply calculated based on the 
snowfall and the snow depth on the previous day. The real values 
together with 1000 generated scenarios of these parameters are shown 
in Fig. 9. These scenarios are fed into the models and 1000 scenarios of 
the hourly PV power generation and the hourly load demand are 
generated. Then, a scenario reduction procedure based on Kantorovich 
distance is implemented to reduce the number of scenarios to lower the 
computational burden. Finally, the 5 most probable scenarios are 
selected and shown in Fig. 10. 

Eight different types of PEVs are considered [40]. Table 3 presents 
the properties of the PEVs. The penetration level of PEVs is defined as 
the ratio of the number of consumers with a PEV to the total number of 
consumers in the grid. Considering the residential load, the coincidence 
factor, and the average load peak of a consumer, the number of PEVs at 
the penetration level of 40% is 1000. The Roulette Wheel Mechanism is 
used to locate the PEV owners’ houses randomly among the residential 
nodes. Moreover, 70 vehicles are randomly selected to be charged in 
each PCSs. 

Finally, 25 final scenarios are formed by combining each RTMCPs 
Fig. 5. Line graphs of the load demand and temperature in the historical 
dataset of the load demand predictor. 
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scenario with five scenarios of the other three uncertain input variables. 
The proposed MILP problem is solved using the CPLEX solver in GAMS 
software. Five cases are studied to prove the effectiveness of the pro-
posed approach. 

5.1. Cases 1 and 2: Uncoordinated and off-peak charging 

The PEV owners plug in their vehicles as soon as they arrive home. In 
the uncoordinated charging mode, charging starts immediately with the 
maximum charging rate until the battery is fully charged (charging up to 
90% of SoC is assumed, regarding the linear section of the charging 
curve, if the PEV is plugged in long enough). Time-of-Use (TOU) tariffs 
of the DSO are used to calculate the charging costs. In the off-peak 
charging mode, the charging process is delayed until midnight since 
the lower step of the TOU tariffs starts at 12 a.m. The charging bills also 
include a fixed monthly fee for a separate meter. In the winter of 2015, 
electricity consumers in New York paid a monthly fee of 19.87 $ and 
1.36 cents (1:00 to 7:00)− 7.13 cents (8:00 to 24:00) for every kWh 
energy consumed [34]. 

The expected hourly charging load of all PEVs together with the 
expected hourly load demand of the grid, the expected hourly voltage 
magnitude of the last node (node 34), and the arrival and departure SoCs 
of the vehicles are shown in Fig. 11. 

In case 1, the PEVs’ charging load peaks at 8 p.m. when most vehicles 
are coming back home and it has a gradual increase. This peak in case 2 
happens at 1 a.m. and is more than three times bigger than that in case 1. 
As a result, the voltage drop at node 34 in case 2 is more severe 
compared to case 1; however, its duration is longer in case 1. Hence, a 
voltage drop across the last nodes of the feeder and the overload of the 
main feeder transformer at peak hours are undesirable consequences of 
the uncoordinated and off-peak charging of a large number of PEVs. The 
extra load incurred by the business and shopping PCSs to the grid during 
the day is not significant since the vehicles are mainly getting fully 
charged at home. Moreover, the majority of the PEVs have been charged 
to the predefined 90% of SoC. 

The expected daily charging costs of all PEVs in cases 1 and 2 are 
1301 $ and 867 $, respectively. Thus, off-peak charging is more bene-
ficial for PEV owners since a major part of the charging process occurs at 
the lowest level of the TOU tariff; however, the grid experiences worse 
technical challenges in this case. 

Table 2 
Parameters of the grid load demand and PV yield predictors.  

Model Validation 
MSE 

Test 
MSE 

Num. of Hidden 
Units 

Initial Learning 
Rate 

Learning Rate Drop 
Period 

Learning Rate Drop 
Factor 

Maximum 
Epochs 

Mini-Batch 
Size 

Load Predictor (LSTM 
Net 1) 

0.00214 0.00204 34 0.1 97 0.5 589 9 

PV Predictor (LSTM 
Net 2) 

0.00409 0.00055 87 0.1 100 0.5 75 48  

Fig. 6. The real and predicted values of the hourly load demand using the LSTM model on (a) the validation set and (b) the test set.  

Fig. 7. Line graphs of the electrical and meteorological parameters in the 
historical dataset of the PV yield predictor. 

Fig. 8. The real and predicted values of the hourly PV power generation using the LSTM model on (a) the validation set and (b) the test set.  
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5.2. Case 3: coordinated charging (the basic model) 

In this section, the developed stochastic programming approach 
(without the balancing service) is investigated. The results have been 
obtained considering the expected price of brand-new batteries in 2023 

[41] and are shown in Fig. 12. The major part of the charging load has 
been shifted to the off-peak hours when the price of energy in the market 
is lower. This shows the significant effect of the DAMCPs on the estab-
lished schedule of the aggregator for the next operating day. Unlike 
cases 1 and 2, the resulting load shift avoids both main feeder overloads 
and voltage drops lower than 0.95 p.u. across the grid (Figs. 12(a) and 
12(b)) by distributing the charging load of the vehicles over six hours, 
obtained by the aggregator’s commitment to prevent charging surges. 
Moreover, PEVs have being discharged at 7 p.m. when DAMCP is higher. 
This reduces the overall charging cost of the vehicles by contributing to 
load serving at peak hours. Considering the highly uncertain RTMCPs, it 
is clear in Fig. 12(c) that the aggregator tends to provide the major part 
of the PEVs’ energy demand from DAM to guarantee a minimum ex-
pected charging cost for the next operating day. As can be seen in Fig. 12 
(d), up to 530 kWh of the daily charging demand has been purchased 
from the RTM at hours with lower RTMCPs in each scenario while in 

Fig. 9. Real values (blue line) and 1000 generated scenarios of (a) hourly temperature, (b) hourly GHI, and (c) daily snowfall.  

Fig. 10. Scenarios of (a) PV power, (b) load demand, and (c) RTMCPs.  

Table 3 
Properties of the PEVs.  

PEV Type Number 1 2 3 4 5 6 7 8 

Battery Capacity 
(kWh) 

100 80 60 40 20 15 10 5 

All Electric Range 
(km) 

490 450 320 220 110 75 45 23 

Market Share (%) 13 58 6 5 4 2 9 3 
Charger Rate (kW) 11.5 11.5 7.2 6.6 6.6 6.6 3.3 3.3  

Fig. 11. Case 1 and case 2 results: (a) Expected charging and main feeder load, (b) expected voltage magnitude of node 34, and (c) arrival and departure bat-
tery SoCs. 
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scenarios 1, 6, 11, 16, and 21, almost all the charging demand of the 
PEVs has been purchased from DAM. The difference in the RTM pur-
chase values for every five consecutive scenarios in Fig. 12(d) originates 
from the difference in the driving patterns and consequently the 
charging requirements. 

As indicated in Fig. 12(e), the expected daily charging cost of all 
PEVs is 610 $ (53% lower than case 1 and 30% lower than case 2), 
ranging from 663 $ in scenario 19 to 584 $ in scenario 21. The aggre-
gator’s cost in DAM (purchases minus sells) and its expected cost in RTM 
are 497 $ and 28 $, respectively. The expected degradation cost of all 
batteries is 85 $. The aggregated discharging power in Fig. 12(a) shows 
that the vehicle-to-grid (V2G) is affordable only when the price of en-
ergy is high enough to compensate for the battery degradation cost and 
charging/discharging power losses. So, batteries’ technology improve-
ment and price reduction can play a key role in making V2G services 
more affordable and popular. In general, the coordinated charging 
approach can reduce the charging cost of PEVs compared to the unco-
ordinated and off-peak charging and at the same time, guarantee the 
normal operation of the grid. 

5.3. Case 4: Coordinated charging with balancing service 

The aggregator’s day-ahead scheduling with the proposed balancing 
service is investigated in case 4. A pricing mechanism is used to calculate 
TariffBalancing in Eq. (5) as a multiple of RTMCP unless RTMCP is higher 
than a particular threshold. This prevents the reflection of the surges and 
large values of RTMCPs in TariffBalancing. This threshold can be consid-
ered as a multiple of DAMCP and used as a cap for TariffBalancing. 
Moreover, due to the highly downward trend in the prices of brand-new 
batteries, two cases of ½ battery prices (0.5*BP) and without battery 
degradation cost (0*BP) are also investigated. 

The DSO’s hourly balancing service requests for the first 5 scenarios 
are shown in Fig. 13(a) which reflects the effect of the combination of 5 
PV yield scenarios and 5 grid load demand scenarios. The peak and the 
largest variability of the requests happened at noon when the PV plant 
may not be able to supply the grid as expected in the snow conditions. 
The expected value of the total charging cost (TCC) reduction for the 
PEVs together with the DSO’s real-time cost (RTC), as the sum of the 
costs of the balancing service and the purchase of the remaining amount 
of the demand from the RTM, reduction thanks to the balancing service 

Fig. 12. Case 3 results: (a) Expected charging power and main feeder load, (b) expected voltage magnitude of node 34, (c) aggregator’s DAM energy purchases, (d) 
aggregator’s RTM energy purchases, and (e) total charging cost in each scenario. 

Fig. 13. Case 4 results: (a) DSO’s balancing service requests, (b) maximum expected TCC and DSO’s RTC reductions, (c) supported balancing service, and (d) TCC 
and DSO’s RTC reductions in the case of ignoring the battery degradation cost. 
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compared to case 3 are shown for three cases of battery prices in Fig. 13 
(b). A grid search has been performed to find the best TariffBalancing to 
maximize the expected value of the aforementioned reductions. The 
maximum expected DSO’s RTC reduction can be achieved by Tar-
iffBalancing = 1.1×RTMCPs and 1.9×DAMCPs as a cap and the maximum 
expected TCC reduction can be achieved by TariffBalancing =

0.8×RTMCPs and 1.3×DAMCPs as a cap. As can be seen in Fig. 13(b), 
decreasing the battery prices can increase the benefit obtained by 
implementing the balancing service where a 14% reduction in the DSO’s 
RTC and a 12% reduction in the PEVs’ TCC have been obtained. This is 
achieved by a higher contribution of the PEVs to support the balancing 
requests, from an average of 70% in the case of 1*BP to an average of 
85% in the case of 0*BP, which is indicated in Fig. 13(c). Smaller DSO’s 
balancing requests have resulted in almost complete support of the 
balancing service by the PEVs in scenarios 1, 6, 11, 16, and 21. The 
percentage of TCC and DSO’s RTC reductions in the case of 0*BP for 
each scenario together with their expected values (horizontal dash lines) 
are shown in Fig. 13(d). The maximum and the minimum reductions 
have been obtained in scenarios 21–25 and 11–15 using TariffBalancing 

based on the fifth and the third scenarios of RTMCPs, respectively. As 
can be seen in the results of this case, implementing the proposed local 
balancing service can be beneficial for both the DSO and the PEVs 
aggregator. In fact, this type of grid-support service can enable small- 
scale aggregators to contribute to facilitating the higher penetrations 
of intermittent renewable energies in local power grids. Similar to case 
3, the normal operation of the grid has been obtained based on the 
aggregator’s schedule by avoiding the charging surges over the oper-
ating day. 

5.4. Case 5: Risk-averse coordinated charging with balancing service 

In this case, the results of the risk-averse formulation based on Eqs. 
(24)-(26) are investigated. To this end, the battery degradation cost is 
fully considered (battery price case of 1*BP), TariffBalancing is set to have 
the most expected TCC reduction, and the confidence level (γ), which 
categorizes high-cost and low-cost scenarios, is set as 0.9. The cumula-
tive distribution functions for three cases of the weighting parameter φ, 
which materializes the trade-off between the expected cost and the risk 
aversion, are illustrated in Fig. 14(a). 

As can be seen, the expected TCC and CVaR, which denotes the ex-
pected cost of the worst scenarios, in the risk-neutral formulation (with 
φ=0) are 578 $ and 625$, respectively. As expected, considering the risk 
measure and increasing its weight increases the expected cost and re-
duces the CVaR; so that, with φ=1, they are very close to each other 
(expected cost=616 $ and CVaR=617 $). So, the risk-averse formulation 
has reduced the cost of encountering the worse scenarios at the expense 

of increasing the expected TCC. As can be seen in Fig. 14(b) for risk- 
averse results with φ=1 and γ=0.9, the PEVs have less supported the 
balancing service requests in most of the scenarios after considering the 
risk in the optimization problem. A sensitivity analysis is also performed 
for different values of the confidence level (γ) from 0.5 to 0.99 with φ=1. 
The results are shown in Fig. 14(c). The confidence level plays an 
important role in capturing the adverse effect of the worst scenarios. By 
increasing the confidence level, the expected total charging cost will rely 
on a fewer number of high-cost scenarios ((1- γ)×100%). Therefore, the 
expected cost and the CVaR both have increased by raising the confi-
dence level. 

In general, the results prove the effectiveness of the proposed 
computational intelligence-based scheduling approach in reducing the 
charging cost of the PEVs and maintaining the normal operation of the 
grid compared to the un- or semi-coordinated approaches. Moreover, the 
integrated out-of-market balancing service is proved to be a useful tool 
for reducing the challenges that a grid operator deals with in high 
penetrations of intermittent renewable energies and to be beneficial for 
the aggregator/PEV owners. To clarify the differences between the case 
studies, a brief benchmarking is performed in Table 4, in which the 
levels of achievements are ranked from low (*) to high (***). As can be 
observed, the developed stochastic programming approach with the 
proposed balancing service (cases 4 and 5) is the most desirable from 
different aspects. 

6. Conclusion 

This paper addresses the issue of day-ahead scheduling of a PEVs 
aggregator that participates in both day-ahead and real-time energy 
markets on behalf of the PEV owners through the local DSO. The 
aggregator can also provide the DSO’s extra energy demand in real-time, 
which originates from the differences between the DSO’s day-ahead bids 
and the actual load demand of the renewable power penetrated 

Fig. 14. Case 5 results: (a) Cumulative distribution function for risk-neutral and risk-averse approaches, (b) supported balancing service with risk-neutral and risk- 
averse formulations, and (c) the effect of confidence level on CVaR and expected TCC. 

Table 4 
Benchmark.   

Case 
1 

Case 
2 

Case 
3 

Case 
4 

Case 
5 

PEV Owners’ Satisfaction (E. 
Range) 

*** *** *** *** *** 

PEVs’ Charging Costs Reduction – * ** *** *** 
Guarantee Grid Reliability 

(Overload) 
– – *** *** *** 

DSO’s Operation Cost Reduction – * ** *** *** 
Risk Aversion Scheduling – – – – ***  
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distribution system, through a proposed out-of-market balancing ser-
vice, and reduce the charging costs of the vehicles. A two-stage sto-
chastic approach with a comprehensive availability model of PEVs for 
both residential night-charging and public intraday-charging has been 
developed that minimizes the total charging cost of the PEVs. Compu-
tational intelligence methods have been used to model the uncertain 
input variables on a snowy day and generate the scenarios. The results 
show that the proposed day-ahead scheduling approach can reduce the 
expected total charging cost by 53% and 30% compared to the unco-
ordinated and off-peak charging modes, respectively. It also guarantees 
the normal operation of the grid. Moreover, the proposed balancing 
service can be beneficial for both the DSO and the PEV owners. 
Depending on the price of the service and brand-new batteries, it can 
reduce up to 25% of the total charging cost and 36% of the DSO’s real- 
time cost while the expected reductions are 12% and 14% compared to 
the same condition without the service, respectively. Moreover, the risk- 
averse formulation can reduce the cost of encountering the worst sce-
narios while it increases the expected charging cost significantly. 
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