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A B S T R A C T

This paper addresses the challenge of fault localization in power grids which incorporate Superconducting
Cables (SCs) and presence of inverter-connected generation, by proposing a novel data-driven fault location
scheme. The developed fault location algorithm utilizes the transformation of time domain fault current and
voltage signatures, to time–frequency domain and exploits the advantages of a Convolutional Neural Network
(CNN) to estimate the fault position along SCs. The proposed algorithm has been tested using a verified
model of SC, and the results revealed that it can provide precise fault localization for a wide range of fault
scenarios, including different fault types, fault resistance values and fault inception angles. Furthermore, the
proposed scheme robustness has been verified against different influencing factors accounting for very small
increments of fault location, additive noise and different value of sampling frequency. For validation purposes,
the effectiveness of the CNN-based algorithm has been compared with other data-driven algorithms and the
relevant advantages have been highlighted.
1. Introduction

Power systems are experiencing a rapid transition, emanating from
the gradual decommission of large Synchronous Generators (SGs) and
the progressive deployment of Converter Interfaced Generation (CIG).
The intermittent nature of the CIGs in conjunction with the immense
increase in global electricity demand, have created reliability and
resilience challenges to the future power grids. Consequently, there
is a growing need for bulk power corridors to provide continent-wide
sharing of electric power in an efficient way [1].

Superconducting Cables (SCs) are becoming increasingly competi-
tive compared to conventional transmission lines and cables, by the
virtue of superior advantages, such as their capability to transfer power
over long distances at lower voltage levels and with reduced power
losses [2]. Therefore, large-scale applications of SCs have been the focus
of enormous research due to their unique physical characteristics [3].

The performance of SCs, during the steady-state and the transient
conditions (i.e., faults), is dominated by the electro-magneto-thermal
properties of the High Temperature Superconducting (HTS) tapes and
the operating conditions of the system [4]. Subsequently, the installa-
tion of SCs, results in variations in the network performance (i.e., vari-
able resistance, limited fault currents, etc.), emanating mainly from the
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quenching of the HTS tapes. This has raised major fault management
challenges accounting for detection, location and protection operation,
which remain to be further investigated and resolved [5].

In transmission systems, when a fault occurs on a feeder, protection
systems initiate the selective tripping of the corresponding circuit-
breakers in order to prevent the adverse effects on the power system’s
operation. Following the fault detection, the precise estimation of fault
location is of paramount importance in order to enable the rapid
restoration of the system and minimize the down time [6]. Particu-
larly, for the case of SCs the precise identification of fault location is
very important considering their complex configuration (i.e., cooling
liquid tubes, tapes, etc.) and the lack of standardization in the repair
procedure.

In recent years, a variety of fault location methods have been
reported in the literature, proposing different approaches such as
impedance-based methods [7,8], travelling wave (TW) techniques [9,
10], time–frequency domain reflectometry [11,12], state estimation
[13] and sparse measurements techniques [14,15]. Even though they
all have their own advantageous features, their applicability is limited
when it comes to SC due to their unique electro-magneto-thermal
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properties. For example, impedance-based methods are not suitable due
to the dynamically changing impedance of SCs during faults which
can lead to inaccurate fault location estimation. TW-based methods
have been proven to provide accurate estimation of the fault position
along the transmission lines by identifying the TW reflections and the
time required for the wave to travel to the measuring point [16,17].
However, their implementation is accompanied by the installation
of specialized and costly equipment (i.e., sensors, GPS etc.). Time–
frequency domain reflectometry has been reported in the literature
for the real-time abnormality diagnosis (i.e, fault detection and fault
location) of SCs [18]. However, the proposed scheme requires the
addition of measuring components necessary to measure independently
the reflected signals generated by each phase, resulting in higher
cost. Furthermore, validation studies do not consider the dynamically
changing impedance of the layers of SC during quenching. Additionally,
authors in [19] propose a Stepped Frequency Wave Reflectometry
(SFWR) method for the identification of the fault location in joints,
dielectric and other SC parts. The cable under-test is a single-phase
22.9 kV∕50 MVA SC with length of 7 m. The resulting fault location
estimation error is approximately 4.55%, while the proposed method
has not been scrutinized against a variety of fault conditions, account-
ing for different fault types, locations or highly resistive faults. The
same authors investigate the challenge of the fault localization on SCs
in [20], by applying a fundamental Time–Frequency Domain Reflec-
tometry (TFDR) approach on a similar prototype SC with length of 7 m.
The accuracy of the fault location identification is increased, however,
the fault location estimation error is affected by the SC temperature and
the performance of the developed method has not been confirmed for a
wide range of fault scenarios. An improved TFDR method incorporated
with filter-Ensemble Empirical Mode Decomposition (EEMD) noise
reduction is presented in [21] for a 50 m three-phase SC. The obtained
fault location estimation error is approximately 0.01%. Nevertheless,
the conducted work considered only the case of a solid three-phase
fault. Therefore, it is evident that the technical literature is limited
on the reflectometry-based approaches for the fault localization on SCs
and the proposed methods have not been validated for multiple fault
conditions (i.e., various fault locations along SC length, highly resistive
faults), SCs with longer length and other factors which affect the accu-
rate estimation of the fault position such as the noisy measurements.
Furthermore, the need for external equipment and high sampling rates
can be taken as drawback of these methods. Additionally, there are
reported studied which investigate the impact of the Superconducting
Fault Current Limiters (SFCLs) on the performance of the fault location
schemes [22]. However, the influence of SFCLs on the power systems
fault localization problem is out of scope of the presented work.

The increasing penetration of CIG-based technology has created
the necessity for continuous network monitoring and installation of
sophisticated metering equipment. On that front extensive research has
started to be pursued regarding sparse measurements-based fault loca-
tion schemes. Such techniques are based on the comparative analysis
between actual voltage measurements acquired from multiple points
along the network and simulated voltage signals for all potential fault
cases. The fault location is estimated according to the optimal match
between the two voltage signals. The influence of the monitoring de-
vices distribution on the fault location accuracy is the major challenge
of these methods. Insufficient and low cost devices leads to a compro-
mise of fault location scheme accuracy and applicability. Furthermore,
the development of synchro-phasor-based state estimation technologies
could be a promising scheme for fault location application if the high
cost of the required hardware is overcame.

To mitigate relevant challenges emanating from changes in power
grids, accounting for the physical infrastructure and information layer,
more advanced approaches have been emerged, based on data-driven
Artificial Intelligence (AI) techniques. The potentials of AI-based
schemes for fault diagnosis applications have gained popularity in the
2

energy sector due to their capability to expose quantities which are
invisible in direct measurements and extract hidden patterns from the
available data. Relevant deployment of AI technology for fault location
applications include the utilization of Convolutional Neural Networks
(CNNs) [23], Long Short-Term Memory (LSTM) [24], Support Vector
Machines [25] and XGBOOST regressors [26]. Furthermore, by taking
advantage of the tangible benefits provided by the AI techniques, many
hybrid fault location schemes have been proposed in the technical
literature which are based on the combination between feature extrac-
tion techniques, such as Wavelet Transform, and AI algorithms [27] or
the enhancement of conventional methods performance with pattern
recognition techniques [28]. Based on the literature review all the
AI-based fault location methods provide high fault location accuracy
and are robust against a variety of fault conditions. However, most of
the reported methods have been evaluated based only on the testing
dataset and do not consider previously unseen scenarios out of the
initial dataset. Furthermore, no none of the proposed schemes has been
scrutinized against small increments of fault location in order to vali-
date the discrimination capability of the AI algorithms. Additionally,
to the authors best knowledge despite the abundance of the proposed
fault location schemes in the literature, there is no reported research
which copes with the fault localization on SCs [29].

One major issue of the AI fault location schemes is the data avail-
ability and the computational requirements. As future power systems
become data-rich, the emergence of Wide Area Measurement systems
(WAMs) based on PMUs allows the access to plentiful data, accelerating
the widespread adoption of data-driven applications. In regards to the
computational requirements, as the technology advances the computa-
tional burden is progressively minimized. Therefore, the adoption of the
AI-based methods in fault management applications presents unique
advantages which outweigh the aforementioned challenges.

Driven by the recent advancements in AI and the emerging integra-
tion of SCs in modern power grids, the presented research builds upon
the work conducted in [5] and addresses the challenges related to fault
location on SCs integrated within a system with penetration of CIGs.
For this purpose, authors developed a data-driven algorithm which
forms the fault location estimation on SCs to a regression problem,
utilizing image analysis techniques. The selection of the data-driven
method is based on the aforementioned limitations of the conven-
tional schemes and the ability of such techniques to acquire a deeper
understanding of complex system topologies such as those which in-
corporate SCs. The proposed scheme relies on the three-phase current
and voltage measurements only from one terminal of the SC and does
not require the installation of any additional equipment. The devel-
oped algorithm combines the transformation of time domain signals
to time-to-frequency domain (spectrograms) with Deep Learning (DL)
algorithm (i.e., CNNs) in order to perform the image analysis for the
fault location estimation. Even though image analysis has a plethora of
interesting features for power systems applications and is considered an
important field of the AI, there is a very limited number of publications
for fault location problems [30]. Image analysis techniques are utilized
to extract crucial features related to the power systems conditions based
on historical data, removing the need for complicated and expensive
phasor synchronous measurements equipment.

The optimal parameters of the developed algorithm have been
selected by utilizing the grid-search technique in order to reduce the
computational burden and improve the predictive capability of the
fault location scheme. Furthermore, for the training process the K-
fold validation technique has been adopted in order to eliminate the
dependence of the algorithm in the training dataset and increase the
generalization capability. The effectiveness of the proposed scheme
has been assessed and validated under a wide range of scenarios
including different fault types, fault resistance values and fault incep-
tion angles at various positions across the SC length. The high fault
location accuracy of the developed method has been confirmed under
extreme fault cases which considered high fault resistances, small fault

locations increments and the addition of noise in the original dataset.
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Fig. 1. Simplified structure of HTS tape.

The generalization capability of the proposed method has been further
highlighted by considering image perturbation techniques during the
training process. Additionally, its superiority has been verified by the
comparison with other widely-used data-driven algorithms reported in
the literature.

The main contributions of the proposed work can be outlined as
follows:

• Development of a novel data-driven fault location scheme which
addresses the challenge of the fault localization on SCs, by pre-
senting increased generalization capability and higher fault lo-
cation estimation accuracy compared to other data-driven al-
gorithms. Furthermore, the proposed scheme presents enhanced
scalability and deployability due to the eliminated need for syn-
chronized measurements.

• Accurate fault localization on SCs, unaffected by the quenching
phenomenon (i.e., variable resistance). Conversely to the existing
fault location methods for SCs the developed scheme has been
verified against various fault conditions, considering highly re-
sistive faults, very small increments of fault location and noisy
data.

2. Numerical modelling of SC

This section presents the modelling of the SC, which starts from the
design of the HTS tapes and builds up to the three-phase cable. The
SC was modelled in Matlab/Simulink, considering the electro-thermal
properties of the HTS tapes in order to provide a realistic representation
of the quenching during the transient conditions. It must be noted
that the adopted modelling process constitutes an improvement of the
procedure reported in [5].

2.1. Numerical modelling of HTS tapes

The electro-magneto-thermal properties of the HTS tapes, which
are constructed as coated conductors, dominantly determine the char-
acteristics of the SCs [4]. The main factors which affect the electro-
magneto-thermal features of the HTS tapes include the three critical
margins accounting for the critical current, 𝐼𝐶𝑟, the critical tempera-
ture, 𝑇𝐶𝑟, and the working magnetic field, 𝐵. A simplified structure of
a commercially available second generation (2𝐺) HTS tape has been
modelled in the presented research according to [5,31] specifications.
The employed tapes are discretized into different layers accounting
for a superconducting layer, which is made of Yttrium Barium Copper
Oxide (YBCO), two stabilizer layers made of copper, one substrate layer
and one silver layer. The electric equivalent of one HTS tape is depicted
in Fig. 1 and consists of parallel-connected resistances corresponding to
each layer.

The core of the SC consists of the former which is modelled as a
stainless steel tube [4] and acts as an alternative current path, along
with the copper stabilizer layers during the quenching. Specifically,
copper stabilizer layers and the former are ultimately utilized as means
to protect the cable from excessive thermal stresses leading to its de-
struction. Under the normal operating conditions, the resistivity of the
3

YBCO layer is negligible and consequently current flows predominantly
through this layer. However, during the transient conditions, once the
current flowing through the HTS tapes, reaches values higher than the
𝐼𝐶𝑟 and the quenching starts, the resistivity of the YBCO layer presents
a dramatic increase which results in a subsequent increase in the tem-
perature, 𝑇 , of the SC. The HTS tapes start to lose their superconducting
properties. If the generated Joule heat is not adequately removed by the
cooling systems, 𝑇 , exceeds the value of the 𝑇𝐶𝑟, HTS tapes enter into
the highly resistive state and the fault current is diverted from the YBCO
layer to the copper stabilizer layers and the former. In the presented
research even distribution of 𝐼𝐶𝑟 has been adopted for the tapes based
on [3]. The superconducting phenomenon is modelled via the 𝐸 − 𝐽
law, given by (1), which describes the dependence of the non-linear
resistivity of the YBCO layer on the critical current density, 𝐽𝐶𝑟, and
the temperature, 𝑇 . The 𝐽𝐶𝑟 as a function of 𝑇 can be derived from
(2) [3,5], while the critical current, 𝐼𝐶𝑟, of the SC is defined as the
product of the 𝐽𝐶𝑟 and SC cross section as shown in (3):

𝜌𝑌 𝐵𝐶𝑂 =
𝐸𝐶𝑟

𝐽𝐶𝑟(𝑇 )
⋅
(

𝐽
𝐽𝐶𝑟(𝑇 )

)𝑛−1
(1)

𝐽𝐶𝑟(𝑇 ) =

{

𝐽𝐶0(𝐵) ⋅ (
(𝑇𝐶𝑟−𝑇 (𝑡))𝑎

(𝑇𝐶𝑟−𝑇0)𝑎
) for 𝑇 < 𝑇𝐶𝑟

0 for 𝑇 ≥ 𝑇𝐶𝑟
(2)

𝐼𝐶𝑟 = 𝐽𝐶𝑟 ⋅ 𝐴𝑆𝐶 (3)

where 𝐸𝐶𝑟 denotes the critical electric field at which the DC current
is defined and is equal to 1 μV∕cm, 𝑛 is a superconductor macroscopic
property related to the steepness of the 𝐸 − 𝐽 law and has been set
to 30 [32]; 𝐽𝐶𝑟0 is the critical current density (A∕m2) at the initial
temperature 𝑇0 = 70 (𝐾) and the working magnetic field 𝐵 (𝑇 ); 𝑎 has
been set to 1.5 based on [4] and indicates the density exponent of the
YBCO; 𝐴𝑆𝐶 (mm2) is the cross section of the SC.

When the HTS tapes quench, start to lose completely their super-
conducting properties and present high values of resistivity (higher
compared to normal conductors in cryogenic conditions [33]). On that
front, for protection purposes, HTS tapes are built as a composite,
consisting of superconducting layers and normal conducting stabilizer
materials such as copper. During the quenching conditions, the fault
current is diverted into the copper stabilizer layers and the former. This
is known as the current sharing process. The amount of the current
diverted to the copper stabilizer layers and the former is dependent on
the electrical properties of the SC at the highly resistive state and of
the stabilizer/former.

The current flowing through the copper stabilizer layers and the
former causes Joule heating generation which subsequently results in
temperature rise. At the highly-resistive state, the resistivity of the
copper stabilizer layers changes as a function of 𝑇 based on (4) [3]
(the resistivity of the former will be analysed in Section 2.2):

𝜌𝐶𝑢 = (0.0084 ⋅ 𝑇 − 0.4603) ⋅ 10−8, 250 K > 𝑇 ≥ 70 K (4)

For modelling purposes, the resistance of YBCO layer (𝑅𝑌 𝐵𝐶𝑂) and the
copper stabilizer layers (𝑅𝐶𝑢) have been modelled as variable resistors
connected in parallel, based on (1) and (4), respectively; the resistance
of the silver (𝑅𝐴𝑔) and substrate layers (𝑅𝑠𝑢𝑏) have been neglected.
However, the total thickness of the substrate and silver layers have
been considered for the thermal modelling and analysis of the SC. The
geometrical characteristics of the HTS tape utilized in this work are
presented in Table 1 [5].

2.2. Structure of the SC

Based on the design of the HTS tapes presented in the previous
subsection, a SC has been devised with a cross-sectional structure
as depicted in Fig. 2. The SC includes three single-phase conductors
contained in three separate cryostats.

Each phase consists of the copper former and several conducting
layers of HTS tapes, which are wound around the former, along with
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Table 1
Geometrical characteristics of HTS tapes.

Parameter Value

Thickness of YBCO layer 1 μm
Thickness of Copper layer 40 μm
Thickness of substrate layer 60 μm
Thickness of silver layer 3.8 μm
Tape width 4 mm

Table 2
Geometrical characteristics of SC.

Layer Outer radius

Steel (former tube) 16.5 mm
HTS conductor 16.64 mm
Electrical insulation 18.64 mm
HTS shield 18.78 mm
Heat insulation 21.78 mm

Fig. 2. Cross-section of the SC model.

an insulation layer and a HTS shield layer. Polypropylene Laminated
Paper (PPLP) cold dielectric layer was considered between the HTS
conducting and the shielding layer, acting as electric insulation, while
permitting the SC to operate at relatively low temperatures. The SC
cooling system is composed of a cryostat with Liquid Nitrogen (𝐿𝑁2) at
65–70 K, which is circulated in the cable loop to refrigerate the SC and
operate below the 𝑇𝐶𝑟 [3]. The former is utilized for 𝐿𝑁2 channel. As it
has already mentioned in Section 2.1 the main purpose of the former is
to provide a conducting current path (along with the stabilizer layers)
during the quenching and also mechanical support to the SC in order
to allow the conducting layers to preserve their shape. The resistivity
of the former, which is made of stainless steel, has been considered to
be temperature-dependent and its value is given by (5) [4]:

𝜌𝑠𝑡𝑒𝑒𝑙 = 1.193 ⋅ 10−6 − 7.529 ⋅ 10−7 exp(−𝑇 ∕647.113) (5)

The geometrical characteristics of the SC are included in Table 2.
The dynamically changing equivalent resistance of the SC is dependent
on the resistivity of the YBCO layer (given by (1)), the copper stabilizer
layers (given by (4)) and the copper former (given by (5)) and is
calculated according to (6), for all the operating stage of the SC:

𝑅𝑒𝑞 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑅𝑌 𝐵𝐶𝑂 for 𝑇 < 𝑇𝐶𝑟 𝑎𝑛𝑑 𝐼 < 𝐼𝐶𝑟

𝑅𝑌 𝐵𝐶𝑂∕∕𝑅𝐶𝑢∕∕𝑅𝑠𝑡𝑒𝑒𝑙 for 𝑇 < 𝑇𝐶𝑟 𝑎𝑛𝑑 𝐼 > 𝐼𝐶𝑟

𝑅𝐶𝑢∕∕𝑅𝑠𝑡𝑒𝑒𝑙 for 𝑇 > 𝑇𝐶𝑟 𝑎𝑛𝑑 𝐼 > 𝐼𝐶𝑟

(6)

The per-unit length self and mutual capacitances, 𝐶, and induc-
tances, 𝐿, have been calculated based on the general formulation
provided in [34], considering the conducting layers and the shield lay-
ers of each phase. Specifically, the helically wound HTS tapes around
the former, result in the generation of an axial magnetic field which
4

Fig. 3. Overview of the electro-thermal modelling.

subsequently causes a solenoid effect. The impact of the solenoid
effect on the 𝐿 calculation has been considered based on the approach
proposed in [35].

2.3. Thermal modelling

In the presented research, the electro-thermal analogy is employed
in order to simplify the coupling between the thermal and electrical
phenomena. Therefore, currents are translated into Joule heating and
the resulting temperature variations into changes to the properties of
the SC. The temperature-dependent properties of the SC include: (i)
the heat capacity, 𝐶, of the YBCO layer, the copper stabilizer layers
and the former, which represents the generated Joules per one Kelvin
degree [5], (ii) the critical current density, 𝐽𝐶𝑟, given by (2) and
(iii) the resistivity of the YBCO layer, the copper stabilizer layers
and the former given by (1), (4) and (5), respectively. The modelling
methodology developed by the authors in [5] has been adopted and
enhanced to include the temperature-dependance of the SC properties.
Fig. 3 presents an overview of the modelling process, as developed in
Matlab/Simulink.

To achieve high-fidelity temperature-dependent modelling, the cal-
culation of the temperature at each time step is based on an iterative
process and is dependent on (i) the temperature, 𝑇𝑘, from the previous
time step, (ii) the current, 𝐼𝑘, flowing through the SC, and (iii) the
equivalent resistance, 𝑅𝑒𝑞 , of the SC. An error tolerance is also applied
in the thermal model which determines the settling temperature at each
time step, as given by (7):

𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 ≥
𝑇𝑗,𝑘+1 − 𝑇1,𝑘+1

𝑇1,𝑘+1
⋅ 100(%) (7)

At the end of each time-step, the temperature-dependent properties
of the SC are updated accordingly to the 𝑇𝑘 value. In the developed
model, the tolerance value has been set to 0.01%.

3. Power system modelling & SC fault characterization

Prior to the introduction of the developed fault location method,
it is important to understand how the SCs would be integrated to the
wider power system and investigate their response to faults.
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Fig. 4. Test network.
Table 3
Parameters of the SC.

Parameter Value

Number of tapes 𝑛𝑡𝑎𝑝𝑒𝑠 25
Operating temperature 𝑇0 70 K
Critical temperature 𝑇𝐶𝑟 92 K
Critical current per tape 𝐼𝐶𝑟 250 A
Cable length 𝑙 10 km
Rated voltage 𝑉 33 kV
Rated capacity 𝑆 202 MVA

3.1. Power system under test

The transient performance of the SCs, has been investigated by
conducting Electromagnetic Transient (EMT) simulation studies. For
this purpose, the power system under test, depicted in Fig. 4, has been
developed in Matlab/Simulink.

The test network consists of an equivalent transmission network
(represented by a voltage source in series with an impedance), con-
nected to bus 𝐵𝐺𝑟𝑖𝑑 and two different generation units (i.e., a SG and a
CIG) both connected to bus 𝐵𝑆𝐶 . The SG unit has nominal capacity
of 102 MVA. For the modelling of the SG, a standard salient pole
synchronous machine has been utilized along with the integration of
Automatic Voltage Regulator (AVR), Power System Stabilizer (PSS) and
over-excitation limiter. The CIG unit (i.e., a wind farm cluster) has
total capacity of 100 MVA and constitutes of permanent magnet SGs
connected via CIGs. The incorporated control scheme for the converters
is the standard d-q axis current injection (DQCI).

A 10 km SC has been integrated between 𝐵𝐺𝑟𝑖𝑑 and 𝐵𝑆𝐶 at 33 kV for
the power transmission from the generation units to the wider electrical
grid. Measurement of three-phase voltages and currents are captured at
the one end of the SC as can be seen in Fig. 4. The parameters of the
developed SC are presented in Table 3.

3.2. Transient performance of the SC

The response of the AC SC was investigated under different fault
conditions by conducting an iterative simulation-based fault analysis.
The time step of the simulation is equal to 50 ⋅ 10−6 s (20 kHz). For this
purpose, all fault types have been simulated, accounting for three-phase
(3-Ph), three-phase to ground (3-Ph-G), phase-to-phase (Ph-Ph), phase-
to-phase to ground (Ph-Ph-G) and phase-to-ground (Ph-G), considering
different values of fault resistance 𝑅𝑓 , (within the range of 0 Ω up to
300 Ω), and varying fault position. Two representative fault scenarios
have been selected for the transient analysis of the SC in order to
demonstrate the quenching phenomenon and the impact of the 𝑅𝑓
on the quenching of the HTS tapes. Indicatively, Fig. 5 presents the
response of the SC during a Ph-Ph-G solid fault, occurring at 40% of
the SC length triggered at 𝑡 = 3.06 s.
5

During the steady-state, pre-fault conditions, SC operates at 𝑇𝑜, the
resistance of the YBCO layer is approximately zero, providing a current
path with approximately zero losses. The current flowing through the
YBCO layer is shown in Fig. 5a. The fault is applied at 𝑡 = 3.06 s. When
the value of the fault current reaches the value of the 𝐼𝐶𝑟, the quenching
process of the HTS tapes is initiated and the SC develops a longitudinal
resistive voltage [33]. Under these conditions, the fault current starts
flowing through the copper stabilizer layers and the former (current
indicated as 𝐼𝑠ℎ𝑢𝑛𝑡 in Fig. 5b) at 𝑡 = 3.064 s. The fault current diversion
results in an increase in the resistivity of copper stabilizer layers and
former based on (4) and (5), respectively. Fig. 5c shows the change in
the equivalent resistance of the SC (which reaches values over 8 Ω).
Due to the increase in the resistance of the SC during the transition to
the highly resistive state, the magnitude of the perspective fault current
is reduced. Fig. 5d demonstrates the resulting rise in the temperature
of the SC, which reaches values higher than the critical temperature
𝑇𝐶𝑟 = 92 K.

Furthermore, for the design of the fault location scheme, it is
essential to consider resistive faults, which are anticipated to affect the
resulting voltage and current signatures. Fig. 6 depicts the response of
the SC under a Ph-Ph-G with 𝑅𝑓 = 15 𝛺, occurring at 40% of the SC
length. As depicted in Fig. 6a and Fig. 6b, during a resistive fault, the
HTS tapes do not quench as the resulting fault current is very low.
The YBCO layer remains to superconducting state and therefore there
is no current sharing with the copper stabilizer layers and the former.
Subsequently, the equivalent resistance of the SC is approximately zero
(Fig. 6c) and the temperature is sustained to the operating temperature
(i.e., 𝑇0 = 70 K). These results indicate that an increase in 𝑅𝑓 , leads
to reduced prospective fault currents (lower than the 𝐼𝐶𝑟) and the
quenching process is significantly compromised.

The above analysis highlights that the deployment of the SC intro-
duces a dynamically varying equivalent impedance of the SC, which af-
fects the resulting fault current signatures and the fault resistance pres-
ence jeopardizes the quenching of the HTS tapes. Such behaviour in-
troduces additional challenges to fault management of SCs, accounting
for protection and fault localization.

4. Proposed fault location algorithm

The developed fault location scheme utilizes single-ended current
and voltage signatures from the SC, which are available locally from the
measuring equipment (there is no need for synchronized measurements
from both ends). The signals are imported to a spectral analysis tool and
are transformed from time-domain to time–frequency domain. Image
analysis techniques combined with DL tools are deployed to estimate
the fault location along the SC length.
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Fig. 5. SC performance under a Ph-Ph-G solid fault at 40% of SC length: (a) Currents through YBCO, (b) Currents through copper stabilizer layers and former, (c) Equivalent
esistance of SC, (d) Temperature of SC.
Fig. 6. SC performance under a Ph-Ph-G fault with 𝑅𝑓 = 15 Ω at 40% of SC length: (a) Currents through YBCO, (b) Currents through copper stabilizer layers and former, (c)
Equivalent resistance of SC, (d) Temperature of SC.
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4.1. Stages of the proposed faults location scheme

A four-stages methodology has been incorporated for the develop-
ment of the fault location scheme as illustrated in Fig. 7. The following
subsections provide a detailed explanation of each stage. To aid the
clarity of the description, an investigated scenario of a 3-Ph-G solid
fault, at 50% along the SC length is discussed.
6

a

4.1.1. Stage I - signal acquisition
Measurements of three-phase voltages and currents from one end of

the SC are captured with sampling frequency of 20 kHz. The investiga-
ion of different sampling frequency values is presented in Section 5.4.
elevant analysis conducted revealed that five cycles (one pre-fault and

our during the fault) of data would be more than adequate for this
pplication. The recorded data are filtered via relevant anti-aliasing
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Fig. 7. Schematic diagram of the CNN-based fault location scheme.

filters, normalized and packaged into appropriate time windows to be
processed for spectral analysis at the following stage of the algorithm.
Fig. 8 shows the obtained time domain fault current and voltage
waveforms for the tested fault case.

4.1.2. Stage II - signal to image transformation
At this stage, the time domain signals (i.e., voltages and currents),

are transformed to time–frequency domain in order to produce 2𝐷 im-
ages. Specifically, the fault current and voltage waveforms, are utilized
to produce the corresponding spectrograms, which are plotted within a
time–frequency plane. The image transformation has been selected as a
powerful feature extraction tool in order to reveal hidden information
in the time domain data.

To compute the time-dependent spectrum, the non-stationary signal
is divided into shorter segments of equal length. The length of each
segment, specifies the time resolution and must be smaller or equal
to the signal duration. In the developed method, each signal has
been divided into 8 segments of 250 samples each, with 50 samples
overlap. Then, a window-based Short-Time Fourier Transform (STFT) is
applied on each segment to compute the corresponding spectrum [36].
Finally, the segments spectra are concatenated to construct the spec-
trogram [36], which enables the localization of frequency in time, by
means of magnitude-dependent colourmap. Fig. 9 shows the spectro-
grams derived from the three-phase currents and voltages of Fig. 8.

4.1.3. Stage III - image pre-processing
The six resulting spectrograms with dimension (𝐻 × 𝑊 ), where 𝐻

is the height and 𝑊 is the width of the image, are stacked together to
form a multi-layer image with dimensions (𝐿 × 𝐻 × 𝑊 ). Parameter 𝐿
denotes the number of over-layered images which corresponds to 𝐿 = 6
in this application. The resulting stacked image will be used as input to
the DL model at the following stage. Fig. 10 represents a stacked image
stemming from the over-laying of the spectrograms depicted in Fig. 9.

4.1.4. Stage IV - estimation of fault location
At the final stage of the algorithm the fault location is estimated.

The stacked images for all the fault scenarios are utilized as inputs to
the DL-based network. The fault localization on the SCs is formed as
a regression problem, where the DL network provides the value of the
estimated fault location at its output.

Taking as a reference the bus 𝐵𝑆𝐶 , the error of the fault localization
can be calculated according to (8):

𝑒𝑟𝑟𝑜𝑟𝐹𝐿[%] =
|

|

|

|

𝐶𝐹 − 𝐴.𝐶𝐹
𝐿𝑆𝐶

|

|

|

|

⋅ 100(%) (8)

where 𝐶𝐹 is the predicted fault location from the DL-based network,
𝐴.𝐶 is the actual fault location and 𝐿 is the SC total length.
7

𝐹 𝑆𝐶
A comprehensive analysis of different DL-based networks has been
conducted and eventually the results revealed that CNN are the most
robust and effective algorithms for image processing. Furthermore,
the motivation of utilizing CNN algorithm is their ability to cap-
ture sequence patterns in the input data. The detailed analysis of the
developed CNN is presented in the following subsections.

4.2. Convolution Neural Network

CNN is a type of Artificial Neural Network (ANN) which presents
outstanding performance when dealing with image analysis tasks. CNN
combines the ability of feature extraction and pattern recognition and
is capable of preserving the spatial or positional relationships between
input data points. Therefore, CNNs have been widely applied to power
systems applications for fault diagnosis [23]. Typically, a CNN is con-
structed by an input layer, a series of convolution layers with filters
(kernels), the pooling and the fully connected (FC) layers.

The convolution layer is utilized to extract local features of the input
images, by applying the convolution operation. In principle, convolu-
tion operation is a linear operation of multiplication and addition of
the convolution filters (kernels) with the corresponding elements of the
input feature map. The first convolution layer is utilized for the extrac-
tion of the low-level features of the input images accounting for image
edges, gradient orientation, etc. With the addition of more convolution
layers the high-level features are captured as well, providing an overall
understanding of the input images. If the input data are formed to
matrix 𝑛 × 𝑛 and the convolution kernel is 𝑘 × 𝑘, the output is a 𝑚 × 𝑚
matrix and (9) is satisfied [37]:

𝑚 = 𝑛 − 𝑘 + 1 (9)

The convolution operation is based on the formula described in (10):

𝑌 𝑙
𝑜 = 𝑓 (

∑

𝑖∈𝑚
𝑌 𝑙−1
𝑜 ⋅𝐾 𝑙

𝑖𝑜 + 𝑏𝑙) (10)

where 𝑌 𝑙
𝑜 denotes the output of the 𝑙th layer; 𝑌 𝑙−1

𝑜 is the input of the
𝑙th layer; 𝐵 is the offset; 𝐾 denotes the kernel element and 𝑓 is the
activation function. In the presented research ReLU has been selected
as activation function for the convolution layers.

The purpose of the pooling layer is to scale data from the previous
layer, reduce the data dimension and consequently reduce computation
time and prevent overfitting [30]. The output of the convolution and
the polling layer is fed into a linear fully connected feed forward layer,
where the associated activation function provides the desirable output.

4.3. Selection of CNN model

For the development of the fault location scheme several well-
known CNN architectures, proposed by the computer vision commu-
nity, have been evaluated in order to select the one which provides
the most accurate fault location estimation [38]. The fault scenarios
obtained through the simulation analysis conducted in Section 3.2,
were utilized to produce the corresponding spectrograms and create
the training data base. For the data pre-processing the PyTorch open
source machine learning library has been utilized. It is worth reiterating
that the CNN models were trained and tested for all fault types, for
different values of 𝑅𝑓 and varying fault location with an increment of
10% of the SC length. Consequently, a data set of 415 transient events
has been created, from which 60% was used to train the CNN models,
20% was used for validation purposes, while the remaining 20% for
testing purposes.

For the selection of the (i) optimum hyperparameters, accounting
for the batch size and the learning rate, and (ii) the best training model
of each CNN model, the Grid-Search (GS) five-fold Cross-Validation
(CV) technique has been adopted. Specifically, the CNN models have
been trained and validated for different combinations of hyperparam-
eters. To provide a deeper insight, five-fold CV technique works by
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Fig. 8. Voltage and current signatures during a 3-Ph-G solid fault at 50% of SC length: (a) three phase currents, (b) three phase voltages.
Fig. 9. Current and voltage spectograms for a 3-Ph-G solid fault at 50% of SC length.
Fig. 10. Stacked image.

initially splitting the dataset into five folds (i.e., subsets). During each
iteration four folds are utilized for the training process and the remain-
ing one fold for the validation. Therefore, each CNN model is trained
and validated five times, considering each time different combinations
of hyperparameter. The optimum combination of the hyperparameters
gives the model with the best performance and is selected according
to the five-fold CV score (i.e., average of the scores derived by each
subset). In this research the mean fault location estimation error, has
8

been considered as five-fold CV score and it is given by (11):

𝑒𝑟𝑟𝑜𝑟𝐹𝐿[%] =
1
𝑁

𝑁
∑

𝑖=0
|(
𝑦𝑖 − 𝑦𝑖
𝐿𝑆𝐶

)| ⋅ 100(%) (11)

where 𝑦𝑖 corresponds to the estimated fault location, 𝑦𝑖 denotes the
actual fault location and 𝑁 is the total number of data points.

The CNN models have been trained by the back propagation gra-
dient descent method and the Adam optimizer utilized as the opti-
mization algorithm. For each CNN model the combination with the
lowest 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 has been selected. At the next stage the final trained
CNN models (with the best combination of the hyperparameters) were
tested on the testing dataset, utilizing again the 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 as evaluation
metric. The obtained results are presented in Table 4.

It is worth highlighting that the Inception-v3 CNN model with the
following final hyperparameters: batch size = 4, learning rate = 0.001,
presented the lowest 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 and subsequently was selected as the best
CNN model.

The layers of the Inception-v3 model are demonstrated in Table 5,
along with the input size of each layer. The input image is 510 × 580
with 6 channels. At the output of the developed CNN model there is a
fully-connected layer which yields the numerical value of the predicted
fault location, as a percentage of the SC length.
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Table 4
Tested CNN models and their performance on the
testing dataset.

CNN model 𝑒𝑟𝑟𝑜𝑟𝐹𝐿(%)

Inception-v3 0.70
ResNet50 3.16
ResNet101 2.76
ResNet152 3.02
Densenet 4.20
VGG11 0.97
VGG13 1.25
VGG16 0.88
VGG19 0.98

Table 5
The outline of the proposed CNN model.

Layer type Input size

Conv 510 × 580 × 6
Conv 254 × 289 × 32
Con padded 252 × 287 × 32
Pool 252 × 287 × 64
Conv 125 × 143 × 64
Conv 123 × 141 × 80
Conv 61 × 70 × 192
3× Inception 61 × 70 × 288
5× Inception 30 × 34 × 768
2× Inception 14 × 16 × 1280
Pool 14 × 16 × 2048
Fully-connected 1 × 1 × 2048

5. Performance evaluation of proposed fault location scheme

To examine the robustness of the proposed fault location algorithm,
its performance has been evaluated under the occurrence of different
fault scenarios with varying fault location. Furthermore, the impact
of the 𝑅𝑓 , the small increments of fault location, the fault inception
angle, the noise and the sampling frequency on the effectiveness of the
proposed scheme has been investigated. The simulation-based results
are analysed in the following subsections.

5.1. Fault location results

To achieve an overall performance assessment of the proposed
scheme, its fault location estimation capability was evaluated based
on additional faults, which have not been distributed equally along
the SC length. It shall be highlighted that these fault locations do
not belong to initial dataset. The purpose for this is that any fault
location scheme must present increased generalization capability and
be able to provide accurate fault locations estimation with inputs not
necessarily similar to the training dataset. Table 6 shows the results
of the fault location estimation by presenting the values of the actual
fault location, the predicted fault location at the CNN output along
with the 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 derived by (8). The results validate the effectiveness of
the proposed scheme. It is important to highlight that the CNN model
achieves accurate fault location estimation even in the case of the close-
up faults (i.e, faults occurring close to the head or end the SC) and
under the influence of highly resistive faults. Based on the obtained
results in Table 6 the lowest 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 is 0.01% and the 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 of the
roposed algorithm for the presented scenarios is 0.34%.

Furthermore, Fig. 11 presents the performance of the proposed fault
ocation scheme under the influence of 3-Ph-G faults occurred at every
% of SC length for different values of 𝑅𝑓 . The sensitivity analysis with
espect to SC length shows that the 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 lies within the range of
.009% and 1.108% and consequently verifies the increased accuracy
n the fault location estimation.
9

w

.2. Effect of small increments of fault distance

An incremental change of 10 m in fault location has been investi-
ated in order to assess the sensitivity of the proposed scheme to small
ariations of the actual fault position. Specifically, the effectiveness of
he fault location scheme has been evaluated for fault positions within
he range of 5.9 km to 6.1 km with steps of 10 m. By changing the fault
ocation by a small increment of 10 m, the influence of randomly varied
ampling instant is also investigated. Fig. 12 shows the percentage fault
ocation errors derived for this range of the fault positions during a 3-
h-G solid fault. It is evident that the 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 fluctuates between 1.2%
o 0.1% which confirms the capability of the algorithm to provide high
stimation accuracy for very small increments of fault location (in the
ange of 10 m).

.3. Effect of fault inception angle

In order to scrutinize the performance of the CNN algorithm under
ifferent values of fault inception angles 𝛿𝑓 , a Ph-Ph-G fault has been
pplied at 65% of the SC length for 𝛿𝑓 from 0 up to 180 degrees with
tep of 30 degrees. The main scope of this investigation is to evaluate
he immunity of the fault location algorithm to variations in the 𝛿𝑓 and
ubsequently in the time instant in the electric cycle when the fault
ccurs. The acquired results are presented in Fig. 13 and confirm that
he estimation capability of the proposed algorithms is not affected by
he changes in fault inception angle, yielding 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 equal to 0.27%
or all the investigated cases.

.4. Effect of sampling frequency

The fault location scheme has been additionally tested with re-
pect to the sampling frequency. In particular, the performance of the
roposed technique was evaluated for a series of testing scenarios, con-
idering sampling frequencies from 20 kHz (i.e., the selected sampling
requency for the presented studies) and lower down to the 5 kHz.
able 7 shows the resulting 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 from the conducted studies for
ome representative scenarios. As it can be seen the fault location
stimation accuracy is affected by the value of the sampling frequency.
s the value of the sampling frequency decreases below the 20 kHz,

he 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 increases and the performance of the developed scheme is
eopardized. The results reveal the requirements and the limitations of
he developed method regarding the sampling frequency. For practical
C applications, the lowest sampling frequency which would lead to a
recise fault location estimation is 20 kHz.

.5. Effect of noise

In practical deployment of SCs, noise can be caused by power
uality issues, transducers or modulators and constitutes one of the
ost adverse factors which can potentially affect the accuracy of the

ault location schemes. Furthermore, many studies have been focused
n the compensation of the Current Transformer (CT) saturation on the
erformance of fault location schemes [39,40]. In the presented work
he investigation of CT saturation phenomenon is out of scope, as it is
nticipated that during the practical implementation of the proposed
cheme, more advanced measuring solutions can be utilized (i.e., fibre
ptics) [41]. To exclude the ideal measuring capability and assess
he robustness of the proposed algorithm under these conditions, the
ime domain current and voltage measurements of the testing scenarios
ave been subjected to artificial noise. Indicatively, Fig. 14 demon-
trates the spectrograms of Phase A current resulting from time domain
urrent signal without noise and with 100 dB signal-to-noise ratio
SNR), respectively, for a 3-Phase-G solid fault at 5.3 km of SC length.
able 8 presents the obtained 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 with respect to increasing noise
mplitude for 6 representative fault scenarios from Table 6 (scenarios

ith the lowest and highest 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 prior to the noise addition).
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Table 6
Fault location 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 for the CNN-based fault location scheme.

Fault type 𝑅𝑓 (Ω) 𝐴.𝐶𝐹 (km) 𝐶𝐹 (km) error𝐹𝐿 (%) Fault type 𝑅𝑓 (Ω) 𝐴.𝐶𝐹 (km) 𝐶𝐹 (km) error𝐹𝐿 (%) Fault type 𝑅𝑓 (Ω) 𝐴.𝐶𝐹 (km) 𝐶𝐹 (km) error𝐹𝐿 (%)

3-Ph-G 0 0.4 0.36 0.4 3-Ph 0 0.52 0.559 0.39 Ph-Ph-G 0 7.8 7.9 1
3-Ph-G 0 2.2 2.212 0.12 3-Ph 0 2.39 2.397 0.07 Ph-Ph-G 0 2.4 2.48 0.8
3-Ph-G 0 8.7 8.62 0.8 3-Ph 0 7.76 7.77 0.1 Ph-Ph-G 0 2.6 2.62 0.2
3-Ph-G 0 9.96 9.961 0.01 3-Ph 0 6.6 6.622 0.22 Ph-Ph-G 0 8.95 8.915 0.35
3-Ph-G 2 5.2 5.31 1.1 3-Ph 2 3.13 3.149 0.19 Ph-Ph-G 2 9.97 9.865 1.05
3-Ph-G 2 8.4 8.41 0.1 3-Ph 2 7.14 7.112 0.28 Ph-Ph-G 2 0.91 0.816 0.94
3-Ph-G 5 8.7 8.72 0.2 3-Ph 5 9.9 9.908 0.08 Ph-Ph-G 5 6.3 6.29 0.1
3-Ph-G 5 2.1 1.998 0.2 3-Ph 5 7.97 7.915 0.55 Ph-Ph-G 5 0.9 0.815 0.85
3-Ph-G 15 3.6 3.69 0.9 3-Ph 15 4.99 5.1 1.1 Ph-Ph-G 15 1.8 1.75 0.5
3-Ph-G 15 4.2 4.25 0.5 3-Ph 15 8.37 8.35 0.2 Ph-Ph-G 15 2.71 2.627 0.83
3-Ph-G 200 3 3.009 0.09 3-Ph 200 2.48 2.448 0.32 Ph-Ph-G 200 1.61 1.54 0.7
3-Ph-G 200 9.2 9.221 0.21 3-Ph 200 5.98 5.978 0.02 Ph-Ph-G 200 9.52 9.487 0.33
3-Ph-G 250 9.98 9.981 0.01 3-Ph 250 9.13 9.161 0.31 Ph-Ph-G 250 4.48 4.592 1.12
3-Ph-G 250 0.98 9.923 0.57 3-Ph 250 2.99 3.05 0.6 Ph-Ph-G 250 1.13 1.098 0.32
3-Ph-G 300 0.14 0.146 0.06 3-Ph 300 0.45 0.454 0.04 Ph-Ph-G 300 0.02 0.024 0.04
3-Ph-G 300 6.17 6.156 0.14 3-Ph 300 4.32 4.441 0.9 Ph-Ph-G 300 8.92 8.941 0.21

Fault type 𝑅𝑓 (𝛺) 𝐴.𝐶𝐹 (km) 𝐶𝐹 (km) error𝐹𝐿 (%) Fault type 𝑅𝑓 (𝛺) 𝐴.𝐶𝐹 (km) 𝐶𝐹 (km) error𝐹𝐿 (%)

Ph-Ph 0 1.64 1.644 0.04 Ph-G 0 6.9 6.924 0.24
Ph-Ph 0 2.67 2.648 0.22 Ph-G 0 1.81 1.79 0.2
Ph-Ph 0 7.45 7.464 0.14 Ph-G 0 2.7 2.68 0.2
Ph-Ph 0 9.39 9.393 0.03 Ph-G 0 3.33 3.324 0.06
Ph-Ph 2 6.49 6.46 0.3 Ph-G 2 2.25 2.264 0.14
Ph-Ph 2 8.15 8.151 0.01 Ph-G 2 5.5 5.618 1.18
Ph-Ph 5 9.21 9.131 0.79 Ph-G 5 6.38 6.37 0.1
Ph-Ph 5 5.14 5.141 0.01 Ph-G 5 7.31 7.23 0.8
Ph-Ph 15 4.29 4.275 0.15 Ph-G 15 9.79 9.781 0.09
Ph-Ph 15 7.11 7.116 0.06 Ph-G 15 1.11 1.09 0.2
Ph-Ph 200 0.71 0.693 0.17 Ph-G 200 4.4 4.418 0.18
Ph-Ph 200 9.54 9.561 0.21 Ph-G 200 9.99 9.96 0.3
Ph-Ph 250 1.38 1.401 0.21 Ph-G 250 3.99 3.988 0.02
Ph-Ph 250 9.79 9.831 0.41 Ph-G 250 8.48 8.501 0.21
Ph-Ph 300 0.05 0.052 0.02 Ph-G 300 4.11 4.108 0.02
Ph-Ph 300 6.99 6.954 0.36 Ph-G 300 0.44 0.437 0.03
Fig. 11. Absolute percentage of fault location error for 3-Ph-G faults at each 5% of SC length for different values of fault resistance 𝑅𝑓 .
Fig. 12. Absolute percentage of fault location error with respect to 10 m increment of fault distance.
a
t
t

It can be observed that the increase in the noise level (higher level
f noise corresponds to lower value of dB) has a slight impact on the
𝑟𝑟𝑜𝑟𝐹𝐿. Specifically, the higher 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 is reported for SNR 30 dB.
owever, the resulting values of 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 remain within acceptable

imits without deteriorating the fault location estimation accuracy.
10

s

Therefore, the proposed fault location scheme presents immunity
gainst the additive noise to the time domain measurements of the
esting scenarios. Furthermore, this analysis highlights the capability of
he proposed algorithm to deal with more difficult testing scenarios and
ubsequently confirms that the developed CNN-based scheme does not
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Fig. 13. Impact of fault inception angle 𝛿𝑓 to fault location accuracy.
Fig. 14. Spectrograms obtained from time domain current measurements with and without noise.
Table 7
Fault location 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 of representative scenarios for different sampling frequency.

Fault type 𝑅𝑓 (Ω) 𝐴.𝐶𝐹 (km) 20 kHz 10 kHz 5 kHz

3-Ph-G 0 5.20 0.022 0.68 1.100
3-Ph-G 50 9.41 0.063 0.855 1.205
3-Ph-G 200 1.30 0.080 0.970 1.381
3-Ph 300 8.10 0.621 0.882 0.991
Ph-G 2 6.30 0.132 0.941 1.230
Ph-G 0 2.11 0.041 0.449 0.942
Ph-G 150 4.70 0.048 0.559 1.082
Ph-Ph-G 0 7.90 0.012 0.688 0.921
Ph-Ph 50 3.80 0.270 0.721 1.133
Ph-Ph 0 3.22 0.032 0.510 0.994

Table 8
Fault location 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 of representative scenarios with respect to additive noise on the
testing scenarios.

Fault type 𝑅𝑓 (Ω) 𝐴.𝐶𝐹 (km) Without noise 100 dB 60 dB 30 dB

3-Ph-G 0 8.80 0.010 0.056 0.107 0.200
3-Ph 2 5.20 1.100 1.130 1.191 1.286
Ph-Ph-G 0 7.80 1.000 1.056 1.109 1.198
Ph-Ph 300 0.02 0.040 0.091 0.147 0.242
Ph-G 2 5.50 1.180 1.228 1.289 1.210
Ph-G 250 3.99 0.020 0.073 0.154 0.253

face over-fitting issues and presents enhanced generalization capability.

5.6. Random masking and noise at the training dataset

In order to further evaluate the generalization capability of the
proposed algorithm, data perturbation techniques were applied to the
11
time–frequency domain signals of the training dataset. Those pertur-
bation techniques include the random masking and the addition of
random noise. Specifically, the spectrograms obtained at the Stage III
of the algorithm, have been subjected to masking, by hiding portions
of the image/spectrogram, and simultaneously to image noise.

Random masking is a widely used technique for computer vision
applications [42,43], according to which small patches of the input
image (the spectrograms in the presented work) are masked and set to
zero during the training process. This random removal of information
prevents the developed algorithm from being overly dependent on
certain features of the input. Additionally, the additions of random
image noise during the training process can be utilized to increase the
variability of the training dataset and mitigate the over-fitting of the
algorithm to the training dataset.

The 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 of the CNN-based fault location scheme on the testing
dataset (i.e., considering the random masking and the image noise
during the training process) has be found equal to 0.75%, which is
very close to that reported in Table 4 (considering the initial model
without perturbation techniques). Furthermore, the performance of the
CNN algorithm, with the random masking and the image noise, has
been assessed based on the previously unseen fault scenarios reported
on Table 6, similarly to the initial model. Some representative cases
are demonstrated in Table 9. The results revealed that the 𝑒𝑟𝑟𝑜𝑟𝐹𝐿
for each scenario is low and therefore the fault location estimation
accuracy remains high. Furthermore, the values of the resulting 𝑒𝑟𝑟𝑜𝑟𝐹𝐿
for the investigated scenarios are very close to those resulting from
the initial model (which does not consider the perturbation techniques
during the training process). Specifically, no notable improvement has
been reported regarding the fault location estimation accuracy and
for most of the cases the initial model provides more accurate fault
location estimation. For the investigated scenarios presented in Table 9,
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Table 9
Fault location 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 of representative scenarios considering perturbation techniques
uring the training process.
Fault type 𝑅𝑓 (Ω) 𝐴.𝐶𝐹 (km) 𝐶𝐹 (km) 𝑒𝑟𝑟𝑜𝑟𝐹𝐿(%)

3-Ph-G 0 8.7 8.61 0.90
3-Ph-G 2 3 3.095 0.95
3-Ph-G 250 9.98 9.979 0.01
3-Ph-G 300 6.17 6.157 0.13
3-Ph-G 5 2.1 2.122 0.22
3-Ph 5 9.9 9.892 0.08
3-Ph 250 9.13 9.087 0.43
3-Ph 0 7.76 7.739 0.21
3-Ph 2 3.13 3.148 0.18
3-Ph 0 2.39 2.384 0.06
Ph-Ph-G 5 6.3 6.307 0.07
Ph-Ph-G 0 2.6 2.572 0.28
Ph-Ph-G 2 9.97 9.879 0.91
Ph-Ph-G 0 7.8 7.910 1.10
Ph-Ph-G 200 9.52 9.475 0.45
Ph-Ph 2 8.15 8.153 0.03
Ph-Ph 5 5.14 5.141 0.01
Ph-Ph 2 6.49 6.456 0.34
Ph-Ph 15 7.11 7.102 0.08
Ph-Ph 15 4.29 4.272 0.18
Ph-G 0 2.7 2.690 0.10
Ph-G 0 6.9 6.918 0.18
Ph-G 0 1.81 1.787 0.23
Ph-G 5 6.38 6.395 0.15
Ph-G 200 9.99 9.951 0.39

the 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 for the CNN algorithm with the perturbation techniques
uring the training process is 0.30% and for the initial CNN algorithm
i.e., without the perturbation techniques during the training process)
s 0.25%. Consequently, this analysis confirms that the initial model
as adequate generalization capability, does not overfit to the training
ataset and removes the need for perturbation techniques during the
raining process.

. Comparative analysis with other data-driven algorithms

The effectiveness of the developed fault location scheme has been
urther validated by comparing its performance with another widely
sed data-driven algorithm in power system applications. Specifically,
he LSTM algorithm has been selected for comparison purposes as it is
widely adopted artificial Recurrent Neural Network (RNN) for fault

iagnosis applications [44]. LSTM models are well-suited to processing
equence of data (i.e, time-series data) and adaptively learn the dy-
amic information of the input data by non-linear gating units. Their
ain advantage is that they extract temporal correlation of time series
ata (serial correlations) and parallel dependencies (correlations of the
nput features) [24], while control the amount of information that
eeds to be retained.

.1. Stages of the LSTM algorithm

The three-stage algorithm developed for the estimation of the fault
ocation on the SC based on LSTM model is depicted in Fig. 15. The
ollowing subsections describe in detailed each stage.

.1.1. Stage I - signal acquisition
The same fault current and voltage signatures acquired in Sec-

ion 4.1.1 were utilized as the data basis for the fault location regression
roblem with the LSTM model. For enabling a fair comparison between
he schemes, the same sampling frequency of 20 kHz was considered.
12
.1.2. Stage II - feature extraction
At this stage, the Stationary Wavelet Transform (SWT) is applied

s a power signal processing tool which detects signal singularities
nd extracts the useful insights from voltages and currents measure-
ents. SWT is a widely used Wavelet Transformation (WT) for differ-

nt power system applications (i.e., protection applications), as it is
omputationally efficient and presents reduced complexity [5,45].

For the LSTM-based fault location scheme the faulted voltage and
urrent signatures are subjected to level 1 and level 2 decomposition
hrough the SWT technique, and the corresponding detail coefficients
re produced, utilizing the 𝑑𝑏4 mother wavelet. As the exhaustive
esearch of the appropriate decomposition level and the type of mother
avelet is out of the scope of the presented research, a detailed analysis

s reported by the authors in [5].
Once the detail coefficients of decomposition levels 1 and 2 are

cquired, a moving data window with length of 30 samples (29-sample
verlap), has been utilized. The principal objective of the window-
ased method is to disclose hidden information related to the nature
nd the evolution of fault and form the corresponding feature vectors.
he production of the feature vectors is performed at the end of the
tage II. In particular, from the absolute values of detail coefficients
t both levels, the sum 𝛴(𝐷𝑗 ), the mean 𝜇(𝐷𝑗 ), the standard deviation
(𝐷𝑗 ) and the energy content 𝐸(𝐷𝑗 ) are calculated according to the
12)–(15), respectively [5]:

(𝐷𝑗 ) =
𝑚𝑤
∑

𝑖=1
|𝐷𝑗 (𝑖)| (12)

(𝐷𝑗 ) =
1

2𝑗 ⋅ 𝑚𝑤

𝑚𝑤
∑

𝑖=1
|𝐷𝑗 (𝑖)| (13)

(𝐷𝑗 ) =

√

√

√

√

1
2𝑗 ⋅ 𝑚𝑗

𝑚𝑤
∑

𝑖=1
(|𝐷𝑗 (𝑖)| − 𝜇(𝐷𝑗 ))2 (14)

(𝐷𝑗 ) =
𝑚𝑤
∑

𝑖=1
[𝐷𝑗 (𝑖)]2 (15)

here 𝐷𝑗 (𝑖) denotes the 𝑖th detail coefficient for 𝑗 = 1, 2 decomposition
evel and 𝑚𝑤 is equal to the window size.

At the data pre-processing stage, prior to the training of the LSTM
odel, the feature vectors along with the initial three phase current

nd voltage signatures are normalized. For the normalization process
he mean value is subtracted by each sample in the feature vector and
he resulting values is divided by the standard deviation as presented
n (16):

𝑗,𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑌𝑗 − 𝑌
𝜎(𝑌 )

(16)

where 𝑌𝑗 denotes each sample in the feature vector 𝑦 or current/voltage
ignal 𝑦, 𝑌 and 𝜎(𝑌 ) correspond to the mean value and the standard

deviation of each feature vector of current/voltage signal, respectively.

6.1.3. Stage III - estimation of fault location
The normalized feature vectors and the normalized three phase cur-

rent and voltage signatures have been reshaped into a three-dimensional
matrix (batch size, sequence length, features), in order to meet the
requirements of the LSTM input data and are used as inputs to train the
LSTM model. Therefore, during the training process the LSTM input size
is (32, 1600, 6). The output of the LSTM layer is fed into a fully connected
layer followed by a regression layer which produced the single value of
the fault position as percentage of the SC length, similarly to the CNN

model.
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Fig. 15. Schematic diagram of the LSTM-based fault location schemes.
Table 10
Tested LSTM-based schemes and their performance on
the testing dataset.

LSTM-based schemes 𝑒𝑟𝑟𝑜𝑟𝐹𝐿(%)

Scheme 1 0.95
Scheme 2 0.88

6.2. Selection of LSTM model

Two different LSTM-based schemes have been investigated con-
sidering different combinations of the algorithm stages presented in
Fig. 15. The scope of this investigation was to evaluate the impact of
different datasets on the LSTM fault location estimation capability and
select the scheme with the best performance to be compared with the
developed CNN-based scheme. For that reason two models have been
developed: (i) the LSTM-based scheme 1 which contains the stages I and
III, considering as inputs only the normalized three-phase current and
voltage signatures, and (ii) the LSTM-based scheme 2 which includes
the stages I, II and III, considering the inclusion of the SWT signal
processing. The comparison between these two schemes evaluates the
impact of the SWT technique at the pre-process stage on the fault
location estimation accuracy.

The LSTM-based schemes have been developed utilizing the Py-
Torch framework. The most-suitable hyperparameters of each LSTM
model and the best trained model have been selected based on the
GS five-fold CV technique (similarly to the CNN model). Particularly,
different combinations of (i) hidden state size, (ii) number of LSTM
layers, (iii) learning rate and (iv) batch size have been tested utilizing
the 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 as CV score given in (11).

The two LSTM-based schemes were evaluated on the testing dataset
and the resulting 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 is presented in Table 10.

It is evident that the LSTM-based scheme 2 which incorporates
the SWT technique, presents the lowest 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 and therefore, it has
been selected for comparison purposes with the CNN-based fault loca-
tion scheme. The resulting hyperparameters from the GS five-fold CV
technique are the following: learning rate = 0.001, batch size = 32,
hidden size = 64 and number of LSTM layers = 4. The Adam optimizer
algorithm was adopted for learning the weights and biases associated
with the model during the training process.

6.3. Results of the comparison between the LSTM and the CNN algorithm

This section presents the results of the comparative analysis be-
tween the proposed CNN-based fault location scheme and the LSTM-
based scheme 2. Both algorithms have been evaluated for additional
13
Table 11
Results of the comparison between the CNN-based and LSTM-based fault location
schemes.

Fault type 𝑅𝑓 (Ω) 𝐴.𝐶𝐹 (km) CNN 𝑒𝑟𝑟𝑜𝑟𝐹𝐿(%) LSTM 𝑒𝑟𝑟𝑜𝑟𝐹𝐿(%)

3-Ph-G 0 0.60 0.70 2.40
3-Ph-G 200 5.90 0.22 3.40
3-Ph-G 15 9.10 0.28 2.10
3-Ph-G 0 0.10 1.10 3.10
3-Ph-G 2 4.20 0.12 0.70
3-Ph-G 200 9.20 0.48 0.82
Ph-Ph-G 2 2.90 0.90 1.20
Ph-Ph-G 5 7.30 0.10 1.00
Ph-G 0 1.70 0.30 1.90
Ph-G 300 9.90 0.27 1.50

fault cases which simulated different fault types, varying fault posi-
tion (which do not belong to the initial data set) and varying fault
resistance. The 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 of the CNN-based model has been found to
be 0.73%, while for the LSTM-based model 1.10%. The results of
some representative cases are presented in Table 11. The obtained
observations validate the effectiveness of the proposed fault location
scheme, as the CNN model yields lower 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 compared to the LSTM
model for all the scenarios. The 𝑒𝑟𝑟𝑜𝑟𝐹𝐿 of the CNN-based scheme for
the presented scenarios in Table 11 is 0.47% and for the LSTM-based
scheme 2 is 1.82%. It is evident that the CNN-based fault location
scheme outperforms the LSTM algorithm and provides more accurate
fault localization irrespective of the fault type, the fault resistance or
fault position.

7. Conclusion

The presented work proposes a novel data-driven fault location
scheme for power grids with SCs and presence of CIGs. Considering
the quenching of the SCs and the limitations of the conventional fault
location schemes, the AI-based techniques can provide a very promising
solution for accurate fault location estimation on the SCs. The proposed
fault location scheme relies on the captured fault current and voltage
signatures from the single end of the SC and utilizes the combination
of time to time-to-frequency transformation and CNN algorithm for the
fault location estimation. Specifically, after an extensive investigation
of CNN algorithms with regards to the resulting mean fault location
estimation error, 𝑒𝑟𝑟𝑜𝑟𝐹𝐿, the Inception-v3 model has been selected for
the image analysis of the constructed spectrograms.

The proposed scheme has been found to successfully provide ac-
curate estimation of the fault location across a wide range of fault
conditions, accounting for different fault positions, fault types, values of
fault resistance and the fault inception angles. It is worth highlighting
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that the developed fault location scheme presented robust performance
even in the case of close-up faults (i.e., fault location at 2% or 99% of SC
length). Furthermore, the proposed CNN-based algorithm provides ac-
curate fault location estimation under the influence of highly-resistive
faults during which there is no quenching of the SC. The fault location
estimation error has been found to lie within the range of 0.009% to
1.20% with respect to the SC length. Additionally, the effectiveness of
the proposed method has been verified against small increments of fault
location and additive noise in the testing datasets. The increased gener-
alization capability of the proposed scheme leads to the accurate fault
location estimation and there is no need for perturbation techniques
during the training process to mitigate the overfitting to the training
dataset.

Finally, the reliability of the proposed fault location scheme has
been demonstrated by comparing its performance with an LSTM-based
network which is a widely-used algorithm for fault location appli-
cations. The results indicate that the proposed CNN-based scheme
outperforms the LSTM-based scheme in terms of fault localization
accuracy. Conclusively, the developed fault location scheme is accurate,
reliable and can be considered a viable solution to resolve the fault
location problem on the SCs.

CRediT authorship contribution statement

Eleni Tsotsopoulou: Conceptualization, Methodology, Investiga-
ion, Formal analysis, Validation, Writing – original draft. Xenofon
aragiannis: Software, Methodology, Writing – review & editing. The-
ofilos Papadopoulos: Methodology, Investigation, Supervision, Writ-
ing – review & editing. Andreas Chrysochos: Methodology, Investi-
gation, Supervision, Writing – review & editing. Adam Dyśko: Super-
ision, Writing – review & editing. Qiteng Hong: Writing – review

editing. Dimitrios Tzelepis: Methodology, Supervision, Writing –
eview & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

eferences

[1] Liu Y, et al. Dynamic state estimation for power system control and protection.
IEEE Trans Power Syst 2021;28(6):5909–21. http://dx.doi.org/10.1109/TPWRS.
2021.3079395.

[2] Ballarino A, et al. The BEST PATHS project on MguppercaseB2 supercon-
ducting cables for very high power transmission. IEEE Trans Appl Supercond
2016;26(3):1–6. http://dx.doi.org/10.1109/TASC.2016.2545116.

[3] Xiang W, et al. DC fault study of a point-to-point HVDC system integrating
offshore wind farm using high-temperature superconductor DC cables. IEEE
Trans Energy Convers 2022;37(1):377–88. http://dx.doi.org/10.1109/TEC.2021.
3094308.

[4] Su R, et al. Numerical model of HTS cable and its electric-thermal properties.
IEEE Trans Appl Supercond 2019;29(5):1–5. http://dx.doi.org/10.1109/TASC.
2019.2901874.

[5] Tsotsopoulou E, Karagiannis X, Papadopoulos P, Dyśko A, Yazdani-Asrami M,
Booth C, et al. Time-domain protection of superconducting cables based on
artificial intelligence classifiers. IEEE Access 2022;10:10124–38. http://dx.doi.
org/10.1109/ACCESS.2022.3142534.

[6] Santos GG, Vieira JCM. Optimal placement of fault indicators to identify fault
zones in distribution systems. IEEE Trans Power Del 2021;36(5):3282–5. http:
//dx.doi.org/10.1109/TPWRD.2021.3101671.

[7] IEEE guide for determining fault location on ac transmission and distribution
lines. In: IEEE Std C37.114-2014 (Revision of IEEE Std C37.114-2004). 2015, p.
1–76.
14
[8] Aboshady F, Thomas D, Sumner M. A new single end wideband impedance
based fault location scheme for distribution systems. Electr Power Syst Res
2019;173:263–70. http://dx.doi.org/10.1016/j.epsr.2019.04.034.

[9] Shu H, Liu X, Tian X. Single-ended fault location for hybrid feeders based on
characteristic distribution of traveling wave along a line. IEEE Trans Power Del
2021;36(1):339–50. http://dx.doi.org/10.1109/TPWRD.2020.2976691.

[10] Lopes FV, Dantas KM, Silva KM, Costa FB. Accurate two-terminal trans-
mission line fault location using traveling waves. IEEE Trans Power Del
2018;33(2):873–80. http://dx.doi.org/10.1109/TPWRD.2017.2711262.

[11] Gao C, Wang L, Mao J, Hu S, Zhang B, Yang S. Non-intrusive cable fault
diagnosis based on inductive directional coupling. IEEE Trans Power Del
2019;34(4):1684–94. http://dx.doi.org/10.1109/TPWRD.2019.2918173.

[12] Chang SJ, Park JB. Multiple Chirp reflectometry for determination of fault
direction and localization in live branched network cables. IEEE Trans Instrum
Meas 2017;66(10):2606–14. http://dx.doi.org/10.1109/TIM.2017.2700178.

[13] Pignati M, Zanni L, Romano P, Cherkaoui R, Paolone M. Fault detection and
faulted line identification in active distribution networks using synchrophasors-
based real-time state estimation. IEEE Trans Instr Meas 2017;32(1):381–92.
http://dx.doi.org/10.1109/TPWRD.2016.2545923.

[14] Bountouris P, Guo H, Tzelepis D, Abdulhadi I, Coffele F, Booth C. MV faulted
section location in distribution systems based on unsynchronized LV measure-
ments. Int J Electr Power Energy Syst 2020;119:105882. http://dx.doi.org/10.
1016/j.ijepes.2020.105882.

[15] Jia K, Yang B, Bi T, Zheng L. An improved sparse-measurement-based
fault location technology for distribution networks. IEEE Trans Ind Inform
2021;17(3):1712–20. http://dx.doi.org/10.1109/TII.2020.2995997.

[16] Chen W, Wang D, Cheng D, Qiao F, Liu X, Hou M. Novel travelling wave fault
location principle based on frequency modification algorithm. Int J Electr Power
Energy Syst 2022;141:108155. http://dx.doi.org/10.1016/j.ijepes.2022.108155.

[17] Xie L, Luo L, Ma J, Li Y, Zhang M, Zeng X, et al. A novel fault location
method for hybrid lines based on traveling wave. Int J Electr Power Energy
Syst 2022;141:108102. http://dx.doi.org/10.1016/j.ijepes.2022.108102.

[18] Bang SS, Shin Y-J. Abnormality monitoring for three-phase HTS ca-
ble via time-frequency domain reflectometry. IEEE Trans Appl Supercond
2021;31(5):1–6.

[19] Lee C-K, Kwon G-Y, Lee YH, Lee GS, Bang SS, Shin Y-J. Insulation characteristics
and fault analysis of HTS cable via stepped frequency waveform reflectometry.
IEEE Trans Appl Supercond 2019;29(5):1–5. http://dx.doi.org/10.1109/TASC.
2019.2903740.

[20] Lee GS, et al. Time–frequency-based insulation diagnostic technique of high-
temperature superconducting cable systems. IEEE Trans Appl Supercond
2016;26(4):1–5. http://dx.doi.org/10.1109/TASC.2016.2524520.

[21] Yang B, Tang J, Yang C, Dong X, Huang K, Feng C. High-temperature supercon-
ducting cable fault location method based on improved time-frequency domain
reflection method and EEMD noise reduction. Math Probl Eng 2021;2021:1–10.
http://dx.doi.org/10.1155/2021/9590969.

[22] Guillen D, Salas C, Trillaud F, Castro LM, Queiroz AT, Sotelo GG. Impact of
resistive superconducting fault current limiter and distributed generation on
fault location in distribution networks. Electr Power Syst Res 2020;186:106419.
http://dx.doi.org/10.1016/j.epsr.2020.106419.

[23] Moradzadeh A, Teimourzadeh H, Mohammadi-Ivatloo B, Pourhossein K. Hybrid
CNN-LSTM approaches for identification of type and locations of transmission
line faults. Int J Electr Power Energy Syst 2022;135:107563. http://dx.doi.org/
10.1016/j.ijepes.2021.107563.

[24] Belagoune S, Bali N, Bakdi A, Baadji B, Atif K. Deep learning through
LSTM classification and regression for transmission line fault detection, diag-
nosis and location in large-scale multi-machine power systems. Measurement
2021;177:0263–2241.

[25] Gashteroodkhani O, Majidi M, Etezadi-Amoli M, Nematollahi A, Vahidi B. A
hybrid SVM-TT transform-based method for fault location in hybrid transmission
lines with underground cables. Electr Power Syst Res 2019;170:205–14.

[26] Stefanidou-Voziki P, Cardoner-Valbuena D, Villafafila-Robles R, Dominguez-
Garcia J. Data analysis and management for optimal application of an advanced
ML-based fault location algorithm for low voltage grids. Int J Electr Power
Energy Syst 2022;142:108303. http://dx.doi.org/10.1016/j.ijepes.2022.108303.

[27] Rezaee Ravesh N, Ramezani N, Ahmadi I, Nouri H. A hybrid artificial neural
network and wavelet packet transform approach for fault location in hybrid
transmission lines. Electr Power Syst Res 2022;204:107721. http://dx.doi.org/
10.1016/j.epsr.2021.107721.

[28] Tavoosi J, Shirkhani M, Azizi A, Ud Din S, Mohammadzadeh A, Mobayen S. A
hybrid approach for fault location in power distributed networks: Impedance-
based and machine learning technique. Electr Power Syst Res 2022;210:108073.
http://dx.doi.org/10.1016/j.epsr.2022.108073.

[29] Yazdani-Asrami M, Seyyedbarzegar S, Sadeghi A, de Sousa WTB, Kottonau D.
High temperature superconducting cables and their performance against short
circuit faults: current development, challenges, solutions, and future trends. Su-
percond Sci Technol 2022;35(8):083002. http://dx.doi.org/10.1088/1361-6668/

ac7ae2.

http://dx.doi.org/10.1109/TPWRS.2021.3079395
http://dx.doi.org/10.1109/TPWRS.2021.3079395
http://dx.doi.org/10.1109/TPWRS.2021.3079395
http://dx.doi.org/10.1109/TASC.2016.2545116
http://dx.doi.org/10.1109/TEC.2021.3094308
http://dx.doi.org/10.1109/TEC.2021.3094308
http://dx.doi.org/10.1109/TEC.2021.3094308
http://dx.doi.org/10.1109/TASC.2019.2901874
http://dx.doi.org/10.1109/TASC.2019.2901874
http://dx.doi.org/10.1109/TASC.2019.2901874
http://dx.doi.org/10.1109/ACCESS.2022.3142534
http://dx.doi.org/10.1109/ACCESS.2022.3142534
http://dx.doi.org/10.1109/ACCESS.2022.3142534
http://dx.doi.org/10.1109/TPWRD.2021.3101671
http://dx.doi.org/10.1109/TPWRD.2021.3101671
http://dx.doi.org/10.1109/TPWRD.2021.3101671
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb7
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb7
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb7
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb7
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb7
http://dx.doi.org/10.1016/j.epsr.2019.04.034
http://dx.doi.org/10.1109/TPWRD.2020.2976691
http://dx.doi.org/10.1109/TPWRD.2017.2711262
http://dx.doi.org/10.1109/TPWRD.2019.2918173
http://dx.doi.org/10.1109/TIM.2017.2700178
http://dx.doi.org/10.1109/TPWRD.2016.2545923
http://dx.doi.org/10.1016/j.ijepes.2020.105882
http://dx.doi.org/10.1016/j.ijepes.2020.105882
http://dx.doi.org/10.1016/j.ijepes.2020.105882
http://dx.doi.org/10.1109/TII.2020.2995997
http://dx.doi.org/10.1016/j.ijepes.2022.108155
http://dx.doi.org/10.1016/j.ijepes.2022.108102
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb18
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb18
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb18
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb18
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb18
http://dx.doi.org/10.1109/TASC.2019.2903740
http://dx.doi.org/10.1109/TASC.2019.2903740
http://dx.doi.org/10.1109/TASC.2019.2903740
http://dx.doi.org/10.1109/TASC.2016.2524520
http://dx.doi.org/10.1155/2021/9590969
http://dx.doi.org/10.1016/j.epsr.2020.106419
http://dx.doi.org/10.1016/j.ijepes.2021.107563
http://dx.doi.org/10.1016/j.ijepes.2021.107563
http://dx.doi.org/10.1016/j.ijepes.2021.107563
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb24
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb24
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb24
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb24
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb24
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb24
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb24
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb25
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb25
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb25
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb25
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb25
http://dx.doi.org/10.1016/j.ijepes.2022.108303
http://dx.doi.org/10.1016/j.epsr.2021.107721
http://dx.doi.org/10.1016/j.epsr.2021.107721
http://dx.doi.org/10.1016/j.epsr.2021.107721
http://dx.doi.org/10.1016/j.epsr.2022.108073
http://dx.doi.org/10.1088/1361-6668/ac7ae2
http://dx.doi.org/10.1088/1361-6668/ac7ae2
http://dx.doi.org/10.1088/1361-6668/ac7ae2


International Journal of Electrical Power and Energy Systems 147 (2023) 108860E. Tsotsopoulou et al.
[30] Yu Y, Li M, Ji T, Wu QH. Fault location in distribution system using convolu-
tional neural network based on domain transformation. CSEE J Power Energy
Syst 2021;7(3):472–84. http://dx.doi.org/10.17775/CSEEJPES.2020.01620.

[31] SuperPower. SuperPower 2G HTS wire specifications. 2013.
[32] Hong Z, Campbell A, Combs T. Numerical solution of critical state

in superconductivity by finite element software. Supercond Sci Technol
2006;19(12):1246–52. http://dx.doi.org/10.1088/0953-2048/19/12/004.

[33] Bottura L. Cable stability. In: CERN in the proceedings of the CAS-CERN
accelerator school: superconductivity for accelerators, erice, italy, Vol. 2. 2014.

[34] Ametani A. A general formulation of impedance and admittance of cables. IEEE
Trans Power App Syst 1980;PAS-99(3):902–10. http://dx.doi.org/10.1109/TPAS.
1980.319718.

[35] Gudmundsdottir US, Gustavsen B, Bak CL, Wiechowski W. Field test and
simulation of a 400-kV cross-bonded cable system. IEEE Trans Power Del
2011;26(3):1403–10. http://dx.doi.org/10.1109/TPWRD.2010.2084600.

[36] Welch P. The use of fast Fourier transform for the estimation of power
spectra: A method based on time averaging over short, modified periodograms.
IEEE Trans Audio Electroacoust 1967;15(2):70–3. http://dx.doi.org/10.1109/
TAU.1967.1161901.

[37] Wang D, Yang D, Bowen Z, Ma M, Zhang H. Transmission line fault diagnosis
based on wavelet packet analysis and convolutional neural network. In: 2018
5th IEEE international conference on cloud computing and intelligence systems.
2018, p. 425–9. http://dx.doi.org/10.1109/CCIS.2018.8691304.

[38] Sharma N, Jain V, Mishra A. An analysis of convolutional neural networks for
image classification. Procedia Comput Sci 2018;132:377–84. http://dx.doi.org/
10.1016/j.procs.2018.05.198.
15
[39] Herlender J, Izykowski J, Solak K. Compensation of the current transformer
saturation effects for transmission line fault location with impedance-differential
relay. Electr Power Syst Res 2020;182:106223. http://dx.doi.org/10.1016/j.epsr.
2020.106223.

[40] Naseri F, Kazemi Z, Farjah E, Ghanbari T. Fast detection and compensation of
current transformer saturation using extended Kalman filter. IEEE Trans Power
Del 2019;34(3):1087–97. http://dx.doi.org/10.1109/TPWRD.2019.2895802.

[41] Tzelepis D, et al. Voltage and current measuring technologies for high
voltage direct current supergrids: A technology review identifying the op-
tions for protection, fault location and automation applications. IEEE Access
2020;8:203398–428. http://dx.doi.org/10.1109/ACCESS.2020.3035905.

[42] Feng X, Pei W, Jia Z, Chen F, Zhang D, Lu G. Deep-masking generative network:
A unified framework for background restoration from superimposed images.
IEEE Trans Imag Process 2021;30:4867–82. http://dx.doi.org/10.1109/TIP.2021.
3076589.

[43] He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. In: Proceedings of the IEEE
international conference on computer vision. ICCV, 2017, http://dx.doi.org/10.
1109/ICCV.2017.322.

[44] Belagoune S, Bali N, Bakdi A, Baadji B, Atif K. Deep learning through
LSTM classification and regression for transmission line fault detection, diag-
nosis and location in large-scale multi-machine power systems. Measurement
2021;177:109330. http://dx.doi.org/10.1016/j.measurement.2021.109330.

[45] Tzelepis D, Fusiek G, Dyśko A, Niewczas P, Booth C, Dong X. Novel fault location
in MTDC grids with non-homogeneous transmission lines utilizing distributed
current sensing technology. IEEE Trans Smart Grid 2018;9(5):5432–43. http:
//dx.doi.org/10.1109/TSG.2017.2764025.

http://dx.doi.org/10.17775/CSEEJPES.2020.01620
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb31
http://dx.doi.org/10.1088/0953-2048/19/12/004
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb33
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb33
http://refhub.elsevier.com/S0142-0615(22)00856-0/sb33
http://dx.doi.org/10.1109/TPAS.1980.319718
http://dx.doi.org/10.1109/TPAS.1980.319718
http://dx.doi.org/10.1109/TPAS.1980.319718
http://dx.doi.org/10.1109/TPWRD.2010.2084600
http://dx.doi.org/10.1109/TAU.1967.1161901
http://dx.doi.org/10.1109/TAU.1967.1161901
http://dx.doi.org/10.1109/TAU.1967.1161901
http://dx.doi.org/10.1109/CCIS.2018.8691304
http://dx.doi.org/10.1016/j.procs.2018.05.198
http://dx.doi.org/10.1016/j.procs.2018.05.198
http://dx.doi.org/10.1016/j.procs.2018.05.198
http://dx.doi.org/10.1016/j.epsr.2020.106223
http://dx.doi.org/10.1016/j.epsr.2020.106223
http://dx.doi.org/10.1016/j.epsr.2020.106223
http://dx.doi.org/10.1109/TPWRD.2019.2895802
http://dx.doi.org/10.1109/ACCESS.2020.3035905
http://dx.doi.org/10.1109/TIP.2021.3076589
http://dx.doi.org/10.1109/TIP.2021.3076589
http://dx.doi.org/10.1109/TIP.2021.3076589
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1016/j.measurement.2021.109330
http://dx.doi.org/10.1109/TSG.2017.2764025
http://dx.doi.org/10.1109/TSG.2017.2764025
http://dx.doi.org/10.1109/TSG.2017.2764025

	Advanced fault location scheme for superconducting cables based on deep learning algorithms
	Introduction
	Numerical modelling of SC
	Numerical modelling of HTS tapes
	Structure of the SC
	Thermal modelling

	Power System Modelling & SC Fault Characterization
	Power system under test
	Transient performance of the SC

	Proposed fault location algorithm
	Stages of the proposed faults location scheme
	Stage I - Signal acquisition
	Stage II - Signal to image transformation
	Stage III - Image pre-processing
	Stage IV - Estimation of fault location

	Convolution Neural Network
	Selection of CNN model

	Performance evaluation of proposed fault location scheme
	Fault location results
	Effect of small increments of fault distance
	Effect of fault inception angle
	Effect of sampling frequency
	Effect of noise
	Random masking and noise at the training dataset

	Comparative analysis with other data-driven algorithms
	Stages of the LSTM algorithm
	Stage I - Signal acquisition
	Stage II - Feature extraction
	Stage III - Estimation of fault location

	Selection of LSTM model
	Results of the comparison between the LSTM and the CNN algorithm

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


