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Abstract

Machine learning (ML) applications have been ubiquitously deployed across crit-

ical domains such as autonomous vehicles (AVs), and medical diagnosis. Vision-

based ML models like ResNet are used for object classification and lane detection,

while Large Language Models (LLMs) like ChatGPT are used in cars to enable ro-

bust and flexible voice commands in AVs. The use of ML models in safety-critical

scenarios requires reliable ML models.

In the first part of this thesis, we primarily focus on understanding the resilience

of ML models against transient hardware faults in CPUs. Towards this end, we

present an LLVM IR-level FI tool, LLTFI, which we use to evaluate the effect

of transient faults on Deep Neural Networks (DNNs) and LLMs. We found that

LLTFI is more precise than TensorFI, an application-level FI tool proposed by prior

work. Unlike LLTFI, TensorFI underestimates the resilience of DNNs by implicitly

assuming that every injected fault corrupts the outputs of the intermediate layers

of the DNN. Using LLTFI, we also evaluated the efficacy of Selective Instruction

Duplication to make DNNs more resilient against transient faults. While in the case

of DNNs, transient faults cause the model to misclassify or mispredict the object,

for LLMs, we found transient faults to cause the model to produce semantically

and syntactically incorrect outputs.

In the second part of this thesis, we evaluate the effect of permanent stuck-at

faults in systolic arrays on DNNs. We present a Register Transfer (RTL)-Level FI

tool, called SystoliFI, to inject permanent stuck-at faults in the systolic array, which

we use to understand the manifestation of stuck-at faults in systolic arrays in the

intermediate layers of the DNNs. We found that the manifestation of the stuck-
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at faults varies significantly with the type of operation (Convolution vs. Matrix

multiplication), the operation size, and the systolic array size.
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Lay Summary

The use of Machine Learning (ML) in safety-critical systems is becoming more

prevalent. However, failures in these systems, such as in self-driving cars, can lead

to disastrous consequences. Therefore, it is crucial to ensure the resilience of ML

applications. One popular method for assessing application resilience is Fault In-

jection (FI), where we intentionally inject faults in the application during runtime.

In this thesis, we present a FI tool, LLTFI, to carry out FI in ML models, includ-

ing Large Language Models. Using LLTFI, we evaluated the effect of transient

hardware faults in the CPU on Deep Neural Networks like ResNet and Large Lan-

guage Models like GPT. Moreover, we also present a low-level hardware FI tool,

SystoliFI, to inject stuck-at hardware faults in ML models under the systolic array

hardware model. We use this tool to understand the manifestation of stuck-at faults

in systolic arrays in the intermediate layers of the Neural Networks.
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Chapter 1

Introduction

1.1 Motivation
The widespread deployment of ML applications in critical domains, including AVs

and medical diagnosis, has become increasingly prevalent. Vision-based ML mod-

els are extensively used in AVs for tasks such as object detection, recognition, and

classification. These models, such as CNNs like ResNet, enable the vehicle to per-

ceive its surroundings by analyzing sensor data from cameras, lidar, and radar [34].

By leveraging ML algorithms, AVs can accurately identify and track objects like

pedestrians, vehicles, traffic signs, and road markings. This perception capability

is crucial for safe and reliable navigation. NLP models are also employed in AVs

for tasks beyond vision. For example, Mercedes [5] and General Motors [4] re-

cently announced the inclusion of LLMs like ChatGPT in their AVs to enable voice

commands and natural language interactions between the vehicle and passengers.

This allows for more intuitive and flexible communication, enhancing the user ex-

perience inside the AV.

The ISO 26262 standard for the functional safety of AVs requires that, for Au-

tomotive Safety Integrity Level D (ASIL-D), there should be no more than ten

failures in time (including both transient and permanent hardware faults) in a bil-

lion hours of operation [85]. Therefore, there is a compelling need to evaluate and

improve the resilience of ML models under hardware faults. Hardware faults can

be permanent (e.g., stuck-at fault in the data paths) or transient (e.g., bit-flips). Per-

1



manent faults can be caused by various factors, including physical damage to the

hardware, defects in the manufacturing process, and wear and tear over time [115].

Transient faults, on the other hand, are typically induced due to high energy parti-

cles such as neutrons and alpha particles striking the hardware [78].

FI is the traditional way to evaluate the resilience of a system against hardware

faults [119]. FI can be implemented either at the hardware level or at the soft-

ware level, called SWIFI. Hardware-level FI techniques like focused ion beams or

laser injection and RTL-level FI offer precise modeling of hardware faults [86], but

they are expensive and unscalable. For instance, RTL-level fault injection requires

simulation or synthesis of the hardware’s RTL model, which requires expensive

computation resources. In contrast to hardware-level FI, SWiFI is inexpensive and

provides reasonable precision [61] in modeling the effect of hardware faults at the

software level.

Prior work on evaluating the resilience of ML models using SWiFI is limited

to application-level FIs like TensorFI [69] and PyTorchFI [81], which inject faults

in the intermediate layers of the DNNs. Existing application-level SWiFI tools are

limited to specific ML frameworks and have limited visibility into the software

stack. For instance, TensorFI works only with the TensorFlow framework [8] and

can inject faults only in the outputs on the intermediate layers of the DNNs. To

overcome these limitations, we propose LLTFI, a framework-agnostic SWiFI tool

that injects faults in the instructions and registers of the ML model during runtime.

Moreover, using LLTFI, we also evaluate the resilience of LLMs against transient

hardware faults.

LLTFI, TensorFI, and many other SWiFI tools are restricted to injecting faults

pertaining to only the CPU or the GPU hardware model. However, to speed up the

training and inference of large DNNs and LLMs, DNN accelerators like Google

TPU [3] are extensively used in practice. Despite their widespread use, the relia-

bility of DNN accelerators against hardware faults has not been extensively eval-

uated. Most of the prior work on the reliability assessment of DNN accelerators

only considers the effect of transient faults [52]. Moreover, the few prior work on

evaluating the effect of permanent hardware faults in DNN accelerators is limited

to evaluating the DNN’s accuracy under the fault. However, it is not clear how

these faults manifest at the intermediate layers of the DNNs. This is important
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because understanding fault manifestation at the intermediate layers provides in-

sights into building more resilient DNN architectures and improves the accuracy

of application-level FI tools. In chapter 6, we bridge this gap by proposing a RTL-

Level FI tool to inject permanent stuck-at faults in DNN accelerators, using which

we evaluate the manifestation of injected faults on the intermediate layers of the

DNNs.

1.2 Our Approach
In this thesis, we evaluated the resilience of ML models under two types of hard-

ware faults: transient hardware faults in the CPU and permanent stuck-at faults in

DNN accelerators. Figure 1.1 shows the overall organization of this thesis.

In the first part of this thesis, we focus on transient faults in CPUs. Since ML

models are trained once and inferred multiple times, in this thesis, we focus on

the inference-time resilience of ML models. Moreover, CPUs are still widely used

for ML inference due to their lower total cost of ownership [7]. Therefore, we

considered transient hardware faults in the CPU.
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To explore the effect of transient hardware faults in the CPU, in Chapter 4, we

propose a tool, LLTFI (Low-Level Tensor Fault Injector). LLTFI is agnostic to

the ML framework and can work with TensorFlow, PyTorch, and other ML frame-

works. LLTFI works by first converting ML models into the ONNX format [13],

which is an open-source format designed to enable interoperability between dif-

ferent deep learning frameworks. Then, the ONNX file is converted into LLVM

IR using the ONNX-MLIR [53] tool. After this, LLTFI modifies the LLVM IR

to inject faults in instructions and registers. LLTFI’s ability to inject faults in in-

structions and registers makes it more precise (empirically evaluated in Chapter 4)

than application-level SWiFI tools like TensorFI [69]. Another advantage of LLTFI

over other application-level SWiFI tools is Error Propagation Tracing. LLTFI pro-

vides two levels of error propagation tracing: instruction-level tracing and tensor

operator-level tracing. While instruction-level tracing helps trace the effect of the

injected fault on each LLVM IR instruction, tensor operator-level tracing works at

a higher level and illustrates the effect of the injected fault on the output of each

intermediate layer of the DNN. Since LLTFI injects faults in the instructions and

registers of the ML model, we also used LLTFI to evaluate the effectiveness of SID

in improving the resilience of the ML model. Moreover, we use LLTFI to evaluate

the resilience of DNNs against transient hardware faults.

While in Chapter 4, we evaluated the resilience of DNNs, in Chapter 5, we

used LLTFI to assess the resilience of LLMs. Unlike prior work [68, 69, 81, 97]

on resilience assessment of ML models that has focused exclusively on DNNs, to

the best of our knowledge, we are the first ones to also evaluate the resilience of

LLMs against transient hardware faults. Unlike DNNs, LLMs have billions of

parameters, and LLMs like CodeBert execute approximately 30 Billion CPU in-

structions in one inference. The sheer size of LLMs poses a scalability challenge

to LLTFI. Therefore, to incorporate LLMs into LLTFI, we made two modifications.

Firstly, we introduced an auxiliary FI runtime that links statically with the LLM ex-

ecutable, which has a minimal runtime overhead, enabling LLTFI to accommodate

LLMs. Secondly, we enhanced LLTFI’s fault propagation tracing to accommodate

LLMs, which lets us delve into the root causes of the inaccuracies noted in our FI

tests. We then employed this modified LLTFI version to conduct comprehensive

FI campaigns to calculate the SDC rate, which is the proportion of undetected er-
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roneous outputs of LLMs. In addition, we performed a qualitative examination of

SDCs in LLMs by classifying them based on their syntactic or semantic correct-

ness. Lastly, we assessed how the SDC rate fluctuates with FI in different LLM

layers, bit positions, pre-training, and fine-tuning objectives.

In the second part of this thesis, we explore the effect of permanent stuck-at

faults in DNN accelerators. Unlike for transient faults in the CPU, whose manifes-

tation at the software-level is well-known (for example, bit flips in registers [78]),

the effect of permanent faults in DNN accelerators at the software-level is not

known. Therefore, we built an RTL-level FI tool called SystoliFI that expands

upon Gemmini [39] - a widely used systolic array generator for assessing DNN

accelerators - to implement FI in the MAC units of the DNN accelerator. Gem-

mini is an open-source, comprehensive DNN accelerator generator facilitating the

complete implementation and assessment of custom hardware accelerators. Gem-

mini boasts high configurability, allowing adjustments to the systolic array size,

data type, and data mapping scheme types. To implement SystoliFI, we extended

Gemmini’s custom RISC-V ISA to add an additional FI instruction and the re-

quired hardware support to inject stuck-at faults at runtime. This enhancement to

Gemmini’s ISA with additional FI instructions enabled us to control FI during run-

time from the software side, eliminating the need to recompile the hardware’s RTL

model, a process that is computationally demanding. Using SystoliFI, we ana-

lyze the manifestation of stuck-at faults in DNN accelerators at intermediate layers

of the DNN. We further evaluate how the fault manifestation varies with differ-

ent hardware configurations (size of systolic array, position of fault, data mapping

scheme) and software configurations (type and size of operations).

1.3 Contributions
To summarize, we made the following contributions in this thesis:

Chapter 4 of this thesis focuses on the LLTFI tool set where we:

1. Propose and implement a framework-agnostic, LLVM IR-level FI tool called

LLTFI to inject transient hardware faults in ML applications. We then com-

pared LLTFI with TensorFI, an existing application-level SWiFI tool, by
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evaluating the SDC rates of eight DNNs with LLTFI and contrasting them

with the SDC rate reported by TensorFI.

2. Used LLTFI to evaluate the efficacy of Selective Instruction Duplication for

enhancing the resilience of DNNs against transient faults.

In Chapter 5 of this thesis, we evaluated LLM’s resilience using LLTFI. Pre-

cisely, we made the following contributions:

3. We modified LLTFI to integrate it with LLMs, and then we used it to carry

out a quantitative and qualitative evaluation of LLM’s resilience against tran-

sient hardware faults.

4. We evaluate the variance in LLM’s resilience due to FI in different layers,

bit positions, model sizes, pre-training, and fine-tuning objectives.

Chapter 6 of this thesis focuses on the SystoliFI tool set where we:

5. Propose and implement an RTL-level FI tool, SystoliFI, for injecting stuck-

at faults in DNN accelerators. We then used SystoliFI to understand the

manifestation of stuck-at faults at the intermediate layers of the DNNs. We

also evaluate how the fault manifestation varies with different hardware and

software configurations.

After extensive FI experiments, We made the following observations:

1. We found that there are considerable differences between the SDC rates (i.e.,

the fraction of undetected, incorrect outputs) of the two tools for the same

faults, with LLTFI exhibiting significantly lower SDC rates (average: 3.4X

lower) than TensorFI. Additionally, we found LLTFI to be faster than Ten-

sorFI.

2. We found that for most of our benchmarks, SID achieves a high reduction in

the SDC rate with a modest performance overhead.

3. Based on our FI experiments on LLMs, we learned that LLMs exhibit con-

siderable resilience to transient faults, with an average SDC rate of 0.9% (9

SDCs out of 1000 FI experiments) across all benchmarks. Furthermore, the
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manifestation of SDCs significantly varies depending on the type of LLMs

and fine-tuning objectives.

4. We also found a large variance in the SDC rate for different benchmarks with

the same architecture. Moreover, we also observed that for the fill-mask fine-

tuning objective, the SDC rate increases with the model size.

5. Regarding the effect of stuck-at faults in DNN accelerators, we observe the

manifestation of stuck-at faults at the software level (called Fault Pattern) to

vary with different hardware and software configurations. We found these

fault patterns to be deterministic, and we further categorized these fault pat-

terns into six well-defined classes.

Concludingly, the observations we made in the thesis have several implications

for future research in this direction. Particularly, our observation about the signifi-

cant difference in the SDC rates of LLTFI and TensorFI invalidates the assumption

TensorFI makes about every bit-flip fault corrupting the output of ML operators.

Other application-level FI tools, like PyTorchFI and MindFI, make a similar as-

sumption, and therefore, when using application-level FI tools, one needs to scale

down the SDC rate estimates to obtain realistic results. Moreover, our work on the

resilience assessment of LLMs shows that transient hardware faults in LLMs can

cause them to output syntactically correct but semantically incorrect outputs, which

are difficult to detect automatically. Therefore, for inclusion in safety-critical do-

mains like AVs, there is a need to further understand the enhance the resilience of

LLMs.
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Chapter 2

Background

In this chapter, we start by providing the necessary background on Hardware Faults

and ML models, including LLMs, required to understand the contributions of this

thesis. We also explain the workings of ML accelerators like Google’s TPU, along

with the simulator we used for developing SystoliFI. Additionally, we briefly de-

lineate the LLVM compiler and its constructs required to comprehend the structure

and FI methodology employed by LLTFI. Finally, we conclude this section by dis-

cussing the fault models and the assumptions we made for LLTFI and SystoliFI.

2.1 Hardware Faults

2.1.1 Transient Hardware Faults

Transient faults refer to intermittent errors that occur in electronic systems, such

as computer chips or integrated circuits. These faults can be caused by various

factors, including cosmic radiation, electromagnetic interference, power fluctua-

tions, and manufacturing defects [40]. As the size of fabrication technology con-

tinues to reduce, with advancements like the miniaturization of transistors and the

increasing density of components on a chip, transient faults are becoming more

prevalent [107]. For example, Martino et al. [29] observed around 49K processor-

related failures in 261 days (approximately 1 fault every 8 minutes) in BlueWaters

- a supercomputer located at the University of Illinois, Urbana-Champaign.
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2.1.2 Permanent Hardware Faults

Permanent hardware faults in integrated circuits can occur in various components,

such as transistors, interconnects, memory cells, or logic gates. With the con-

tinuous advancement in fabrication technology and the increasing complexity of

integrated circuits, the occurrence of permanent hardware faults is on the rise [71].

The reduction in the size of transistors and the higher density of components on

a chip make them more susceptible to manufacturing defects, material impurities,

and aging effects.

2.2 Machine Learning Applications
In general terms, ML is a branch of artificial intelligence that focuses on developing

algorithms that enable computers to learn from and make decisions or predictions

based on data. ML can be classified as either supervised, unsupervised, or RL.

Supervised learning involves training models on data with assigned labels, with

examples being linear regression and neural networks. Conversely, unsupervised

learning involves training models on data without any pre-existing labels, with k-

means clustering and kernel density estimation being examples. In RL, an agent

learns to make decisions by performing actions and receiving rewards or penalties.

It is often used when the model needs to make a series of decisions, and the optimal

solution is learned through trial and error. Examples of RL include learning to play

a game or navigating a maze.

The process of developing an ML model typically involves two phases: 1) the

training phase, where the model learns a specific task using the training data, 2) the

inference phase, where the model uses what it has learned to make predictions on

new, unseen data, often referred to as test data. The model’s parameters are learned

from the training data, and the effectiveness of the trained model is evaluated based

on its ability to accurately predict the outcomes on the test data, which represents

new scenarios the model has not seen before.

DNNs and LLMs are types of machine learning models that can be used in both

supervised and unsupervised learning tasks, depending on the specific problem and

dataset. Moreover, we specifically focus on DNNs and LLMs as they are widely

used in various applications.
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In the following sections, we further elaborate on DNNs and LLMs, as neces-

sary for understanding this thesis.

2.2.1 Deep Neural Networks

DNNs are a type of artificial neural network with multiple layers (called hidden

layers) between the input and output layers. These networks can learn complex

patterns in large amounts of data, making them particularly useful for tasks like im-

age and speech recognition, natural language processing, and other data-intensive

tasks. Deep Neural Networks consist of several operations such as convolution,

matrix multiplication (which is used to implement ’dense’ or ’fully-connected’ lay-

ers), Relu, MaxPool, and others. Among these, convolution and matrix multiplica-

tions, also known as GEMM, are the most computationally demanding operations.

Therefore, to speed up these operations, hardware accelerators are often employed.

• Fully-Connected Layer or GEMM: FC layers, combined with non-linear

activation functions, are utilized to discern a non-linear relationship between

the input features (which are extracted by the convolution layers) and the

network’s final prediction. The FC layers are depicted using a matrix multi-

plication process involving the input features and the neuron weights. This

is then followed by the addition of a bias term.

• Convolution Layer: The primary function of convolution layers is to extract

features from the input image(s). The dimensions of these extracted features

are determined by the kernel size. The kernel size is typically kept small

because the number of parameters in a convolution layer increases exponen-

tially with the kernel size, as per the equation:

NumParams = KernelSize2 ∗ InputChannel ∗Out putChannel (2.1)

Using a larger kernel size can make the CNNs more computationally de-

manding without significantly improving accuracy. Furthermore, the con-

volution kernels in DNNs comprise multiple output channels that enhance
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the DNN’s robustness and accuracy. For instance, using multiple output

channels for detecting different features makes a DNN more adaptable to

variations in input data, such as alterations in ambient lighting conditions.

2.2.2 Large Language Models

LLMs are a type of deep learning models that are trained on extensive volumes of

text data. They aim to understand the statistical patterns in language and produce

text that resembles human writing. After an initial pre-training phase, these models

undergo a fine-tuning process for specific tasks. These tasks can range from text

classification and sentiment analysis to language generation. In addition to these

tasks, LLMs can also be used for other natural language processing tasks such

as question answering, summarization, and translation. The ability of LLMs to

generate coherent and contextually relevant sentences has led to their use in various

applications, from chatbots and virtual assistants to automated content creation.

Transformer-based Models

Transformer-based models, initially presented by Vaswani et al. [108], represent

a kind of neural network architecture that has significantly advanced the field of

NLP. Unlike RNNs and LSTM networks, Transformer-based models are partic-

ularly adept at identifying relationships between different segments of the input

sequence in a parallel fashion. The parallel processing capability of Transformer

models also makes them more efficient to train on modern hardware compared to

RNNs and LSTMs, which process sequences step-by-step. The attention mecha-

nism is a critical element of a transformer model.

Attention Mechanism: This refers to a method used by LLMs to allocate dif-

ferent levels of significance, known as attention weights, to various tokens in a

sequence. Conceptually, it enables the model to focus on certain parts of the input

that are considered more pertinent to the current context. In a practical sense, a

transformer block includes multiple instances of these attention mechanisms, re-

ferred to as Multi-head attention, operating concurrently to comprehend different

aspects of the input sequence. Certain transformer models, such as T5 [94] (Re-
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Figure 2.1: Attention weights and architecture of T5. Attention weights
correspond to the fifth head of the first encoder, decoder, and cross-
attention layer of a fully-trained T5 model, trained to translate English
to German. The attention weights are visualized using BertViz [109].
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fer to Figure 2.1b, layer highlighted with Red), also incorporate Cross attention

layers. These layers effectively align and transfer information from the encoder

to the decoder. The attention mechanism is a key factor in the success of Trans-

former models. It allows the model to handle long sequences and maintain a global

understanding of the input sequence, which is particularly important in tasks like

machine translation and text summarization. Furthermore, the weights produced

by the attention mechanism can also provide some interpretability, as they indicate

which parts of the input the model is focusing on when making predictions.

Figure 2.1a illustrates the attention weights of the fourth head in the first en-

coder, decoder, and cross-attention layer of the T5 [94] model, which is used for

English-to-German translation. Self-attention is depicted through lines connecting

the tokens that are attending (on the left) to the tokens being attended to (on the

right). The line thickness signifies the attention score: larger attention scores be-

tween the token on the left and the one on the right are represented by thicker lines.

In the cross-attention layer, it is noteworthy how the model has established thicker

connections between English words and their corresponding German equivalents.

This visualization provides a way to understand how the model focuses its atten-

tion during the translation process. It shows that the model can align words in the

source and target languages, which is a crucial aspect of machine translation.

As depicted in Figure 2.1b, a typical transformer block comprises a multi-

head attention layer, succeeded by a normalization layer and a fully-connected

layer. Several of these transformer blocks (six for the T5 model) are combined to

construct the encoders and decoders.

Encoders: Encoders play a crucial role in handling the input sequence, which

could be a sentence, paragraph, or an entire document, and capturing the contex-

tual representations of each word or token. The encoder’s job is to create represen-

tations of the input sequence that encapsulate its meaning and context.

Decoders: Decoders utilize the encoded representations the encoder produces to

generate output sequences. These sequences are used for tasks such as translations,

summaries, or completions.
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In other words, the encoder-decoder structure allows the model to convert an

input sequence into an internal representation that captures its meaning and then

convert this representation into an output sequence. This structure is commonly

used in tasks like machine translation, where the input and output sequences can

be of different lengths, and the relationship between input and output tokens is

complex.

Different architectures of transformer-based LLMs

The three distinct architectures of transformer-based LLMs are as follows:

Encoder-Only (Auto-Encoding) These transformer models, as the name implies,

only contain the encoder component and do not include a decoder. They are typ-

ically used when the main objective is to extract semantic and contextual infor-

mation from the input sequence. Encoder-only transformers have demonstrated

their usefulness in various downstream tasks, such as text classification, sentiment

analysis, document retrieval, and feature extraction. Well-known Encoder-only

transformers include models like Bert [28] and RoBerta [75].

Decoder-Only (Auto-Regressive) In contrast to Encoder-only models, Decoder-

only transformers are trained in an autoregressive fashion. This means the model

learns to predict the next token in the sequence based on the previous tokens. Dur-

ing the training process, the model aims to maximize the likelihood of generat-

ing the correct output sequence. Models like GPT2 [93] and its derivative Chat-

GPT [89] fall into this category.

Encoder-Decoder These models, also known as sequence-to-sequence models,

comprise both an encoder and a decoder. They are extensively used in various NLP

tasks, including machine translation, text summarization, and dialogue generation.

Models like T5 [94] and BART [66] follow an encoder-decoder architecture.

In addition to these, there are also hybrid models that combine aspects of both

encoder-only and decoder-only models. For example, the ELECTRA [26] model

trains a discriminator (an encoder-only model) to distinguish between real and fake
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tokens and a generator (a decoder-only model) to generate fake tokens. This allows

the model to learn more efficiently from the data.

Input, Output Processing, Pre-training Objectives

Pre-training objectives Pre-training objectives can be categorized as supervised,

unsupervised, or a hybrid of both. Unsupervised pre-training objectives often in-

volve de-noising tasks, where noise or corruption is added to the input data, and

the model is trained to restore the original, uncorrupted data. Typical de-noising

unsupervised pre-training objectives include Masked-Language Modeling (which

involves randomly masking tokens in the input text) and Denoising Autoencoding

(which corrupts input text through random token dropout, token replacement, etc.).

On the other hand, supervised pre-training objectives use labeled data to di-

rect the model’s learning process. Examples of supervised pre-training objectives

include sentiment analysis, Named Entity Recognition, and text classification.

LLMs like T5 are trained using both unsupervised and supervised pre-training

objectives [94]. While unsupervised training aids LLMs in acquiring general lin-

guistic knowledge and understanding language structure, supervised training al-

lows them to fine-tune their representations for specific tasks, leading to improved

performance on those tasks.

Tokenization Tokenization is the process of dividing the input text into smaller

units, known as tokens. This process allows models to manage variable-length

input and aids in the standardization and normalization of the text, ensuring con-

sistent treatment of punctuation, capitalization, and variations. LLMs typically em-

ploy sub-word tokenization, which involves splitting a word into sub-word units to

identify its root, prefix, and suffix. For example, the word ”Reliability” would be

divided into two tokens: ”Reliable” (root) and ”ity” (suffix). This approach allows

LLMs to handle verbs, nouns, plural forms, and compound words effectively.

Tokenization also necessitates an input vocabulary file that serves as a lookup

table to map tokens to unique numerical IDs. This vocabulary defines the set of to-

kens the LLM uses and allows the model to represent and process text as numerical

values.
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2.2.3 Machine Learning Frameworks

ML frameworks are libraries or toolsets designed to simplify and streamline the

process of developing machine learning models. They offer high-level, user-friendly

APIs that abstract away the complexities of underlying algorithms and computa-

tions, allowing developers to focus on model design and structure. These frame-

works often include built-in optimizations for efficient training and inference, such

as support for parallel computation, hardware acceleration, and distributed com-

puting. They also provide flexibility for customization and extension, along with

tools for tracking, visualizing, and debugging during model training. Tensorflow

and PyTorch are two of the popular ML frameworks [103].

ONNX

ONNX, or Open Neural Network Exchange [13], is an open-source format for seri-

alizing ML models. It offers a standardized set of ML operations that are compati-

ble with a variety of popular ML frameworks, including TensorFlow and PyTorch,

as well as others like scikit-learn. One example of an ONNX operator is Max-

Pool, a common feature in many ML models that performs maximum pooling. As

of the time this was written, ONNX supports over 90% of commonly used ML

operators [33]. The ONNX specification is continually evolving, with new opera-

tors being added with each version release. This suggests that its coverage of ML

operators will likely expand in the future.

In addition to this, ONNX also supports interoperability between different ML

frameworks. This means that a model trained in one framework (like TensorFlow)

can be exported to ONNX format and then imported into another framework (like

PyTorch) for further use or deployment. This makes ONNX a powerful tool for

ML development and deployment, as it allows developers to leverage the strengths

of different frameworks and avoid being locked into a single framework. LLTFI

utilizes ONNX to do FI in the ML model, irrespective of the underlying ML frame-

work.
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2.3 Machine Learning Accelerators
ML accelerators are specialized hardware designed to significantly speed up the

computation-intensive tasks involved in the training and inference of DNNs and

LLMs. Tasks, such as matrix multiplication and convolution, can be parallelized

effectively, making them well-suited for hardware acceleration. DNN accelerators,

such as Google’s Tensor Processing Units (TPU)[55] and Microsoft’s BrainWave[25],

utilize a two-dimensional array of multiply and accumulate (MAC) units, known

as a systolic array. This array forms the heart of these accelerators and is used for

executing batch multiplication and addition operations.

2.3.1 Efficient Convolution Implementation on Systolic Arrays

There are several strategies for executing convolution operations efficiently on sys-

tolic arrays. A prevalent method involves transforming the convolution into a large

GEMM operation. This is achieved by:

• reshaping the input data, which is typically a 4-D tensor with dimensions

N ×C×H ×W , into a 2-D matrix of dimensions CRS×NPQ.

• reshaping the convolution kernel, usually a 3-D tensor with dimensions K ×
R×S, into a 2-D matrix of dimensions K ×CRS.

In this context, N, C, H, and W represent the batch size, number of channels,

height, and width of the input data, respectively. Similarly, K, R, and S denote

the number of output channels, rows, and columns of the convolution kernel, while

P and Q correspond to the height and width of the output matrices. This approach

to convolution implementation is employed in CuDNN [23], a GPU-accelerated

library for deep neural networks.

This method of implementing convolution operations is particularly efficient

because it allows the systolic array to perform a large number of operations in

parallel. By reshaping the input data and the convolution kernel into 2-D matrices,

the convolution operation can be performed as a single GEMM operation, which is

highly parallelizable and can be efficiently executed on a systolic array.

17



2.3.2 Operation Tiling in Systolic Arrays

Operation tiling is a technique used in systolic arrays that involve dividing a larger

computation into smaller sub-computations, or ’tiles.’ These tiles are then pro-

cessed in a parallel and pipelined manner by the array. This approach is particularly

beneficial when the computation is too large to be handled by a single processor.

By splitting the computation into tiles, the systolic array can process the compu-

tation in a streaming fashion, eliminating the need to store the entire computation

in memory simultaneously. This is particularly useful for tasks such as image and

video processing, where the computation often exceeds the memory capacity.

For instance, consider the matrix multiplication of two 4x4 matrices, A and B,

as shown in Equation 2.2.

A =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

B =


B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44


(2.2)

Assuming the systolic array size and, thus, the tile size to be 2×2. The matrices

A and B are broken down into four tiles of 2× 2 each, as shown in Equation 2.3

and 2.4, respectively.

Atile1 =

(
A11 A12

A21 A22

)
Atile2 =

(
A13 A14

A23 A24

)

Atile3 =

(
A31 A32

A41 A42

)
Atile4 =

(
A33 A34

A43 A44

) (2.3)

The resultant matrix, C, is calculated through eight matrix multiplication and

four matrix addition operations, as shown in Equation 2.5.

Btile1 =

(
B11 B12

B21 B22

)
Btile2 =

(
B13 B14

B23 B24

)

Btile3 =

(
B31 B32

B41 B42

)
Btile4 =

(
B33 B34

B43 B44

) (2.4)
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Ctile1 = Atile1 ×Btile1 +Atile2 ×Btile3

Ctile2 = Atile1 ×Btile2 +Atile2 ×Btile4

Ctile3 = Atile3 ×Btile1 +Atile4 ×Btile3

Ctile4 = Atile3 ×Btile2 +Atile4 ×Btile4

(2.5)

This approach of operation tiling allows for efficient utilization of the systolic

array’s computational resources. It enables the array to handle larger computations

than it could otherwise, and it allows for efficient memory usage by only requiring

a portion of the computation to be stored in memory at any given time. This makes

operation tiling a crucial technique for maximizing the performance of systolic

arrays.

2.3.3 Data flow Mapping Schemes

In a systolic array, the term ’data flow mapping’ refers to the method of directing

data between the MAC units within the array. There are various data flow mapping

strategies, each offering its own advantages and potential drawbacks.

Two prevalent data flow mapping strategies are WS and OS. In the WS data flow

mapping scheme, the weights of the convolution kernel remain fixed, while the

input data is transferred between the MAC units, as depicted in Figure 2.2b. This

strategy is particularly efficient for convolution operations with large kernel sizes,

as it enables the convolution operation to be segmented into smaller, parallelizable

steps.

Conversely, in the OS data flow mapping scheme, the output data stays sta-

tionary, while the weights of the convolution kernel are moved between the MAC

units, as illustrated in Figure 2.2a. This method is efficient for convolutions with

small kernel sizes, as it enables the entire convolution operation to be executed in

a single step.

Systolic arrays can also employ other data flow mapping strategies, including

input stationary and hybrid schemes that incorporate aspects of both WS and OS

mapping. The selection of a data flow mapping scheme is contingent on the specific

needs of the application and the hardware architecture of the system.
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Figure 2.2: OS (a) and WS (b) data flow schemes. In WS, the weights are
stored within the systolic array, while in OS, partial outputs are stored
in the systolic array.

2.4 Gemmini: ML Accelerator Generator

CPU

256 x 256

Figure 2.3: Gemmini’s Architecture. [39]

Gemmini [39] is a popular systolic array generator for evaluating deep learning

accelerators. Gemmini is an open-source, full-stack DNN accelerator generator for

DNN workloads, enabling end-to-end, full-stack implementation and evaluation of

custom hardware accelerators. Figure 2.3 shows Gemmini’s architecture. The core
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of the Gemmini accelerator is a systolic array that performs matrix multiplica-

tions. The matrix multiplication supports both OS and WS dataflows, which pro-

grammers can choose at runtime. The inputs and outputs of the systolic array are

stored in a specifically managed scratchpad composed of banked SRAMs. A Di-

rect Memory Access engine aids in the transfer of data between the main memory,

which is accessible to the host CPU, and the scratchpad. Additionally, Gemmini

includes peripheral circuitry to optionally apply activation functions such as ReLU

or ReLU6, scale results down by powers-of-2 to support quantized workloads, or

transpose matrices before feeding them into the systolic array.

Gemmini offers several advantages and a few drawbacks. On the positive side,

it supports both systolic spatial array (like Google TPU) and vector engine array

(like NVDLA [102]), and it can run ONNX models, making it easy to integrate

with existing machine learning workloads. It also supports both weight-stationary

and output-stationary dataflow, and the size of Gemmini’s systolic array is config-

urable. Furthermore, Gemmini is easy to extend as it uses Cheisel, a Scala-based

hardware description language that is concise and easy to understand. Due to these

advantages, we used Gemmini for implementing SystoliFI.

2.5 LLVM Compiler Framework
The LLVM compiler framework [60] is a collection of tools to enable various types

of code analysis, instrumentation, optimizations, and code transformations. It is

used to develop compiler front ends and back ends. The Clang project, for example,

provides a compiler front end for the C, C++, and Objective-C languages that uses

LLVM as its back end.

LLVM Compiler Infrastructure works on the LLVM IR, which follows a static-

single assignment (SSA) format [27]. It serves as a portable, high-level assembly

language that can be optimized with a variety of transformations over multiple

passes.

Consider the LLVM IR corresponding to the max function in Figure 2.4. The

entire function consists of four basic blocks, all ending in either Branch or Return

instructions (br and ret). The first instruction is cmp, which compares the value

of %a with the value of %b, and returns True if the value of %a is bigger than that
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Figure 2.4: LLVM IR of max function, that returns the maximum of the two
input values.)

of %b. The last basic block also consists of a ’PHI’ node, a type of instruction used

in LLVM IR to represent a conditional branch in the control flow of a program. It

is used to specify that the value of a particular variable may come from multiple

sources, depending on the program’s control flow. In this example, the PHI node

denotes that the variable %retval can be either equal to %a or %b, depending on

the control flow.
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Chapter 3

Related Work

3.1 Fault Injection in ML Applications for the CPU
Hardware Model

3.1.1 Transient Fault Injection

Li et al. [68] were among the first to analyze the effects of transient hardware faults

on DNNs by conducting a systematic FI study in a DNN simulator, specifically

during the inference phase. Following their work, Reagen et al. presented Ares [97]

introduced Ares, a fault injection tool that leverages tensor operations on the GPU

to enhance the speed of fault injection at the application level. Ares, however,

requires changes in the Keras inference computation graph which require changes

in the Keras and Tensorflow framework. To overcome this limitation, researchers

proposed PyTorchFI [81] and TensorFI [69], which are application-level FI tools

developed for PyTorch and TensorFlow ML framework, respectively, and do not

require changes in the ML framework itself.

Both PyTorchFI and TensorFI are framework-specific, i.e., PyTorchFI can only

work with the PyTorch framework, while TensorFI works only with the Tensor-

Flow framework. To overcome this limitation, in this thesis (Chapter 4), we pro-

pose LLTFI, which is an IR-level FI tool for ML applications that is ML framework

agnostic. LLTFI injects faults in the instructions and registers level and is, thus,
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more precise (proven empirically in Section 4.4.3) in emulating transient hardware

faults than PyTorchFI and TensorFI.

He et al.’s [44] work is one of the few that evaluate the resilience of NLP-based

ML models. They present FIdelity, a framework for evaluating the resilience of

ML applications under transient faults in ML accelerators. Using FIdelity, they

performed FI in RNNs and Transformer layers. Unlike FIdelity, in this thesis

(Chapter 5), we carry our FI in all layers of the LLM, not just the transformer

blocks. Moreover, we also evaluated the effect of model size, pre-training, and

fine-tuning objectives, on the resilience of LLMs.

Extending He et al.’s [44] work, Liu et al. [73] evaluated error propagation in

RNNs due to transient hardware faults. They found that the fault tends to spread as

it propagates through the RNN layers. They also found that the execution time of

RNNs significantly varies due to FI, perhaps due to the iterative nature of RNNs.

Unlike Liu et al., in this thesis, we focus on LLMs which are structurally different

from RNNs, so their results are not comparable to ours.

3.1.2 Transient Fault Mitigation in ML programs

Software-based soft error mitigation methods for ML programs can be broadly

categorized into the following three classes:

Range Restriction

Range restriction techniques [22, 45, 48] leverage the fact that corrupted values

(due to soft errors) that are abnormally large are most likely to cause the CNN to

misclassify. These methods first profile the CNNs to identify the nominal range

of neuron output values and then use it as the upper and lower bound for range

restriction. At runtime, Ranger [22] checks if the neuron outputs are within the

range; if not, the output gets truncated to the upper bound. Although RR has

lower runtime overheads, the major issue with this line of work is that they have

a high false-positive rate and can not be used with online learning ML algorithms

that constantly evolve with time; thus, a fixed upper, lower bound can not be used.

Along similar lines, Hong et al.[48] proposed using activation functions like tanh,

which have implicit lower and upper bounds to prevent the propagation of abnor-
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mally large neuron values. However, their approach requires retraining of the CNN

and might also impact the accuracy of the ML program.

Redundancy-based

These techniques, including instruction duplication, work by adding redundancy

to the ML programs. While prior works have proposed triple-modular-redundancy

(TMR) [72] at the operator level, feature or neuron duplication (like FLR [79]), in

this thesis (Section 4.5), we evaluate the efficacy of selective instruction duplica-

tion for improving the resilience of ML models against transient hardware faults.

Unlike SID, operator-level duplication [72] has more than 100% runtime overhead,

and feature duplication [79] requires extensive profiling of the ML program with

all possible input features (with all images in the dataset).

Approximation-based

Approximation-based techniques work by (partial) approximation of the ML pro-

gram to improve its fault tolerance. Li et al. [68] proposed an approximation-based

approach that works by using smaller data types (like Int, Float16) instead of

Float64, which is conventionally used in CNNs. The primary drawback of this

approach is that it also degrades the accuracy of the CNN.

Hardware-based SDC mitigation techniques like full ALU duplication (the ap-

proach taken by IBM eServer z990 [84]), selective latch duplication [68] and using

ECC in memory are certainly effective but require hardware changes, which might

not always be feasible.

3.2 Fault Injection for the ML Accelerator Hardware
Model

Characterization of hardware faults in ML accelerators in prior work is often lim-

ited to the impact on accuracy without analyzing the fault patterns induced at the

software level. To the best of our knowledge, Rech et al.’s recent work on analyz-

ing the resilience of EdgeTPU [98] is the only one that analyzes the fault patterns

induced at the software level occurring due to transient faults. Unlike Rech et
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al., in this thesis (Chapter 6), we analyze fault patterns at intermediate layers of

the ML models arising due to permanent stuck-at faults in ML accelerators. We

also considered various hardware and software configurations that might affect the

manifestation of fault patterns.

3.2.1 Fault Injection and Characterization

Zhang et al. [114] and Holst et al. [47] studied the effects of timing faults in sys-

tolic arrays, thus, degrading DNN’s accuracy. However, their work is not directly

comparable to ours due to the fundamental difference in our fault models (stuck-at

vs. timing errors).

Other works like that of Kundu et al. [58], Zhang et al. [116], Ren et al. [99],

and Feng et al. [37] aims to understand the effects of transient faults on systolic

arrays. Kundu et al. [58] analyzed the manifested faults’ boundaries while leaving

details of error patterns in the intermediate outputs unexplored. Ren [99] studied

the geometrical pattern of faults in systolic arrays on-chip. However, it does not

study the geometric pattern of manifested faults in software. Feng et al. [37] ex-

tended the characterization beyond accuracy by also considering the crash rate as

a metric. However, all of these works use software simulation of systolic arrays

and do not consider fault patterns. Software-level systolic array simulations create

an abstract model of the systolic array that abstracts out hardware configurations

like data flow mapping schemes. In contrast, we use RTL-level FI, which cap-

tures hardware details of ML accelerators, thereby resulting in more accurate fault

patterns.

In very recent work, Tyagi et al. [106] worked towards quantifying the ac-

curacy of DNN accelerators under transient faults. They used RTL-level FI and

proposed a new, more-accurate resilience assessment metric. However, they do not

consider fault patterns emanating at the intermediate layers of the DNNs. Li et

al. [68] studied the error propagation with regard to some architectural parameters

of CNNs. However, in systolic arrays, the manifestation of faults varies with the

hyper-parameters that were not considered in this study.

Unlike other prior works, Burel et al. [16] considered permanent faults in sys-

tolic arrays and found that OS dataflow is more fault-tolerant than WS (similar
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result to ours) and, thus, proposed OS-based, fault-tolerant systolic array architec-

ture. However, Burel et al. [16] did not consider the effect of different parameters

(including data mapping schemes) on the fault patterns: they only considered the

final DNN accuracy degradation in the presence of faults.

To summarize, there is limited prior work on the extensive characterization of

faults in systolic arrays. Among those, most of them were limited to only transient

faults; that too, they either did not consider fault patterns at all, or they used an

abstract software model for FI experiments, or even both. Moreover, none of the

prior work that looked into fault patterns considered other essential factors like data

mapping schemes and tiling. In this thesis, we bridge this gap by using RTL-level

FI and considering the effect of various hardware and software configurations on

the resulting fault patterns.

3.3 Summary

3.3.1 Transient faults in the CPU

For transient faults in the CPU, the prior work suffers from the following three

limitations:

1. All prior work on software-level FI in ML applications is limited to application-

level FI (like TensorFI), which implicitly assumes that every transient hard-

ware fault ends up corrupting the output of the ML operators.

2. Existing application-level FI tools are all ML framework-specific.

3. None of the prior work considered evaluating the resilience of LLMs.

We address the first two limitations in Chapter 4 of this thesis, where we pro-

posed LLTFI, a framework-agnostic, IR-level FI tool that injects transient hardware

faults in registers and instructions. Using LLTFI, we empirically invalidate the as-

sumption made by existing application-level FI tools. Moreover, in Chapter 5, we

further use LLTFI to evaluate the resilience of LLMs against transient hardware

faults.
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3.3.2 Permanent faults in ML accelerators

Regarding the fault injection and characterization for the ML accelerator hardware

model, most of the prior work is limited to just transient hardware faults. The few

papers that considered permanent faults in ML accelerators also did not evaluate

the software-level fault patterns arising from hardware faults. We address this limi-

tation in Chapter 6 of this thesis, where we evaluated different fault patterns arising

due to stuck-at faults in ML accelerators.
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Chapter 4

LLTFI: Implementation and
Evaluation

To evaluate the resilience of ML applications under transient hardware faults, in

this chapter, we propose LLTFI, a framework-agnostic, IR-level FI tool. We start

this chapter by first discussing our fault model and design constraints for LLTFI.

We then articulate our implementation of LLTFI and possible design alternatives.

Thereafter, we compare LLTFI with TensorFI and present the performance eval-

uation of LLTFI. Finally, we present a case study on using LLTFI to evaluate the

efficacy of selective instruction duplication for protecting ML models against tran-

sient hardware faults. We conclude this chapter by discussing the implications of

our results.

4.1 Fault Model
For LLTFI, our primary focus is on transient hardware faults that occur within the

CPU in the registers and data path. Transient faults can occur due to high-energy

particle strikes on hardware elements and can result in bit-flips in registers and

latches [77].

We do not consider faults in the instruction encoding or the processor’s control

logic. Furthermore, we operate under the assumption that these faults do not alter

the control flow graph of the ML models. These assumptions are made to ensure
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that the faults we inject do not result in software crashes, which are more easily

detectable.

Our assumptions align with most previous research in this area [42, 69, 76, 97].

4.2 Design Constraints
We adhere to the following four constraints in the design of LLTFI:

• Compatibility with multiple ML frameworks. The FI tool should work

with ML models written in various ML frameworks. Not only this improves

the utility of the tool, but it is also crucial for contrasting the resilience of ML

models across different ML frameworks. This is important because complex

ML-based systems for autonomous vehicles such as Baidu’s Apollo [1] and

Comma.ai’s OpenPilot [2] incorporate ML models developed over multi-

ple ML frameworks. For instance, Baidu Apollo contains at least 28 differ-

ent ML models, written in frameworks including TensorFlow and PyTorch,

along with programmed components in C++ [91]. Therefore, to evaluate the

resilience of complex ML-based systems, it is important for a single FI tool

to support multiple ML frameworks to ensure consistent FI and ease of use.

• Instruction and register-level FI. Unlike prior work that injects faults at the

application level (in the output of ML operators), our FI tool should inject

faults in the instructions and register level. This way, the FI will be closer to

the hardware i.e., we can emulate hardware faults more accurately.

• Efficient error propagation tracing for ML applications The FI tool should

be capable of doing efficient error propagation tracing in ML applications.

This allows the user to track the injected fault as it propagates through the

ML model and further understand how the fault spreads or gets suppressed

by different ML operators.

• Ease of Use and Portability The FI tool should be user configurable and

should be easy to use without requiring the user to understand the internal

workings of the tool itself. Moreover, the FI tool should be portable, i.e., the

tool should not make any assumptions about the underlying system architec-

ture.
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Figure 4.1: LLTFI’s workflow.

4.3 LLTFI’s Implementation
LLTFI is built on top of LLFI [76] and is fully backward compatible with it. While

developing LLTFI, we upgraded the entire LLFI tool, which was originally written

for LLVM 3.4, to LLVM 12.0. This is important as LLVM 3.4 has no support for

MLIR, which is required to lower ML programs to LLVM IR. LLTFI provides a

single script that converts ML models into LLVM IR for convenience.

Figure 4.1 shows the workflow diagram of LLTFI. Firstly, developers write

their models using the ML framework (e.g., TensorFlow, PyTorch) and train their

models. The trained models are then exported to a saved model format (like Tensor-

flow’s SavedModel). Secondly, LLTFI converts the saved model to the ONNX [13]

format, which is a common, abstract format for models written in different ML

frameworks. Thirdly, the ONNX file is converted into MLIR through ONNX-

MLIR [53]. Finally, MLIR is converted into LLVM IR using the mlir-translate

tool in LLVM 12.0.

To run the ML model, a controller program written in C or C++ is required.

LLTFI directly compiles the controller program into LLVM IR, which can then be

linked to the ML program. After this step, LLTFI can inject faults into the LLVM

IR of the model at runtime without compilation.
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compileOption: 
    instSelMethod: 
      - customInstselector: 
          include: 
            - CustomTensorOperator     # Select custom LLVM pass for FI 
          options:                                  # FI in 3rd Relu layer 
            - -layerNo=3                       # Number of layer for FI 
            - -layerName=Relu            # Name of Tensor Operator for FI 

    tracingPropagation: True          # Enable instruction tracing? 
    tracingPropagationOption: 
        maxTrace: 250                       # Max number of instructions to trace 
        mlTrace: False                       # Enable tracing for ML programs? 
runOption: 
    - run: 
        numOfRuns: 25                     # Number of experiments 
        fi_type: bitflip                        # Type of fault to inject 
        fi_max_multiple: 1               # Number of faults to inject 

Figure 4.2: Example of the YAML file used by LLTFI to configure the FI
experiments.

4.3.1 Fault Types

LLTFI supports the injection of bit flips, which flips bits from 0 to 1 or vice versa,

in the destination register of instructions. These bit flips can be single (i.e., one bit

flip on a single instruction in a program) or multiple (i.e., multiple bit flips across

multiple instructions or multiple bit flips in a single instruction). Users can also

specify the bit position in which fault injection is performed. All of these options

can be specified in a YAML file by the user without requiring any changes to the

ML model.

Figure 4.2 shows an example of the YAML file. There are two sections in the

YAML file: (1) compileOptions, and (2) runtime options. These mirror those used

in LLFI [76]. Compiler options are those that determine which instructions should

be selected for FI, as well as the layers of the ML model to inject into. Additionally,

they also specify whether to trace fault propagation and, if so, to what depth (i.e.,

the number of instructions to trace). Runtime options, on the other hand, determine

the FI experimental parameters, such as the number of experiments to be run, the

32



type of fault to be injected, and the maximum number of bit-flips (for multi-bit

faults) to inject.

4.3.2 Tracing Fault Propagation

LLTFI provides fault propagation tracing at two different levels of granularity: at

the tensor operator level and the instruction level. Tensor operator-level fault prop-

agation tracing enables LLTFI to identify the effect of the injected fault on the out-

put of the ML operators like GEMM and convolution. It can be used to determine

how the fault originates, propagates, or gets suppressed by the ML operator. On the

other hand, instruction-level tracing can be used to precisely track the propagation

of the injected fault through the assembly instructions at runtime.

4.3.3 Example of running LLTFI on an ML Program

In this section, we illustrate how LLTFI works on an ML model for low-level FI and

how it helps users visually understand the effects of FI. Suppose we have an ML

model written in Python, using the TensorFlow and Keras [24] APIs, as shown in

Listing 4.11. This model is trained on the MNIST [63] dataset and aims to classify

handwritten images of digits into a single numerical value between 0 and 9. We

compile this model, train it and export its weights and architecture information to

a saved model format.

LLTFI’s compile script automatically converts the saved model into LLVM IR,

as depicted in Figure 4.1. In this example, however, we break down the internal

steps. The saved model is first converted into ONNX using the tf2onnx tool, re-

sulting in model.onnx. Then, model.onnx is lowered into an MLIR file, model.mlir,

using the ONNX-MLIR tool. The MLIR is very similar to LLVM IR [60]. Finally,

model.mlir is converted into LLVM IR, model.ll, using the mlir-translate

tool.
1Though the example uses the TensorFlow framework, LLTFI is agnostic of the ML framework

as it uses ONNX.
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Listing 4.1: model.py - TensorFlow model
model = models . Sequent ia l ( )

model . add (

l aye rs . Conv2D(32 , (5 , 5 ) , a c t i v a t i o n = ” r e l u ” , input shape =(28 , 28 , 1 ) ) )

model . add ( l aye rs . MaxPooling2D ( ( 2 , 2 ) ) )

model . add ( l aye rs . Conv2D(64 , (5 , 5 ) , a c t i v a t i o n = ” r e l u ” ) )

model . add ( l aye rs . MaxPooling2D ( ( 2 , 2 ) ) )

model . add ( l aye rs . F l a t t e n ( ) )

model . add ( l aye rs . Dense(10 , a c t i v a t i o n = ” softmax ” ) )

Listing 4.2: controller.c - to invoke TensorFlow model
OMTensorList * run main graph ( OMTensorList * ) ;

i n t main ( . . . ) {
OMTensorList * i npu t = read inpu t ( i m a g e f i l e ) ;

OMTensorList * o u t p u t L i s t = run main graph ( i npu t ) ;

}

Despite obtaining the LLVM IR code, model.ll cannot be executed directly.

The model is contained within a function called main graph(), which is invokable

by the run main graph() function. A controller program reads the image file into

a tensor and invokes the model with the input tensor, as shown in Listing 4.2. This

controller program is provided by LLTFI and is independent of the ML model and

dataset. Therefore, users do not need to write their own.

We compile the controller program using LLVM’s clang to obtain controller.ll,

which we then link with model.ll to obtain a single unified LLVM IR file, pro-

gram.ll.

Finally, we apply LLTFI to perform FI on program.ll. We first instrument it

to add fault injection calls and profile it (i.e., run the instrumented code without

any faults). In this example, we pass in a handwritten image of the digit 8 to the

controller program, as shown in Figure 4.1. The output of the model is an ar-

ray of length 10, representing the digit-wise softmax output by the ML model. In

the figure, we show the classes inferred with the highest probability. During the

profiling run, LLTFI generates a golden output of [0, ...,0,0,0.999989,0]. This

means that the model has classified the test image as the digit 8 with a probability

of 0.999989. However, when the fault is injected, LLTFI generates an erroneous
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Figure 4.3: LLTFI on CNN-MNIST. The first snippet shows the case where
the fault got suppressed by the ReLu layer. The second snippet shows
fault propagation resulting in misclassification.
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output of [1, ...,0,0,0,0]. Instead of correctly classifying it as 8, the model mis-

classifies the image as 0.

LLTFI also allows users to trace the propagation of the injected fault among

different layers of the ML application in the form of a DFG. We use Graphviz [35]

to generate the visual DFGs. In Figure 4.3b, we show the tensor operator-level

error propagation DFG generated by LLTFI for this example. The DFG nodes

highlighted with gray represent the layers of the ML model, and the other nodes

originating from the layer nodes show the change in the layer output due to the

injected fault. We observe that LLTFI injected a fault in the Conv 2 layer, thereby

modifying the output value at index 10887 from 0.0108 to 3.7899E + 37. This

fault propagated through Relu 3 and MaxPool 4 layers, and at Conv 5 layer, the

fault gets propagated manifold, thereby corrupting 640 different output values and

results in a misclassification.

Figure 4.3a shows another possible scenario where the injected fault corrupts

a single output value of the Conv 2 layer, but the fault got masked by the Relu 3

layer. This fault results in a benign output. LLTFI’s graph visualization feature

offers an intuitive way to understand how low-level errors originate and propagate

through different layers of the ML model.

4.3.4 Design Choices and Alternatives

Selecting the lowering mechanism. There are multiple methods to lower high-

level ML models to an IR. We explain why LLTFI lowers ML models to MLIR

using ONNX-MLIR [53] over other alternatives.

Glow is an ML compiler [100], which lowers a neural network dataflow graph

into high-level Glow IR, followed by low-level Glow IR. However, Glow does

not lower to LLVM IR. XLA [62] and TVM [18] are both compilers for lowering

TensorFlow and PyTorch models into LLVM IR. XLA first lowers into XLA high-

level optimizer representation, while TVM first lowers into Halide IR [95], before

lowering to LLVM IR. While XLA and Halide both enable more optimizations

than MLIR, their compilation time overhead is also greater.

Moreover, one of the objectives of this work is to develop a unified fault in-

jector that works with both C/C++ and ML programs (in a framework-agnostic
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manner). While TVM and XLA can be used for ML programs, they do not work

with C/C++ programs. In LLTFI, we used ONNX-MLIR to lower ML models

to LLVM IR, followed by fault injection using LLFI, which can also be used for

C/C++ applications. Therefore LLTFI is backward compatible with LLFI and can

be used with both C/C++ and ML programs.

Adapting low-level fault injection for ML models. LLTFI injects faults into

values chosen at runtime with uniform probability, including address values. Since

address values are abundant and accessing illegal addresses often causes crashes,

fault-injected models are more likely to crash than to produce SDCs (e.g., misclas-

sifications). This is problematic for comparing the FI results with ML FI tools,

which do not typically cause crashes [69].

To avoid the problem of injecting into address values, we provide an LLVM

pass for users to skip certain instructions while injecting directly into math and

logic operations in the basic blocks representing the high-level ML computation

graphs. Additionally, this pass enables targeted FI into selected ML model layers.

The primary challenge was to map Tensor operators in the high-level ML computa-

tion graph to their respective LLVM IR code blocks. We addressed this challenge

in the new pass by utilizing the debug instrumentation provided by the ONNX-

MLIR tool to uniquely identify the LLVM IR code block(s) of different Tensor

operators.

4.4 LLTFI’s Evaluation
In this section, we present our research questions, evaluation methodology, and the

results of our evaluation.

4.4.1 Research Questions

We asked four RQs to compare high-level (using TensorFI) and low-level ML FI

(using LLTFI).

• RQ0 Are the FI results by LLTFI consistent among ML models written in

different ML frameworks?
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Table 4.1: ML applications used for LLTFI’s evaluation.

Network Dataset(s) Number of parameters

CNN MNIST, F-MNIST 44426
LeNet [64] MNIST, F-MNIST 44426

VGG16 [104] MNIST 14913226
AlexNet [57] CIFAR10 1642282

SqueezeNet [51] CIFAR10 122986
Dave2 CNN [15] Driving [17] 252219

• RQ1 How does the overall SDC rate of the ML model with LLTFI compare

with that of TensorFI?

• RQ2 Does a single bit-flip fault injected in a specific layer of the ML model

affect the output of that layer differently in both LLTFI and TensorFI?

• RQ3 How does the performance overhead of LLTFI compare with that of

TensorFI?

4.4.2 Experimental Methodology

Benchmarks and Datasets

ML applications. We choose five ML programs, all of which are classifier mod-

els. These programs are of varying sizes and are commonly used by other FI stud-

ies [69]. We also included Nvidia’s Dave2 [15], a CNN used in autonomous vehi-

cles, which is a regression model. Table 4.1 lists the benchmarks and datasets.

Datasets. We used three publicly available datasets for the classifier mod-

els: MNIST (hand-digit recognition), Fashion-MNIST (F-MNIST; fashion prod-

ucts classification), and CIFAR-10 (a large object recognition dataset). We also

used a real-world driving dataset with labeled steering angles [17] for evaluating

the regression model, Dave2.
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Evaluation Metrics

We measure the efficacy and performance overhead of LLTFI. We use the SDC

rate for measuring LLTFI’s efficacy. For the classifier applications, the SDC rate

refers to the fraction of injected faults that result in object misclassification. For

the regression model, Dave-2 (i.e., predicting steering wheel angles), we use four

different thresholds: 15, 30, 60, and 90, and classify an output as an SDC if the dif-

ference between the corrupted and the original output is greater than the threshold,

as done by prior work [69].

For the performance overhead of LLTFI, we measured the profiling time and

FI time of using LLTFI on our benchmarks (20 samples for each). Profiling time is

a one-time cost to analyze the program (e.g., obtain instruction counts) at runtime.

In contrast, FI time is a recurring cost and is measured as the time taken to run the

fault-injected program compared to the baseline program execution time.

Optimizations and Transformations

The default graph transformations by ONNX are semantics-preserving [31], and

while converting the ML models to ONNX, we did not use any optimizations like

constant folding. Moreover, while converting ONNX models to LLVM IR using

ONNX-MLIR, we used only O0 optimization, thereby ensuring that the FI results

from LLTFI are comparable to those from FI performed on the original ML pro-

gram.

Experimental Setup

We ran all our experiments on an Intel Xeon E-2224 quad-core CPU with 900MHz

clock speed. To keep our results comparable with the prior work [69, 81], we

decided not to use GPUs for calculating the performance overheads. Moreover, for

our ML benchmarks, we used FLOAT32 as a data type.

Fault Injections

Although LLTFI can be used to inject both single and multi-bit flip faults, in our FI

experiments, we injected only single bit-flip faults as this is the de-facto fault model
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used in soft-error studies [21, 70, 80]. Further, Sangchoolie et al. have shown that

single-bit faults are often sufficient for measuring the SDC rate of programs [101].

We injected faults only in the operands and results of floating-point arithmetic,

logic instructions like FADD, and FCMP, to prevent application crashes (using the

LLVM pass described in Section 4.3).

To ensure an apples-to-apples comparison between LLTFI and TensorFI, we

chose the same type of faults for each comparison point. However, in LLTFI, the

faults were injected into the instruction operands and results within an operator

of the ML model. Whereas in TensorFI, the faults were injected directly into the

output of a randomly chosen operator. This is because TensorFI (like most ML

FI tools) does not provide visibility into the computations performed within an

operator.

Note that only one fault was injected in each FI trial to avoid interference.

Further, we report only those trials in which the faults were activated (i.e., read by

the system). These assumptions are common in most FI studies [69, 81, 97, 117].

4.4.3 Results

We organize the results based on the RQs.

RQ0: FI consistency between ML frameworks

For this RQ, we were interested in checking whether the FI by LLTFI is consistent

among different ML frameworks. We chose two of the widely used ML frame-

works - PyTorch and TensorFlow. We then compared the SDC rates reported by

LLTFI for single-bit flip faults injected into the same ML models written using

these two ML frameworks. We performed this experiment 1250 times for each

framework and program. We report the average SDC rates for each program and

the error bars at the 95% confidence intervals.

Figure 4.4 shows the SDC rates for each of the benchmarks written using the

TensorFlow and PyTorch frameworks (blue and green bars in the graph). We ob-

served that the SDC rates are similar across all benchmarks (i.e., are within the

error bars). Therefore, LLTFI is consistent across the TensorFlow and PyTorch

frameworks.
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Figure 4.4: Average SDC Rate for single bit-flip faults injected by TensorFI
and LLTFI across benchmarks. For LLTFI, we consider both the Ten-
sorFlow and PyTorch versions of the benchmarks. The error bars show
the 95% confidence intervals.

Upon further inspection of our benchmarks, we found that the ONNX graphs

exported by PyTorch and TensorFlow are very similar: most of the tensor op-

erators are the same except AveragePooling and General Matrix Multiplier

(GEMM). Unlike TensorFlow, PyTorch’s ONNX exporter emits an extra padding

operator with AveragePooling, and also prefers to use GEMM operator instead

of MatMul operator for fully-connected layers. Nevertheless, these differences

are minor and do not change the overall program’s semantics. Therefore, LLTFI’s

results are consistent between these ML frameworks.

For the rest of the RQs, we will use only the TensorFlow versions of the bench-

marks, as the differences between the PyTorch and TensorFlow versions are negli-

gible.

RQ1: Comparison between high-level and low-level ML FI

To answer this RQ, we injected single bit-flip faults using LLTFI and TensorFI in

randomly-selected layers of the benchmark programs and recorded the SDC rates.

For each benchmark, we ran this experiment 1250 times and reported the average

SDC rates as well as error bars at the 95% confidence intervals.

Figure 4.4 shows the SDC rates reported by LLTFI and TensorFI across all

the benchmarks. As can be seen from the figure, across the benchmarks, the SDC

rates reported by TensorFI were much higher than those reported by LLTFI. The

differences ranged from 1.1X (LeNet-MNIST) to 5.5X (SqueezeNet-CIFAR10),

41



with an average of 3.4X . Thus, TensorFI over-reports the SDC rate compared to

LLTFI. We examine the potential reasons for the same in the next RQ.

RQ2: Differences between the tools for a bit-flip fault in a specific layer of the
ML model affecting the layer output

For this RQ, we were interested in the following questions: (1) what percentage of

bit-flip faults injected by LLTFI propagate to the output of the target layer? (2) can

a single bit-flip fault corrupt multiple output elements of the target layer? and (3)

how often does the corrupted output element(s) value differ from the correct output

by just a single bit-flip?

Table 4.2: Error Propagation of single bit-flip faults injected by LLTFI across
models.

Benchmark
Name

% of faults that
affected layer’s

output

Corrupted element
differs from original

by one bit flip
CNN-MNIST 37.9% 19.2%

CNN-FMNIST 37.6% 23.7%

LeNet-MNIST 38.1% 29.5%

LeNet-FMNIST 39.7% 30.2%

VGG16-MNIST 37.0% 24.4%

AlexNet-CIFAR10 43.4% 27.2%

SqueezeNet-CIFAR10 43.0% 30.0%

Dave2-Driving 38.1% 26.6%

Average: 39.4% 26.4%

These questions will help us answer why LLTFI leads to much lower SDCs

than TensorFI, as we found in RQ1. For example, if it turns out most faults injected

in a layer by LLTFI get masked before reaching the output of a layer, that could

explain why LLTFI has a lower SDC rate than TensorFI, which always injects a

fault into the output layer. Conversely, if a single bit flip fault injected by LLTFI

reaches the output of the layer but ends up corrupting multiple elements of the
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output, then it could have a more significant effect on the SDC rate than TensorFI,

which typically corrupts a single element of the layer output.

To answer this RQ, we injected a single bit-flip fault using LLTFI in a randomly-

selected layer of our benchmarks and studied the error propagation using LLTFI’s

fault tracing capabilities. For this experiment, we ran each FI campaign 1000 times

for each benchmark and calculated the average percentages of occurrences of each

of the above outcomes.

The results are shown in Table 4.2. We observed that, on average, only 39.4%

of the faults injected by LLTFI propagate to the output(s) of the target layer. The

remaining faults are either masked primarily due to multiplication by zero (for

convolution and matrix multiplication layers) or are pruned due to the activation

function or max-pooling layers.

Moreover, in all of our experiments, we observed that a single bit-flip fault

corrupted at most a single output element of the target layer (not shown in the

table). In other words, there was no case in which a single bit-flip fault propagated

to multiple output elements of the ML model layer. These observations are the

reason why the SDC rate of LLTFI is significantly lower than that of TensorFI for

the same fault types.

Finally, we find that though we injected only a single bit-flip fault in each layer,

it resulted in a single bit-flip in the output of the layer in only 26.4% of the cases

on average. In the remaining 73.6% cases, the corrupted output element of the

layer differs from its original value by multiple bit-flips. TensorFI injects single-

bit flips into the output elements of the layer. However, low-level faults often lead

to multiple bit-flips at the output layer of the ML model.

In Section 4.6, we further discuss these results along with their implications.

RQ3: LLTFI’s performance overheads

We measure the performance overhead due to profiling and FI by LLTFI in Table

4.3. Recall that profiling is a one-time cost, whereas FI is a recurring overhead.

We find that the overhead due to profiling is 58% on average (ranges from 12%

to 104%), while the FI overhead is 68% on average (ranges from 19% to 117%)

compared to the baseline model.
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Table 4.3: Profiling and fault injection (FI) overheads of LLTFI for ML ap-
plications.

Benchmark
Name

Baseline
Time (s)

Profiling
Overhead

FI
Overhead

TensorFI
Baseline (s)

TensorFI FI
Overhead

CNN-MNIST 0.088 51% 48% 1.51 85%
LeNet-MNIST 0.045 98% 113% 1.53 77.40%
CNN-FMNIST 0.056 69% 86% 1.56 73%
LeNet-FMNIST 0.045 104% 117% 1.50 76%
VGG16-MNIST 0.982 4% 19% 2.15 138%

AlexNet-CIFAR10 0.331 10% 39% 1.71 81%
SqueezeNet-CIFAR10 0.081 82% 81% 2.40 80%

Dave2-Driving 0.363 12% 38% 1.52 82%
Average

Overheads: 54% 68% 86.6%

We also compare the overhead of LLTFI with TensorFI for each benchmark

in Table 4.3. Note that TensorFI does not have a separate profiling phase, so the

overheads for TensorFI represent the FI overheads. As can be seen, the average

overhead of TensorFI is 86.6%, compared to 68% for LLTFI. Note that the baseline

execution times of TensorFI are also much higher than those of LLTFI. However,

the FI overhead is calculated as a percentage of the baseline time.

Thus, LLTFI is 1.27x faster than TensorFI, on average. This is because LLTFI

works at the LLVM IR level for instrumenting the code for FI, whereas TensorFI

instruments the Python code. The LLVM IR code gets compiled to native assembly

code, as opposed to Python code, which is interpreted. Further, the instrumentation

added by LLTFI can be optimized by the LLVM compiler, while the instrumenta-

tion added by TensorFI can inhibit compiler optimizations.

4.5 Case Study: Selective Instruction Duplication
SID is a technique for selectively duplicating certain instructions in the program

to detect soft errors [88]. SID has been studied in the context of general-purpose

programs [49], GPUs [80], Embedded systems [87], super-scalar processors [88],

etc. In this study, we use LLTFI to evaluate the effectiveness of SID techniques for

ML applications in a framework-agnostic fashion. Further, we go beyond error de-
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tection and also actively correct the error with SID. We extended LLTFI to perform

SID at the LLVM IR level and add correction logic to the application.

To determine which instructions to duplicate, we used LLTFI to find the sensi-

tivity (SDC rate) and the vulnerability (fraction of program run time spent in that

instruction) of each arithmetic instruction within the ML program. We observed

that arithmetic instructions within the convolution operators are the most vulnera-

ble and sensitive ones. Similar findings have been reported by prior work [14, 72],

and therefore, for this case study, we selected the arithmetic instructions within the

convolution operators to duplicate with SID.

We then apply the three SID heuristics discussed in the next section to duplicate

the instructions.

4.5.1 Duplication Heuristics

We use three heuristics for duplicating the instructions.

Arithmetic SID (AID)

Since we assume that transient hardware faults do not modify the control flow

structure of the ML applications (Section 4.1), it is sufficient to duplicate only the

arithmetic instructions such as FMUL, FSUB, FDIV, and FADD, which are primar-

ily involved in the computation of different DNN operators such as convolution

and GEMM.

As shown in Figure 4.5a, our extension of LLTFI duplicates arithmetic instruc-

tions like FMUL and FADD and then insert the logic to compare the outputs of the

original (Val #1) and the duplicated instructions (Val #2). Upon detecting a

mismatch, the error correction heuristics described in Section 4.5.2 are deployed.

Arithmetic Chain Duplication (ACD)

ACD is an optimization of AID that aims to reduce the number of comparison

operations in the code. Referring to Figure 4.5b, ACD works by (1) statically

identifying and duplicating the chain of arithmetic instructions and (2) adding the

error detection and correction right after the chain. An arithmetic instruction chain

consists of a sequence of arithmetic instructions within a basic block, such that the
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Figure 4.5: Three different SID heuristics in our work. The nodes highlighted
in blue represent the original data flow of the program, while those in
green depict the duplicated nodes, and the ones in yellow belong to the
comparison logic.

output of each instruction (except the last one) only affects the input of one or more

arithmetic instructions within that chain.

Operator Duplication (OD)

OD works by fully duplicating the neural network’s layer(s). As shown in Figure

4.5c, operators such as convolution and matrix multiplication are fully duplicated,

followed by the comparison logic to compare the output of the original and the

duplicated operators. We implemented operator duplication at the ONNX level

instead of the LLVM IR level.
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4.5.2 Error correction heuristics

Upon detecting a mismatch, we use two heuristics for error correction: bitwise-

and and return-min. The former heuristic returns the bitwise-and of the two values

while the return-min heuristic returns the minimum of the two values. These values

are used in the subsequent computations. As noted by Li et al. [70], soft errors

affecting the most significant bits have the highest probability of causing SDCs.

Therefore, both the correction heuristics aim to prevent large, positive values from

propagating through the CNN, thus preventing unnaturally large fluctuations in the

neuron’s output.

Note that for OD, we only use return-min correction heuristic as bitwise-and

heuristic is not a standard operation in the ONNX framework2 and, thus, is not

supported by the ONNX-MLIR tool for conversion to the LLVM IR level.

4.5.3 Evaluation

Methodology

To evaluate the effectiveness of the SID extension of LLTFI, we used the six bench-

marks from Table 4.1. Furthermore, we used the same evaluation metrics and setup

described in Section 4.4.2. We performed each FI experiment 1000 times with

LLTFI and reported the median values and error bars with 95% confidence inter-

vals as before.

Results

The objective of our evaluation is to evaluate the feasibility of SID for ML applica-

tions. Towards this goal, we evaluate the trade-offs of SID concerning its resilience

benefits (SDC Rate) and runtime execution overheads.

Figure 4.6 shows the SDC rate reduction percentage from the original, unpro-

tected program of the ACD SID technique with bitwise-and and return-min cor-

rection heuristics. We observe similar SDC rates for AID SID, and hence, omitted

it from Figure 4.6. The best-case reduction in the SDC rate for the benchmarks

2Following is the list of tensor operators supported by ONNX: https://github.com/onnx/onnx/blob/
main/docs/Operators.md
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Figure 4.6: Percentage reduction in the SDC Rates for LLTFI with various
SID techniques and correction heuristics compared to the unprotected
program. ACD Cmp and ACD And are the shorthands used for ACD
with return-min and bitwise-and heuristics respectively. OD stands for
the operator duplication technique. SDC rates for AID and ACD were
similar, hence, not shown separately. The bar in red shows the best-case
average SDC reduction across all our benchmarks. Higher values are
better.

Figure 4.7: Runtime Execution Overheads for LLTFI with various SID tech-
niques and correction heuristics. Shorthand notations are similar to Fig-
ure 4.6. The percentages are relative to the original, unprotected pro-
gram. Lower values are better.

varies from 85.7% (for LeNet-MNIST) to 100% (for AlexNet and Dave2). On

average, we observed a 93.9% best-case reduction in the SDC rate across all our

benchmarks.
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We also observed the lowest SDC rate for ACD SID with return-min correc-

tion heuristic, except for AlexNet-Cifar10. Moreover, the SDC rate reduction is

comparable for OD and ACD with return-min correction heuristic.

To understand these results, we manually inspected the faults that caused the

ML program to misclassify, despite our error correction heuristics. We made two

observations.

1. For return-min correction heuristic, we observed that the majority of the

escaped faults are NAN values. The IEEE-754 floating-point standard defines a

NaN as a number with all ones in the exponent and a non-zero mantissa. Arithmetic

instructions (except bitwise manipulations) and logic instructions operating on a

NaN value will always result in a NaN value, and thus, these faults escaped our

return-min correction heuristic.

2. For bitwise-and heuristic, interestingly, the NaN values got “corrected” by

the bitwise-and operation because the bitwise-and of the original and the corrupted

value prevents the situation with all exponent bits equal to one. However, unlike the

return-min heuristic, which consists of only logical assembly instructions, bitwise-

and heuristic also consists of arithmetic instruction (for bitwise AND operation),

which itself is susceptible to soft errors. Thus, the faults that escaped bitwise-and

correction heuristics are the ones that corrupted the AND operation itself.

Figure 4.7 shows the runtime overhead of AID, ACD SID techniques with

bitwise-and and return-min correction heuristics. The best-case runtime overhead

varies from 4.43% (for AlexNet) to 40% (for Dave2). Moreover, the least run-

time overhead was observed for ACD with bitwise-and heuristic. This is because

ACD reduces the number of comparison logic, and bitwise-and heuristic can be

implemented with just a single assembly instruction. Moreover, we also noticed

a significant reduction in runtime overheads with SID, as opposed to full operator

duplication (proposed by Libano et al. [72]). Overall, these results suggest that

for benchmarks like AlexNet and Vgg16, SID can significantly improve the error

resilience (reduction in SDC rate by 90% and 100%) with only modest runtime

overheads (7.8% and 4.4%).

For the Dave2 benchmark, we observed that the second convolution layer is

very computationally expensive and takes about 52% of the total program runtime.

Therefore, SID in this convolution layer resulted in an execution overhead of 40%.
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Overall, SID achieves a high reduction in SDC rate with a modest performance

overhead for most of our benchmarks.

4.6 Implications

Implication 1: Overreporting of SDCs Our experiments for RQ1 show that Ten-

sorFI reports a significantly (1.1x - 5.5x) higher SDC rate than LLTFI for the same

types of hardware faults. This is due to TensorFI’s assumption that every bit flip

fault corrupts a single layer output. However, our experiments with LLTFI contra-

dict this assumption, as we find that only a fraction of faults (about two out of five)

ends up corrupting the layer output. These results potentially apply to other ML FI

tools like PyTorchFI that inject faults in the layer outputs. Therefore, when using

ML FI tools, one needs to scale down the SDC rate estimates to obtain realistic

estimates. However, the amount of scaling is application specific.

Implication 2: Faults in layer outputs We also found that the majority of low-

level faults result in multiple bit-flips in layer outputs. ML FI tools such as Ten-

sorFI primarily inject single-bit flip faults into layers’ outputs. However, we found

that low-level faults corrupted at most one value in a layer’s output (RQ2), so the

choices made by ML FI tools to corrupt a single value in the output layer are well

justified.

Implication 3: Evaluation of low-level resilience enhancing techniques (like SID)

for ML applications To the best of our knowledge, we are the first ones to evaluate

the efficacy of SID for ML programs (Section 4.5). Although not exhaustive, our

preliminary results are promising: for a few benchmarks like AlexNet and Vgg16,

SID (in the convolution operator) significantly reduces the SDC rates (90%-100%)

with modest runtime overheads (7.8% - 4.4%). LLTFI thus enables researchers to

evaluate different SID heuristics and identify the instructions to duplicate. LLTFI is

able to evaluate these and other low-level resilience improvement techniques [30]

due to its visibility into instructions and registers, which is missing in most ML FI

tools.
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Overall Implications Prior research on improving the error resilience of ML ap-

plications [20] [21], [46] [90] [82] use high-level ML FI tools for evaluating their

techniques. Our results suggest that there is a need to revisit the evaluation of these

techniques. One of the main advantages of high-level ML FI tools is that they allow

the abstraction of the faults to the ML framework’s level and allow programmers to

study the propagation of these errors at that level. However, LLTFI offers similar

advantages as high-level ML FI tools without compromising the representativeness

of the injected faults.

4.7 Summary
In this chapter, we proposed LLTFI, a framework-agnostic FI tool for ML appli-

cations. LLTFI works by converting ML models to the ONNX format, followed

by further lowering them down to the LLVM IR level. At the LLVM IR level,

LLTFI injects code instrumentations to inject transient faults during the program’s

runtime. LLTFI is highly configurable using a YAML file and also supports fault

propagation tracing at two levels of granularity. We evaluated LLTFI with six

popular ML programs and compared it to TensorFI, a high-level FI tool for ML

programs. We find that TensorFI overreports the SDC rate of these programs for

single bit-flip faults by 3.5X on average compared to LLTFI. Further, there are sig-

nificant differences in fault propagation between the two tools. Finally, LLTFI is

27% faster than TensorFI on average. We also demonstrate the utility of LLTFI by

extending it to perform SID for ML applications. We found SID to be an effective

technique for improving the resilience of ML programs against transient hardware

faults.

In the next chapter, we evaluate the resilience of LLMs using LLTFI.
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Chapter 5

Resilience Assessment of Large
Language Models

While all the prior work on resilience assessment of ML applications focuses solely

on DNNs, in this chapter, we use LLTFI to also assess the resilience of LLMs

against transient hardware faults.

We begin this chapter by first discussing our fault model, fault injection method-

ology, and the modifications we made to LLTFI for integrating with LLMs. There-

after, we discuss the evaluation methodology and present the qualitative, quantita-

tive evaluation of LLM’s resilience. Finally, we conclude this chapter by presenting

the effect of model size, pre-training, and fine-tuning objectives on the resilience

of LLMs.

5.1 Fault Model
For this work, we used the same fault model as for LLTFI (refer Section 4.1).

In a nutshell, we considered transient faults in the CPU’s ALU and data paths.

Moreover, we consider faults only during LLM’s inference, not during the training.

This is because training is a one-time process (for most LLMs), while inference is

repeatedly invoked during an LLM’s deployment.
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5.2 Fault Injection Methodology
The primary challenge we faced while performing FI in LLMs was scalability.

LLMs like CodeBert [38] have 124.6 Million parameters and execute approxi-

mately 30 Billion CPU instructions at runtime to produce output. Therefore, we

had to modify LLTFI to make it work with LLMs, as it was not originally designed

for this purpose.

1. FI Runtime We added a supplementary FI runtime that is essentially a stripped-

down and highly-optimized version of LLTFI’s original FI runtime. We then stat-

ically linked this runtime with the LLM’s executable. Our supplementary FI run-

time reduced FI overhead by about 25% (on average), thus making LLTFI more

scalable.

2. Fault propagation tracing LLTFI supports ML fault propagation tracing that

allows users to ascertain the origin, propagation, or suppression of the injected

fault. However, LLTFI’s original ML fault propagation tracing is not scalable to

LLMs. Therefore, we replaced the element-wise output tensor comparison, i.e.,

element-wise comparison of each layer’s output with and without FI, with hash-

based comparison, where we just compare the hashes of the layer’s output. While

the hash-based comparison is scalable, it does not reveal the absolute amount of dif-

ference between the layer’s outputs after FI. However, this optimization prevents us

from ascertaining whether the fault corrupts just one element in the layer’s output

or multiple elements.

Figure 5.1 shows how we perform FIs using LLTFI in LLMs. The steps are as

follows:

• Step 1: We first download the LLM from the Hugging Face model hub [6].

Hugging Face’s Model hub contains a large collection of open-source pre-

trained LLMs, along with their tokenizer and vocabulary files.

• Step 2 and 3: We also download the tokenizer and vocabulary files of the

LLM that we use to convert human-readable text inputs to tokens in the Ten-
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Figure 5.1: Fault Injection in LLMs using LLTFI.

sorProto format1. TensorProto defines a serialized format for representing

multi-dimensional arrays of numerical data that we used for passing inputs

and retrieving outputs from an LLM.

• Step 4 and 5: We then convert the downloaded LLM into the ONNX format,

followed by lowering down to the LLVM IR, using the ONNX-MLIR tool,

similar to the default working of LLTFI.

• Step 6 and 7: Subsequently, we feed the LLVM IR file and inputs of the

LLM in TensorProto format to LLTFI, which executes various FI campaigns.

The resulting output of each FI campaign is then transformed - through our

custom scripts - into a human-readable format utilizing the tokenizer and

vocabulary files of the LLM and thereafter compared with the ground truth.

5.3 Research Questions
In this thesis, we asked the following RQs to evaluate the resilience of LLMs under

transient faults.

• RQ1: How do SDCs manifest in the LLMs?

• RQ2: How does the SDC probability vary across the different layers of the

LLMs and the faulty bit position?

1https://onnx.ai/onnx/api/classes.html#tensorproto
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• RQ3: How do the SDC rates of LLMs vary with different pre-training ob-

jectives, fine-tuning objectives, and the number of encoder/decoder blocks?

5.4 Evaluation Methodology
In this section, we describe our benchmarks, datasets, experimental design, met-

rics, and experimental setup.

5.4.1 ML Applications

For RQ1 and RQ2, we chose five benchmarks: PubMedBert [41], CodeBert [38],

T5 [94], GPT2 [93], and Roberta [75], as shown in Table 5.1. These benchmarks

vary in their architecture: three of them are Encoder-only, one Decoder-only, and

one with Encoder-Decoder architecture. We chose these benchmarks based on their

popularity in their respective domains, i.e., how many times they were downloaded

in the last month at the time of writing. PubMedBert (100K) for medical-related

fill-mask and question answers, CodeBert (200K) for code completion in Java, T5

(6 Million) for language translation, Roberta (11 Million) for sentiment analysis,

and GPT2 (21 Million) for text generation.

For RQ3, we used 15 benchmarks from Alajrami et al.’s work [12] on evalu-

ating the effect of different pre-training objectives on LLM’s learning capabilities.

All of these benchmarks are variants of Bert-base, Bert-small, and Bert-medium,

and are pre-trained with five different objectives each, namely (1) Masked Lan-

guage Modeling [28], (2) Manipulated word detection [113], (3) Masked first char-

acter prediction [113], (4) Masked ASCII code summation [12], and (5) Masked

Random token classification [12]. We explain these objectives in Section 5.5.4.

For this work, we further fine-tuned these benchmarks on two tasks: fill-mask

and question-answers, thereby resulting in a total of 30 distinct benchmarks.

5.4.2 Datasets

We used the pre-trained, publicly-available models of PubMedBert and CodeBert,

trained with the PubMed [92] and CodeSearchNet [50] datasets, respectively. T5

was first pre-trained on the C4 dataset (using an unsupervised denoising objective)

and then trained again on CoLa [110], MNLI [112], and 12 other datasets (using
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supervised training objectives). Roberta was pre-trained on Stories [105] and four

other datasets. GPT2 was primarily trained on the WebText dataset [74], which

consists of about 40GB of text.

Benchmark Name Archite-
cture

Task
type

# of Para
meters

R
Q

1
&

R
Q

2

PubMedBert [41]
Encoder-

Only
Fill-mask 109.5M

CodeBert [38]
Encoder-

Only
Fill-mask 124.6M

T5 [94]
Encoder-
Decoder

Translation 222.9M

Roberta [75]
Encoder-

Only
Sentiment
Analysis

124.6M

GPT2 [93]
Decoder-

Only
Text

Completion
124.4M

R
Q

3 Bert-base*
Encoder-

Only

Fill-Mask,
Question
Answer

108.3M
Bert-medium* 51.5M

Bert-small* 38.9M

Table 5.1: Benchmarks used for resilience evaluation of LLMs. Benchmarks
marked with * are compiled with five different pre-training objectives.

Benchmarks used in RQ3 are primarily pre-trained on BookCorpus [118] and

English Wikipedia. We further fine-tuned these models using Eli5 [36] and SQuAD [96]

datasets for the fill-mask and question-answer tasks, respectively.

5.4.3 Experimental Design

For each of the five benchmarks used for RQ1 and RQ2, we used ten distinct in-

puts from their training dataset, while for each of the 30 benchmarks used in RQ3,

we used five distinct inputs in order to keep our FI experiments computationally

tractable. For each input, we ran 1000 FI experiments. For the T5 benchmark,

we performed FI separately for the encoder and decoder in order to explore the

resilience of each component. Therefore, throughout this work, we use the term

“T5-encoder” and “T5-decoder” to denote T5 with FI in the encoder and decoder,

respectively. This resulted in a total of 210,000 FI campaigns for all our exper-
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iments, which took approximately 336 Hours of CPU time. Note that the model

weights of all of our benchmarks are static, i.e., in the absence of FI, the input-

output mapping of our benchmarks is constant across the FI trials.

Similar to Chapter 4, in this work, we injected only single bit-flip faults in

LLMs. Additionally, to avoid application crashes, we introduced errors only in the

operands and outcomes of floating-point arithmetic as well as logic instructions

such as FADD, FMUL, and FCMP (for the PubMedBert benchmark, these instruc-

tions constitute 15% of the total CPU instructions). This FI methodology ensured

that the control flow of the LLM remained uncorrupted - this is in line with our

fault model (Section 5.1).

To inject a single bit-flip fault in an LLM, we first randomly select a layer,

followed by randomly selecting a floating-point arithmetic instruction at runtime

to inject the fault into, and finally, we randomly select a bit in the operands or

results of the chosen instruction to inject the bit-flip fault.

5.4.4 Metrics

To evaluate LLMs’ resilience, we used two metrics: (1) SDC rate and (2) cosine

similarity. An SDC is a misprediction (the output of the LLM differs from the

correct one). On the other hand, cosine similarity is a popular metric in the NLP

community [59, 67] to compare the similarity between document vectors or word

embeddings. While the SDC rate measures how frequently the output differs from

the correct prediction, cosine similarity measures how distant the corrupted output

is from the correct one due to the injected fault.

To calculate cosine similarity, we converted the text output of the LLM into

vector embeddings using the FastText [54] embeddings. For T5 (translation of

English-to-German and English-to-French), we used FastText’s German and French

variants, publicly available in FlairNLP [11]. For the CodeBert benchmark, since

the output of this benchmark is Java code, we could not use the cosine similar-

ity metric due to the lack of open-source Java word embeddings. Similarly, for

Roberta, the output is just ’Positive’ or ’Negative’, so we could not use the cosine

similarity metric for this benchmark.
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For both the SDC rate and the cosine similarity, we calculate values using 95%

confidence intervals. Since SDCs are rare events, for the SDC rate, we used the

confidence intervals proposed by Leveugle et al. [65], which is in line with prior

work on FI [32, 69]. For cosine similarity, we calculate the non-parametric 95%

confidence intervals.

Limitations of our metrics. SDC rate, i.e., strict word-to-word comparison of

the corrupted and the correct output, might not capture the polymorphic nature of

natural languages, where we can express the same concept using different words.

While cosine similarity of word embeddings can capture the polymorphic nature

of natural languages upto a large extent, it, too, can not fully capture the contextual

nuances and ambiguities present in natural language. For example, the cosine sim-

ilarity of “This chair is white and the table is black.” and “This chair is white and

the table is white too” (example taken from our GPT2 benchmark) is over 90%, in-

dicating a near-perfect match when in reality, these two sentences have completely

different meanings.

To address these limitations, in Section 5.5.2, we present a qualitative catego-

rization of SDCs, based on their syntactical and semantical differences relative to

the correct output.

5.4.5 Setup

We ran all our experiments on a 64-bit AMD Ryzen Threadripper 3960X 24-Core

Processor with three NVIDIA RTX A5000 GPUs.

5.5 Results
In this section, we first present the SDC rates of our benchmarks. We then present

the results based on the RQs.

5.5.1 SDC Rates

Table 5.2 shows the SDC rates and cosine similarity metrics for all of our bench-

marks. Overall, the average SDC rate across our benchmarks varied from 0.002 (in

the case of Roberta) to 0.019 (for the T5 decoder), with the average being 0.009.

Regarding cosine similarity, we observed that for PubMedBert and GPT2, the aver-
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Benchmark
Name

SDC Rate and Cosine Similarity (CS)
Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10 Average

PubMedBert 0.012±0.006 0.005±0.004 0.002±0.002 0.015±0.007 0.004±0.003 0.010±0.006 0.007±0.005 0.005±0.004 0.006±0.004 0.011±0.006 0.008 SDC
0.27±0.05 0.26±0.06 0.28±0.05 0.25±0.07 0.27±0.06 0.29±0.05 0.15±0.08 0.28±0.05 0.15±0.07 0.22±0.12 0.24 CS

CodeBert 0.004±0.003 0.003±0.003 0.004±0.003 0.005±0.004 0.002±0.0027 0.003±0.003 0.007±0.005 0.003±0.003 0.003±0.003 0.004±0.003 0.004 SDC
NA NA NA NA NA NA NA NA NA NA NA CS

T5 encoder 0.013±0.007 0.010±0.006 0.009±0.005 0.015±0.007 0.026±0.009 0.005±0.004 0.005±0.004 0.014±0.007 0.007±0.005 0.015±0.007 0.012 SDC
0.87±0.13 0.76±0.17 0.68±0.25 0.80±0.15 0.86±0.09 0.86±0.26 0.66±0.30 0.85±0.13 0.61±0.24 0.70±0.18 0.76 CS

T5 decoder 0.019±0.008 0.029±0.01 0.017±0.008 0.017±0.008 0.016±0.007 0.018±0.008 0.018±0.008 0.023±0.009 0.016±0.007 0.019±0.008 0.019 SDC
0.85±0.02 0.83±0.02 0.85±0.017 0.87±0.028 0.84±0.02 0.85±0.018 0.85±0.04 0.86±0.017 0.84±0.04 0.85±0.06 0.85 CS

GPT2 0.015±0.007 0.019±0.008 0.007±0.005 0.019±0.008 0.007±0.005 0.007±0.005 0.005±0.004 0.006±0.004 0.006±0.005 0.005±0.004 0.010 SDC
0.59±0.18 0.30±0.06 0.19±0.08 0.29±0.04 0.44±0.01 0.44±0.01 0.50±0.15 0.21±0.01 0.27±0.25 0.35±0.04 0.36 CS

Roberta 0.002±0.0027 0.001±0.002 0.003±0.003 0.002±0.0027 0.004±0.003 0.002±0.0027 0.006±0.004 0.000±0 0.001±0.002 0.002±0.0027 0.002 SDC
NA NA NA NA NA NA NA NA NA NA NA CS

Table 5.2: SDC rates and cosine similarities of all our benchmarks. Higher
cosine similarity indicates that the corrupted output is closer to the correct
one.

age cosine similarity is 0.3, indicating that the corrupted output differs significantly

from the correct one. On the other hand, for T5-encoder and T5-decoder, the av-

erage cosine similarity is 0.8, indicating that the corrupted output is semantically

very similar to the correct output (see Section 5.5.2 for more details).

We make two observations from the results.

Observation 1: Large variance of SDC rate for different inputs of the same model

For PubMedBert, the SDC rate varies from 0.002 to 0.015 (approx. seven times)

for different inputs. Similarly, for T5-encoder and T5-decoder, the SDC rate varies

from 0.005 to 0.026 and from 0.016 to 0.029, respectively. Thus, the SDC rate

varies widely across inputs.

Observation 2: Large variance of SDC rate for different benchmarks with the same

architecture Even though PubMedBert, Roberta, and CodeBert, have encoder-

only LLM architecture with the same number of transformer blocks, their SDC

rates vary from 0.008 (for PubMedBert) to 0.002 (for Roberta). This observation

indicates that, apart from the LLM architecture, other factors like training data set,

training objectives, fine-tuning task, etc., also play an essential role in determining

the SDC rates, thus prompting us to ask RQ3.

5.5.2 RQ1: Qualitative categorization of SDCs in LLMs

In this RQ, we delineate how the SDCs manifest in different LLMs by providing

examples of SDCs, along with a qualitative categorization of SDCs, depending

on whether they are syntactically incorrect, semantically incorrect, or semantically
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Benchmark
Name Total SDCs Syntactically-

incorrect SDCs
Semantically-

incorrect SDCs
Semantically-
correct SDCs

PubMedBert 77 46 14 17
CodeBert 38 35 3 0

T5-encoder 119 42 29 48
T5-decoder 192 154 24 14

GPT2 103 45 49 9
Roberta 23 0 23 0

Table 5.3: A qualitative categorization of SDCs.

correct with respect to the original output of the LLM. The objective of this quali-

tative categorization is to augment our quantitative analysis in Table 5.2.

For this analysis, we manually analyzed all the corrupted outputs of the LLMs

(552 SDCs, across all benchmarks and their inputs) and categorized them as syn-

tactically incorrect, semantically incorrect, or semantically correct. We consider

the output of the LLM to be syntactically incorrect if the corrupted output does

not form grammatically correct text in the target language. We consider the output

to be semantically incorrect if the corrupted output is syntactically correct but its

meaning differs from that of the original text. Finally, we consider the output to be

semantically correct if it is syntactically correct, and its meaning is similar to that

of the original text, based on our subjective evaluation.

Table 5.3 shows the categorization of SDCs across all benchmarks. We explain

the results for each benchmark below.

PubMedBert

For the PubMedBert benchmark, among the 77 SDCs observed across all inputs

(out of 10,000 FI campaigns), 46 are syntactically incorrect, 14 are semantically

incorrect, and the remaining 17 are semantically correct. The following is an exam-

ple of the semantically incorrect output (mistakes are underlined in the examples

below):
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Effect of transient faults on PubMedBert (fill-mask)
Input: The hereditary [MASK] protein, HFE, specifically regulates transferrin-mediated
iron uptake in HeLa cells.
Correct Output: The hereditary plp protein, HFE, specifically regulates transferrin-
mediated iron uptake in HeLa cells.
Corrupted Output: The hereditary myb protein, HFE, specifically regulates transferrin-
mediated iron uptake in HeLa cells.

Here, the model predicts the myb protein instead of the plp protein, which is incor-

rect in this context. Similarly, we observed cases where the model, under the effect

of the fault, predicted the wrong disease and diagnosis, which are semantically

different from the correct output. However, for syntactically incorrect outputs,

the model ends up predicting out-of-context characters, including non-English lan-

guage characters, punctuation marks, numbers, etc. The following is an example of

the syntactically incorrect output: “Main symptom of common flu is ##合.”, where

the model outputs out-of-context Chinese (Hanzi) characters.

T5-decoder

For T5-decoder, among the 192 observed SDCs, 154 are syntactically incorrect, 24

are semantically incorrect, and 14 are semantically correct. The following shows

an example of each type of SDC for this application:

Effect of transient faults on T5-decoder (translation)
Input: translate English to French: The House rose and observed a minute’s silence
Correct Output: L’Assemblée se levera et observera une minute de silence
Semantically-correct Output #1: Le Parlement se levera et observera une minute de si-
lence
Semantically-incorrect Output #2: zaharie a eu l’occasion de s’exprimer
Syntactically-incorrect Output #3: zügliche de l’Assemblée

For most semantically-correct SDCs, the model either ended up using syn-

onyms of words of the original text (like in the example above) or just paraphras-

ing the correct output. In the semantically incorrect SDCs, the model outputs a

coherent text in the target language, but its meaning differs significantly from the

correct text. For instance, in the example above, the model outputs a “zaharie a

eu l’occasion de s’exprimer”, which translates to “Zaharie had the opportunity to
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express himself ” in English, which differs from the original text (“The house rose

and observed a minute’s silence”).

For syntactically incorrect SDCs, along with illegible outputs, we also observed

many cases where some part of the output is in a different language than the rest

of the text. For instance, in the above example, the model outputs “zügliche de

l’Assemblée” where “zügliche” is a German word (for ’prompt’) while the rest of

the sentence is in French. In another interesting example, the model outputs “Ich

aparitie im Namen des Europäischen Parlaments” as the German translation of “I

would like, on behalf of the European Parliament,”. While the rest of the text is in

German, the word “aparitie” is Romanian and means “to appear or appearance” -

this word fits correctly in the context of this text.

T5-encoder

For T5-encoder, among the 119 total SDCs we observed, 42 are syntactically incor-

rect, 29 are semantically incorrect, and the remaining 48 are semantically correct.

Thus, unlike other benchmarks (except Roberta), SDCs in the T5 encoder are more

likely to result in syntactically correct outputs. The following are examples of

semantically correct and incorrect outputs in this application:

Effect of transient faults on T5-encoder (translation)
Input: translate English to French: I should like, on behalf of the European Parliament,
to express our sympathy to the parents and families of the victims.
Correct Output: Au nom du Parlement européen, je voudrais exprimer notre sympathie
aux parents et aux familles des victimes.
Semantically-correct Output #1: Au nom du Parlement européen, je voudrais exprimer
notre sympathie aux parents des victimes.
Semantically-incorrect Output #2: Au nom du Parlement européen, je voudrais exprimer
notre gratitude aux parents et aux familles des victimes.

Notice that in the semantically-incorrect output shown in the above exam-

ple, the model uses the word “gratitude” instead of “sympathy”, which drasti-

cally changes the meaning of the original text. We have observed similar cases

where the model’s output is very close to the correct text but is still semanti-

cally incorrect. For example, the model outputs “Ich erkläre die am Freitag, dem
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12. Dezember 2000, unterbrochene Sitzungsperiode des Europäischen Parlaments”

as the German translation of “I declare resumed the session of the European Par-

liament adjourned on Friday, 15 December 2000.” Notice how the model subtly

changes the date in the original prompt due to the fault, making it difficult to catch.

Roberta

The output of Roberta is either “Positive” or “Negative,” depending on the sen-

timent of the input text. We did not observe any syntactically-incorrect output.

Therefore, all the SDCs are semantically incorrect by definition. The following is

an example of the semantically-incorrect output:

Effect of transient faults on Roberta (sentiment analysis)
Input: I really like the new design of your website!
Correct Output: Positive
Semantically-Incorrect Output: Negative

CodeBert

For CodeBert (Java code completion), among 38 SDCs observed, we found 35

of them to be syntactically incorrect, i.e., the resulting Java code is syntactically

wrong. Only three SDCs are semantically incorrect, and none of them is semanti-

cally correct. The following shows an example of a semantically incorrect SDC in

this application.

Effect of transient faults on Codebert (fill-mask)
Input:
protected Iterator ⟨Map.Entry⟨K,V ⟩⟩ createEntrySetIterator () {
if (size() [MASK] 0) {
return EmptyIterator.INSTANCE; }
return new EntrySetIterator ⟨K,V ⟩(this);
}

Correct Prediction: ==

Semantically-incorrect Output: >=

In this example, the model predicts a wrong binary operator (>= instead of

==), which is semantically incorrect as it could modify the functionality of the
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program by returning an empty iterator even if the Map has a non-zero size. The

low SDC rate (0.004, on average) for this benchmark and the high number of syn-

tactically incorrect SDCs imply that CodeBert is quite resilient to transient faults:

even in the case of SDCs, the corrupted output would be easier to detect.

GPT2

Unlike other benchmarks, which are used for text translation (T5), fill-mask (Pub-

MedBert and CodeBert), or sentiment analysis (Roberta), GPT2 is used for text

generation, and therefore, there is no objective ground truth for GPT2. Therefore,

to categorize SDCs, we compare the SDC, syntactically and semantically, with the

model’s output in the absence of FI. Additionally, we truncated the output of GPT2

to one sentence for readability.

Among the 103 observed SDCs, we found 45 of them to be syntactically in-

correct, i.e., they do not form a coherent English sentence, 49 are semantically

incorrect, and nine are semantically correct (relative to the model’s output in the

absence of FI). The following example shows two of the semantically incorrect

outputs we observed.

Effect of transient faults on GPT2 (text completion)
Input: This chair is white and the table is
Correct Output: This chair is white and the table is black
Semantically-incorrect Output #1: This chair is white and the table is white too.
Semantically-incorrect Output #2: This chair is white and the table is lawmakers and the
media who claim you are the boss of Rep.

5.5.3 RQ2: Distribution of SDCs across layers of LLMs and faulty
bit position

Figure 5.2 shows the distribution of SDCs across LLM’s layers and bit positions

across our benchmarks. The subfigure for each benchmark in Figure 5.2 shows two

stacked bar plots: one highlighting the distribution of SDCs along the layers of the

LLM and the other highlighting the distribution of SDCs in different bit locations

of the fault.
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(c) T5 Encoder
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(f) GPT2

Figure 5.2: Distribution of SDCs across layers of the LLMs and the bit posi-
tion (in a 32-bit float value) in which the fault is injected. The subfigure
for each benchmark shows two plots: The number of SDCs (Y-axis)
vs. the layer in which the fault is injected (- X-axis) and the Number
of SDCs (Y-axis) vs. the bit position in which the fault is injected (+
X-axis).
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For all our benchmarks, the layers of LLMs (and their corresponding trans-

former blocks) are equally sensitive to transient hardware faults. Prior work [9, 68]

on FI in CNNs has found the first and last layers of DNN to be more sensitive to

transient faults. However, we do not observe a similar trend for LLMs.

Regarding the distribution of SDCs along different bit positions, in general,

we found the higher-order bits to be significantly more sensitive to transient faults

(this was the case for CNNs as well [68, 69]). Since all our benchmarks use Float32

datatype, higher-order bits (24 to 31) correspond to the exponent of the floating-

point value, and therefore, a bit-flip in higher-order bits alters the exponent values.

Moreover, we used LLTFI’s ML fault propagation tracing to understand why

some transient faults get suppressed while others result in an SDC. We observe

that only the 0-to-1 bit flips in higher-order bits, which increase the value of the

exponent, result in an SDC. However, none of the 1-to-0 bit flips in the exponent

resulted in an SDC. Additionally, we observe that faults in lower-order bits often

get suppressed, either by multiplication with zero and near-zero values or by the

normalization layers of the transformer blocks.

Finally, from Figure 5.2, we did not observe any discernible relationship be-

tween the category of SDC (syntactically incorrect, semantically incorrect, and

semantically correct) and the bit location of the injected fault, across all bench-

marks, except T5. For T5-encoder and T5-decoder, we observe that transient faults

in 26 - 29 bits are more likely to result in a syntactically-correct SDC.

5.5.4 RQ3: Variation of SDC rates with different pre-training
objectives, fine-tuning objective, and the number of
encoder/decoder blocks

Table 5.4 shows the variation of SDC rates with different pre-training, fine-tuning

objectives, and the size of LLMs (number of encoder/decoder blocks). For this

RQ, we used three different sizes of the Bert LLM: Bert-Small with four encoder

blocks, Bert-medium with eight encoder blocks, and Bert-Base with 12 encoder

blocks. We further used two fine-tuning objectives: Fill-mask (fill-in-the-blanks)

and Question Answer, and pre-trained the models with the following five different

pre-training objectives each:
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Fine-tuning Objective -> Mask-Fill Question-Answer
Pretraining Objective Input 1 Input 2 Input 3 Input 4 Input 5 Average Input 1 Input 2 Input 3 Input 4 Input 5 Average

Bert - Small
Bert - MLM 0.004 0.002 0.002 0.002 0.001 0.0022 0.011 0.007 0.006 0.007 0.006 0.0074
Bert - S+R 0.0 0.003 0.002 0.003 0.002 0.002 0.009 0.01 0.006 0.004 0.011 0.008

Bert - First Char 0.001 0.004 0.004 0.004 0.004 0.0034 0.005 0.004 0.006 0.008 0.003 0.0052
Bert - ASCII 0.0 0.003 0.004 0.004 0.002 0.003 0.008 0.005 0.008 0.004 0.005 0.006

Bert - Random 0.0 0.003 0.004 0.004 0.004 0.003 0.008 0.010 0.009 0.011 0.004 0.084
Bert - Medium

Bert - MLM 0.0 0.008 0.008 0.003 0.004 0.005 0.005 0.007 0.006 0.004 0.003 0.005
Bert - S+R 0.003 0.005 0.001 0.005 0.003 0.003 0.011 0.010 0.003 0.011 0.007 0.008

Bert - First Char 0.0 0.004 0.006 0.005 0.007 0.0044 0.010 0.007 0.006 0.010 0.006 0.008
Bert - ASCII 0.003 0.008 0.005 0.006 0.003 0.005 0.004 0.004 0.007 0.007 0.015 0.007

Bert - Random 0.0 0.0 0.004 0.006 0.003 0.003 0.009 0.007 0.008 0.005 0.006 0.007
Bert - Base

Bert - MLM 0.009 0.008 0.008 0.006 0.006 0.007 0.006 0.005 0.013 0.010 0.009 0.0086
Bert - S+R 0.011 0.009 0.005 0.006 0.010 0.008 0.006 0.006 0.012 0.009 0.007 0.008

Bert - First Char 0.013 0.008 0.006 0.006 0.003 0.007 0.008 0.007 0.006 0.01 0.01 0.008
Bert - ASCII 0.008 0.008 0.003 0.014 0.003 0.007 0.009 0.008 0.005 0.009 0.01 0.008

Bert - Random 0.003 0.005 0.002 0.004 0.003 0.0034 0.012 0.007 0.004 0.008 0.01 0.0082

Table 5.4: Variation of SDC rates with pre-training objectives, fine-tuning ob-
jectives, and number of encoder/decoder blocks.

1. Masked Language Modeling (MLM) [28], which randomly chooses tokens

from the input and replaces them either with the [MASK] token or with a

random token.

2. Manipulated word detection (S+R) [113], which randomly chooses tokens

from the input and either replaces them with random tokens or with shuffled

tokens from the same input.

3. Masked first character prediction (FC) [113], where the model is trained to

predict just the first character of the masked token.

4. Masked ASCII code summation (ASCII) [12], where the model is trained to

predict the summation of the ASCII codes of the masked token.

5. Masked Random token classification (Random) [12], where tokens from

the input sequence are randomly masked into five different classes, and the

model has to predict the class of the masked token. This objective prevents

the model from learning any meaningful linguistic information.

Effect of model size on SDC rates: For the fill-mask fine-tuning objective,

we observe an increase in the SDC rate with the model size (except for the Bert-

Random pre-training objective): with Bert - Small the average SDC rate was 0.0026

across all inputs, for Bert - Medium the average SDC rate was 0.004, and for Bert
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- Base the average SDC rate was 0.007. However, for the Question-Answer fine-

tuning objective, we do not observe any relation between the SDC rate and model

size.

Effect of fine-tuning objectives on SDC rates: For Bert-Small, we observe

a significant increase (8×) in the SDC rate for the question-answer fine-tuning

objective compared to the mask-fill objective. However, for Bert-Medium and Bert-

Base, the difference in the SDC rates between the two fine-tuning objectives is

small (1.7× and 1.25× for Bert-Medium and Bert-Base, respectively).

We investigate why the fill-mask fine-tuning objective has a lower SDC rate

than the question-answer objective. In the case of the fill mask, we found that a

large portion of faults (in higher-order bits) propagates to the final layer but gets

suppressed by the model’s tokenizer. For fill-mask, the model outputs N tokens,

where N is the vocabulary size (28K), V , multiplied by the number of tokens, T ,

in the input text. The tokenizer, however, masks V × (T −1) tokens, thus masking

potential SDCs.

Effect of pre-training objectives on SDC rates: We do not observe any re-

lationship between the SDC rates and the pre-training objectives. However, for

the Bert-Random objective, we observe that the SDC rate is the same for a given

fine-tuning objective, irrespective of the model size. This is likely because in the

Bert-Random objective, the model does not learn any linguistic features of the lan-

guage, and thus, increasing the model size does not help the model learn model

new linguistic features.

5.6 Summary
In this chapter, we experimentally evaluate the resilience of LLMs under transient

hardware faults. We used LLTFI to inject transient faults into LLMs, and measure

their SDC rates, along with the cosine similarity between the correct and the cor-

rupted outputs. Based on extensive FI experiments, we found LLMs to be quite

resilient under hardware transient faults, with an average SDC rate being 0.9%

While in this chapter, we evaluated the resilience of LLMs against transient

hardware faults in the CPU, in the next chapter, we will assess the impact of hard-

ware faults in ML accelerators like Google’s TPU.
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Chapter 6

Reliability Assessment of Systolic
Arrays against Stuck-at Faults

The increasing computation requirement of training LLMs and DNNs has moti-

vated the use of ML accelerators like Google’s TPU [3] and Nvidia’s NVDLA [102].

To further improve energy efficiency and reduce the execution overheads, ML ac-

celerators like Google’s TPU use a 2-D array of MAC units, called a systolic array

at their core for batch multiplication and addition operations.

In this chapter, we evaluated the resilience of systolic arrays against permanent

stuck-at hardware faults using an RTL-based FI tool we developed called SystoliFI.

We begin this chapter by first discussing our fault model, design constraints, and

implementation of SystoliFI. Afterward, we discuss our research questions, evalu-

ation methodology, and FI results. Finally, we conclude this chapter by discussing

our results and their implications.

6.1 Fault Model
In this chapter, we used the single stuck-at-fault model to evaluate the effect of

permanent faults in the MAC units of the systolic array. Stuck-at faults in systolic

arrays can be caused by various factors, including physical damage to the hardware,

defects in the manufacturing process, and wear and tear over time [115].
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Among all the permanent fault models, the stuck-at fault model is fabrication

technology independent. Moreover, even though a single stuck-at fault does not

accurately model some physical defects, the tests derived for single stuck-at faults

are still valid for most defects, including multiple stuck-at faults [83].

In addition, we make the following assumptions.

1. We do not consider faults in the memory elements as they can be protected

with ECC.

2. We only consider faults in the data path as they can pass by silently and lead

to wrong output without being detected [56].

3. We focus on faults in the MAC units as they make up most of the hardware

area of the data path in the systolic arrays.

Our fault model is in line with prior work [58][116] as well.

6.2 Design Constraints
We had the following constraints for the design of SystoliFI:

• Need for RTL-based FI. Unlike transient faults in CPU whose manifes-

tation at the software level is well-known (for example, bit flips in regis-

ters [78]), the effect of permanent stuck-at faults in ML accelerators at the

software level is not known. Due to this, in this work, we could not use a

software-based FI tool like LLTFI. Moreover, another motivation for opting

for an RTL-based FI is to take into consideration all the hardware peculiari-

ties of ML accelerators, like data reuse and parallelism, thereby resulting in

a more accurate FI tool.

• Configurability and the ease of FI. Since a systolic array consists of a 2-

D array of MAC units, for a systematic evaluation of the systolic array’s

resilience, the user should be able to easily configure the location of the

faulty MAC unit without the need for recompiling SystoliFI’s RTL model,

which is computationally-expensive.

70



• Compatibility. The FI tool should be compatible with ML models written

in Python using different ML frameworks. This requires SystoliFI to have a

software stack consisting of a Python interpreter, an operating system, and a

custom compiler to compile the ML programs for the custom RTL model of

the systolic array.

• Scalability. SystoliFI should be scalable enough to run FI experiments on

large DNNs exhaustively. This will allow us to experiment with different

hardware and software configurations like data mapping schemes.

6.3 SystoliFI’s Implementation
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Figure 6.1: Our simplified FI setup. To do FI, we inject a stuck-at fault in a
randomly-selected MAC unit.

Our RTL-based FI framework, SystoliFI, extends Gemmini [39] - a popular

systolic array generator for evaluating deep learning accelerator - to carry out FI in

the processing elements. Gemmini is an open-source, full-stack DNN accelerator

generator for DNN workloads, enabling end-to-end, full-stack implementation and

evaluation of custom hardware accelerators. Figure 6.1 shows Gemmini’s archi-

tecture and our fault injection setup.
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Along with the systolic array, Gemmini has hardware implementation of ReLU,

a DNN accelerator controller, scratchpad memory, and a single-core CPU called

Rocket to send commands to the Gemmini DNN accelerator and (un)load data into

the weight buffers. Gemmini is written in Chiesel, a scala-based hardware descrip-

tion language, and uses the RISC-V hardware development toolchain along with

the RISC-V software stack.

We chose Gemmini because it is highly configurable: we can configure the size

of the systolic array, data type, and type of data mapping scheme (OS vs. WS). The

only limitation of Gemmini is scalability. Since it is a full-stack simulator, it takes

considerable time to simulate a large DNN workload. For instance, during our

preliminary experimentation, we found that the simulation of the entire ResNet50

network took several days. To reduce the simulation time of Gemmini, we instead

synthesized SystoliFI’s RTL model on industrial-grade FPGAs instead of using

software-based FPGA simulators.

For each FI experiment, we inject a single stuck-at fault in the intermediate

signals of the MAC unit right after the addition logic and before the result is stored

in the accumulator. Unlike Zhang et al. [116] that injected multiple stuck-at faults,

we chose to inject only a single stuck-at fault because prior work has shown that

the single stuck-at fault model is sufficient to detect 98% of five or fewer multiple

stuck-at faults [10, 43].

6.3.1 Extending Gemmini for FI

ficmd

10-bit  

tile-row 
10-bit  

tile-col 
10-bit  

pe-row 
10-bit  

pe-col 20-bit fi-data 

1-bit 
do-fi

3-bit 
fault 

model

Unused 
64-bit 

operand

Figure 6.2: ficmd instruction
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For FI, we extended Gemmini’s custom RISC-V ISA to add an additional FI

instruction ficmd that takes two 64-bit operands. As shown in Figure 6.2, we

only use the first 64-bit operand to encode the following FI information:

• tile-row, tile-col: x and y coordinate of the tile for FI. In Gemmini,

a ”tile” is a group of MAC units that execute simultaneously.

• pe-row, pe-col: x and y coordinate of the MAC unit within the chosen

tile for FI.

• do-fi: a boolean variable to indicate whether to do FI or not.

• fault model: 3-bit variable to specify the fault model. Currently, Sys-

toliFI support stuck-at-0, stuck-at-1, single-bit-flip, and double-bit-flip fault

model. However, for this thesis, we just used the stuck-at-0 fault model.

• fi-data: 20-bit variable to pass additional data for FI. For instance, this

variable can be used to specify the exact bit location in which the fault has

to be injected.

Having a custom instruction, ficmd, allows us to manage fault injection at

runtime from the software without having to recompile the hardware’s RTL model,

which is computationally expensive. Additionally, to support ficmd, we also

made some non-intrusive changes in Gemmini’s hardware, like the addition of ex-

tra registers to hold the user-supplied FI configuration and additional circuitry for

FI in MAC units of the systolic array.

6.4 Research Questions and Challenges
In this work, we aim to identify the spatial distribution of the software faults in the

intermediate layers of the ML models, referred to as fault patterns, arising due to

stuck-at faults in the MAC units of the systolic array.

Toward this objective, we use an RTL-level FI framework (described in Section

6.3) to simulate systolic arrays and do FI at runtime. Specifically, we ask the

following RQs:

• How do the fault patterns change with different:

73



1. RQ1: data flow mapping schemes (OS and WS)? Are some data flows

more fault tolerant?

2. RQ2: type of operations (convolution and GEMM)

3. RQ3: different size of operations, i.e., how does varying the size of

GEMM or convolution affect fault patterns?

There are two primary challenges involved in answering our RQs: first is the

enormous state space, and second is the masking of faults due to multiplication by

near-zero layer weights. We detail the challenges below.

Challenge 1 The fault patterns can be influenced by hardware configurations (like

systolic array size, data mapping schemes, etc.), software configurations (operation

type, operation configuration, size, etc.), and fault models (type of fault, fault lo-

cation, fault bit position, etc.). This results in an enormous state space that is

computationally expensive to explore in its entirety. For example, even a single

systolic array of size 16×16, two data mapping schemes, and two operation types

and configurations results in a state space with 131K different FI configurations.

This is a conservative estimate.

To address this challenge, we sampled the state space and selected a few repre-

sentative configurations - based on their practicality and usefulness - while keeping

other parameters constant. Table 6.1 shows the configuration settings for our RQs.

Due to the scalability restrictions of Gemmini, we chose 16× 16 as our systolic

array size. Larger systolic array sizes require an impractically-large amount of

system logic cells: 128× 128 systolic array size requires ten times more system

logic cells than available on our industrial-grade FPGA (Xilinx Virtex UltraScale+

VU9P). This scalability restriction is also common to prior work that uses the RTL

model of TPUs [39]. For the input sizes (RQ3), we chose 16× 16 and 112× 112

input matrix sizes because the former is equal to the size of the systolic array (thus,

no tiling effect), while the latter is larger than the size of the systolic array and we

expect to observe the effect of tiling on the fault patterns.

Similarly, for contrasting the effect of different tensor operators (GEMM and

Convolution) in RQ2, we chose two convolution kernel sizes, 3× 3× 3× 3 and

3×3×3×8 (R×S×C×K, refer Section 2.3.1 for notations). The former kernel
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Table 6.1: Parameter configuration used for evaluating RQ1, and RQ2. The
entries highlighted with brown are the ones whose effect we want to un-
derstand on the fault pattern.

RQ1 RQ2 RQ3
Type of operation GEMM Conv vs GEMM

Type of data
mapping scheme

OS vs
WS

WS WS

Size of operation 16 x 16 16 x 16
16 x 16,

112 x 112
Size of Convolution

Kernel - 3x3x3x3, 3x3x3x8

Size and Data Type
of systolic array 16 x 16, INT8

size produces a 2-D matrix of size less than the size of the systolic array, while the

latter kernel size produces a 2-D matrix of size more than the size of the systolic

array, thereby resulting in a tiling effect in the convolution operator.

Challenge 2 It is quite common for the weights of the DNN layers to be close to

zero. These weights, when multiplied by the faulty computation (corrupted by the

stuck-at fault), can suppress the fault pattern at the software level. In other words,

the induced errors due to stuck-at faults might get masked due to multiplication

by zero, thereby skewing the results of our RQs. To prevent this, instead of using

real weights of the DNN layer, we used a uniform, non-zero weight matrix with all

matrix elements set to one to extract the fault pattern.

6.5 Evaluation Methodology
For each RQ, we ran 256 FI campaigns to exhaustively inject a stuck-at fault into

every MAC unit of the 16x16 systolic array. After each FI experiment, we analyze

the resulting fault pattern manually. The fault patterns are extracted by contrasting

the output of the systolic array with and without FI (ground truth), keeping all

other configurations the same. Additionally, for each fault pattern, we categorize

it (single-row fault, single-element fault, single-column fault, etc.) based on the

spatial distribution of the faults in the array.
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Setup

We ran RTL-level FI experiments using Amazon Web Services EC2 F1 instances1.

F1 instances provide industrial-grade FPGAs to synthesize SystoliFI. Using FP-

GAs instead of simulators allowed us to perform extensive FI campaigns.

6.6 Results
We organize the results of the FI experiments by the RQs.

6.6.1 Effect of different parameters on Fault Patterns

RQ1: Data flow mapping schemes

Figure 6.3b and Figure 6.3a show the difference between the fault patterns observed

for OS and WS data flow schemes, respectively. For OS, a single fault corrupts just

a single output element, while for WS, a single fault ends up corrupting an entire

column in the output of the GEMM operation.

RQ2: Type of operation

Figure 6.3a and Figure 6.3e show the difference in the fault patterns for GEMM

and convolution, respectively, with the WS data mapping scheme. For GEMM,

a single fault ends up corrupting the entire column of the output matrix, but for

convolution, a single fault corrupts the entire output channel. As explained in

Section 2.3.1, the convolution is implemented as a big GEMM by reshaping the

input data and the convolution kernel. The resulting matrix has the dimension of

NPQ×K (refer Section 2.3.1 for notations), where each output channel is mapped

to each column of the systolic array. It is due to this mapping that the entire channel

of the convolution is corrupted.

RQ3: Size of Operation

For GEMM, we considered two input sizes: 16× 16 and 112× 112, the first one

being equal to the size of the systolic array and the latter one being larger than

1https://aws.amazon.com/ec2/instance-types/f1/
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the systolic array. As described in Section 2.3.2, when the input is larger than the

systolic array, the operation gets broken down into small chunks (a.k.a. Tiles).

For the GEMM operation, Figure 6.3a and Figure 6.3c show the difference in

fault patterns corresponding to different input sizes. Similarly, Figure 6.3b and Fig-

ure 6.3d show the difference in fault patterns, but for the OS data mapping scheme.

For Figure 6.3c and Figure 6.3d, different tiles are highlighted with different col-

ors. We observed that due to the tiling effect (when the operation size is bigger than

the systolic array size), the same fault appears across multiple tiles, irrespective of

the data mapping scheme. This result is intuitive since the same faulty MAC unit

is used for computation across multiple tiles.

Figure 6.3f and Figure 6.3g show the tiling effect in the convolution operator.

Similar to the fault patterns in the GEMM operation, the tiling effect in the convolu-

tion operation occurs when the resulting 2-D matrices - after flattening convolution

into a GEMM operation, as described in Section 2.3.2 - exceeds the size of the sys-

tolic array. Due to the tiling effect, a single fault causes the corruption of multiple

output channels, resulting in identical fault patterns in Figure 6.3f and Figure 6.3g.

6.7 Discussion
We found that the fault patterns vary according to the hardware and software con-

figurations. However, all the fault patterns we found are well-defined, i.e., they

belong to one of the six classes: single-element corruption (e.g., Figure 6.3b),

single-element multi-tile corruption (e.g., Figure 6.3d), single-column corruption

(e.g., Figure 6.3a), single-column multi-tile corruption (e.g., Figure 6.3c), single-

channel (e.g., Figure 6.3e), and multi-channel corruption (e.g., Figure 6.3f).

For each configuration and all of its FI experiments (one for each MAC unit),

we found the same fault pattern class, regardless of the MAC unit into which we

injected the fault. Moreover, the fault patterns are deterministic, i.e., given the

hardware configurations (size of systolic array, data mapping scheme), type of op-

eration and its properties (like convolution and its kernel, input size), and the loca-

tion of the stuck-at-fault, we can predict the fault patterns, after taking into account

the tiling effect and flattening of convolutions into GEMM.
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(a) GEMM, WS, 16x16 (b) GEMM, OS, 16x16 (c) GEMM, WS, 112x112

(d) GEMM, OS, 112x112 (e) Conv, WS, 16x16, 3x3x3x3

(f) Conv, WS, 16x16, 3x3x3x8 (g) Conv, WS, 112x112, 3x3x3x8 &
3x3x3x3

Figure 6.3: Fault patterns corresponding to different configurations of RQ1.
Figure 6.3a and Figure 6.3b corresponds to RQ1. For RQ2, contrast
Figure 6.3a with Figure 6.3e, Figure 6.3f and contrast Figure 6.3c with
Figure 6.3f and Figure 6.3g. Similarly, for RQ3, contrast Figure 6.3a
with Figure 6.3c, Figure 6.3b with Figure 6.3d, and Figure 6.3e with
Figure 6.3f and Figure 6.3g. For subfigures a,b,c, and d, the caption is
a tuple of three elements: ⟨ Type of operation, Type of Data Flow, and
Size of GEMM ⟩. For subfigures e,f, and g, the caption is a tuple of
four elements: ⟨ Type of operation, Type of Data Flow, Size of the input
matrix, convolution kernel size (R× S×C×K, refer Section 2.3.1 for
notations) ⟩. Different tiles are highlighted with different colors.
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Our findings about the well-defined fault pattern classes and their deterministic

property are useful for enabling application-level fault injectors like TensorFI and

LLTFI to do precise error simulations pertaining to the systolic array hardware

model. RTL-level FI, although accurate, has scalability restrictions: due to limited

system logic cells on current industrial-grade FPGAs, it is not feasible to synthesize

and experiment with larger systolic arrays (like 128×128). Moreover, despite our

use of FPGAs, each FI experiment took approximately 45 seconds (for GEMM)

and 130 seconds (for Convolution), which resulted in a total of 49 hours for the FI

campaigns.

Application-level fault injectors, if supplemented with a precise fault model -

the fault patterns, in our case - can be used to bridge this gap and run FI campaigns

even with larger systolic array sizes. Specifically to improve the precision of FI,

application-level fault injectors, like LLTFI, can leverage our insights about the

tiling effect and flattening of convolution operators to derive fault patterns on the

fly for various systolic array sizes and data mapping schemes, as opposed to hard-

coding the abstract fault pattern classes or ignoring them.

Our observation about the symmetry of fault patterns - i.e., the fault pattern

class remains the same irrespective of the position of the faulty MAC unit - can

also be used by application-level FIs to reduce the number of FI experiments.

6.8 Summary
In this chapter, we studied the fault patterns in the intermediate layers of DNNs

arising due to stuck-at faults within the MAC units of the systolic arrays. We pro-

posed SystoliFI, an RTL-level FI framework, using which we ran FI campaigns to

understand the effect of different hardware (like data mapping schemes) and soft-

ware configurations (like type and properties of tensor operations) on the observed

fault patterns. We found the fault patterns to be deterministic and well-defined,

and hence, they can be injected by software-level FI tools like LLTFI. We further

classified these fault patterns into classes based on the spatial distribution of the

faults.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion
With the increasing use of ML applications in safety-critical domains such as AVs

and medical diagnosis, it has become essential to understand their resilience. In

this thesis, we evaluated the resilience of ML models against two types of hardware

faults: transient faults in the CPU and stuck-at faults in the systolic arrays.

In the first part of this thesis, we proposed LLTFI, a software-level FI tool for

injecting transient hardware faults in ML applications. LLTFI works by lowering

the ML model - irrespective of the ML framework used - to LLVM IR. Afterward,

LLTFI instruments the LLVM IR to add code instrumentations for injecting tran-

sient faults at the runtime. We evaluated LLTFI with six popular ML programs and

compared it to TensorFI, a high-level FI tool for ML programs. We found that Ten-

sorFI overreports the SDC rate of these programs for single bit-flip faults by 3.5X

on average compared to LLTFI. We also demonstrate LLTFI’s utility by extending

it to perform SID for improving the resilience of ML applications against transient

hardware faults. Moreover, we also use LLTFI to evaluate the resilience of five

popular LLMs, including Bert and GPT2, against transient hardware faults. Based

on extensive FI experiments, we found LLMs to be quite resilient, with an average

SDC rate being 0.9% across all benchmarks. We also performed a qualitative cat-

egorization of SDCs and found that the manifestation of SDCs varies significantly

with different types of LLMs. Additionally, we evaluated the impact of model size,
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pre-training, and fine-tuning objectives on the SDC rates and observed that for the

fill-mask fine-tuning objective, the SDC rate increases with the model size.

In the second part of this thesis, we proposed SystoliFI, an RTL-level FI tool

for injecting stuck-at faults in the systolic arrays of ML accelerators. Using Systo-

liFI, we ran FI campaigns to understand the effect of different hardware (like data

mapping schemes) and software configurations (like type and properties of tensor

operations) on the manifestation of stuck-at faults at the intermediate layers of the

ML models. We found the fault patterns to be deterministic and well-defined. We

further classified these fault patterns based on the spatial distribution of the faults.

7.2 Future Work
We list four of the possible directions in which this thesis’s work can be extended:

7.2.1 Extend LLTFI to inject faults pertaining to the intermittent
hardware fault model

Intermittent hardware faults [111] occur due to process variation, manufacturing

defects, and voltage fluctuations, and they can corrupt multiple instructions dur-

ing the inference of the ML model. It would be interesting to extend LLTFI to

evaluate the effect of intermittent hardware faults on ML models. In order to do

so, LLTFI can be configured to inject multiple bit-flip faults across different in-

structions. Moreover, to model the effect of intermittent faults within a specific

part of the CPU, for instance, the ALU, LLTFI can be used for profiling the ML

model to identify all the arithmetic instructions in the program that use the ALU.

Subsequently, LLTFI can be configured to inject bit-flip faults in those arithmetic

instructions to model the effect of intermittent faults.

7.2.2 Extend LLTFI to inject faults in the weights of the ML models

In Chapter 4 and Chapter 5 of this thesis, we considered transient hardware faults

in the ALU and data paths of the CPU. However, transient faults can also affect the

content of the memory, thus corrupting the weights of the ML models. Therefore,

it would be interesting to extend LLTFI for injecting faults in the weights of the

ML model.
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7.2.3 Extend LLTFI to inject faults pertaining to the systolic array
hardware model

SystoliFI has scalability restrictions: due to limited system logic cells on current

industrial-grade FPGAs, it is not feasible to synthesize and experiment with larger

systolic arrays (like 128× 128). LLTFI, being a software-based FI tool, does not

suffer from this limitation. Therefore, if supplemented with the fault patterns that

we observed in Chapter 6, LLTFI can be used to inject faults corresponding to the

systolic array hardware model. Moreover, our insights about the tiling effect and

data mapping schemes can be used to derive fault patterns for different sizes of

systolic arrays on the fly without the need for hard-coding the fault patterns.

7.2.4 Utilize SystoliFI to inject faults in reduction-tree-based ML
accelerators

In this thesis, we used SystoliFI to inject stuck-at faults in systolic arrays. However,

SystoliFI can also be configured in a reduction-tree-like configuration of MAC

units, used in ML accelerators like NVDLA [102]. Therefore, in the future, we can

also utilize SystoliFI to assess and compare the resilience of reduction-tree-based

ML accelerators with systolic-array-based accelerators.

7.2.5 Utilize SystoliFI to understand the reliability-trade-offs among
hybrid data mapping schemes

Hybrid data mapping schemes like row-stationary [19] offer enticing trade-offs be-

tween energy consumption and execution time. Currently, with SystoliFI, we only

considered output stationary and weight stationary data mapping schemes. How-

ever, evaluating the reliability of hybrid data mapping schemes like row stationary

would be interesting.
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