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Abstract

Computer vision, generative models (e.g., ChatGPT, etc.) and deep learning are

now widely used across various sectors, from large corporations to end devices, simpli-

fying people’s lives and improving the reliability of medical findings. Sensitive image

data and deep learning’s high memorization capacity pose privacy risks, particularly

for medical images containing sensitive private information. De-anonymization does

not work due to the re-identification risk and reduced utility. So, we developed a dif-

ferentially private approach with selective noise addition to generate high-dimensional

synthetic medical image data with guaranteed differential privacy. In addition to en-

suring data privacy, protecting the classification model’s privacy is crucial due to its

vulnerability to “membership inference attacks”. State-of-the-art (e.g., differential

privacy, etc.) defenses compromised task accuracy to preserve privacy, and some

methods reuse private data or require more public data, which is impractical in some

domains. To address privacy concerns while maintaining utility, we propose a collab-

orative distillation approach that transfers knowledge using minimal synthetic data,

resulting in a compact private classifier model.
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Chapter 1

Introduction

The popularity of deep-learning models’ computation power encourages medical

professionals to solve many disease detection problems. Notably, some medical sectors

require much time and substantial human resources to do their job. Because of the

high proficiency and computation power, in modern days, machine learning is taking

part in this sector to solve disease analysis problems in much reduced time and more

efficiently. One problem is that medical datasets are difficult to use in modeling

as they are associated with personal information, and preserving such health data’s

privacy is crucial [Ali+20; BAZ20; YAC20]. We need a method that produces high-

quality private synthetic data that do not reveal the identity of any user and we also

need a model that is private and does not leak any trained member’s information.

Our research has resulted in the development of a differential privacy-based data

generator that can produce private data for training purposes while also providing

theoretical guarantees. Additionally, we extend this work by developing a compact

classifier model with a built-in defense mechanism that ensures membership privacy.

1



2 Chapter 1: Introduction

Using this private model to train synthetic data ensures empirical privacy, resulting

in a two-step privacy mechanism that protects users’ privacy from both a data and

model perspective. By combining both empirical and theoretical bases, this dual

protective training approach is anticipated to prioritize users’ primary concern of

privacy and thereby incentivize them to share sensitive data for training purposes.

1.1 Private synthetic data generation

However, in the first part of the thesis, we focus on privacy concerns for using

sensitive datasets—e.g., magnetic resonance imaging (MRI), computerized tomogra-

phy (CT) scans, X-rays, or breast cancer datasets and come up with a differential

privacy based medical data generator. Because medical data can also have a marker

indicating who the actual person could be. For example, X-ray images in digital

imaging and communications in medicine (DICOM) files are structured so that the

cover sheets baked into DICOM files include patients’ sensitive information for iden-

tification purposes. They consist of the patient’s date of birth, sensitive diagnosis

information, the name of clinical institutions, etc. Sometimes, hospital databases use

patients’ social security numbers (SSNs) to identify those files in the system. Such

sensitive information leakage could link them to another sensitive dataset using those

identifiers. This kind of privacy breach will be harmful to the patients. Some follow

de-anonymization or content removal approaches (e.g., skull stripping for MRI data),

which remove such identifying attributes from the image header in X-ray images. Yet,

as the protocol for X-ray images differs worldwide, standardizing such an approach

is not feasible, and it losses utility with the risk of re-identification.
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Machine learning attack models can even identify the person using that re-identified

image. On the other hand, deep-learning models are data-hungry; if we provide

enough data, the model can learn efficiently. In these circumstances, my goal is to

build a generative model where generated data will be efficiently used for the diag-

nosis of radiology and X-ray images using synthetic data without having any direct

dataset from the medical institutes. The authority will only provide a deep generative

model trained from their pneumonia detection datasets. My generator is differentially

private, and the used artificial data does not belong to real patients. In this frame-

work, I add noise to the generator’s gradient only but not to the discriminator so that

generated data is differentially private. Such private modeling will ensure that data

privacy is preserved. A third party cannot access the model’s features or weights for

exploiting learned weights to reconstruct source data. Reverse engineering utilizing

that privacy-preserving model will not be feasible anymore because the noise will be

injected into the encoded weights, so the model itself is private. Such an approach will

encourage medical institutions to share more data, and such synthetic data are less

expensive to collect and can be larger in quantity than real data. Previous differential

private generative adversarial network (GAN)’s [Bea+19; Fri+19; TKP19; ZJW18;

Li+20] recent performance encouraged me to use GANs for differentially private syn-

thetic data generation using differential privacy-stochastic gradient descent. However,

most of those methods fail to produce high-dimensional data, which is precisely what

I aim to do in this work.
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1.2 Privacy-preserving model training

In the second part of my work, I also want to ensure protection in the target

classification model so that it has some built-in Membership Inference Attack defense

and can come up with comparable accuracy privacy trade-off. Previous approaches

require public reference data and repeated access to private data, which is risky,

and there is a slight utility degradation. Thus, our comprehensive model-based data

distillation approach can sanitize the knowledge transfer process to achieve a better

trade-off than all the existing state-of-the-art methods. Also, it can restrict access to

private data and does not require public data or data with a specific property. So,

such a private classification model can be equipped with the first part’s generated

private data to ensure protection against Membership inference also.

In recent times, the use of machine learning and computer vision has become

increasingly popular in medical diagnostic and image analysis tasks. However, mod-

els trained using Deep Learning techniques are susceptible to membership inference

attacks (MIA) due to their high capacity to memorize training data. MIA is the

simplest attack that enables an adversary to gain information about an individual by

knowing that their data was used to train a predictive model. This attack can lead

to more advanced attacks, such as attribute inference and feature extraction attacks.

The consequences of MIA can be severe, particularly when the data involved is sen-

sitive, as it may result in linking attacks or the de-anonymization of private data.

Additionally, even trusted service APIs such as Google/Amazon machine learning

platforms are not immune to MIA attacks, which pose a risk to users of such services.

black box MIA [Sho+17] exploits prediction confidence and true label, while white
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box [NSH19] MIA exploits gradient information leakage and other internal features

to predict membership.

Defenses mainly focus on mitigating whitebox and blackbox MIA based on prov-

able and empirical approaches. Empirical works can provide optimal performance as

they are optimized for utility; On the contrary, provable methods can give a theoret-

ical guarantee with a significant toll on accuracy. Even though theoretical methods

are not designed for a particular dataset and are not optimized for utility, previous

provable approaches like DP-SGD or PATE [Aba+16; Pap+16] can assure reasonable

trade-off. But, due to colossal noise addition, they cannot provide acceptable utility.

On the other hand, white box defenses based on empirical evidence like adversarial

regularization and regular regularization ensure optimal accuracy with slightly re-

duced privacy. As they are mainly optimized for utility, increasing privacy requires

higher regularization, which takes a toll on utility compared to privacy failing to pro-

vide an acceptable trade-off. Previous empirical knowledge transfer-based solutions

showed some hope, but an approach like DMP [SH21] requires reference data with

specific properties like low entropy besides private data. Tuning or managing public

data can be problematic for some privacy-sensitive tasks, and synthetic data-based

DMP provides very low accuracy. On the other hand, models like KCD [Cho+22], and

SELENA [Tan+22] require repetitive access to private data while knowledge transfer,

which leaks a lot of private information. This requirement of additional public data

and repeated access to confidential data for model training, with utility degradation,

make these approaches infeasible. Again, they use a larger model to improve accu-

racy. Large capacity encourages them to memorize data, degrading privacy due to
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overfitting. So, appropriate model capacity can help to avoid memorization and pri-

vacy leakage. Thus, we need an efficient model that will overcome the limitations of

overfitting and the need for public data comparable to non-private ones. This work

will be the first to analyze a framework that can encourage privacy, efficiency, and

utility at the same time. We develop a comprehensive model-based data distillation,

Privacy-Preserving Learning via Data, and Knowledge Distillation (PLDK) to sani-

tize the training process to achieve a better empirical trade-off than all the existing

state-of-the-art methods with lower MIA attack risk close to random guess.

Our approach in the second part of this thesis involves two main steps. First,

we employ data distillation to obtain a smaller synthetic dataset that captures the

common trends of the private data. This synthetic dataset is carefully tailored for

the target student model, ensuring it has enough discriminative properties to produce

accurate predictions. We generate a smaller amount of synthetic distilled data with

which a model with the same architecture as the target student model can be trained

to have similar parameters to when trained with total private data. Secondly, we train

an unprotected teacher model with a large capacity on private data directly, and it is

used to generate soft labels for the distilled data. The target student model is then

trained using knowledge distillation on the labeled distilled data. The lightweight

student model can achieve comparable accuracy to the teacher model trained on

extensive private data by training on this labeled distilled data. It is also robust to

inference attacks since it is not directly exposed to private data during final model

training.

The procedure is tailored for various datasets and can be employed directly in
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a white box fashion without adding noise/modification. It is optimized for utility,

whereas DP-based approaches are not directly optimized for utility and are not tai-

lored for specific datasets; instead, they focus only on privacy where utility is ignored.

Our empirical policy has a built-in defense mechanism against inference attacks with

a satisfactory utility trade-off compared to existing methods where the model will be

tailored for specific datasets. Direct data condensation [Caz+22; DZL22] does not

focus on model privacy, and our data and model distillation synergy ensures tighter

privacy bound of the model. Again, it helps to improve fairness [Far+20; YKF20] as

class balance ensures fair training and privacy. Our empirical evidence showed that

our model is almost free from the risk of MIA providing privacy leak of 50-53.5%,

close to a random guess of 50%, nearly as precise or better than unprotected models

ensuring 69.3%, 46.6%, and 97.3% test accuracy on Canadian Institute for Advanced

Research (CIFAR)’s CIFAR-10, CIFAR-100, and Modified National Institute of Stan-

dards and Technology (MNIST) datasets, respectively.

1.3 Thesis statement

The objective of this thesis is to create a confidential data generator capable of

producing high-quality private images for deep learning purposes. Additionally, a

confidential and concise model was also developed in the second phase to train this

data, ensuring a double-layered privacy guarantee for users.
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1.3.1 Synthetic data generation

Medical image data contains private sensitive attributes. Therefore, training deep

models on such data can leak private attributes or lead to a linking attack where such

data can be re-identified. Anonymization is not a feasible solution, as standardizing

such images globally is challenging. Thus, we need to come up with a generative

approach that can generate medical data, (x, y), which is differentially private. We

expect that model can ensure the same outcome irrespective of the presence of training

data which is a challenge in high stake medical domain. We need a setup so that local

hospitals can provide their data privately. We also want to develop reliable high-

fidelity data to ensure proper decision-making in high-stakes diagnosis tasks. We will

follow Chapter 3 to solve this problem.

1.3.2 Membership inference attack defense

This a popular attack where the adversary trains an inference model to identify

whether a specific data record is trained using a specific model or not. So, this

information breaches the privacy of the training member. Suppose we train a model

in a supervised setting where (x, y) is the corresponding image and true label of the

data, and we want to predict ŷ, then the adversary can access y and ŷ both. An

adversary may also have access to the prediction confidence and they can exploit

such a relationship to identify whether a given data belongs to the training set or

not. For example, if they can determine that data corresponds to a cancer hospital

or rape victim database, it will implicitly expose some sensitive attributes about the

identified individual. Training leads to unintended leakage (if data is private). So
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following cahpter 4 solutions, we want to come up with a model where given the

true label and calculated prediction confidence, the adversary cannot successfully

identify whether data belongs to the corresponding training set or not. Why is it

essential? Knowing that a particular patient’s clinical record was used to train a

model associated with a disease (e.g., predict cancer or specific medicine dose, etc.)

can reveal that the patient has this disease. This a popular attack where the adversary

trains an inference model to identify whether a specific data record is trained using

a specific model or not. So, this information breaches the privacy of the training

member.

1.4 Contributions

Our key contributions are summarized below:

• We designed a differentially private approach to generate both reliable and

private high resolutions radiography images with selective noise addition (via W-

GAN-based architecture) for the first time, ensuring close to real data accuracy,

which is satisfactory.

– Our approach can preserve higher utility by applying selective gradient

sanitization. We apply sanitization only to the generator and not to the

discriminator like previous approaches to ensure more stable training with

reliable data.

– We ensure implicit noise clipping and sensitivity bound of training using

Wasserstein loss property of W-GAN [Gul+17; ACB17] that guarantee the
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gradient is within a limit of 1 (due to 1-Lipschitz condition). It eliminates

the need to search for a perfect clipping value that is sensitive and may

cause bias.

– We utilize a simple notion of privacy, ensuring that the deeper architecture

can be trained with a feasible privacy budget. So, such notion will allow

researchers to exploit deeper models for private data generation.

– Our novel synthetic and private medical data generation method works

both in the centralized and distributed setting under untrusted server as-

sumptions. It ensures that we can also use such an approach if we do not

trust a centralized server to store the client’s private data and the client

only receives the noisy gradient, so the dishonest client cannot access other

clients’ data via model weights.

• We expand our image classifier in addition to the differential privacy-based

data generation method. We developed a classification model that is resistant

to membership inference, nearly as precise as non-private models, and can be

employed directly in a white box manner, where the procedure is customized for

various datasets. For such optimization, we exploited a knowledge distillation-

based approach where the resultant student model is trained on synthetic dis-

tilled data, and the model will not be exposed to private data.

– This extended distillation-based approach ensures target model compact-

ness and membership privacy together for the first time. The final model

does not rely on any public data and effectively restricts repeated access
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to private data. So it is more feasible in real-world settings.

– Distilled data facilitate class balance and capture general trends during

knowledge transfer, promoting fair training and encouraging generaliza-

tion. Furthermore, the generated data is tailored to suit the student model.

– Resultant student model is efficient as it requires less than half the model

and data size to train and is robust to MIA risk. It provides superior

utility improvements of 8%, 34%, and 6% in the CIFAR-10, CIFAR-100,

and MNIST datasets with 50-53.5% privacy leak, similar to non-private

models.

1.5 Thesis organization

I organize the remainder of this thesis as follows. First, in Chapter 2 we discussed

some of the background definitions and in 2.2, we give an overview of the related

works. More specifically, this chapter discusses different key components of our algo-

rithm and various privacy-based algorithms. Chapter 3 outlines my Private synthetic

image data generation approach. It shows how differential privacy can be combined

with GANs to generate high-quality reliable image data. Chapter 4 proposes a Col-

laborative distillation approach for the image classification task. Unlike the previous

supervised approaches, this approach overcame more public data requirements or

reference data tuning steps. Finally, in Chapter 5, I conclude this thesis.



Chapter 2

Background and Related Works

2.1 Background

Let us review a few definitions: Generative adversarial networks (GANs), dif-

ferential privacy (DP), Renyi DP, Gaussian noise, Membership Inference Attack in

machine learning, data and knowledge distillation.

2.1.1 GAN

Generative adversarial networks (GANs) [Bea+19; Fri+19; TKP19; ZJW18;

Li+20] are the approach to formulate generative task using deep-learning models.

There will be an encoder-based generator, which will perform the generative tasks.

The generative model will learn the image features from training data and generate

realistic-looking synthesized data from random noise. There will be a discriminative

model that will try to determine whether the data is fake or real. In this way, the

criticism for the generated data will be back-propagated and used to update the

12
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model. In this two-player game of generator and discriminator, the generator will

improve over time to fool the discriminator and the discriminator will become more

expert in classifying fake or real data and it will be rewarded or penalized based on

its performance. This adversarial game like Eq. (2.1) will help us to learn a good

mapping of the real data. It tries to minimize the loss of the generator G so that it

generates real like image and at the same time tries to maximize the discriminator

D’s loss so that it cannot distinguish between real and fake data. In the beginning

of the game, generator G is not that good, and it gradually improves over time

while the discriminator D’s parallel classification task’s improvement forcefully lead

to high-quality image generation incrementally:

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1− logD(G(z))] (2.1)

2.1.2 Differential privacy

For all data sets P and P’, if they differ on at most one training example, any

randomized algorithm K (for a set S of outcome where any S ⊆ Range(K)) gives

ε-differential privacy (DP) [DR14]. In practice, we add δ term as a failure prob-

ability to Eq. (2.2), which ensures (ε, δ)-privacy:

Pr[K(P ) ∈ S] ≤ eε × Pr[K(P ′) ∈ S] + δ (2.2)

Here, DP algorithm considers epsilon ε, which indicates the upper bound of pri-

vacy loss. Particularly epsilon ε is the metric for privacy loss due to change in the

data by one record. Lower epsilon value indicates better privacy budget but limited

utility. We have to choose ε value wisely to maintain the utility-privacy trade-off. δ
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is used to relax the notion. δ is the estimated probability of breaching the constraints

of differential privacy [DR14]. Here, we used differential Privacy in the context of

Machine Learning problem and K is the generative model. Machine learning models

are data hungry, the more the data they use for training, the more accurately they

perform. In the same time in spite the availability of data, it is also important to en-

sure privacy of the system against the leakage of sensitive information. It ensures that

model’s predictive behaviour does not differ when the model has to predict training

data or test data.

2.1.3 Renyi differential privacy

Differential privacy has a tremendous contribution in current machine learning

advancement preserving privacy for data usage. However, it also brings issues for

system maintenance cost. Machine learning model training is an iterative process and

it adds privacy cost sequentially. As a result privacy budget restriction is becoming

the major issue for developing machine learning model. Renyi Differential Privacy

(RDP) [MTZ19] solves this issue by bringing more relaxation in DP algorithm. It

increases the accuracy of the algorithm and it also reduces the computation cost for

calculating privacy loss:

Dα(P ||P ′) =
1

α− 1
log

(
Ep′(x)

(
P (x)

P ′(x)

)α−1
)

≤ ε (2.3)

This equation calculates Renyi divergence of order α of a distribution P from the

distribution P’. Instead of using log likelihood to measure privacy loss, this method

equips Renyi divergence to measure privacy loss. It will be described in more details

in Section 2.1.3.
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To make our generator deferentially private, we have to ensure that each example

may not have any significant impact on the model’s encoded weight. To limit the

impact of each example on the back propagated gradient we need to add some noise

to the gradient. If D and D′ are two adjacent dataset, then we need to add some noise

to the output of a mechanism M . If f(D) is the query function, then it will add N

noise which is parameterized by σ,C. The noise is added to modify the distribution

in 0 with standard deviation σ following Eq. (2.4). In our case, we have to run the

training for multiple iterations and Gaussian noise can be a good choice due to its

additive property which will be efficient in our method:

M(D) ≃ f(D) +N (0, σ2C2I) (2.4)

2.1.4 Membership inference attack in machine learning

Suppose we train a model F in a supervised setting where (x, y) is the corre-

sponding image and true label of the data, and we want to predict ŷ = F (x). If

an adversary model g can access (x, y) and prediction vector F (x) with prediction

confidence, then it can exploit such a set of features to infer whether a given labeled

image (x, y) belongs to the F model’s training set D. The accuracy of model g will

be referred to as ‘privacy accuracy’. In a black box setting, an adversary might train

a binary attack model g, assuming they have access to some of the train data of a

model F , with the prediction vector F (x). In a white-box manner, an adversary may

exploit different model features like loss of model F on (x, y) and exploit gradient

information δF (x, y). If D
A and DA′

are members and nonmembers of the portion of
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the disjoint data accessible to the adversary, attack model g optimizes θg to maximize

the following gain I in Eq. (2.5):

I
θg

DA,DA′ (g) =
∑

(x,y)∈DA

log(g(x, y, F (x))

|DA|
+

∑
(x,y)∈DA′

log(1− g(x, y, F (x)))

|DA′ |
(2.5)

2.1.5 Dataset distillation

Dataset distillation [Wan+18] tries to keep the model fixed and to develop a

smaller dataset that can preserve similar test performance on a reserved test set

compared to the dataset trained on the original dataset. Like Eq. (2.6), this is a

process that helps to squeeze the larger dataset D to a smaller sized dataset S, and

the ability to retain the same performance L(FθFS
(; )) on distilled data S as real data

D’s training performance L(FθFD
(; )). Here, L is regular loss (e.g., cross entropy):

Ex∼PD
[L(FθFD

(x), y)] ≃ Es∼PS
[L(FθFS

(s), y)] (2.6)

Thus, it maintains a fixed model F parameterized by θ and scales down the amount

of data to improve training effectiveness by reducing training complexity; Distilled

data S can better capture the feature dynamics of actual data D.

2.1.6 Knowledge distillation

Hinton et al. [HVD15] improved the concept of Buciluǎ et al.’s model compres-

sion [BCN06] process to transfer the knowledge of an ensemble of cumbersome teacher

models into a single compact student model. While teaching the student network,

soft labels generated by teacher networks are used for supervision. This ensures the

student network can distinguish between different class values, which helps preserve
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similarity information between different classes. They used temperature τ to smooth

the output logits’ aF , aT value distribution to provide higher generalization capabil-

ity. Some approaches also use intermediate values [Che+20a] than probability. Such

generalization helps promotes regularization, which can help mitigate membership

privacy information leaked via extremely confident logit values. If y is the ground

truth label and F (x), T (x) are the softened label of student and teacher network, then

KL divergence-based loss LKL in Eq. (2.7) is used to compute knowledge distillation

loss LKD:

LKD = τ 2LKL(F (x), T (x));F (x) = softmax
(aF
τ

)
;T (x) = softmax

(aT
τ

)
(2.7)
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2.2 Related works

2.2.1 Privacy preserving learning

Deep learning is gaining popularity in predictive tasks. But such models are

data-hungry, and they use different types of data scraping to collect data from all

possible sources. Data have also been collected from various hospitals. These models

are fundamental in the medical sector because they can make the diagnostic more

reliable, but they need a large amount of data to perform well. However, using

such sensitive data from hospitals and health databases can easily cause alarming

privacy breaches. Still, previous works [AC19] proved that it is possible to enforce

privacy in deep neural networks with a limited privacy budget. They introduced a

differential private variation of common stochastic gradient descent with the moment

accountant technique [Aba+16], which helped to keep track of privacy using each

of the moments other than mean, and variance and picks the tightest bounds. They

clipped the gradient and added noise, limiting the information learned from any given

an example. Clipping bound C is a hyperparameter that needs to be tuned, which is

a complex process that can cause bias.

Pepernot et al. [Pap+17] introduced a teacher and student model concept in their

PATE mechanism, which added noise to the outcome rather than during the training

process, and it trained an ensemble of models based on multiple disjoint datasets. So,

the privacy budget increased with iteration, and the model itself is not private. But,

to make the model itself with encoded weight differentially private, To overcome the

drawback of PATE, they proposed a new G-PATE mechanism [Pap+18] where they
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used Gaussian distribution instead of Laplacian distribution using Renyi differential

privacy. The student played the role of private discriminator so that the student

could learn how to extract the feature of unlabeled public data through the adversar-

ial battle with the pre-trained generator. Still, the gradient needs to be subdivided

into bins manually to cope with the framework in such a method. Due to the higher

dimensionality of gradients, the noise added to the gradient increases the privacy

budget, which needs to be minimized using unsupervised dimensionality reduction.

So, to solve those exponential privacy budget increment problems and lower quality

noisy data generation problems, we came up with a new approach. Our approach

can reduce the need to select a proper clipping parameter and the expense of unsu-

pervised dimensionality reduction. DP-GAN [Xie+18] solved the problem of privacy

leakage due to training via real data-based training, and here, this approach started

to clip weight rather than gradients. Kunar et al. [Kun+21] proposed DT-GAN for

generating tabular synthetic data with privacy analysis by differential privacy against

membership and attribute inference attacks. Tantipongpipat et al. [Tan+19] utilized

differential privacy, and it ensures a private synthetic data generation process that can

generate both data and labels. Another approach utilized conditional GAN [TKP19],

which provides partial privacy. We were inspired by [COF20] paper’s W-GAN usage

technique. But, most of such methods targeted MNIST datasets where the learning

task is much easier than complex medical datasets. They still have the problem of

coming up with excellent clipping value. We eliminated the need to search for an

appropriate clipping value using W-GAN. We also utilized high-dimensional radiol-

ogy images, and our model can generate high-quality synthetic medical data in both
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centralized and distributed settings. DP-Fed AVG GAN [Aug+20; McM+18] works

under the trusted server assumption. Still, it is difficult to assume that a centralized

server is trusted because we also have to be prepared when the server becomes dis-

honest. Our approach ensures a federated system where the server only receives noisy

gradients, so he cannot exploit the real data. So, it also works under the untrusted

server assumption.

2.2.2 Generative models in the medical field

Most deep learning models are data-hungry, so they require a lot of data. Di-

rectly using those public medical data creates privacy issues. Most of those data

contain a tag/header or identifier that includes the patient’s sensitive information,

diagnosis history, and hospital name. So, people are getting more into synthetic data

because synthetic data does not have private information, and those data do not

belong to any actual patient. GAN [Goo+14] has already performed significantly

well in data generation tasks in different domains; author Skandarani et al. [SJL21]

studied whether GANs can also work well in the medical data sector where the gener-

ated data should be reliable enough. Authors applied a range of generative architec-

tures ranging from simpler DCGAN [RMC15; MO14; Gro16] to heavier style GANs

[KLA19] on cine-MRI, liver CT scan, and retina images. The study indicated that

good-performing models could develop realistic data with higher Frechet Inception

Distance (FID) scores and satisfactory performance with U-net [RFB15]trained on

generated data for segmentation. Bermudez et al. [Ber+18] used GAN to synthesize

high-quality 2d axial slices of MRI in an unsupervised manner also supported by im-
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age de-noising, which proved the power of deep learning in synthetic data generation.

Dai et al. [Dai+20] developed a unified framework for generating synthetic images

for multi-modal MRI. Motion in the images causes quality degradation because of

image blurring or artifacts. Johnson et al. [JD19] proposed a GAN model that can

predict quality brain images from corrupted data. Lei et al. [Lei+19] presented a

method that can generate synthetic computed tomography (CT) images based on

dense cycle-consistent generative adversarial networks (cycle GAN). In the case of a

skin lesion for skin image analysis, a considerable amount of labeled and high-quality

data for deep learning is lacking. Baur’s [Kaz+20] framework using progressive, grow-

ing generative model was able to generate high-quality synthetic data compared to

GAN, DCGAN [RMC15], and LAPGAN [Den+15]. Chuquicusma et al. [Chu+18]

performed visual Turing test using radiologists to check the quality of their gener-

ated lung nodule samples. Their implicit assumption was that if they could learn

to generate realistic data using DC-GAN and if it could fool the discriminator, then

the model had known enough discriminative embedding. Some other works also ex-

ploited different generative methods to generate synthetic medical data of different

type. [Bao+19; Wal+18; Gua+18; OOS17]Some previous works indicate that our

radiology image generation approach is feasible and can lead to a satisfactory solu-

tion, but those works do not consider the privacy of the data. At the same time, our

system can work with a differential privacy guarantee. Torfi et al. [TFR22] addressed

medical data privacy problems by generating synthetic data with acceptable quality

and standard. Their framework used convolutional autoencoders to encode the fea-

tures and generative adversarial networks to preserve the semantic information in the
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generated dataset. One positive side of their work is that, in the case of data genera-

tion, they followed robust method—Renyi differential privacy—to ensure and assess

the privacy confidence of a system using such mathematical foundations, which also

motivated us. Their model yielded better performance than state-of-the-art models

based on publicly available benchmark data sets. Still, their model does not work

well under higher noise for high-dimensional image type data. Choi et al. [Cho+17]

handled binary and count feature-based electronic health record-based synthetic data

generation using a specialized medGAN, which does not work for images. In their

framework, they incorporated autoencoder and generative adversarial networks. One

big problem in artificial data generation, mode collapse, is a common problem that

this article successfully addressed using mini-batch averaging, and it was able to en-

sure limited privacy risk. But, such little privacy cannot provide patient’s sensitive

data protection properly. So, in our approach, we incorporate relaxed differential

privacy that can still generate high fidelity image data (high-dimensional) despite a

high noise multiplier, and our artificial data can ensure higher accuracy using simple

Resnet18 model [He+16] also. Our approach solves the problem of mode collapse

using Wasserstein loss, which works much better than regular binary cross-entropy

loss, and it also ensures private data generation. Mode collapse indicate a situation

where the generator can only generate a single or small set of output, which reduces

diversity among generated images.
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2.2.3 Membership privacy attack and defenses

Usually, there are two types of membership inference attacks: Black box and

white box attacks. Nasr et al. [Sho+17] came up with the concept first. They trained

shadow models on synthetic data ( selected from distribution based on confidence

score) and mathematically showed and quantified membership privacy leakage given

black-box access only. Long et al.’s [Lon+18] findings demonstrated that models with

good generalization capabilities can still be vulnerable to inference attacks, as they

can be indirectly targeted by accessing associated data. Nasr et al. [NSH19] extended

this attack by introducing a white box attack that exploits gradient information and

showed how such gradient difference between member and non-member makes deep

learning algorithms vulnerable in both central and federated settings. Atiqur et al.

[Rah+18] also showed that guaranteed differential privacy could be susceptible if the

trade-off expects acceptable utility. [SM20] improved the performance of MIA by

using a class-dependant threshold based on prediction entropy and proposed a new

risk score metric. Label-only attacks [Cho+21; LZ21] reduced dependency on predic-

tion confidence and proved that the confidence masking defense is not very efficient.

Certain studies [Ben+20] have indicated that to prevent attacks, it is necessary to

address common enemies such as overfitting and generalization gap. Chen et al.

[Che+20b] showed how attack models could leak the training data information of

different generative models in different settings.

Some of the defense strategies are discussed here. For example, Nasr et al.

[NSH18] maximized the classification performance of the model and, at the same

time, minimize the most potent adversary’s membership inference attack’s gain based
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on prediction confidence. But, adversarial regularization comes with a significant toll

on utility. Other regularizations include L2 regularization, early stopping, Weight

Decay, Weight Normalization, DropOut and label smoothing [KHD20] are also used

to ensure privacy. Such regularizers deteriorate the utility due to a sub-optimal trade-

off. Another approach is MemGuard which alters the output of the resultant model

by adding noise to confuse the attack model, but it does not work for white-box

attacks. DP-SGD [Aba+16] uses differential privacy-based optimization and adds

noise to the gradient of micro-batches. Similarly, PATE [Pap+18; Pap+16], PATE

with GN-MAX used an ensemble of teachers on different subsets of the data and

started using knowledge distillation for privacy. DP-based GAN [Ho+21; Fai+22]

tried to generate synthetic data with additional noise. Song et al. [SM20] developed

a new privacy risk score and recognized both model sensitivity and generalization

error pose a mutual threat. Caruana et al. [CLG00] showed how early stopping can

help reduce overfitting problems and mitigate privacy risk.

DMP [SH21] used knowledge transfer initially, where the student model is trained

on public data with private teacher-generated soft labels to achieve a superior utility

trade-off. But, they require available reference data with desirable properties, like low

entropy, to produce better results, and synthetic data-based DMP achieved moderate

performance. Managing public data with such properties may be challenging in med-

ical domains. KCD, SELENA [Cho+22; Tan+22] used data splitting and repeated

private data usage. However, KCD’s limitation is that it might not work if there is

duplication in train data or class imbalance and outlier.
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2.2.4 Dataset condensation and distillation

This is an emerging topic, and many works have been done in this domain, focusing

on neural architecture search and training efficiency. The central concept behind this

approach is maintaining the model while simultaneously creating a condensed dataset

that allows the model to achieve comparable performance on the reduced data, as it

does when trained on the complete dataset. The initial approach was introduced by

Wang et al. [Wan+18] where they used an approach similar to meta-learning where a

randomly initialized dataset is optimized in a few steps of gradient descent to come up

with a smaller dataset that can ensure a similar performance of the model on the real

data. To simplify the nested meta-training loop, Zhao et al. [ZMB21] concentrated on

aligning the model’s gradients based on generated and real data, which aims to ensure

that the model follows the same path towards a solution. They [ZB21] also utilized

differentiable Siamese augmentation where the actual images and synthetic images

are transformed using the same augmentation before matching gradient, which helps

to improve the performance significantly due to shared transformation. Some tried

to use soft labels via label distillation [BYH20] and also considered text data [SS19].

Nguyen et al. [NCL20] used Kernel Ridge Regression and label solve technique via

closed form solution, increasing efficiency. Lee et al. [Lee+22] emphasized class-wise

differences in the loss and improved optimization stability using bi-level warm-up.

Distribution Matching in embedded space [ZB22] helped to ensure faster computation,

and Dong et al. [DZL22] demonstrated how data condensation is connected with

privacy theory and training effectiveness. They provided theoretical justifications for

the relationship between differential privacy and data condensation. However, their
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assumption regarding adversary access to the compressed data becomes vulnerable in

worst case, which occurs quite often practically. So, we combine model’s knowledge

transfer with privacy-oriented data distillation, restricting adversary access to distilled

data to ensure better empirical privacy. Moreover, Cazenavette et al.’s [Caz+22]

parameter-based imitation learning improved distillation efficiency. But, their work

does not optimize data utilizing privacy, and their goal and deliverable are compressed

data, not a private model. So, we embrace parameter-matching loss during privacy-

oriented data distillation and sanitize the model using knowledge transfer to ensure

compact private model delivery.

2.3 Summary

In this chapter, we reviewed a few definitions—namely, generative adversarial

networks (GANs), differential privacy (DP), Renyi DP, Gaussian noise, membership

inference attack in machine learning, data and knowledge distillation. We also dis-

cussed related works on privacy-preserving learning, generative models in the medical

field, membership privacy attack and defenses, as well as dataset condensation and

distillation.

As a preview, in Chapter 3, we develop a private data generator to utilize a

noise-free discriminator, which helps to produce high-quality private radiology data

whereas previous methods could not guarantee high-resolution radiology data with

such a tight privacy budget. In Chapter 4, we come up with a private classifier model

without directly accessing any private data directly, which ensures better privacy.

Again, it can ensure a smaller model with high performance which requires half the
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parameters compared to related works.



Chapter 3

Privacy-Preserving Synthetic

Image Generation

Due to the recent development in the deep learning community and the avail-

ability of state-of-the-art models, medical practitioners are getting more interested in

computer vision and deep learning for diagnosis tasks. Moreover, those medical diag-

nostic models can also increase the reliability of conventional findings. As radiology

images can convey a lot of information for a patient’s diagnosis task, the problem

is that such medical data may contain sensitive private information in their content

header. De-anonymization (i.e., removal of sensitive header information) does not

work well due to the re-identification risk, which may link those images to essential

details (e.g., birth date, SSN, institution name, etc.), and such an approach can also

reduce utility. In the medical domain, utility is significant because a less accurate

diagnosis may lead to the wrong course of treatment and/or loss of life. In this chap-

ter, we develop a differentially private approach that can generate high-quality and

28
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high dimensional synthetic medical image data with guaranteed differential privacy.

It can be used to create sufficient quality data to train a deep model. Moreover, we

use W-GAN for bounded gradient guarantee, which eliminates the need for an exten-

sive clipping hyperparameter search. We also add noise selectively to the generator

to maintain the privacy-utility trade-off. Due to a noise-free discriminator and such

selective noise addition to the generator, high-quality and reliable generated radiol-

ogy images can be utilized for diagnosis tasks. Moreover, our approach can work in

a distributed system where different hospitals can contain their private images in the

local server and use a central server to generate synthetic radiology images without

storing patient data.

3.1 Method

We designed a privacy-preserving method to generate synthetic data. In our

case, we have utilized Wasserstein GAN for a specific purpose. Some of the previous

approaches [Cho+17; Gua+18; Xu+19; Wal+18] tried to generate medical data but

without a privacy guarantee and yielded low-medium utility. Some methods are

developed using DP-SGD using generative architecture. But, they used gradient

clipping for both discriminator and generator. But We used a different approach

to exploit the gradient in the generator to ensure privacy-preserving data. Instead

of using a regular optimizer, We have used DP-SGD optimizer following previous

techniques. We also used fully convolutional architecture instead of Multi Layer

Perceptron to capture sensitive medical images’ semantic and spatial information.

We used W-GAN as it works slightly better to battle mode collapse. We utilized the
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implicit 1-Lipschitz distance property of W-GAN to avoid the crucial hyperparameter

tuning for gradient clipping. A proper hyperparameter C helps set the gradient

clipping bound, but it sometimes causes bias and takes time to develop an optimal

value. But, 1-Lipschitz continuity in our GAN helps keep the gradient norm within

a range of 1, which implicitly ensures gradient clipping during the training process

without explicitly setting a proper clipping the value. So with the synergy of Renyi

differential privacy and such gradient penalty based on the unique property of WGAN,

our GAN can generate high-quality synthetic medical data. Using fake and real image-

based comparative loss instead of binary cross-entropy and other techniques also

helped increase the variation of the trained data, which allowed the target classifier

models to generalize well.

3.1.1 Renyi differential privacy implementation

In previous ε-DP approaches, the model creates some problems due to noise accu-

mulation using strong composition [DR14]. As deep learning is an iterative process,

noise upper bound gets multiplied with several training epochs. As we subsample im-

ages for micro-batch, subsampling also leads to high noise upper bound. Such loose

upper bound increases the overall privacy cost. Generating data with privacy requires

tracking the privacy budget and preserving the privacy of the generated data as each

iteration requires adding noise. Hence, such an iterative learning process leads to a

high privacy budget. But we need to minimize the privacy budget, and such an ex-

ponential increase in privacy budget may lead to a loose privacy upper bound. Such

an upper bound with high noise deteriorate the quality of the image. So, we need
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to use the Gaussian method to preserve privacy and keep the privacy bound more

tightly under the composition mechanism. Such a Gaussian mechanism with a higher

spread and lower peak helps maintain noise balance, but (ε, δ)-privacy does not allow

usage of the Gaussian mechanism. To exploit the Gaussian mechanism and ensure a

tighter privacy upper bound, we used a simple notion of differential privacy, which

satisfies and provides a strict upper bound. Instead of looking at the log ratio of

probabilities, this privacy mechanism looks at the distance. This privacy technique

ensures a strong guarantee under composition, and it is well suited to the Gaussian

mechanism. Gaussian distribution has a less sharp peak, and 95% of the data stays

within two standard deviations of the distribution, ensuring the upper bound could

be much more compact and tight. Such a strict upper bound reduces the exponential

parameter growth problem under iterations. This also satisfies ε-DP privacy when

λ = ∞. (λ, ε)-RDP ensures (ε + log(1/δ)
λ−1

)-DP privacy. Using such relaxed privacy

helped us avoid overestimating privacy loss during multiple iterations as Renyi dif-

ferential privacy supports the composition of different mechanisms where the budget

does not grow exponentially. We can consider D and D′ as two distributions, and

Pr(M(D′)) is the probability of D after applying the generative mechanism M . λ is

a parameter of that equation. Here, different epoch’s generation task is considered as

different mechanisms:

Dλ(M(D)||M(D′(x)))

=
1

λ− 1
logEx∼M(D)

(
Pr(M(D))

Pr(M(D′))

)λ−1

≤ ε (3.1)
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3.1.2 GAN implementation

If G is the generator, it takes random noise z as input and generates an image

G(z) as output. In the usual case, we provide the features, and the classifier classifies

whether it is fake or real. But, in generator G, we provided the label y information,

and a random Bernoulli or Gaussian noise z to generate the features x̂, which are

pixel values of the X-ray image. To create variation in data, we can alter the noise

z, which will generate different pixel intensity values leading to a slightly separate X-

ray image. In the generation process, the discriminator plays a vital role, so we kept

the gradient of the discriminator D, intact and noise-free. A reliable discriminator

is necessary as it can provide information regarding how accurate the image is. The

discriminator that takes generated image G(z) as input and D(G(z)) produces 0 if it

is fake and one if it is real, so D simply acts as a binary classifier. But, the confidence

probability value of the generator D(G(z)) indicates how fake or real the data is so

that such meaningful error can be corrected in the second iteration. In the case of D,

we generally use binary cross-entropy to calculate the criticism feedback; then, the

feedback is backpropagated through the generator so that generator can learn whether

the generated image x̂ is realistic or not. The generator and discriminator have been

trained simultaneously so that both models become experts. But, the generator

must not become superior to the discriminator. Because an overfitted discriminator

becomes so accurate that it provides confidence value at the highest or lowest level,

which cannot give any meaningful feedback to improve the generator. So, we updated

the discriminator five times per generator iteration. If x is the input data, it tries to

minimize the following loss in Eq. (3.2). So, the loss function in Eq. (3.2) consists of
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θD and θG parameters for discriminator D and generator G and gt from Eq. (3.4) is

the loss for generator and discriminator:

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1− logD(G(z))] (3.2)

min
G

max
D

Ex∼pdata(x)[D(x)]− Ez∼pz(z)[D(G(z))] (3.3)

So, we decided to use Wasserstein loss following Eq. (3.3) instead of binary cross-

entropy loss. It approximates the earth mover distance between a real and fake

distribution. So, it helps to remove the ceiling of 0 and 1 of loss, which helps to fight

the vanishing gradient problem, and continuous feedback helps to keep the learning

with feedback consistent:

gt = ∇θL(θG, θD) (3.4)

We used Wasserstein loss with a clipping bound of 1. Usual approaches clip the

gradient before updating parameters. So, if the gradient vector is g and the L2-

norm of the gradient is ||g||2 then we do the clipping by following g/g(max(1, ||g||2
C

).

This process helps to ensure that ||g||2 ≤ C where C is the clipping parameter. But

we mentioned that we eliminated the need to set the C value as we are using the

Wasserstein loss, which measures the statistical distance between fake and real image

distribution. 1-L continuous condition ensures the norm of the gradient ||g||2 ≤ 1.

So we try to enforce such 1-L continuity during training. We can do it by using

wight clipping by setting a maximum or minimum allowed weight range but enforcing

clipping reduces the limited learning capability of the discriminator. So, in the case of

a discriminator, we will use gradient penalty to keep the sensitivity bounded like Eq.

(3.5). We will calculate the loss as the distance between the real image x from the P



34 Chapter 3: Privacy-Preserving Synthetic Image Generation

distribution, and the fake image y from the Q distribution. In the loss term, we add a

regularization term for calculating the loss for interpolated images from fake and real,

multiplied with λ, a gradient penalty term. In such a way, we sample some points by

interpolating between fake and real examples to get an interpolating image using a

random number α. We deduct one from the gradient of discriminator’s norm ∇D in

Eq. (3.6), which ensures that the discriminator’s gradient norm are bounded within

a range of 1. This ensures clipping value as one without extensive hyperparameter

tuning:

LD = −Ex∼P [D(x)] + Ex̂∼Q[D(x̂)]

+λE[(||∇D(αx+ (1− α)x̄|| − 1)2] (3.5)

LG = Ez∼pz(z)[D(G(z))] (3.6)

3.1.3 Privacy preserving training with santization

At this moment, by sanitization, we indicated refining the sensitive value by clip-

ping and adding noise. The main learning mechanism of the machine learning model

and deep learning depends on backpropagation. First, we provide a sample to the

model, and it generates the output and calculates loss by comparing it with the real

output. Then it uses loss for each sample to update the model per iteration. Our

strategy is to add noise to the gradient so that updates regarding one single example

cannot impact the overall learning. It follows the notion of differential privacy so

that one individual sample cannot impact the overall dataset. Previous approaches

applied sanitization on both the discriminator and generator. Still, following some

recent works [COF20], we decided to add noise to the gradient of the generator G in
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Figure 3.1: Data sanitization workflow

Eq. (3.10) only. We will not clip and add noise to the discriminator D in Eq. (3.9)

because we are going to release the generator for data generation. If grtG is the

gradient of the generator G we apply gradient clipping and noise-adding mechanism

Mσ,C(gr
(t)
G ) to get that the modified gradient g̃rtG so that each example cannot have

a huge impact on the dataset as in Eq. (3.7). Mσ,C(gr
(t)) adds noise from Gaussian

distribution with variance σ. We will not provide the discriminator to the client, and

discriminator gradient gr
(t)
D will remain unchanged, and it will be kept in a secure

server. If we have to provide the discriminator, we will consider the federated learn-

ing scenario where we will have multiple discriminators for each client, which will be

stored in client devices and will not breach privacy because each client will train their

discriminator separately.

grt = Mσ,C(gr
(t)) (3.7)

θ(t+1) = θ(t) − η.gr(t) (3.8)
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θ
(t+1)
D = θ(t)D − η.gr

(t)
D ;

{Discriminator : g̃r
(t)
D := gr

(t)
D } (3.9)

θ
(t+1)
G = θ(t)G − η.gr

(t)
G ;

{Generator : g̃r
(t)
G := Mσ,C(gr

(t)
G )} (3.10)

We applied a selective sanitization approach, which will clip the gradients of the

initial layers of the generator and not apply it to the local layers because local layers

are not getting exposed to private data. Our plan is that we will not add noise to

the discriminator’s gradient, but we will add noise to the generator’s gradient. Our

idea is that as the discriminator provides feedback on the X-ray image’s quality, the

discriminator’s noisy update cannot identify the difference between fake and real data.

But as we are not releasing the discriminator, a noise-free discriminator helps preserve

more gradient information of the discriminator, leading to high-fidelity image data

despite the noise multiplier’s value. In the medical domain, image quality plays a

crucial role because the semantic information of the image dictates a critical decision

related to the disease. So, we tried to make a trade-off that can ensure both image

quality and privacy, which is later proved by the satisfactory performance mentioned

in our result section,

According to Figure 3.1, there are two parts to the generator’s gradient. One part

is local, which is going downwards, which comes back to the generator, and one part

is coming upwards, which is not local because it comes back from the discriminator

and is affected by real data. So, Instead of sanitizing the whole network’s gradient, we

decided to sanitize the gradient that is directly relevant to the noisy input. Following

the chain rule, we can identify that upward gradient,grG is directly impacted by
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real data, so we decided to sanitize this part of the gradient only so that the local

gradient grG can preserve implicit gradient information, which is free from the impact

of real data. The generator is updated twice during the training process. In GAN,

when we update the generator, we keep the discriminator fixed and then update the

discriminator and keep the generator fixed. According to the figure, the generator’s

updates back-propagated during discriminator evaluation are the upward gradient

directly impacted by the real image. Hence, we decided to clip and add noise to the

upward gradient. But during the downward gradient update, the gradient contains

only relevant local information, which is not directly related to real data, so we do

not sanitize the local gradient according to Figure 3.1. In such a way, applying such

selective noise addition by breaking down the chain rule helps us preserve important

gradient information. So, it leads to high-quality synthetic data where reliability is

critical as the spatial features of the images will be used for medical diagnosis tasks.

In Figure 3.1 red arrow indicates the sensitive gradient and the green arrow indicates

sanitized gradient. The red X ∼ D indicates the real X-ray image data, which is

sensitive so the gradient coming back from discriminator D’s loss is indicated with a

red arrow. The green arrow going out to generator G from Mechanism M is a green

gradient because mechanism M is used to sanitize the gradients.

We use the WGAN, which has a special condition is that it should be 1-Lipschitz

continuous that is the slope of the gradient of the discriminator should always be 1.

According to the theory of 1-Lipschitz continuity it automatically bounds the value

of gradient.
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3.1.4 Federated approach

We also ensured a Federated learning approach where there will be aND number of

discriminators that are trained in N client computers. Real data (x, y) will be exposed

to the clients (hospitals) where they do not need to release sensitive data. Instead,

they can train the lightweight discriminator on their personal computer. And the

1-Lipschitz property of Wasserstein helps to ensure implicit gradient clipping without

performing sanitization. All of the discriminator’s updates will be sent back to the

central server’s generator in Eq. (3.11) and the generator will be updated based

on the accumulation of all gradient information. We need a reliable and accurate

discriminator to stabilize the training and ensure high-fidelity synthetic data. We

followed a pre-trained starting approach where the discriminators will be previously

pre-trained in different client computers for such an approach. During training, the

pre-trained discriminator will ensure that generators are updated from the start of

the training so that we can generate data using fewer epochs. During the generator

update, noise and gradient clipping are applied to the upward gradient, similar to

the centralized approach. The iterative process increases the privacy budget, so pre-

training will also help reduce the privacy budget. It will require fewer iterations to

decrease the privacy budget with fewer iterations.

The main advantage of this approach is that if someone wants a private discrim-

inator, this approach will also ensure it. Because the discriminator will be stored in

the client’s computer, it will only have access to that specific client’s corresponding

X-ray images. There are other risk factors that we did not ignore. For example, if

the client cannot trust the server, the client needs privacy protection from the server.
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But we tackled such a condition also because the client’s gradient information that

will be passed to the server will be sanitized, and so the encoded noisy weight cannot

convey any information related to the client’s real data to the server:

θ
(t+1)
Di=1...N

= θ(t)D − η.g
(t)
D ; {Discriminator : ĝ

(t)
D := g

(t)
D } (3.11)

3.2 Experiment for medical data

For medical purposes, we considered Kaggle Chest X-ray Images (Pneumonia)

[Ker+18] and also used MNIST dataset for qualitative and quantitative comparison

purposes. Because most of the previous privacy-based data generation models used

MNIST for study purposes to compare generated image-based data. This is the first

time we have exploited a real high stake domain’s x-ray image dataset to generate

synthetic images. One problem with synthetic medical X-ray datasets is reliability.

So to ensure reliability and to defend against mode collapse we used W-GAN, which

is famous for its high-fidelity data synthesis performance. In each iteration, we gen-

erated different Bernoulli or Gaussian noise depending on user’s choice to preserve

the diversity of the dataset. Observed from Table 3.1, our approach’s performance

in terms of CNN is much closer to real data. In the experimental setting we trained

our model on 24000 generated synthetic data and to avoid class imbalance we gener-

ated 12000 Normal patient data and 12000 Pneumonia patient’s data. As the GAN

training is computationally expensive, we resized the image to 64×64 size and with

such a low resolution still, we were able to get upto 76% accuracy, which is within

a satisfactory range. In MNIST, it also gained 77% accuracy, which is also good
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Table 3.1: Experimental comparison (Accuracy %)

Data Algorithm CNN (0.07) CNN (1.02) MLP

MNIST Real 99 97 98
G-PATE 51 49 25

DP-SGD GAN 63 60 52
Our approach 78.2 76 77.2

X-ray Real 71.56 74.78 76
DP-SGD GAN 60 58 40
Our approach 76.172 76.245 74.484

according to Table 3.1. As observed from the figure, despite of high noise multiplier

of 0.07/1.02, our approach can generate quality images whereas previous models gen-

erate blurry and unclear images. In the case of X-ray images, it also gained really

good results with MLP: 74.4% accuracy. We used a highly regularized CNN model

to train using our synthetic data and such regularized model also will help to make

it free from membership inference attacks. Using such a simple ResNet18 model for

X-ray images, it gained an accuracy of 76.245% using CNN on the synthetic image,

which is close to 74.78% accuracy for real image (according to Table 3.1). In the case

of MLP, it also gained 74.484% accuracy based on artificial radiology data, which is

really amazing and it is closer to the model’s accuracy of 76% using real images. In

our case, we used synthetic data in the training set and real data in the test set so

I believe such a higher and comparable accuracy may validate that our model can

generate reliable radiology images, which can be used for diagnostic modeling. In

Table 3.1, the row for G-PATE is missing for the x-ray image because G-PATE is not

applicable to our dataset type.

To analyze the impact of privacy parameters like noise multiplier we performed

some experiments with varying noise level. In Figure 3.2, we showed our model’s data
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Figure 3.2: Normal patients (first 2 columns) & pneumonia patients (last 2 columns)
with noise multiplier 0.07 (1st, 3rd column) vs. noise multiplier 1.02 (2nd, 4th
columns)

quality concerning the noise multiplier. The first two columns indicate the standard

patient images where the first column’s data is generated with a noise multiplier of

0.07 and 1.02. Similarly, the third and fourth column shows the pneumonia patient’s

data. Here, the third column’s pneumonia patient’s data is generated using a noise

multiplier of 0.07, and the fourth column’s pneumonia patient’s data is developed with

a noise multiplier value of 1.02. From that part, we can observe that adding high

noise of 1.02 still yields high-quality X-ray image data. In previous approaches, image
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Figure 3.3: Generated normal patients data with noise multiplier 0.07

quality usually gets destroyed after the noise multiplier value of 0.1. But we are glad to

mention that our approach yielded 76% accuracy with data generated via a 1.02 noise

multiplier, which is satisfactory. For qualitative analysis of the result, we also showed

the generated average patient’s images in Figure 3.3, which is developed with ε value

of 10 and noise multiplier 0.07. We also displayed the generated pneumonia images in
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Figure 3.4: Generated pneumonia patients data with noise multiplier 0.07

Figure 3.4. Observed from those two grid views, our model can differentiate between

normal and pneumonia patients based on semantic structure. We used a sampling

rate of 1
1000

and we considered a number of iterations to be 2000. According to the

experiment in the worst case, our highest privacy budget for 24000 data and 2000

epochs is 3.194× 104.
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Table 3.2: Privacy communication

Method epsilon ϵ delta δ CT bytes

FedAVGGan 9.99× 106 1× 10−5 3.94× 107

Ours 7.89× 102 1× 10−5 1.95× 105

Previous approaches did not use high-resolution images for high stake domains,

like – the medical radiology image classification task, so we had some trouble com-

paring with baselines. We used the scaled-down images and modified the diffGAN

[TFR22] architecture to generate X-ray images to compare with our model. We had

to change the generator, encoder, and decoder architecture to support three-channel

images with higher resolution. However, the generated image with a noise multiplier

of 0.07 is blurry, and there is mode collapse occurring in the images. Most of the

X-ray images look alike. In contrast, our generated image is much sharper and more

precise compared to previously generated images from Figure 3.5.

3.2.1 Federated learning based experiment

In the federated approach, it ensured a much more efficient communication cost

than previous approaches. Communication cost indicates how many bytes it consumes

to perform one generator step by transferring the gradient to the server. It takes fewer

bytes, as we followed a previous approach and decided to transfer only the gradient

with respect to real samples and as the local discriminator models are contained within

local clients only. Table 3.2 shows that Fed AVG GAN’s total ε value was 9.99× 106

with CT bytes 3.94 × 107. In contrast, in our approach, ε value was 7.89 × 102 and

CT bytes 1.95× 105. It has much higher gains in gradient communication in terms of

CT bytes. Fed-AVG GAN cannot perform well with a noise multiplier value that is
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Figure 3.5: Modified diffGAN (top) vs. ours (bottom)

more than 0.1 whereas we have used 1.02 for the noise multiplier value and still our

approach is able to generate quality data.
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3.3 Summary

This chapter of the thesis presented a novel GAN structure that ensures differen-

tial privacy while generating high-fidelity and reliable artificial X-ray images. This

architecture facilitates the generation of radiology data using both central and dis-

tributed processes. It’ main feature is to introduce noise only to the generator part

that uses real data while maintaining the integrity of the discriminator to produce

high-quality images.



Chapter 4

Privacy-Preserving Learning via

Data and Knowledge Distillation

In the current era of deep learning, computer vision, and image analysis have be-

come ubiquitous across various sectors, ranging from government agencies and large

corporations to small end devices, due to their ability to simplify people’s lives. How-

ever, the widespread use of sensitive image data and the high memorization capacity

of deep learning present significant privacy risks. Now, a simple Google search can

yield numerous images of a person, and the knowledge that a specific patient’s record

was utilized for training a model associated with a disease may reveal the patient’s

ailment, potentially leading to advanced attacks in the future. Furthermore, these

unprotected models may also suffer from poor generalization due to this overfitting

to train data. Previous state-of-the-art methods like differential privacy (DP) and

regularizer-based defenses compromised functionality, i.e., task accuracy, to preserve

privacy. Such a trade-off raises concerns about the practicability of such defenses.

47
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Other existing knowledge-transfer-based methods either reuse private data or require

more public data, which could compromise privacy and may not be viable in certain

domains. To address these challenges, where privacy is of utmost importance and

utility cannot be compromised, we propose—in this chapter—a novel collaborative

distillation approach that transfers the private model’s knowledge based on a minimal

amount of distilled synthetic data, leading to a compact private model in an end-

to-end fashion. Empirically, our proposed method guarantees superior performance

compared to most advanced models currently in use, increasing utility by almost 8%,

34%, and 6% for CIFAR-10, CIFAR-100, and MNIST, respectively. The utility re-

sembles non-private counterparts almost closely while maintaining a respectable level

of membership privacy leakage of 50-53.5%, despite employing a smaller model with

50% fewer parameters.

4.1 Method

Trained machine learning models demonstrate different behavior for data from

other distributions. If the data is from a train set, they show a higher confidence

score but offer lower confidence scores if it does not belong to the train set. The

central concept of Membership privacy is to produce similar confidence scores and

gradient values for members and non-members. To promote that indistinguishability,

we can use the distilled data instead of the private training data while training the

target student model so it can mitigate the spike in prediction’s confidence value in

the presence of seen private train data. Three types of networks are used in two

phases: expert, teacher, and student. Experts and student models are used for data
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distillation, and experts have the same architecture as the student model. Here,

the teacher and reinitialized student are used for model distillation. Firstly, we use

private data, a trained expert set of models trained on real data, and a student

model trained on generated data to optimize the distilled data to develop a smaller

amount of representative synthetic data that helps preserve the general pattern of the

original dataset. It can generate similar performance while using real private data.

Secondly, we train a large teacher model with private data and use it to generate soft

labels of the distilled synthetic dataset. This data is used to train the target student

model. As this distilled dataset size is smaller and balanced and the features are

highly discriminative, this student training becomes more computationally efficient

and fair regarding class balance. We also want our student model to be (almost

half of the teacher model in terms of parameters) lightweight so that it does not

overfit the train data; Instead, their limited capacity and soft label help promote

generalizability. So, this collaboration of data distillation and knowledge transfer

ensures that the resultant model behaves similarly for members and non-members

due to sanitized knowledge of the private data. The high-level process is illustrated

in detail in Figure 4.1.

The steps are as follows: (i) Generate a small number of synthetic data S with

which the student model θ̂F can be trained to have similar performance and param-

eters to a set of expert networks θ∗ of same architecture when trained on the full

private data. (ii) Train unprotected large capacity teacher model T on private data

(x, y). (iii) Use the trained teacher model T to compute soft labels T (s) of distilled

data S with higher temperatures τ to smooth out logit zi’s distribution. (iv) Then,
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Figure 4.1: Transfer private teacher knowledge to a smaller student using distilled
data

we train the reinitialized student model F using KL-divergence-based loss LKL on

distilled data and soft label T (s) to predict ŷ as F (s)θFS to transfer and sanitize the

knowledge of the private model. We will talk about distilled data generation in Sec-

tion 4.1.1 and how we transfer knowledge of private model via distilled synthetic data

in Section 4.1.2.

4.1.1 Generating distilled data

We generate a smaller number of synthetic distilled data where the performance

of the student model trained on such synthetic data will be similar to that of an ideal

model trained on full private data. This data will be used later (in Section 4.1.2) for

knowledge transfer to the student network. Initially, we train multiple expert net-

works that have similar architecture to our target student network on whole private
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data using the regular cross-entropy loss like Eq. (4.1). We save the best expert net-

work parameters for each time step interval during training and store these parameter

snapshots as θ∗, indicating the upper bound of this k-class classification task on real

data where c, pc, yc are class variable, predictions and true labels:

Lossexpertsθ∗ = −
k∑

c=1

yc log(pc) (4.1)

In that case, we utilized a set of models to generate expert snapshots, which increases

the generalizability of the distilled data set by capturing all the discriminative features

possible. The best among saved snapshots will guide the optimization of distilled

data, where the student model trained on generated distilled data will be used to

test the performance of distilled data. This student trained on synthetic data will be

encouraged to have similar parameters to ideal experts when trained on private data.

We consider these saved parameters θ∗t with time t as snapshots of the exemplary

model behavior that the student model F should follow while optimizing generated

distilled data S. From Eq. ( 4.2), we see that θ∗t indicates the expert time sequence

parameters or trajectories that are learned using real private data. After saving the

parameters of experts, we fetch a random expert parameter θ∗t from a random time

step/epoch t from the saved list of expert parameters to initialize the student network

F with that specific model weight named as θ̂Ft for time step t. After the student

model is initialized at a randomly sampled time step t, it is trained for a defined no of

iterations N on distilled data where the synthetic data S is updated/optimized based

on the parameter matching loss Ltraj shown in Eq. (4.2). This process is illustrated

in Figure 4.2(a):

Ltraj =
||θ̂Ft+N − θ∗t+M ||22
||θ∗t − θ∗t+M ||22

(4.2)
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Figure 4.2: (a) Generating distilled data, (b) Distilling knowledge from teacher to
student using distilled data

This loss calculates the relative error between learned student model parameter θ̂Ft+N

after N distill data epoch update and known future expert parameters θ∗t+M after

designated M epochs to measure the similarity of student and ideal model’s training
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behavior. Ltraj measures the normalized squared L2 error between the trained student

network’s parameter after the defined time step N and the expected future expert

parameters after M epoch, which ensures that the student model’s performance on

the generated data will be identical to the expert’s performance on real data. To nor-

malize the distance between the parameters learned is divided by the total parameter

distance covered by the experts θ∗t in M epochs. Here, M is the number of updates

for the expert, and N is the number of synthetic data updates of the student adjusted

by the optimized trainable learning rate α in the Eq. (4.3).

We initialize synthetic data S with real images x and subsequently update the

pixel of the synthetic dataset for N times using differentiable augmentation A(S) to

generated data S like Eq. (4.3) to minimize mentioned parameter matching loss. The

data S is updated based on the back propagated L2-loss. This loss measures the

similarity between the learned parameters of the ideal model trained on real data and

the target model trained on updated synthetic data:

θ̂Ft+N+1 = θ̂Ft+N − α∇Ltraj(A(minibatcht+N(S)); θ̂
F
t+N) (4.3)

This penalization’s gradient ∇Ltraj helps to develop a smaller dataset S, with all

required semantic properties aggregated via different mini-batch used during distilled

data S optimization. we choose different minibatcht+N at each time step t during

each gradient descent update step N + 1 which helps to embrace generalizability in

the dataset. θ̂Ft+N+1 indicates the updated student parameter learned during N step

gradient descent for distilled data optimization. This resultant optimized data S can

ensure performance similar to real data.
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4.1.2 MIA mitigation via knowledge transfer

We want to keep the private data untouched during final student training as

models tend to generate high confidence scores for seen data prediction. So, we use the

distilled data to train the student model, assuming that the adversary cannot access it.

First, we directly train a teacher model T using labeled private training data (x, y) of

dataset D. This model is considered as teacher model, which is comparatively a heavy

model that has the capacity to learn the pattern from whole dataset. But, we want

our target student model to be lightweight and private. We use our teacher model T

to generate soft labels T (s) of the synthetic dataset S with high temperature τ , which

is used to transfer the unprotected teacher model’s private data-based knowledge like

Figure 4.2(b). Besides teacher, we use high SoftMax temperatures τ in Eq. (4.4) in the

student’s prediction also, which helps to maintain a balance in the confidence value

of the prediction zi among class labels. It helps to preserve the relativeness among

classes. So, such high-temperature [Sho+17] works as a strong regularizer that can

mitigate membership privacy and also increase the target model F ’s generalization

capability:

qθFS = softmax
(aF
τ

)
=

exp(zi/τ)∑
j(zj/τ)

(4.4)

Using distilled data S instead of private data D, helps to restrict the F model’s

access to private data during training. It ensures that the student does not leak

privacy. First, the student model F is reinitialized before the knowledge transfer task

and then based on each datapoint s and soft labels T (s), we will train a lightweight

protected student model F using (s, T (s)). At the end of the process, the student

model F parameterized by θFS will be deployed directly for inference task ŷ. The KL-
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divergence-based loss like Eq. (4.5) is utilized during the target model’s distillation

phase. Kullback-Leibler divergence helps measure the distance between prediction

F (s) and soft label T (s) distributions:

LKL(F (s), T (s)) =
k−1∑
i

T (s)i log

(
T (s)i
F (s)i

)
(4.5)

Optimal parameter θFS for inference is obtained while optimizing using the following

Eq. (4.6) based on the calculated LKL(F (s), T (s)) from the previous step.

θFS = argminθ

1

|S|
∑

(s,T (s))∈(S,θTx )

LKL(F (s), T (s)) (4.6)

To control the privacy trade-off and dependency on the true label y and soft label

T (s), we utilize an α hyperparameter which is implemented according to F ’s total

loss function lF in Eq. (4.7) that combines both LKL(F (s), T (s)) and cross-entropy

L(F (s), y). We use the α to control the privacy trade-off.

lF = α
∑

(s,T (s))∈S

LKL(F (s), T (s)) + (1− α)
∑

(s,y)∈S

L(F (s), y) (4.7)

In a nutshell, we utilize the synergy of collective distillation to sanitize private knowl-

edge so that the resultant model is private, efficient, and well-generalized.

4.2 Results and experiment for PLDK

4.2.1 Datasets and model architecture

CIFAR-10 and CIFAR-100 datasets are commonly used for benchmark com-

parison in Computer Vision and privacy domain. CIFAR-10 consists of 60,000 32-sized

color images with 10 classes where 50k and 10k are reserved for training and testing.
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Figure 4.3: Synthetic distilled images: (a) MNIST, (b) CIFAR-10

CIFAR-100 has 100 classes, each containing 600 images, from which 500 for train-

ing and 100 for testing. The MNIST is a handwritten dataset of 28-sized images

consisting of 60000 training and 10000 test data.

Previous approaches used heavier models like AlexNet/DenseNet/ResNet. But,

we use lightweight student model as large ones are prone to higher privacy leakage

and overfitting. So, we use 3 depth convNet (CNN) that has 320k parameters which

are 7 times less than 2.4M parameters of AlexNet. We use small CNN to compare

with algorithms’ performance gained via larger models. Here, CNN’s net width is

128, depth is 3, and InstanceNorm, ReLU activation, and average pooling are used

after each block. The architecture has convolution blocks of size 3 with approximately

128 filters.
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Table 4.1: Utility-privacy trade-off comparison (Accuracy %)

Algorithm Model Test Acc Priv Acc (Ab/Aw)

CIFAR-10 No defense CNN;Alex 67.4; 68.7 76.8/77.2;77.5/77.9
Regu (WD+LS) AlexNet 53.2 53.0/53.8
Adv Reg AlexNet 53.4 51.2/51.9
DMP AlexNet 65 50.6/51.3
DMP (Synthetic-37.5k) AlexNet 57.5 51.9/52.1
DMP (Synthetic-12.5k) AlexNet 53 50.25/50.3
PLDK (distilled s=500) AlexNet 70.3 50.42/50.6
PLDK (distilled s=500) CNN 69.3 50.21/50.28
PLDK (Pre-train with 10k Syn) CNN 71.8 51.25/51.8

CIFAR-100 No defense CNN;Alex 39.3; 44 87.8/88; 91.3/90.3
Regu (WD+LS) AlexNet 13 51/51.2
Adv Reg AlexNet 19.7 54/54.3
DMP AlexNet 35.7 55.6/55.7
DMP (Synthetic-37.5k) AlexNet 18.5 53.9/54.2
PLDK (distilled s=500) AlexNet 47.65 53.73/54.18
PLDK(distilled s=500) CNN 46.6 53.55/54.1
PLDK (Pre-train with 10k Syn) CNN 48.3 53.98/54.6

MNIST No defense CNN;R-18 96.7;98 92/91.4;92.5/91.3
Regu (WD+LS) R-18 92 59/59.4
Adv Reg R-18 90.48 58.83/58.75
DMP R-18 92.015 56.6/56.8
DMP (Synthetic-37.5k) R-18 82 54.5/54.6
PLDK (distilled s=500) R-18 97.9 53.01/53.67
PLDK(distilled s=500) CNN 97.3 52.7/53.25
PLDK (Pre-train with 10k Syn) CNN 98 52.9/53.1

4.2.2 Experimental setting

For CIFAR and MNIST we use a batch size of 128 while training the unprotected

teacher model. We use ResNet50 for CIFAR-10, simpleNet/ResNet50 for CIFAR-100

and ResNet-18 as the teacher for MNIST. We use convNet as a student and use a

few distilled data (50 per class) for CIFAR and MNIST to train student. The same

ConvNet is used as experts for data distillation to match the result of convNet trained

on optimized distilled data to stored expert ConvNets’ best future checkpoints trained

on regular data. We consider Blackbox Ab and Whitebox Aw attacks, and replicate
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Table 4.2: Utility-privacy trade-off comparison (Accuracy %)

Algorithm Model Test Acc Priv Acc (Ab/Aw)

CIFAR-10 No defense CNN;Alex 67.4; 68.7 76.8/77.2;77.5/77.9
Regu (WD+LS) AlexNet 53.2 53.0/53.8
Adv Reg AlexNet 53.4 51.2/51.9
DMP AlexNet 65 50.6/51.3
DMP (Synthetic-37.5k) AlexNet 57.5 51.9/52.1
DMP (Synthetic-12.5k) AlexNet 53 50.25/50.3
PLDK (distilled s=500) CNN 69.3 50.21/50.28
PLDK (Pre-train with 10k Syn) CNN 71.8 51.25/51.8

CIFAR-100 No defense CNN;Alex 39.3; 44 87.8/88; 91.3/90.3
Regu (WD+LS) AlexNet 13 51/51.2
Adv Reg AlexNet 19.7 54/54.3
DMP AlexNet 35.7 55.6/55.7
DMP (Synthetic-37.5k) AlexNet 18.5 53.9/54.2
PLDK(distilled s=500) CNN 46.6 53.55/54.1
PLDK (Pre-train with 10k Syn) CNN 48.3 53.98/54.6

MNIST No defense CNN;R-18 96.7;98 92/91.4;92.5/91.3
Regu (WD+LS) R-18 92 59/59.4
Adv Reg R-18 90.48 58.83/58.75
DMP R-18 92.015 56.6/56.8
DMP (Synthetic-37.5k) R-18 82 54.5/54.6
PLDK (distilled s=500) CNN 97.3 52.7/53.25
PLDK (Pre-train with 10k Syn) CNN 98 52.9/53.1

the attack models from previous work [NSH19] where 25k data (12.5k member and

12.5k non-member) are reserved for MIA training. The rest of the data (25k in

CIFAR and 35K in MNIST) is used for training teachers. We gain 69.3% utility in

CIFAR-10 with 50.21% privacy, 46.6% utility in CIFAR-100 with 53.55% privacy and

97.3% utility in MNIST with 52.7% privacy accuracy. It gains higher accuracy by

using a warm start, where we pre-trained students on 10k synthetic data (generated

via TransGAN) before the transfer. Details on hyperparameter tuning and inference

attack settings can be found in Sections 4.2.2 and 4.2.3.
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Hyperparameter tuning

In the data distillation phase, we use simple convNet (like Gidaris and Komodakis

[GK18]) commonly used in previous distillation works that are lightweight. We used

the same architecture-based model as the student when we distilled the knowledge

from the teacher. Before distillation, we train 100 convNets for CIFAR and 80 for

MNIST with different seeds and initialization for 100 epochs on private data to gener-

ate expert parameters, which we will use as the ideal standard to compare parameters.

Those parameters are stored in Hard Drive as buffers. Then, we compare those buffers’

parameters trained on real data as upper bound with our student ConvNet’s learned

parameter trained on optimized distilled data to generate data using mentioned L2

loss. We perform a designated number of synthetic data update epochs to optimize

50 distilled images per class; Using an ensemble or set of convNets to formulate an

ideal trajectory improves generalization and ensures that the expert parameters are

optimal, which our student convNets should follow during distilled synthetic data

generation. For CIFAR-10, the number of expert epochs is 30, and the max start

epoch is 40. The dataset is updated 50 times as the synthetic step size is 50, the pixel

learning rate is 103, and the learning rate for step size is 10−5. For CIFAR-100, the

learning rates are the same, and we settle at 40 again as the max starting epoch, and

synthetic data update steps are 80 epochs. For MNIST, the learning rate is 102, the

max start epoch is 20, and the learning rate for step size is 10−7. Moreover, synthetic

data update steps are 40 epochs for MNIST. During distilled dataset construction,

We consider 50 images per class (ipc=50). So, for CIFAR-10 and MNIST, it is 500

images; for CIFAR-100, we use 5000 images in the distilled dataset.
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During teachers training, we use an SGD optimizer to train teacher ResNet-50 and

simple LDA with a learning rate of 0.04 for CIFAR-10 with learning rate decay in every

40 epochs, teacher ResNet-18 with a learning rate of 0.06 with decay for MNIST, and

teacher ResNet-50 and simpleNet with a learning rate of 0.1 in first 60 epochs, 0.02 in

next 40 and 0.004 for later epochs for CIFAR-100. We utilize 3-layer ConvNet (CNN)

as a student for all of them. We utilize CNN as a student for CIFAR-10, using an SGD

optimizer with a learning rate of 0.06 and decaying the learning rate by a gamma γ

of 0.2 at each step size of 100 epochs. The aggregation mechanism of ResNet helps

to better fuse different spatial information across deep layers. The ConvNet student

gains 69.3 test accuracy with a privacy leakage of 50.21% in 80 epochs, which is

almost 8% accuracy improvement for CIFAR-10 with such a smaller private model

with almost half parameters and gains low membership inference accuracy close to

50%. For CIFAR-100, we train student CNN with the SGD optimizer maintaining a

learning rate of 0.01 for the first 30 epochs and later 50 epochs with a learning rate

of 0.001. After transferring the knowledge via distilled data, the student ConvNet

gained 46.6% test accuracy and a lower privacy accuracy of 53.55%, which is almost

a 34% accuracy gain than the previous best work-DMP. While training the student

ConvNet for MNIST, we use a learning rate of 0.08 and decay the learning rate by a

gamma γ of 0.2 at each step size of 30 epochs. For MNIST, we gain 97.3% accuracy

(which is almost similar to the non-private counterpart), and the privacy gain is 52.7

(which is very close to random guess).
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4.2.3 Inference attack

For CIFAR-10 and CIFAR-100 datasets, we use 25k; for MNIST, we use 35k

private data for training the unprotected teacher model. For distillation, we consider

500 images for CIFAR-10, MNIST, and 5000 CIFAR-100 synthetic distilled data to

train the final protected student model, where the soft labels are generated using

the teacher model. We assume a stronger assumption for training the attack model

like the previous knowledge transfer works (e.g., DMP), where we use 25k data to

train the attack model. So, in this data, we use DA of 12.5k as members and DA′

consisting of 12.5k nonmembers to train the attack model. It uses part of samples from

the training data distribution to train a model to distinguish between members and

nonmembers, ensuring we use a highly potent adversary. For attack models, we utilize

similar models implemented in the previous papers. We consider two types of attacks:

Black box attack and white box attack where we replicate the same attack settings

models from Nasr et al.’s [NSH19] work. Here, the white box attack Aw computes

and exploits the gradient difference of member and nonmember’s data besides label

and prediction confidence like the NSH attack of Nasr et al. to take advantage of

the gradient to leak private information. Here, the attacker has access to details,

like architecture and other settings of the trained model. Generally, the member’s

gradient will be significantly different compared to the nonmember’s gradient. In

the case of the Black box attack Ab, we used an advanced and standard black box

attack setting that utilizes prediction confidence and labels both for training. The

attack model distinguishes members from nonmembers by exploiting the prediction

confidence value’s significant difference.
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4.2.4 Comparison with regularization and knowledge trans-

fer

We compared PLDK with previous empirical approaches like Adversarial Regu-

larization. Trade-off due to minimizing MIA accuracy reduces utility. It works as

a bottleneck in performance, and it uses private data directly to train the model,

which leaks private information also. Our model outperforms AdvReg in CIFAR-10

by 30%, CIFAR-100 by 136%, and MNIST by 7.5%, which is very optimistic. In case

of privacy, it ensured a privacy accuracy value close to 50.21-53.5%, which is a tighter

bound because it does not provide the target model any access to private data. We

compared our model with the regular regularization technique that helps reduce

the target model’s overfitting and memorization capability. We compared with com-

mon regularization-based approaches like weight decay (WD) and label smoothing

(LS), which are very popular in reducing the generalization gap and privacy risk. We

simultaneously compared our PLDK with a combination of weight decay and label

smoothing. We observed that it gained better performance than the combination of

both regularizers at a time. CIFAR-10, CIFAR-100 and MNIST achieved satisfactory

performance improvement of 30%, 258% and 5.7% when compared with combined

regularization.

We also compared our model with a similar knowledge transfer approach of

DMP. We used the direct implementation of DMP and utilized the values from

their experiment Table. In that case, our method gains increment in utility using

a lightweight model with 1/10th parameters. It has more than 8% and 34% gain

in utility in CIFAR-10 and CIFAR-100. It also ensured privacy accuracy of 50.21,
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Table 4.3: Comparison with KCD using ResNet-18 architecure

Algo Model (s) Test Acc Priv Acc(Aw)
No Defense Wide Res-28 82.1 66.2
KCD Wide Res-28 82.2 56.2
MemGuard Wide Res-28 82 66
PLDK (not pre-trained) Res-18 82.85 52.7
PLDK (200, (pre-train with 10k Syn) Res-18 84.3 54.63
PLDK (200, (pre-train with 25k Syn) Res-18 85.4 54.92

which is very close to 50% in CIFAR-10 and 53.55% privacy in CIFAR-100. It also

gained 5.3% accuracy increase in MNIST dataset, with better privacy of 52.7%. We

also compared our performance with the most recent approach, KCD in the case of

CIFAR-10 only. We do not have access to the code of the KCD paper, and it used

more advanced Wide ResNet-28 for CIFAR-10 only. Thus, we utilize slightly larger

ResNet-18 as our student to compare with them. It gains higher performance than

KCD and MemGuard using a similar but smaller model and ensures much better em-

pirical performance,82.85% utility with 52.7% privacy leakage. It provides a better

trade-off than all the state-of-the-art models displayed in Table 4.3 and performance

also improves with pre-training. Though, it does not require direct access to private

data like KCD. This result shows that using a heavier architecture also provides bet-

ter performance, giving users the freedom to choose a heavy model if they are less

concerned about efficiency.

4.2.5 Comparison with differential privacy

According to theory, differential privacy is a strong tool that can be utilized during

optimization to ensure guaranteed privacy statistically. So, we tried to make some
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Table 4.4: Empirical comparison with differential privacy

Algorithm Model Accuracy Privacy Acc (Aw)
CIFAR-10 No Defense (Alex) 68.7 77.9

DP-SGD (Alex, ϵ = 198.5) 55.2 51.7
DP-SGD (Alex, ϵ = 50.2) 37.9 50.9
DP-SGD (CNN, ϵ = 198.5) 52.9 51.43

PATE (t=100) CNN 45.4 49.9
Ours (PLDK) CNN 69.3 50.28

CIFAR-100 No Defense (Alex) 44 90.3
DP-SGD (Alex, ϵ = 198.5) 15.77 53.96
DP-SGD (Alex,ϵ = 50.2) 13 52.81
DP-SGD (CNN, ϵ = 198.5) 15.62 53.81

PATE (t=100) CNN 9.9 53.56
Ours (PLDK) CNN 46.6 54.1

MNIST No Defense (R-18) 98 91.3
DP-SGD (R-18, ϵ = 198.5) 95.63 55.92
DP-SGD (CNN, ϵ = 198.5) 95 55.62
DP-SGD (CNN,ϵ = 50.2) 93.7 54.37

PATE (t=100) CNN 94.8 54.49
Ours (PLDK) CNN 97.3 53.25

empirical comparisons with DP-based methods like DP-SGD and PATE to ensure

that our empirically optimal solution can also be comparable to the contemporary

approaches. We show the outcome in Table 4.4. Here, we can observe that DP-SGD

with lower privacy bound of ϵ = 198.5 gave a low test accuracy of 55.2, 15.77 and

95.63 for CIFAR-10, CIFAR-100 and MNIST. PATE [Pap+16; Pap+18] with 100

teachers give low test accuracy, whereas our PLDK ensures higher test accuracy and

almost comparable privacy accuracy. Moreover, our lightweight architecture CNN can

outperform the heavier AlexNet/ResNet. In the case of DP-SGD, we follow the attack

model’s similar architecture and design choices from Abadi et al.’s [Aba+16] paper

using σ = 0.3108 and C=1. For PATE, we also follow the previous implementation

approach from the PATE paper; In PATE, the data-dependent ϵ value is 707.47,1440.8
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and 152.5 for CIFAR-10, CIFAR-100 and MNIST and data-independent ϵ values are

around 1451.53.

4.2.6 Ablation study

We conducted an ablation study to identify which components play a significant

role in our framework. We show these results in Table 4.5. Firstly, we remove

our knowledge transfer component from this framework and try to check whether

only distilled data can provide similar performance. For CIFAR-10, only distilled

data without knowledge transfer gives 65.51% utility. For CIFAR-100, it gives 42.5%

utility; in MNIST, it gives only 95% utility which is less than the total PLDK using

KD with up to 1.7-2% higher privacy risk. So, this performance drop indicates that

knowledge transfer is a significant component of our approach. Moreover, we compare

with Dong et al.’s [DZL22] privacy analysis of state-of-the-art condensation methods

DSA, DM, and KIP and show that our method achieves better utility trade-off. Using

Cazenavette et al.’s [Caz+22] distillation (MTT) method reduces privacy compared

to our combined model and data distillation method.

Then we use direct synthetic data instead of distillation and remove data dis-

tillation part. We use one of the most successful state of the art method-transGAN

[JCW21] to generate high-fidelity synthetic data, and using it with knowledge trans-

fer degrades utility. We use it because Transformers are highly encouraged for their

superior performance. Using high-quality synthetic data (e.g., 9.26 FID score for

CIFAR-10) during knowledge transfer results in a degraded utility value of 62%, 36%

and 94% in CIFAR-10,100 and MNIST. Performance is not as good as using distilled
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Table 4.5: Ablation study using CIFAR-10
Algorithm Model (s) Test Acc Priv Acc
PLDK (DD+KD) CNN 69.3 50.21
pre-trained (25k synthetic data) CNN 70 54.8
Synthetic data (No Data Distillation) CNN 62 52.8
distill data (No Knowledge Transfer) CNN 65.51 52.1
More data (image per class=200) CNN 70.54 51.1
Large model R-18 82.65 53.63
lower alpha (α=0.6) CNN 70.5 52.92
distill data only (DC method-DM) CNN 63 61.2
distill data only (DC method-DSA) CNN 60.6 57.46
distill data only (DC method-KIP) CNN 64.7 56.32
distill data only (DC method-MTT) CNN 65.3 54.25

data. DP-GAN [Ho+21] generated private synthetic data considerably deteriorates

utility. Moreover, trying with public reference data gives a similar result to DMP,

as this method uses additional public data during knowledge transfer. Lower α, pre-

training, more data and a heavy model slightly improve the score but reduce privacy.

The following contain additional ablation study and analysis on the impact of the

model and distill data size on performance.

Larger architecture-based model

We tried with larger architecture ResNet-18 on our dataset, and the resultant

accuracy is better than the lightweight CNN model, but it comes with a slight mem-

bership accuracy increase of 2%, and training heavier models with more distilled data

leads to 3% privacy leakage. So, it indicates heavier model helps to improve the util-

ity, but it comes with a small cost of privacy. It also gives 97.98% utility with a

1.75% increase in privacy leakage for MNIST. So, in both cases, privacy deteriorates

slightly, supporting our intuition of using a smaller model. So, this experiment aligns
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with our goal that utilizing a lightweight model with appropriate capacity helps ensure

less overfitting, higher privacy, and more productivity. Again, using a smaller student

model during data generation ensures that it not only (a) requires less computational

expenses to calculate the expert parameter’s buffer during the data distillation phase

but also (b) improves training efficiency. Thus, after the efficient and private final

model production, it can be directly deployed for practical usage in limited-capacity

end devices. The user is given a choice to choose the size of the resulting model

architecture since they are the ones who know best which privacy bound and utility

trade-off would best serve their needs so they can tune this framework according to

their need.

Increase data point via distillation (ipc)

When we increase data size in CIFAR-10 from 50 to 200 per image, it gives

slightly better utility which is 70.54, with increased privacy accuracy of 51.1%. Here

we use Blackbox (indicated as BB in Figure 4.4) privacy only to compare privacy

performance (inference accuracy). In the case of CIFAR-100, it provides 48.1 test

accuracy with an MIA risk of 54.6%, and in the case of MNIST, it gives 97.7 with a

risk accuracy of 54.86%. This is an average 1-1.5% increment in utility but almost

a 1-2% downgrade in privacy. So, according to our experiment, IPC (image per

class) of value 50 gives the optimal trade-off compared to the previous state-of-the-

art methods. In a nutshell, increasing data up to 200 images per class ensures a 0.7%

increase in test accuracy with 1% increased privacy leak in CIFAR-10, almost 1.85%

increase in utility and 1.06% degradation in privacy in CIFAR-100 and 0.4% utility
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Figure 4.4: Distilled data size vs. utility/privacy

increase with almost 2.16% privacy reduction in MNIST. Pre-training or warming

up the student model with 10-25k synthetic data before training on distilled data

improves utility by a smaller percentage, showing that data distillation can be used

in conjunction with synthetic data, and this combination can make such a method

more robust.

Tuning privacy

The hyperparameter α manages dependency on the true and soft labels. In the

loss, α in the first part is for soft labels, and the second part is for ground truth

labels. So, we usually use α of 0.9 but decreasing α to 0.6 ensures less dependence

on the soft label and more focus on the hard label. Minimum α reduces protection.

It slightly improves accuracy up to 70.5% with degraded privacy in CIFAR-10. So,

based on trade-off preference, users can also exploit this α parameter to ensure optimal

performance in their respective application’s domain.



Chapter 4: Privacy-Preserving Learning via Data and Knowledge Distillation 69

4.3 Summary

This chapter of the thesis presented a privacy-preserving learning framework. It

offers a solution to prevent membership inference attacks without the need for extra

public data, data adjustment, or repetitive access to confidential information. It

involves combining data distillation and knowledge transfer to create a model that

performs similarly to a non-private model while ensuring privacy accuracy comparable

to random guesses.



Chapter 5

Conclusions & Future work

5.1 Conclusions

In the current era of deep learning, maintaining data privacy is crucial since deep

learning models can potentially reveal private information. Users are willing to share

their data for model training only if data privacy is guaranteed. Private learning can

increase data availability and improve model performance. In my research, I have

developed a framework that combines data privacy and model privacy to ensure a

secure training process. To achieve this, Chapter 3 introduces a private data gen-

erator that creates synthetic private data not linked to any particular user. Then,

Chapter 4 introduces a private target model that ensures both model compactness

and privacy. These two steps provide a double-layered privacy mechanism, preventing

data breaches and misuse of private data.

In this thesis, in the first part, we designed a differentially private GAN architec-

ture to generate synthetic X-ray images, which supports both central and distributed

70
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radiology data generation processes for the first time. Our main goal is to only add

noise to the generator part exposed to real data. We will keep the discriminator in-

tact, ensuring high-quality image generation. We need to release the generator only,

and the generator part of our final model works as a private black-box model hence

that it will be differentially private. Our approach guarantees the user data privacy

also if we want to release the discriminator, however, in that case, each client has

to use and store their discriminator model locally, and there will be a generator in

the central server; it will also ensure that any third party will not be able to recon-

struct source data exploiting already learned weights because the encoded weights

are noisy. We will also use a highly regularized model to test the generated data’s

utility to fight against inference attacks. Our evaluation results demonstrate that

our approach ensured higher-quality private X-ray images, ensuring a feasible privacy

budget with more profound architecture. Selective noise addition and W-GAN’s im-

plicitly clipping property will help to make it possible. But for confidential model

training, which is resistant to inference attack, our model-tailored data and knowledge

distillation framework will help to come up with compact and efficient private mod-

els that can ensure a satisfactory utility trade-off over state-of-the-art Membership

inference-proof models (a smaller model with less than one-tenth of the parameters

of comparable models).

In the second part, we proposed a framework that can mitigate membership in-

ference attacks that do not require additional public data, data tuning, or repetitive

access to private data. This process utilizes the collaboration of data distillation and

knowledge transfer to develop a model that ensures similar performance to a non-
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private model, and the privacy accuracy of this model is close to random guesses. To

the best of our knowledge, this is the first work to investigate the synergy of distilled

data to transfer the knowledge of the private model to produce an MIA-resistant model

that is also efficient, ensuring superior performance than existing approaches. This

has a competitive advantage over prior works where the final model is as lightweight

as half in size (has 320k parameters which are 7 times less than previous 2.4M) in

terms of parameters than previous models so that it can be directly deployed in any

remote edge device. Our extensive experimentation has confirmed that our strategy

can provide a better trade-off and is suitable for real-world activities where utility

and privacy are equally crucial. As this framework provides an end-to-end solution

to produce a scalable, protected model given only private data, future research will

support and analyze such an approach. Moreover, this work primarily focused on

privacy in computer vision tasks, as there are fewer defensive training strategies in

this domain.

5.2 Future work

As future work, I want to explore a better generative model, like de-noising diffu-

sion or transformers for a higher resolution image that can ensure higher utility. In

my opinion, utilizing an advanced generative approach can lead to the production of

high-quality data at scale. By incorporating this data into the classification model,

there is potential to enhance both its utility and precision in high stake domains.

Moreover, I plan to extend the data distillation approach to textual and tabular data

in the future so that the private classifier model also works for tabular data.
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Generative Adversarial Networks”. In: ICML. 2017.

[Ali+20] Sheraz Ali et al. “Towards Privacy-Preserving Deep Learning: Opportu-

nities and Challenges”. In: 2020 IEEE 7th International Conference on

Data Science and Advanced Analytics (DSAA) (2020), pp. 673–682.

[Aug+20] Sean Augenstein et al. “Generative Models for Effective ML on Private,

Decentralized Datasets”. In: ArXiv abs/1911.06679 (2020).

[Bao+19] Mrinal Kanti Baowaly et al. “Synthesizing electronic health records using

improved generative adversarial networks”. In: Journal of the American

Medical Informatics Association 26 (2019), pp. 228–241.

73

https://doi.org/10.1109/MSEC.2018.2888775


74 Bibliography

[BAZ20] Abubakar Bomai, Mohammed Shujaa Aldeen, and Chuan Zhao. “Privacy-

Preserving GWAS Computation on Outsourced Data Encrypted under

Multiple Keys Through Hybrid System”. In: 2020 IEEE 7th Interna-

tional Conference on Data Science and Advanced Analytics (DSAA)

(2020), pp. 683–691.

[BCN06] Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil. “Model

compression”. In: Knowledge Discovery and Data Mining. 2006.

[Bea+19] Brett K. Beaulieu-Jones et al. “Privacy-Preserving Generative Deep Neu-

ral Networks Support Clinical Data Sharing”. In: Circulation. Cardio-

vascular Quality and Outcomes 12 (2019), e005122–e005122.

[Ben+20] Jason W. Bentley et al. Quantifying Membership Inference Vulnerability

via Generalization Gap and Other Model Metrics. 2020. doi: 10.48550/

ARXIV.2009.05669. url: https://arxiv.org/abs/2009.05669.

[Ber+18] Camilo Bermudez et al. “Learning implicit brain MRI manifolds with

deep learning”. In: Medical Imaging 2018: Image Processing. Vol. 10574.

International Society for Optics and Photonics. 2018, p. 105741L.

[BYH20] Ondrej Bohdal, Yongxin Yang, and Timothy M. Hospedales. “Flexi-

ble Dataset Distillation: Learn Labels Instead of Images”. In: CoRR

abs/2006.08572 (2020). arXiv: 2006.08572. url: https://arxiv.org/

abs/2006.08572.

https://doi.org/10.48550/ARXIV.2009.05669
https://doi.org/10.48550/ARXIV.2009.05669
https://arxiv.org/abs/2009.05669
https://arxiv.org/abs/2006.08572
https://arxiv.org/abs/2006.08572
https://arxiv.org/abs/2006.08572


Bibliography 75

[Caz+22] George Cazenavette et al. “Dataset Distillation by Matching Training

Trajectories”. In: 2022 IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW) (2022), pp. 4749–4758.

[Che+20a] Defang Chen et al. “Cross-Layer Distillation with Semantic Calibration”.

In: AAAI Conference on Artificial Intelligence. 2020.

[Che+20b] Dingfan Chen et al. “GAN-Leaks: A Taxonomy of Membership Inference

Attacks against Generative Models”. In: Proceedings of the 2020 ACM

SIGSAC Conference on Computer and Communications Security. CCS

’20. Virtual Event, USA: Association for Computing Machinery, 2020,

pp. 343–362. isbn: 9781450370899. doi: 10.1145/3372297.3417238.

url: https://doi.org/10.1145/3372297.3417238.

[Cho+17] E. Choi et al. “Generating Multi-label Discrete Patient Records using

Generative Adversarial Networks”. In: MLHC. 2017.

[Cho+21] Christopher A. Choquette-Choo et al. “Label-Only Membership Infer-

ence Attacks”. In: Proceedings of the 38th International Conference on

Machine Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139. Pro-

ceedings of Machine Learning Research. PMLR, July 2021, pp. 1964–

1974. url: https : / / proceedings . mlr . press / v139 / choquette -

choo21a.html.

[Cho+22] Rishav Chourasia et al. “Knowledge Cross-Distillation for Membership

Privacy”. In: Proceedings on Privacy Enhancing Technologies 2022.2

(Mar. 2022), pp. 362–377. doi: 10.2478/popets- 2022- 0050. url:

https://doi.org/10.2478%5C%2Fpopets-2022-0050.

https://doi.org/10.1145/3372297.3417238
https://doi.org/10.1145/3372297.3417238
https://proceedings.mlr.press/v139/choquette-choo21a.html
https://proceedings.mlr.press/v139/choquette-choo21a.html
https://doi.org/10.2478/popets-2022-0050
https://doi.org/10.2478%5C%2Fpopets-2022-0050


76 Bibliography

[Chu+18] Maria JM Chuquicusma et al. “How to fool radiologists with generative

adversarial networks? A visual turing test for lung cancer diagnosis”. In:

2018 IEEE 15th international symposium on biomedical imaging (ISBI

2018). IEEE. 2018, pp. 240–244.

[CLG00] Rich Caruana, Steve Lawrence, and Lee Giles. “Overfitting in Neural

Nets: Backpropagation, Conjugate Gradient, and Early Stopping”. In:

Proceedings of the 13th International Conference on Neural Information

Processing Systems. NIPS’00. Denver, CO: MIT Press, 2000, pp. 381–

387.

[COF20] Dingfan Chen, Tribhuvanesh Orekondy, and Mario Fritz. “GS-WGAN:

A Gradient-Sanitized Approach for Learning Differentially Private Gen-

erators”. In: NIPS’20 10.5555/3495724.3496787 (2020).

[Dai+20] Xianjin Dai et al. “Multimodal MRI synthesis using unified generative

adversarial networks”. In: Medical physics 47.12 (2020), pp. 6343–6354.

[Den+15] Emily L. Denton et al. “Deep Generative Image Models using a Laplacian

Pyramid of Adversarial Networks”. In: NIPS. 2015.

[DR14] Cynthia Dwork and Aaron Roth. “The Algorithmic Foundations of Dif-

ferential Privacy”. In: Found. Trends Theor. Comput. Sci. 9 (2014),

pp. 211–407.

[DZL22] Tian Dong, Bo Zhao, and Lingjuan Lyu. “Privacy for Free: How does

Dataset Condensation Help Privacy?” In: International Conference on

Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland,



Bibliography 77

USA. Ed. by Kamalika Chaudhuri et al. Vol. 162. Proceedings of Ma-

chine Learning Research. PMLR, 2022, pp. 5378–5396. url: https :

//proceedings.mlr.press/v162/dong22c.html.

[Fai+22] Fahim Faisal et al. “Generating Privacy Preserving Synthetic Medical

Data”. In: 2022 IEEE 9th International Conference on Data Science and

Advanced Analytics (DSAA). 2022, pp. 1–10. doi: 10.1109/DSAA54385.

2022.10032429.

[Far+20] Tom Farrand et al. “Neither Private Nor Fair: Impact of Data Imbalance

on Utility and Fairness in Differential Privacy”. In: Proceedings of the

2020 Workshop on Privacy-Preserving Machine Learning in Practice.

PPMLP’20. Virtual Event, USA: Association for Computing Machinery,

2020, pp. 15–19. isbn: 9781450380881. doi: 10.1145/3411501.3419419.

url: https://doi- org.uml.idm.oclc.org/10.1145/3411501.

3419419.

[Fri+19] Lorenzo Frigerio et al. “Differentially Private Generative Adversarial

Networks for Time Series, Continuous, and Discrete Open Data”. In:

ArXiv abs/1901.02477 (2019).

[GK18] Spyros Gidaris and Nikos Komodakis. “Dynamic Few-Shot Visual Learn-

ing Without Forgetting”. In: 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (2018), pp. 4367–4375.

[Goo+14] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in

neural information processing systems 27 (2014).

https://proceedings.mlr.press/v162/dong22c.html
https://proceedings.mlr.press/v162/dong22c.html
https://doi.org/10.1109/DSAA54385.2022.10032429
https://doi.org/10.1109/DSAA54385.2022.10032429
https://doi.org/10.1145/3411501.3419419
https://doi-org.uml.idm.oclc.org/10.1145/3411501.3419419
https://doi-org.uml.idm.oclc.org/10.1145/3411501.3419419


78 Bibliography

[Gro16] Sam Gross. “CONTEXT-CONDITIONAL GENERATIVE ADVERSAR-

IAL NETWORKS”. In: 2016.

[Gua+18] Jiaqi Guan et al. “Generation of Synthetic Electronic Medical Record

Text”. In: 2018 IEEE International Conference on Bioinformatics and

Biomedicine (BIBM) (2018), pp. 374–380.

[Gul+17] Ishaan Gulrajani et al. “Improved Training of Wasserstein GANs”. In:

NIPS. 2017.

[He+16] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In:

2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) (2016), pp. 770–778.

[Ho+21] Stella Ho et al. “DP-GAN: Differentially private consecutive data pub-

lishing using generative adversarial nets”. In: Journal of Network and

Computer Applications 185 (2021), p. 103066. issn: 1084-8045. doi:

https://doi.org/10.1016/j.jnca.2021.103066. url: https://

www.sciencedirect.com/science/article/pii/S1084804521000904.

[HVD15] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. “Distilling the

Knowledge in a Neural Network”. In: ArXiv abs/1503.02531 (2015).

[JCW21] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. TransGAN: Two Pure

Transformers Can Make One Strong GAN, and That Can Scale Up.

2021. doi: 10.48550/ARXIV.2102.07074. url: https://arxiv.org/

abs/2102.07074.

https://doi.org/https://doi.org/10.1016/j.jnca.2021.103066
https://www.sciencedirect.com/science/article/pii/S1084804521000904
https://www.sciencedirect.com/science/article/pii/S1084804521000904
https://doi.org/10.48550/ARXIV.2102.07074
https://arxiv.org/abs/2102.07074
https://arxiv.org/abs/2102.07074


Bibliography 79

[JD19] Patricia M Johnson and Maria Drangova. “Conditional generative adver-

sarial network for 3D rigid-body motion correction in MRI”. In:Magnetic

Resonance in Medicine 82.3 (2019), pp. 901–910.

[Kaz+20] S Kazeminia et al. “GANs for medical image analysis. Artificial Intelli-

gence in Medicine”. In: (2020).

[Ker+18] Daniel S. Kermany et al. “Identifying Medical Diagnoses and Treatable

Diseases by Image-Based Deep Learning”. In: Cell 172 (2018), 1122–

1131.e9.

[KHD20] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. On the Effective-

ness of Regularization Against Membership Inference Attacks. 2020. doi:

10.48550/ARXIV.2006.05336. url: https://arxiv.org/abs/2006.

05336.

[KLA19] Tero Karras, Samuli Laine, and Timo Aila. “A style-based generator

architecture for generative adversarial networks”. In: Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition. 2019,

pp. 4401–4410.

[Kun+21] Aditya Kunar et al. “DTGAN: Differential Private Training for Tabular

GANs”. In: arXiv preprint arXiv:2107.02521 (2021).

[Lee+22] Saehyung Lee et al. “Dataset Condensation with Contrastive Signals”.

In: International Conference on Machine Learning, ICML 2022, 17-23

July 2022, Baltimore, Maryland, USA. Ed. by Kamalika Chaudhuri et

al. Vol. 162. Proceedings of Machine Learning Research. PMLR, 2022,

https://doi.org/10.48550/ARXIV.2006.05336
https://arxiv.org/abs/2006.05336
https://arxiv.org/abs/2006.05336


80 Bibliography

pp. 12352–12364. url: https : / / proceedings . mlr . press / v162 /

lee22b.html.

[Lei+19] Yang Lei et al. “MRI-only based synthetic CT generation using dense

cycle consistent generative adversarial networks”. In: Medical physics

46.8 (2019), pp. 3565–3581.

[Li+20] Jeffrey Li et al. “Differentially Private Meta-Learning”. In:ArXiv abs/1909.05830

(2020).

[Lon+18] Yunhui Long et al. “Understanding Membership Inferences on Well-

Generalized Learning Models”. In: CoRR abs/1802.04889 (2018). arXiv:

1802.04889. url: http://arxiv.org/abs/1802.04889.

[LZ21] Zheng Li and Yang Zhang. “Membership Leakage in Label-Only Expo-

sures”. In: Proceedings of the 2021 ACM SIGSAC Conference on Com-

puter and Communications Security. CCS ’21. Virtual Event, Republic of

Korea: Association for Computing Machinery, 2021, pp. 880–895. isbn:

9781450384544. doi: 10.1145/3460120.3484575. url: https://doi-

org.uml.idm.oclc.org/10.1145/3460120.3484575.

[McM+18] H. B. McMahan et al. “Learning Differentially Private Recurrent Lan-

guage Models”. In: ICLR. 2018.

[MO14] Mehdi Mirza and Simon Osindero. “Conditional Generative Adversarial

Nets”. In: ArXiv abs/1411.1784 (2014).

[MTZ19] Ilya Mironov, Kunal Talwar, and Li Zhang. “Rényi Differential Privacy
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