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Abstract | i

Abstract
The size of the IoT network is expanding due to advancements in the IoT
field, leading to increased interest in the multi-sink mechanism. The IPv6
Routing Protocol for Low-Power and Lossy Networks (RPL) is a representative
IoT protocol that focuses on the Low-Power and Lossy Networks. However,
research on comparing multi-sink strategies within the RPL network is limited.
Therefore, this project aims to compare three common strategies: multiple-
DODAG in one instance, virtual root, and multiple-instance. Using these
strategies, we design and implement RPL networks and conduct simulations
in various scenarios. Five different topologies are utilized in the experiments,
considering different packet loss rates. Performance evaluation of each
strategy is conducted using the Cooja simulator and Contiki-NG system,
with a focus on the number of RPL control packets, Packet Delivery Ratio
(PDR), and energy consumption. The results indicate that both the virtual
root and multiple-DODAG strategies perform well with low packet loss, while
the virtual root strategy outperforms the multiple-DODAG strategy with high
packet loss. Additionally, the virtual root strategy incurs slightly higher energy
costs than the multiple-DODAG strategy. Furthermore, the multiple-instance
strategy demonstrates poor performance in most scenarios, except for the
packet delivery ratio under high packet loss conditions. Besides the analysis,
potential areas for future research on the RPL’s multi-sink mechanism are
finally identified.

Keywords
IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL), Multiple
Sinks, Packet Delivery Ratio (PDR), Internet of Things



ii | Abstract



Sammanfattning | iii

Sammanfattning
Storleken på IoT-nätverket expanderar på grund av framsteg inom IoT-området,
vilket leder till ökat intresse för multi-sink-mekanismen. IPv6 Routing
Protocol for Low-Power and Lossy Networks (RPL) är ett representativt IoT-
protokoll som fokuserar på Nät med låg effekt och förluster. Forskningen om
jämförelse av multi-sink-strategier inom RPL-nätverket är dock begränsad.
Därför syftar detta projekt till att jämföra tre vanliga strategier: multiple
- DODAG i en instans, virtuell rot och multi-instans. Med hjälp av
dessa strategier designar och implementerar vi RPL-nätverk och genomför
simuleringar i olika scenarier. Fem olika topologier används i experimenten,
med olika packet loss rate. Prestationsutvärdering av varje strategi utförs med
hjälp av Cooja-simulatorn och Contiki-NG-systemet, med fokus på antalet
RPL control packets, Packet Delivery Ratio (PDR) och energiförbrukning.
Resultaten indikerar att både virtuell rot och multiple-DODAG strategier
fungerar bra vid låg datapaketförlust, medan den virtuella rotstrategin
överträffar multiple- DODAG strategin vid hög datapaketförlust. Dessutom
medför den virtuella rotstrategin något högre energikostnader än flera
DODAG-strategin. Dessutom visar multi-instans-strategin dålig prestanda i de
flesta scenarier, förutom när det gäller datapaketleveransförhållandet under
höga datapaketförlustförhållanden. Utöver analysen identifieras slutligen
potentiella områden för framtida forskning om RPL-protokollets multi-sink-
mekanism.

Nyckelord
IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL), Multi-Sink,
Packet Delivery Ratio (PDR), Sakernas Internet
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Chapter 1

Introduction

1.1 Background
Since the Internet was invented, routing protocols are always crucial as the
essential component because networks use the protocols to communicate with
each other [1]. As the routing protocol is essential, there are many protocols
and much research related to the protocol. For example, comparing different
TCP versions is a popular research area [2].

Nowadays, besides the traditional network, Internet of Things (IoT)
devices and sensor networks are widely used in multiple fields, including
healthcare, industrial field [3], transportation, automotive industries [4] and
smart home [5]. With the development of IoT, there are many IoT protocols
which become famous, including Bluetooth Low Energy, ZigBee, Thread, and
RPL (IPv6 Routing Protocol for Low-Power and Lossy Networks). Different
protocols are usually applied in multiple areas. For example, RPL is suitable
for low-power and lossy networks as the name indicates [6]. With the
increasing application of IoT protocols, there are many kinds of research
covering multiple aspects, including the architectures [7], security [8], and
congestion problems [9]. As for RPL, there are still many types of research
related to several aspects, including the challenge of RPL [10], the survey
concentrating on security, mobility, and topology [5], and the performance
evaluation for specific RPL network strategy [11]. However, there is little
research related to the different network strategies of RPL. In this report, there
is a comparison among three different strategies of RPL. All three approaches
also include multiple root nodes (sinks).

In RPL, network topology forms the Destination-Oriented Directed
Acyclic Graph (DODAG), including a single root node that generally serves
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as a gateway of the Low-Power and Lossy Networks (LLN). An LLN may
run multiple RPL Instances to serve different constraints of performance
criteria. Each RPL Instance may contain multiple DODAGs, and each
DODAG includes one root separately [12]. Besides the independent root
nodes, multiple root nodes can also be coordinated to synchronize the DODAG
state to make them act as a single DODAG root like a virtual root [13]. In
addition, a network can include multiple RPL Instances with only one DODAG
in each RPL Instance. However, several common nodes belong to various
DODAGs and RPL Instances [14]. Overall, the above methods are three
popular RPL strategies.

Many experts have worked on the protocol and achieved many results.
Some researches focus on the function of a RPL network, such as security,
optimization, or limitation [5]. Some experts focus on the performance of
a certain RPL strategy [11]. However, it is still being determined what
the advantages and disadvantages are of using these strategies and in which
situations one strategy would be preferred over the others. Consequently, we
need a comparative study to gain more insights into different RPL network
formation strategies. The performance of the three strategies in different
scenarios will be compared in this paper. There is also a conclusion that a
particular method is more suitable for a specific scenario.

1.2 Problem
Although many researchers have studied the RPL, only a few studies focus on
the performance comparison of different RPL network topologies. Therefore,
there is a need to evaluate the network performance of different RPL network
topologies and identify suitable scenarios for each network topology.

The main research question is, “What are the advantages and disadvantages
of using different RPL network formation strategies when deploying multiple
sinks?”. In this context, three strategies need to be analyzed:

1. A single RPL Instance with multiple DODAGs using one sink per
DODAG, called multiple-DODAG strategy.

2. A single RPL Instance with one DODAG using a virtual root node with
multiple sinks, called virtual root strategy.

3. Multiple RPL Instances strategy.
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1.3 Purpose
The main purpose is to identify the advantages and disadvantages of the three
RPL network formation strategies, which helps determine which strategy is
suitable for a certain scenario. The main benefit is the sustainable development
of a RPL network, as this study’s results can help reduce the cost of deployment
and operation.

1.4 Goals
This project aims to evaluate the performance of different RPL network
formation strategies. A series of experiments need to be designed and
implemented to figure out the advantages and disadvantages of different
strategies.

The goal can be divided into the following three sub-goals:

1. Design and develop RPL network topologies based on the three RPL
network formation strategies. In this project, Contiki-NG is used as the
experiment environment, which is an open-source operating system for
IoT devices. In addition, Cooja is used as the simulation tool, which is
integrated into Contiki-NG [15].

2. Identify relevant parameters and proper methods to collect data, such
as energy consumption and communication overhead (in terms of the
number of generated messages) at each device.

3. Evaluate and analyze the data from experiments to determine the
advantages and disadvantages of the three RPL network formation
strategies.

1.5 Research Methodology
The quantitative research method is applied in this project, which usually
focuses on analyzing data collected through experiments [16]. The most
crucial characteristic of quantitative research is collecting and generalizing
data to explain a specific phenomenon or evaluate performance. This project
aims to compare the performance in different scenarios by analyzing data
collected from the experiment. This project includes several groups of
comparison experiments with different scenarios. The experiment scenario
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is identical in each group, including an identical physical topology, the same
duration of each experiment, and the same kind of data. According to the
experiment’s data, the result is to detect the different performances of different
RPL topologies in the same scenario. Furthermore, the conclusion also
identifies which strategy is better suited for specific scenarios.

1.6 Delimitations
The first delimination is that the project focuses on comparing different RPL
network formation strategies rather than a specific RPL strategy parameter.
For example, RPL networks can apply several configurations, including
different Objective Functions (OFs) and Mode of Operations (MOPs). The
OF is applied to calculate the distance between nodes and sinks. Additionally,
the MOP includes two information-storing modes of the RPL. However,
all experiments determine the same OF and MOP configuration rather
than comparing the performance of different deployments. Therefore, the
comparison between different RPL parameters is not the main point of
this project. Furthermore, the second delimitation is the lack of practical
experiments since the project is based on the simulation experiment rather
than the actual devices. However, the project is also valuable since the result
can also indicate how different strategies affect the RPL performance.

1.7 Structure of the thesis
Chapter 1 presents a brief overview of the project, including its background
and problem statement.

Chapter 2 extends the brief introduction by introducing the development
of Internet of Things (IoT) and explaining the IPv6 Routing Protocol for Low-
Power and Lossy Networks (RPL) protocol. This chapter also presents the
experiment environment and related work, including the limitation of the RPL,
the virtual root strategy, and the multiple-instance strategy.

Chapter 3 presents the methodology of this project, including the
introduction of the multi-sink mechanism and a detailed introduction of the
multiple-DODAG, virtual root, and multiple-instance strategies.

Chapter 4 dedicates the five network topologies and three experiment
metrics, which only includes the theoretical introduction in this chapter.

Chapter 5 presents the detailed implementation of the experiment,
including five topologies, the node implementation, and an introduction to the
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process of collecting data of the three evaluation metrics.
Chapter 6 presents the result of each experiment of each topology, along

with data analysis. Additionally, this chapter includes a discussion of all the
results.

Chapter 7 provides a conclusion of the project, including limitations and
potential future work.
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Chapter 2

Background

2.1 Internet of Things

2.1.1 IoT Introduction
Allegedly the Internet of Things (IoT) term was proposed as early as the
1980s [17]. However, IoT technology has become popular since the broad
application of Radio-Frequency Identification (RFID) technology in the late
1990s [18]. With the rapid development of IoT technology, IoT devices have
become popular in our modern life [19]. According to the forecast institution,
the number of IoT-connected devices will reach 29.4 billion in 2030 [20]. In
addition, the potential economic value of IoT is significant. According to
McKinsey’s research, IoT’s estimated value may reach 12.6 trillion dollars in
2030 at most [21].

The IoT technology is widely used in both industrial areas and household
areas [22]. For example, traffic flow monitoring system is widely deployed in
some cities. Suppose there is heavy traffic in one direction at a crossroad. In
that case, the duration of the green light will be extended to allow more cars
to pass in that direction and prevent traffic congestion at the intersection. In
contrast, the duration of the traffic light can return a small value without the
heavy traffic, which allows cars and people to wait for a short time in both
directions. The self-adaptive traffic light is a simple but typical application of
IoT technology [23]. Besides the smart city, the smart home also applies IoT
technology. Nowadays, more people use smartphones to control things in their
rooms. For example, people can now use their smartphone to turn on or turn
off the light, change the color of the light, reserve the start of a rice cooker,
and even turn on the air conditioner before arriving home [24].
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2.1.2 IoT Communication Models
The IoT usually includes four basic models, device-to-device communication,
device-to-cloud communication, device-to-gateway model, and back-end data-
sharing model [19] [25].

2.1.2.1 Device-to-Device Communications Model

The device-to-device model is the simplest, representing two or more devices
connected directly rather than through an intermediary dedicated forwarding
server. The devices communicate with each other over many networks or
protocols like Bluetooth, ZigBee, or RPL, as shown in figure 2.1.

Figure 2.1: Device-to-Device Communications Model [26].

This model is widely used in small application scenarios, like the smart
home. In this situation, devices usually send a small number of packets and
require a low data rate relatively. However, all devices need to choose the
same protocol to construct the IoT network in the device-to-device model.
Therefore, this model is simple but lacks flexibility. In addition, the device-
to-device model is unsuitable to be employed in a large area scenario because
of the devices’ poor communication quality at a long distance.

2.1.2.2 Device-to-Cloud Communications Model

In this model, IoT devices connect directly to an Internet cloud service,
such as an application service provider, as figure 2.2 shows. Therefore, the
communication is between devices and the cloud server in reality. This model
usually uses existing communication methods, including Ethernet or Wi-Fi, to
deploy a connection between the device and the Internet or IP network, which
eventually attaches to the cloud service.

This strategy is usually employed in data collection scenarios, such as the
camera around the crossing road and environment monitoring devices. In
addition, some smart home devices can also use the strategy. However, this
model has interoperability limitations. For example, the device and cloud
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Figure 2.2: Device-to-Cloud Communications Model [26].

service are usually from the same provider if exclusive data protocols are
applied between the device and the cloud service. Therefore, the provider
may require the consumer to use the specific IoT devices and cloud service as
a set rather than choose the device and cloud application separately.

2.1.2.3 Device-to-Gateway Communications Model

The difference between the device-to-gateway and the device-cloud method
is that there is an application layer gateway between devices and the cloud
service, as figure 2.3 shows. In brief, application software runs on a local
gateway device, regarded as an intermediary. In this model, the intermediary
application gateway can enhance security and provide other functions like
protocol translation.

Figure 2.3: Device-to-Gateway Communications Model [26].

As for the application, some forms of this model are usually used in
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consumer devices. For example, the local gateway is frequently applied on a
smartphone as an app to communicate with a device and relay data to a cloud
service.

2.1.2.4 Back-End Data-Sharing Model

The back-end data-sharing model can be considered an improvement of the
single device-to-cloud communication model. This strategy supports the user
to access the data from the cloud service, which is collected from other
sources. Therefore, a back-end sharing strategy enables the data collected from
unitary IoT device data sources to be integrated and analyzed.

Figure 2.4: Back-End Data-Sharing Model [26].

For example, in a traffic flow monitoring system, the administrator can
consolidate and analyze the traffic data produced by all sensors deployed on
different crossing roads. In the simple device-to-cloud model, the data of each
IoT sensor is stored in a stand-alone data repository. However, a back-end data-
sharing strategy allows the administrator to easily access and analyze the data
in the cloud server produced by all devices in the system. In addition, the data
strategy allows the administrator to move the data quickly when they switch
between IoT services.
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2.2 RPL: IPv6 Routing Protocol for Low-
Power and Lossy Networks

RPL is a distance-vector routing protocol for a wide range of practical LLN
applications, usually considered a device-to-device model. There are two
main characteristics of LLNs. Firstly, it consists of many constrained nodes,
typically working under constrained situations, including limited processing
power, small memory, and even constrained energy conditions. Besides the
constrained nodes, these nodes are interconnected by lossy links and support
low data delivery rates. Secondly, LLN has different traffic patterns and
needs to support multiple communication types, including point-to-point,
multipoint-to-point, and point-to-multipoint.

Consequently, RPL was designed to satisfy the LLNs’ characteristics.
Firstly, RPL splits the packet processing and forwarding tasks from the routing
optimization objectives to satisfy LLNs’ requirements in large application
domains. The routing optimization objectives include minimizing latency,
meeting the requirements of constraints, or reducing energy resumption.
Secondly, since the LLN requires multiple traffic patterns without typically
predefined topologies, the routing protocol needs a comprehensive topology
to support various communication types. Eventually, RPL organizes the
topology as a Directed Acyclic Graph (DAG), which is a tree-like structure,
including all edges oriented in one way towards one or several roots without
loops in the topology. One step further, RPL splits the whole DAG network
into several Destination-Oriented Directed Acyclic Graphs (DODAGs), which
means one group includes only one root node. Therefore, RPL builds the
network with one or multiple DODAGs [12]. In addition, one or more
DODAGs can form a RPL Instance. DODAGs in one RPL Instance share the
same Instance ID. The DODAG, RPL Instances, and RPL information packets
will be introduced in detail in the next several sections.

2.2.1 Destination Oriented Directed Acyclic Graph
(DODAG)

Regarding LLNs’ requirements, RPL forms its topology as a Destination-
Oriented Directed Acyclic Graph (DODAG), a unique situation of the Directed
Acyclic Graph (DAG). A DAG contains one or more sinks without cycles,
where all nodes can follow one or multiple paths toward one or multiple root
nodes. As figure 2.5 shows, there are two root nodes R1 and R2, and several
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sensor nodes that have more than one path towards root nodes without a cycle
[12].

Figure 2.5: Directed Acyclic Graph (DAG), no cycles and two root nodes R1

and R2.

Unlike the DAG, a DODAG contains several sensor nodes but only one root
node, as figure 2.6 shows. In a DODAG, there are still multiple paths toward
the root node without cycles, but only one root node exists. In the RPL strategy,
the DODAG root node as the sink is applied as a border router and gateway
for the LLN. In addition, the sink can aggregate all routes in the DODAG.
For example, the sink can collect the information from the RPL network and
deliver the data to the backbone network for further processing [27].

Besides the RPL Instance ID, each DODAG has a DAG ID. The DAG ID
is unique in each DODAG, which indicates the destination root node that the
sensor nodes deliver packets.

2.2.2 RPL Instance
Besides DODAG, the RPL Instance is also an important component of the
RPL network [12]. In general, a RPL Instance is a group that includes one or
more DODAGs that share the same RPLInstanceID. The RPLInstanceID is a
specific identifier in RPL networks. A RPL sensor node can belong to multiple
RPL Instances but can only belong to one DODAG per RPL Instance at the
same time [28]. In this project, three different RPL strategies are related to
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Figure 2.6: Destination-Oriented Directed Acyclic Graph (DODAG),with only
one root node R.

different RPL Instance types.
In the protocol, the downward route means the route from the DODAG

root to the sensor node [12]. Correspondingly, the route from the sensor
node to the DODAG root is called the upward route. The RPL network has
two modes: storing mode and non-storing mode. These two methods are
also important factors when building the RPL network, which is applied for
maintaining downward routes. In storing mode, nodes store the downward
routing information for their sub-DODAG. Therefore, each node determines
the next hop by checking its routing table. However, nodes do not store the
downward routing information in non-storing mode. Instead, the DODAG root
determines the routing path.

2.2.3 Rank and Objective Function
Rank is significant in a RPL network, which indicates the node’s relative
position to the DODAG root and other nodes within a DODAG. The rank value
strictly increases if the node is far away from the root and decreases if the node
is near the root. In the configuration of Contiki-NG, if the rank equals 65535,
the route will be considered unreachable. The rank can be calculated according
to the Objective Function (OF), which also defines the method of selecting
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the parent node in a DODAG. There are two objective functions Objective
Function Zero (OF0) and Minimum Rank with Hysteresis Objective Function
(MRHOF) [12].

The goal of OF0 is to allow a node to join a DODAG Version, which
offers feasible connectivity to a specific destination, for example, a specific
set of nodes [29]. Practically, OF0 is designed to find the nearest node as the
preferred parent without load balancing. The rank of a node RN is calculated
by adding a strictly positive scalar value rank_increase to the rank of the
preferred parent node RP , as the first equation shows. The rank_increase
is calculated by rank_factor (Rf ), step_of_rank (Sp), stretch_of_rank
(Sr) and MinHopRankIncrease as the second equation shows. Where
the step_of_rank is applied to calculate the amount to increase the rank
along a specific link. MinHopRankIncrease is the unit where the variable
rank_increase is applied. The rank_factor and stretch_of_rank are two
configurable parameters. The Rf is used to multiply the effect of the link
properties. The Sr indicates the maximum augmentation to the Sp of a
preferred parent to allow the selection of a feasible successor [30].

RN = RP + rank_increase (2.1)

rank_increase = (Rf ˚ Sp + Sr) ˚ MinHopRankIncrease (2.2)

Another objective function is MRHOF, which is designed to prevent
excessive churn in the network topology [31]. There are two phases to achieve
the goal of this objective function. Firstly, it finds the path with minimum
rank. Then if the minimum rank path is shorter than the current path by at
least one given threshold, it changes to the minimum rank path. The second
method is called ”hysteresis” in this objective function. By applying MRHOF,
a sensor node computes the path cost of a neighbor by adding two components,
including the value of the neighbor node or link’s metric and the value of the
defined metric recorded in the Metric Container [30]. MRHOF is also required
to apply several metrics, including hop count, latency, and ETX.

2.2.4 RPL Control Messages
There are four types of RPL control messages, including DODAG Information
Solicitation (DIS), DODAG Information Object (DIO), Destination Advertise-
ment Object (DAO) and Destination Advertisement Object Acknowledgement
(DAO-ACK) [12].
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DODAG Information Solicitation (DIS)

The DIS message is sent by a RPL normal node, which is used to solicit a DIO
message from another RPL node nearby. In the RPL network, the DIS message
can be used to probe the nearby DODAGs by a node. The message format is
shown in figure 2.7. There are three parts of the DIS Base Object Format.
The Flags and Reserved fields are both 8-bit and unused. The protocol also
requires these two fields to be configured as zero by the sender and ignored
when a node receives it.

Figure 2.7: The DIS Base Object.

DODAG Information Object (DIO)

A node can discover a RPL Instance through the DIO message. Besides
discovering a new RPL Instance, the DIO message can also be used to collect
the configuration parameters, choose a DODAG parent set, and preserve the
DODAG. The DIO Base Object Format is shown in figure 2.8.

Figure 2.8: The DIO Base Object.

In the message format, RPLInstanceID is set by the DODAG root that
shows which RPL Instance the node belongs to. The Version Number is an
8-bit unsigned integer which is determined by the DODAG root to indicate
the DODAGVersionNumber. The DODAGVersionNumber is a component of
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the DODAG Version tuple. Besides DODAGVersionNumber, RPLInstanceID
and DODAGID also belong to the DODAG Version tuple. In addition, Rank
and Mode of Operation (MOP) are also important parameters of RPL, which
are included as two fields in the DIO messages. Rank indicates the position
relative to other nodes within a DODAG. The MOP field represents the
operation mode of the RPL Instance, which is related to the DODAG root.
All nodes need the MOP to determine the storing mode and if they support the
multicast function. The two most important modes are storing mode and non-
storing mode, as indicated in section 2.2.2. Prf (DODAGPreference) is also
an important field, which shows the node prefers one DODAG root to other
DODAG roots within the instance.

Destination Advertisement Object (DAO)

The DAO message is applied to transmit information upward along the
DODAG, which means the direction towards the DODAG root. The DAO
messages are slightly different with different MOP configuration. In Storing
mode, the DAO message is sent to the selected parent node from the child
node. However, in Non-Storing mode, the DAO message is sent to the DODAG
root directly. The destination may acknowledge the DAO message with a
Destination Advertisement Object Acknowledgement (DAO-ACK) message
back to the sender from the destination node.

Figure 2.9: The DAO Base Object.

Figure 2.9 is the DAO Base Object format, whose fields are similar to
DIO and DIS message except for DAOSequence. The DAOSequence will
increment at each specific DAO message from a node and the response DAO-
ACK message.
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Destination Advertisement Object Acknowledgement (DAO-ACK)

The DAO-ACK message is a response from a DAO parent or the DODAG root
to the node that sent the DAO message. Figure 2.10 shows the DAO-ACK
Base Object format. Like the DAO message, the DAOSequence number is
incremented at the DAO message and the echoed DAO-ACK message. The
status field indicates the completion. For example, the status code set to 0
means unqualified acceptance, which indicates the node receiving the DAO-
ACK is not rejected. In addition, the DAO-ACK is an optional message
defined by RPL standards [12]. Therefore, the DAO-ACK is not enabled in
the Contiki-NG system by default.

Figure 2.10: The DAO-ACK Base Object.

2.3 Contiki-NG and Cooja
This section aims at introducing Contiki-NG and Cooja, which are important
in the research of the RPL. Contiki-NG is an operating system for next-
generation IoT devices. Meanwhile, Cooja is a simulation platform that is
integrated with Contiki-NG.

2.3.1 Contiki-NG
Contiki-NG is a cross-platform, open-source operating system for networked,
memory-constrained systems and low-power wireless Internet of Things
devices. Contiki-NG means Contiki Next Generation. Therefore, there is an
old version called Contiki OS. Compared to Contiki OS, Contiki-NG is a more
popular system, which focuses on dependable low-power communication
and standard protocols, such as 6LoWPAN (IPv6 over Low-Power Wireless
Personal Area Networks (6LoWPAN)), CoAP (The Constrained Application
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Protocol (CoAP)) and RPL. Contiki-NG uses the uIP stack to support TCP/IP
network stacks. The uIP stack is a lightweight open-source implementation of
TCP/IP stacks for small 8- and 16-bit microcontrollers, which Adam Dunkels
developed [32]. However, the uIP implementation only has a minimal set of
features supporting a full TCP/IP stack since the uIP stack was designed to
minimize the memory footprint and processing power required for TCP/IP
communication. Therefore, it can only handle a single network interface and
contains the IP, ICMP, UDP, and TCP protocols. In addition, the Contiki-NG
can also support standard-based IPv6 communication on some modern IoT
platforms, including ARM Cortex M3 and other 32-bit MCUs [15].

Contiki-NG provides multiple functions, including memory usage calcu-
lation, energy monitoring, and detailed log files. Therefore, users can collect
detailed information following the related implementation of these areas. In
addition, as Contiki-NG is an open-source system, some sections of codes can
be modified to support multiple functions and improve the default network
in simulation. Therefore, various types of research in RPL are based on
the Contiki-NG [33] [13]. Besides the simulation, the improved network
can also be implemented on real devices since the system construction and
implementation are the same on both real devices and simulation platforms.

2.3.2 Cooja
Cooja is a simulation tool that is integrated with Contiki-NG. The RPL
simulation is based on Cooja with several available motes. The motes can be
generated by compiling the node file written in C language. In this project, Z1
motes are compiled and implemented as the sensor and root nodes. Different
nodes’ positions can be adjusted following the simulation requirement in
Cooja through a simulation file. For example, the nodes can be set as a grid
pattern or in random positions. Cooja provides several functions to collect
the data under different conditions, including different Tx/Rx (transmission
successful/reception successful) ratios and the transmission range of each
node. Cooja can also collect the log information and nodes’ output. In
this project, different network models are applied to verify the different
performance of different strategies in different scenarios. The log file and radio
message are also collected to analyze each strategy’s performance.

In Cooja, the transmission range represents the simulation’s radio range.
The Contiki-NG uses Unit Disk Graph Model (UDGM) as the transmission
model. All nodes have unit graphs with the same radius as their transmission
areas. Therefore, the node can communicate with the node located at the circle
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center if it is located in the circle. Additionally, Contiki-NG has two loss
methods, including constant loss and distance loss. In the constant loss model,
the node has a fixed transmission and reception successful ratio value as long
as it is located within the transmission range. However, in the distance loss
model, only the node located at the limited distance has the same successful
ratio as the configuration. While the node is in the circle, the successful ratio
increases as the distance between the node and the circle center decreases. In
this project, the experiments use the constant loss method.

2.4 Related Work
As RPL is an essential protocol in the IoT field, many types of research are
related to RPL in many areas, including limitations, challenges, and formation
strategies. Therefore, this section introduces previous work in the aspects
mentioned above. Since the protocol formation strategy is the main idea of
this project, some previous research related to RPL formation strategies is the
main explanation in this section.

Ghaleb et al. had a detailed review of RPL’s limitations [30]. They
first concluded the comprehensive overview of limitations related to RPL
essential operation, which can be divided into three types: OF limitations,
RPL downward route limitations, and routing maintenance limitations. For
example, one risk of RPL is involved in objective functions [34]. Since
there is a lack of load-balancing configuration, the sensor node consistently
sends messages through a specific link after determining the preferred
connection, even suffering network overload. The drawback may cause high
energy consumption related to network disconnection and unreliability issues.
Besides the limitation of objective functions, another drawback is the storage
limitation when applying the storing mode. While applying storing mode,
every node needs to store the routing information of nodes whose routing
links to the sink are passing through itself [12]. However, since the RPL
focuses on constrained memory devices but still supports large-scale networks,
the constrained devices may be overloaded because of the large amount of
routing maintenance information. After explaining several limitations, Ghaleb
et al. also update some research that is aimed at dealing with the drawbacks
[30]. Kiraly et al. provide a method to deal with the storage limitation by
not delivering the information that a node cannot store because it cannot
be delivered to the destination. However, a drawback of this mechanism is
that some paths are built but have yet to be available because of the method
[35]. Then, Kiraly et al. provide another method called D-RPL, which
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improves the RPL storing mode by applying multicast. The node and its
children are registered in a multicast group if unreachable. Then the DODAG
root applies the multicast address and the multicast group to communicate
with the unreachable special nodes through standard mechanisms. Besides
some effective solutions, some emphasized limitations still need to be fully
addressed. For example, load balancing is still a problem. Although much
research focuses on load-balancing with some outcomes, it is evident that
the instability of frequently changing preferred parents may undermine the
advantages of load-balancing [36].

In addition to the research on limitations, plenty of studies are related to
the RPL formation strategy. Carels et al. introduce the virtual root mechanism
and verify that it can be applied in RPL with minimal complexity [13]. As the
network scale increases, more sinks are implemented to reduce traffic pressure
and provide backup. However, the default Contiki-NG implementation
requires multiple sinks to work with multiple DODAGs, which leads to higher
memory usage for sensor nodes within the DODAGs, as they must store
various sets of RPL information for each sink [37]. Besides the sensor nodes,
each root must maintain a big DODAG because of multiple independent
DODAGs. In contrast, sensor nodes in the virtual root strategy only need to
store a set of RPL information, although there are multiple sinks actually. The
multiple roots can maintain one DODAG together. Since the memory usage
to store the routes within the DODAG will be allocated to multiple possible
sinks. They also provide a detailed discussion of implementing the virtual root
strategy, including the synchronization of roots and the route of sensor nodes
within DODAGs.

In addition to the virtual root strategy, several studies have related to
the multiple-instance strategy. Mai et al. [11] and Jeremy et al. [14]
have significantly contributed to this approach. Mai et al. explained the
concept of the multiple-instance strategy and discussed its advantages and
disadvantages. The author also compared the multiple-instance strategy and
single-instance single-root strategy. Then they verified that the multiple-
instance strategy performs better than the single-instance strategy regarding
convergence time and packet delivery ratio. However, since Contiki-OS does
not fully support the multiple-RPL-instance strategy, the authors implemented
a system including two independent DAGs with two objective functions to
serve as a multiple-instance strategy. Then, based on Mai et al.’s work [11],
Jeremy et al. conducted a detailed analysis of the multiple-instance strategy
in Contiki-OS. The authors explained the storage structure of instances and
routing information, and conducted experiments using Cooja simulations and
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testbed experiments [38]. They provided an approach to satisfy the multiple-
instance requirement in the Contiki-OS system, which involved storing
multiple instances and multiple sets of routing information and improving the
metric container. Finally, the authors implemented large-scale experiments
with several evaluation metrics, including packet delivery ratio, latency, RPL
control packets, and hop count fields. The experiment indicates the result with
different multiple-instance networks, which includes the different number of
concurrent instances. As the result, the experiment compared the network
performance with various number of concurrent instances.
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Chapter 3

Methodology

3.1 Introduction
This project aims to evaluate the performance of three different RPL strategies
in various scenarios. Each strategy applies multiple sinks to provide
redundancy and distribute the traffic load. This section introduces the multi-
sink mechanism and three RPL strategies.

3.1.1 Multiple Sinks
Before the widely used IoT technology, the multipoint-to-point pattern
was widely used in Wireless Sensor Network (WSN). Therefore, previous
protocols are usually designed to guarantee the packet transmission towards a
dependent sink [39]. However, many sensor nodes are deployed in a large area
in a sensor network because of the modern requirement of IoT technology.
Since the distance between sensor nodes and the root node increases, one
root node cannot deal with all received packets from many sensor nodes
which are far away. For example, some sensors are deployed among several
intersections to collect traffic data. In this case, a sink cannot receive the packet
from a long distance and process the data in time because of the propagation
delay. Therefore, deploying multiple sinks is necessary to shorten the packet
transmission distance [40]. Besides the distance problem, another multi-
sink application is to deploy a backup sink in a sensor network. Since the
sensor network is usually a real-time system, if a sink goes down, the system
needs to be suspended and await maintenance. Therefore, system redundancy
is suitable for a network that needs to operate continuously. Consequently,
multi-sink can satisfy the requirement of redundancy and backup in the sensor
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network [41].
More specifically, multi-sink is widely deployed in the application of

RPL networks because one RPL Instance can contain one or more DODAGs
according to the protocol. If there are multiple DODAGs in a RPL network, the
network contains multiple sinks. The goal of deploying multiple root nodes
in RPL networks is similar to other sensor networks. Firstly, it can shorten
the distance between sensor nodes and the DODAG root and reduce the traffic
load of a single DODAG root. Secondly, it can deploy a backup in the RPL
network. For example, if one DODAG root fails in a system where one RPL
Instance contains two DODAGs, another DODAG still works. Therefore, this
RPL Instance can still work and wait for the failed link to be repaired and back
online. In this project, all three strategies include multiple sinks to satisfy the
redundancy requirement and reduce the heavy traffic load of root nodes.

3.2 Multiple DODAGs in one RPL Instance
As figure 3.1 shows, The first strategy is the Multiple DODAGs in one RPL
Instance strategy. In this strategy, RPL Instance containing two disjointed
DODAGs with common nodes, which is the simplest multi-sink strategy of
RPL networks [12]. The node C in the figure is a common node of the two
DODAGs. The RPL Instance ID is identical to the two DODAGs, but the
two DAG IDs are different. The objective function is MRHOF. As the two
DODAGs are independent, each node must choose one DODAG root if it is a
common node of the two DODAGs. Therefore, if the connection between one
sensor node and the root fails, the sensor node can repair the route quickly
by communicating with the back-up DODAG root. In addition, deploying
the RPL network in practical applications is convenient since the strategy is
simple.

However, the recovery time is a limitation for the RPL network when
a DODAG root fails. Although each sensor node has a backup route, it
costs much time to build communication between the node and the backup
DODAG root. Since multiple DODAG roots have different versions in the
RPL network, the RPL control messages include different information from
separate DODAG roots. Therefore, if one root cannot work, various sensor
nodes of the RPL network receive the RPL information from the other RPL
Instance, which takes some time. Besides the time consumption, data packets
cannot be delivered to the destination during route rebuilding processing. [42].

In this project, the multiple-DODAG strategy in one RPL Instance is
Contiki-NG and Cooja’s default configuration.
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Figure 3.1: Multiple DODAGs in one RPL Instance.

3.3 Virtual Root in one RPL Instance
Figure 3.2 shows another strategy called virtual root [12]. There are still
two DODAGs within one RPL Instance in this strategy. However, the
difference between the virtual root strategy and multiple-DODAG strategy is
the relationship between DODAGs. The two DODAGs are independent in
the previous strategy despite sharing the same RPL Instance ID. However,
according to virtual root configuration, sensor nodes consider only one
DODAG root of the whole RPL network, although there are two sinks in
reality. The approach is to synchronize the two DODAG roots by setting the
same DODAG Version, including the same RPL Instance ID, DAG ID, and
Version Number. According to the synchronization of multiple DODAG roots,
the sensor nodes consider the multiple sinks as one DODAG root in the RPL
network. Therefore, the special DODAG root is called a virtual root since the
root does not exist in reality. Compared to multiple DODAGs in one RPL
Instance strategy, there are two main advantages when employing the virtual
root strategy, including memory and process requirements [27].

Firstly, in both storing and non-storing modes, the sink must store the
routes to each node in the network, including nodes of the other DODAGs.
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Figure 3.2: Virtual Root in one RPL Instance.

Therefore, there is a large amount of routing data that one DODAG root stores,
which results in high memory consumption. The memory usage per sink is
similar to the memory consumption when deploying only one sink in the RPL
network. If considering downward routes from the DODAG root, each sink
of the multiple-DODAG strategy may cost more memory than one sink in
the RPL network. However, the physical root node does not store the route
information of all nodes in the RPL network when applying the virtual root.
Therefore, memory consumption is spread over different roots. One root only
can store the information of its own DODAG, like one sensor node stores the
information of its sub-DODAG in the single root strategy. In addition, the
position of reality sinks will influence the number of children nodes per sink.
[13].

Secondly, this strategy simplifies the process of nodes. A common node
can receive messages from various physical sinks in the virtual root strategy.
However, although multiple messages are from different sinks, the sensor
node only stores one set of RPL information because of the synchronized
configuration in the virtual root strategy. In contrast, the sensor node receives
two sets of DODAG Version with the same RPL Instance ID but different DAG
IDs and Version Numbers in multiple-DODAG strategy. Therefore, the sensor
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node in the virtual root network receives messages from various sinks but does
not need to maintain each connection between the sensor node and the sink.

In this project, to satisfy the synchronization of the multiple actual sinks,
the code of RPL simulation in Contiki-NG needs to be modified. As mentioned
before, the main idea is to set the same information for two DODAGs, and the
most critical parameter is the DAG ID. Some codes are modified to implement
the virtual root strategy based on Contiki-NG.

3.4 Multiple-Instance Strategy

3.4.1 Overview of Multiple-Instance Strategy

Figure 3.3: Multiple Instances in one RPL Network.

Figure 3.3 shows the last strategy, multiple-instance topology. There are
two DODAGs located in two RPL Instances separately with common nodes.
In this strategy, two DODAGs are fully independent except for common nodes
because of the different RPL Instance IDs and different DAG IDs. An instance
can contain multiple DODAGs in the multiple-instance strategy, but a node
can only join one DAG per instance. As figure 3.3 shows, like the multiple-
DODAG strategy, the common node must store two sets of information,
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especially two sets of instance information. Besides the RPL information,
nodes in the multiple-instance strategy store multiple sets of parents and
routes within different instances. While transmitting packets, the node must
determine the next hop according to the specific destination. The multiple-
instance mechanism was mentioned in RPL’s standard [12], but only a few
research focus on the multiple-instance method. Furthermore, the Contiki-
NG does not fully support the UDP packet transmission toward multiple sinks
in the multiple-instance strategy.

The obvious problem is that the multiple-instance system generally bears
high message overhead and transmission costs if the node is registered into two
independent instances. Although nodes in the multiple-DODAG strategy also
store information from different DODAGs, they only deal with the RPL control
packets within one instance. Unlike the multiple-DODAG strategy, nodes in
the multiple-instance strategy deal with messages from both instances, which
causes a high packet delivery cost.

However, since a node can join multiple instances, the system can be more
flexible. In the multiple-instance strategy, two instances can focus on different
requirements, which allows a node focuses on different tasks within multiple
instances. For example, if a node joins the first instance, it is sensitive to packet
transmission latency because of the latency optimization implementation of
the first instance. In addition, the node can also join the second instance
optimized for delivery reliability [11]. But the flexibility of the multiple-
instance strategy is not the main concern of this project. In this project,
the research focuses on other performance metrics, including performance of
PDR, the number of RPL control packets, and energy consumption in different
scenarios.

3.4.2 Deployment of Multiple-Instance Strategy
Since the strategy has multiple instances with several sinks, an interesting
discussion is whether a root can participate in other instances and act as a
sensor node. This idea refers to the dynamic sink implementation of Voravit
T. et al. [27], which allows a sink to act as a sensor node when the traffic
pressure is low. However, if the traffic pressure of the network increases, the
dynamic sink starts to act as a sink and decrease the traffic pressure on other
sinks. Based on previous research, the first implementation allows the root to
join other instances. However, in the experiment with the default Contiki-NG
system, if a root joins other instances, it will not function as a root node in the
following experiment. For example, the sink cannot handle incoming DAO
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messages from sensor nodes. According to Voravit’s research, root nodes and
sensor nodes can decide if a dynamic sink is active as a root node or inactive
as a sensor node. In addition, the dynamic research network has an outside
coordinator, which is implemented out of the RPL network to receive and deal
with the message from the sink in the RPL network. Therefore, the coordinator
can analyze the traffic flow, send signal messages to the dynamic sink, and
activate the inactive sink with traffic pressure increases. However, since the
network is closed in this project, the root node cannot receive signals from
the outside coordinator and restart as a sink after joining another instance.
Besides the coordinator, allowing nodes to make decisions to restart the root
node costs more energy and increases the complexity of the network. As the
project aims to compare different strategies, the decision-making pattern is
improper because it changes the essential function and logic of root nodes.
Therefore, in this project, an instance only has a root node, which is responsible
only for its instance rather than joining others.

After determining the root node’s behavior, the Contiki-NG source code
needs to be modified to satisfy the multiple-instance strategy. Although the
Contiki-NG is a system in IoT application and single-instance RPL network,
the system cannot fully support the multiple-instance RPL network. There
are three main problems of the Contiki-NG to support the multiple-instance
strategy, including instance selection, preferred instance determination, and
correct route selection.

Firstly, the instance information selection section is unsuitable for the
multiple-instance strategy. In the Contiki-NG system, each node has an
instance_table structure to store the joined instance. In the default system,
a node can store multiple instances’ information, including the instance id,
version, rank information, and preferred parent. However, there is no proper
method to invoke the multiple instances’ information, especially in the data
packet delivery task from sensor nodes to the root node. For example, before
delivering the packet to the root, the node must select the preferred instance
and restructure the packet header in the network layer by inserting the instance
information. However, the default system cannot check and select the correct
instance from the instance table but only select the first value. Since the DAG
ID of a DODAG is the same as the IP address of the DODAG’s root node,
Contiki-NG applies the DAG ID as the root destination while transmitting
data packets. Therefore, if the node selects the DAG ID of the second instance
in the instance table as its destination address, the DAG ID and the preferred
instance are not matched while restructuring the packet header. As a result, the
root node can receive the packets but cannot parse the packet because of the
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incorrect instance information. Consequently, selecting the correct instance
from the instance table according to the destination address is important. As
the destination address is determined with the imperfect instance selection,
the modification checks the instance table to find the matched instance of the
destination address. In more detail, firstly, the destination address is used as
the DAG ID to get the DAG to which it belongs. Then, the instance id stored
in the DAG is applied to find the correct instance from the instance table. At
last, the correct instance information is inserted into the packet header before
transmitting the packet.

Even if the problem of matching the destination address and the instance
information has been solved, destination determination is the second problem.
Since the destination address is the same as the DAG ID of the root’s DODAG,
the destination of packet delivery is related to the DAG. Since each instance
contains only one DAG, the destination decision is ultimately related to the
preferred instance. However, the Contiki-NG system does not consider the
multiple-instance situation like the first problem. Instances are not selected
according to specific rules but based on their sequences in the instance table.
Therefore, if the first instance in the instance table is not the best option, the
sensor node may still select it as the preferred instance and choose the DAG
ID in the instance as the destination address. Therefore, it is important to
establish rules allowing each node to distinguish its preferred instance and find
the corresponding destination address in packet delivery tasks. In this project,
the preferred instance is determined when the sensor node joins the instance. If
the sensor node joins the first instance, it considers that instance as its preferred
instance. If the sensor node joins a second instance, it compares the rank value
of the two instances and selects the instance with the smaller rank value as the
preferred instance. Specifically, the sensor node stores the rank value of the
first instance, and when it joins a second instance, it checks whether the rank
value of the second instance is smaller than that of the first one. If it is, the
sensor node chooses the second instance as its preferred instance. Therefore,
the sensor node can properly determine its preferred instance and select the
corresponding DAG ID as the destination address.

Although packets are transmitted toward the proper destination with the
correct packet header, route selection is the third problem in the project.
Like the previous two issues, route storage and selection are unsuitable for
multiple instances. Therefore, before transmitting data packets, packets must
be restructured with instance information from the RPL layer and delivered
along the route in the uIP stack, similar to the network layer. In the RPL
layer, the default route can be distinguished with different instances and stored
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separately. However, the uIP stack cannot store multiple default routes related
to multiple instances. For example, if a sensor node joins two instances, the
uIP stack only stores the second instance’s default route but ignores the first
one’s. Therefore, enabling the uIP stack to distinguish and store multiple
default routes related to multiple instances is crucial. With this modification,
the uIP stack can determine the correct route according to the instance and
deliver the packet towards the correct destination. The default route structure
in the uIP stack was modified to support multiple instances to achieve the
determination function. In addition to the storage structure, each default
route has a new direction parameter representing the corresponding instance.
Since the direction parameter is same as the instance ID, the default route is
determined by referring to the instance ID before transmitting packets toward
the correct destination.
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Chapter 4

Topology and Experiment Met-
rics

4.1 Network Topology
This section will introduce the physical topology of experiments. As this
project aims to compare the performance of different RPL strategies and define
which strategy suits a specific scenario, various topologies in this section are
as similar to the practical application or common situation as possible.

4.1.1 Grid Topology

Figure 4.1: Grid Topology
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Grid topology can be considered placing sensors evenly over an area as a
grid topology, with two sinks and 14 sensor nodes. As figure 4.1 shows, node
1 and node 2 are two sinks in this topology. In addition, the topology is formed
as a 4x4 square with two sinks set at both ends of the diagonal. All nodes are
distributed uniformly in this topology, with the same intervals between every
two nodes. In this topology, nodes at the corner have two neighbors, nodes at
the sides have three neighbors, and nodes in the middle of the square have four
neighbors.

4.1.2 Linear Topology
Linear topology is to place sensor nodes evenly along a straight line, with two
sinks and 14 sensor nodes. Node 1 and node 2 are two sinks placed at the
quarter position of the line. As figure 4.2 shows, node 1 is placed at the fifth
position from the left end, while node 2 is placed at the fifth position from the
right end. In this topology, every node has two neighbors except for the two
end nodes, which only have one neighbor.

Figure 4.2: Linear Topology

4.1.3 Crossing Topology
Crossing topology can be considered a scenario that places several sensors on
street lights around a crossing road. This topology also has two sinks and 14
sensor nodes, as figure 4.3 shows.

The two nodes are placed at the quarter position of the vertical and
horizontal lines separately. As figure 4.3 shows, root node 1 is placed at the
third position from the top, while root node 2 is placed at the second position
from the left. In this topology, four end nodes only have one neighbor, the
center node has four neighbors, and the other nodes all have two neighbors.
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Figure 4.3: Crossing Topology

4.1.4 Circular Topology
The circular topology includes two sinks and 14 sensor nodes. As figure 4.4
shows, all nodes in this topology form a circle. In this topology, two sinks are
placed at the y-axis, and three sensor nodes are placed in each quadrant. In
this topology, all nodes are uniformly distributed according to the angle. For
example, if drawing lines to connect sensor nodes and the circle’s center, the
angles between the line and the x-axis are 22.5°, 45°, and 67.5°.

Figure 4.4: Circular Topology
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4.1.5 Random Topology
The last topology is the random topology that does not have regular patterns
but contains two sinks and 14 sensor nodes at stochastic positions, as figure 4.5
shows.

Figure 4.5: Random Topology

Therefore, nodes are not in specific positions in this topology and do not
have uniform distances from other nodes. In addition, most nodes have two or
three neighbors.

4.2 Experiment Metrics
This project has three metrics to compare the performance of different
strategies: total number of RPL control packets, Packet Delivery Ratio (PDR),
and energy consumption.

4.2.1 Total Number of RPL Control Packets
The first evaluation calculates the total number of RPL control packets,
including DIS packets, DIO packets, and DAO packets, as mentioned in
section 2.2.4. The number of RPL control packets represents the overhead of
establishing and maintaining the whole network, which is a critical parameter
related to the traffic load in practice. Therefore, if a strategy has a lot of RPL
control packets, the strategy will cost many resources and much energy to
maintain the connection between nodes and take up much traffic overhead.
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For example, if one network produces much more RPL control packets than
the other, the network’s performance may be affected.

4.2.2 Packet Delivery Ratio (PDR)
The second evaluation is to calculate the Packet Delivery Ratio (PDR). In
RPL networks, sensor nodes usually transmit data packets to the root node.
Therefore, the PDR means the ratio of the total packets received from sensor
nodes to the total packets sent to sinks in the RPL network, as formula 4.1
shows [43]. Therefore, the PDR represents the communication quality in the
network.

Packet Delivery Ratio =

ř

Number of packet receive
ř

Number of packet send
(4.1)

4.2.3 Energy Consumption
Energy consumption is a critical and common metric for evaluating the
performance of networks, which is also related to the deployment, availability,
and even costs of practical applications. As for the IoT network, energy
evaluation can be divided into root node consumption and sensor node
consumption. Some research focuses on comparing the different nodes’
performances under different conditions. Meanwhile, some evaluation only
focuses on the energy consumption of the whole network. In this project, the
energy consumption metric of a network is the total energy cost of all nodes
in the network.
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Chapter 5

Experiment Setup

This chapter aims at the detailed setup, mainly containing the configuration
with Cooja. The experiment of each topology includes the comparison among
multiple-DODAG strategy, virtual root strategy, and multiple-instance strategy
with three different packet loss values. The following sections indicate three
main implementation areas to build the experiment: topology implementation,
node implementation, and data collection from three experiment metrics.

5.1 Topology Implementation
All topologies are deployed on Cooja, with 2 sinks and 14 sensor nodes in
each topology. The distance between every two nodes is the same as the
transmission range of the node except for the random topology and circular
topology. Modifying the simulation file allows the nodes to be placed precisely
at the required place by setting the coordinate parameter.

The distance between every two sensor nodes differs for the random and
circular topology. Since the project uses the constant loss model, the reception
successful ratio is a specific value if the node is only located in the transmission
range. In circular topology, the parameter is calculated according to the
trigonometric function. In random topology, the topology was built by the
random placement function in Cooja. However, some adjustment is necessary
to ensure that a node is located in the transmission area of the nearest nodes
in the topology.
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5.2 Node Implementation
Z1 motes were used to compile all nodes in this project, and modifications
were made to add additional functions to complete all experiments. This
section introduces several parameters of the node implementation, including
the configuration of Contiki-NG, transmission and reception successful ratios,
transmission range, the processing time of the experiment, and the sending rate
of UDP data packets.

It is necessary to specify the configuration of the Contiki-NG system.
To ensure simplicity in the experiment implementation, most parameters and
configurations remain at their default values in the Contiki-NG system. For
instance, the Contiki-NG offers two implementations of RPL: RPL lite and
RPL classic [15]. Since RPL lite does not support the multiple-instance
implementation, this project applies the RPL classic pattern. In addition,
Contiki-NG provides various implementations of the MAC layer [44]. This
project applies the Carrier-Sense Multiple Access (CSMA), the default
implementation in the Contiki-NG system. Besides the configuration, the
Contiki-NG provides a retransmission function to support packet transmission
tasks, which allows the packet to be retransmitted several times. However,
the PDR is usually a high value with a large number of packet retransmission.
Therefore, this project’s retransmission parameter is 2, smaller than the default
value.

An essential parameter in the simulation experiment is packet loss since
communication experiences some loss in practical applications. In this
project, the packet loss is emulated by changing the transmission and reception
successful ratio. In all experiments, the transmission successful ratio is set to
100%, while the reception successful ratio is set from 90% to 70% with a 10%
decrease per step. Specifically, the reception successful ratio corresponds to
the following packet loss values: 10%, 20%, and 30%.

The third parameter is the transmission range, which indicates the radio
range of each node, as discussed in section 2.3.2. In this project, the
transmission range is set to a default value of 50 m for all experiments.

The processing time of every experiment is 30 minutes and 5 seconds,
which allows the energy calculation function to print the last piece of data
in the log file. Since the energy calculation function records the energy
consumption per minute, the last 5 seconds allow the energy consumption
module to record all logs. In the experiment, the sending rate of sensor nodes
is set to one packet per second, which equates to 60 packets per minute. During
the first two minutes, sensor nodes do not send UDP packets but wait for the
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RPL network to converge. After the network converges, each node sends one
packet per second for 27 minutes and 30 seconds, which is 1650 UDP packets
in total. Then the final UDP packet is transmitted at 29 minutes and 30 seconds.
The experiment then runs longer to ensure the root nodes receive all packets.

5.3 Data Collection
This section introduces the data collection implementation in the project,
which includes the number of RPL control packets, the PDR, and the energy
consumption as mentioned in Section 4.2. In addition, all experiments repeat
three times to get the average PDR and average energy consumption results.

5.3.1 Total Number of RPL Control Packets
The Cooja has a function of recording all radio messages and storing the
messages in a packet capture file, which Wireshark can retrieve. Then, the
number of RPL control packets can be filtered using Wireshark. Therefore,
the figure includes the RPL control packets of three strategies under different
packet loss conditions. In this experiment, the number of RPL control packets
is from one experiment rather than the average value of multiple experiments.
Because the number is specific to an experiment, and the average value is
meaningless. Nevertheless, the experiments in the different rounds have the
same trend in the number of RPL control packets metric.

5.3.2 Packet Delivery Ratio (PDR)
The second evaluation calculates the Packet Delivery Ratio (PDR) by counting
the number of delivered UDP data packets. In this project, the sensor node and
the sink are modified to send and receive UDP packets and record the number.

The sensor node is modified to send UDP packets with the increment
sequence number and record the transmission event in the log file.
Correspondingly, the sink records the message with the sequence number
stored in the packet in the sink’s log file. Therefore, if a UDP packet cannot
be delivered to the sink, the sensor node’s log file still records the event with
a sequence number, but the sink will miss the message. Figure 5.1 shows the
whole process. According to log files, the PDR can be calculated directly.
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Figure 5.1: UDP Transmission Process

5.3.3 Energy Consumption
The third evaluation is energy consumption. An energy test module called
Energest is integrated into Contiki-NG and can be applied in Cooja. On the
simulation platform, the Energest module can calculate the time a system has
spent in multiple states [45]. There are five predefined Energest modes: CPU
in active, CPU in low power mode, CPU in deep low power mode, radio
transmission (Radio Tx), and radio listening (Radio Rx). In addition, the
simple Energest module can record summary messages once per minute. A
message includes the sequence number of this message, the total number of
ticks in the accounting period, and the number of ticks in different modes [15].
Therefore, the time spent in each state can be calculated according to the ticks.
Finally, the current consumption can be calculated using the time distribution
for each state with a platform-specific current consumption model. As this
project applies Z1 mote, the corresponding current consumption model, as
table 5.1 shows, must be applied to calculate the energy. Since Z1 mote
does not include the CPU deep low power mode, only four states are in the
table. Therefore, the energy consumption can be calculated by the current
consumption, processing time, and voltage, as shown in formula 5.1. In this
equation, Ta, Tl, Tr, and Tt represent the processing time of four states: CPU
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active, CPU low power mode, Radio Rx and Radio Tx. Meanwhile, Ia,
Il, Ir, and It represent the current consumption of four states, and V is the
voltage provided by the system to the component, which is 3.0 Volts for Z1
mote. Therefore, the current consumption variable is substituted by the data
in table 5.1 and conclude the final equation.

State Current Consumption
CPU active 10 mA

CPU low power mode 23 uA
Radio Rx 18.8 mA
Radio Tx 17.4 mA

Table 5.1: State and Current Consumption of Z1 Mote

E = (Ia ˆ Ta + Il ˆ Tl + Ir ˆ Tr + It ˆ Tt) ˆ V

= (10Ta + 0.0023Tl + 18.8Tt + 17.4Tr) ˆ 3.0
(5.1)
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Chapter 6

Results and Analysis

6.1 Overview
This chapter introduces the result and data analysis with different topologies.
In each section, the result and figure are shown first, followed by the analysis
based on results. As mentioned before, each topology has three types of
results, with one figure in one type of result. Therefore, the analysis is also
based on the three parameters and focuses on comparing the strategies. As
each experiment with the same parameters repeats three times, this project
applies the average value to indicate the PDR and energy consumption results.
In addition, the variances are also marked in the figures. However, the number
of RPL control packets is from one experiment rather than the average value,
as mentioned in section 5.3.1.

The abbreviation in the figure needs to be expressly indicated:

• MD means Multiple-DODAG strategy in an instance.

• VR means Virtual Root strategy.

• MI means Multiple-Instance strategy.

6.2 Grid Topology

6.2.1 Result
With the packet loss increase, the total number of packets increases, as
figure 6.1 shows. The number of packets in the multiple-instance strategy
is much more than in the other two. In addition, the number of packets in
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Figure 6.1: Number of RPL Control Packets in Grid Topology

the virtual root strategy is smaller than that in the multiple-DODAG strategy,
especially under high packet loss conditions. Since a node transmits the DIS
message to find the nearby DODAG, the message only occurs if a node is
not registered in a DODAG. Therefore, the DIS packets only occur in the
construction period in the beginning with the high packet loss because nodes
are always connected with the DODAG during the experiment. However, DIS
packets occur during the experiment with high packet loss because some nodes
are disconnected from the DODAG and need to join the DODAG again. In
addition, with the increase in packet loss, the difference between the number
of packets in the multiple-DODAG and virtual root strategies becomes larger.

As figure 6.2 shows, the second result is PDR. The virtual root strategy
performs better than the multiple-DODAG strategy in packet delivery ratio,
especially under high packet loss conditions. The multiple-DODAG strategy
only performs slightly better than the virtual root strategy with low packet loss
conditions. With the packet loss increases, the PDR performance of the virtual
root becomes much better. In addition, the multiple-instance strategy performs
worse than the other two under low packet loss conditions but performs better
with high packet loss.

The last parameter is the energy consumption of the RPL network. As
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Figure 6.2: Packet Delivery Ratio in Grid Topology

Figure 6.3: Energy Consumption in Grid Topology

figure 6.3 shows, the multiple-instance strategy costs much more energy than
the other two. Moreover, besides the multiple-instance strategy, the virtual
root strategy performs worse than the multiple-DODAG strategy, costing more
energy.
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6.2.2 Data Analysis
According to the result and figures previously, the multiple-instance strategy
performs much worse than the other two in all three fields except for the
PDR performance with high packet loss. Since the multiple-instance network
contains two instances, nodes must transmit many packets to maintain two
instances. As packet transmission and reception tasks cost energy, multiple-
instance implementation costs a lot of energy with high packet overhead.
However, the multiple-instance strategy has better PDR performance with the
high packet loss condition. Compared to the multiple-instance strategy, the
PDR of multiple-DODAG and virtual root strategy decreases significantly
with the high packet loss. One reason is that sensor nodes change the
destination of data packet transmission according to the parent and route
switch, which is mainly related to the loop detection function. In the loop
detection function, if a node detects its parent has a higher rank value than
the threshold, the node will change the preferred parent and route. The route
switch function can maintain the packet transmission task with low packet loss
because the network has a high-quality connection. However, while the whole
network has a high packet loss condition, nodes cannot have high-quality
communication even if they change the transmission route. In addition, the
loop detection function may pause a node’s packet transmission task because
the node needs time to establish a new route. The packet transmission task is
significantly affected if the packet loss condition negatively affects the route
switch processing. Therefore, the implementation causes some packets not
to arrive at the destination with a high packet loss ratio during the switching
period. As a result, the PDR performance of the multiple-DODAG and virtual
root strategy decreases significantly with the high packet loss.

In addition to the multiple-instance strategy, the virtual root strategy
performs better than the multiple-DODAG strategy in both packet overhead
and packet delivery fields. However, the network with the virtual root strategy
costs more energy than the other. As for the number of RPL packets, the
number of DAO messages is the main difference between the two strategies.
Since sensor nodes must send DAO messages to multiple sinks to maintain the
connection within two DODAGs, the DAO messages in the multiple-DODAG
strategy are more than in the virtual root strategy. As for energy consumption,
the multiple-DODAG strategy performs better than the other. One reason is
that the virtual root costs more energy in the loop detection function and parent
switch process. Since the virtual root network acts as a big DAG, nodes in this
network have more opportunities to change the parent and the route when the
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parent’s rank value is high. Meanwhile, nodes cannot change the route simply
in the multiple-DODAG network because the neighbor node may belong to the
other DAG. Therefore, the node in the multiple-DODAG strategy cannot send
packets correctly. As a result, the number of data packets in multiple-DODAG
decreases, resulting in low PDR and low energy.

6.3 Random Topology

6.3.1 Result

Figure 6.4: Number of RPL Control Packets in Random Topology

With the packet loss increases, the total number of packets increases, as
figure 6.4 shows. The virtual root strategy performs better than the multiple-
DODAG strategy. The number of DAO messages of the virtual root strategy
is smaller than that of the multiple-DODAG strategy. In addition, the number
of RPL control packets in the multiple-instance strategy is significantly more
than in the other two.

As figure 6.5 shows, the multiple-instance strategy performs slightly better
than the other two strategies with high packet loss but much better under high
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packet loss conditions. In addition, the difference in PDR performance is not
apparent for the virtual root and multiple-DODAG strategies under low packet
loss conditions. But the PDR performance of the virtual root becomes better
than the multiple-DODAG strategy with the high packet loss.

Figure 6.5: Packet Delivery Ratio in Random Topology

The last parameter is the energy consumption of the RPL network. As
figure 6.6 shows, the energy consumption increases with the increasing of
packet loss ratios. The virtual root strategy costs more energy than the
multiple-DODAG strategy. Meanwhile, the multiple-instance strategy costs
much more energy than the other two.

6.3.2 Data Analysis
As for the multiple-DODAG and virtual root strategies, the previous results
and figures show that the virtual root strategy performs better than multiple-
DODAG in the number of RPL control packets field. In the multiple-DODAG
strategy, common sensor nodes must communicate with the backup sink to
maintain the backup connection. Therefore, the number of DAO messages
in the multiple-DODAG strategy is higher than in the virtual root strategy.
As for the packet delivery ratio, both strategies perform well with low packet
loss. However, the PDR decreases obviously with high packet loss. One
main reason is that the root switch period negatively influences the packet
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Figure 6.6: Energy Consumption in Random Topology

delivery ratio. Regarding energy consumption, the multiple-DODAG strategy
costs less energy than the virtual root strategy. One possible reason is that
the virtual root network nodes can change the parent and route within the
DAG. Therefore, the virtual root network produces more packets with the
retransmission function, resulting in high PDR and energy consumption.

In addition, the multiple-instance strategy produces significantly more
RPL control packets than the other two because each node joins and maintains
two instances. Since the packet transmission task costs energy, more packets
in the multiple-instance network cost more energy. However, the multiple-
instance strategy has good PDR performance with high packet loss because the
preferred instance implementation reduces sink exchange. The parent switch
processing may be affected negatively under the high packet loss condition
since the switch processing costs time and pauses the packet forward task,
resulting in low PDR. Therefore, the multiple-instance strategy has good PDR
performance because nodes do not change the parent and route.

6.4 Linear Topology

6.4.1 Result
With packet loss increases, the total number of packets increases, as figure 6.7
shows. The multiple-instance strategy produces the most RPL control packets.
Apart from the multiple-instance strategy, the difference in performance
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Figure 6.7: Number of RPL Control Packets in Linear Topology

between the other two strategies is not apparent. The virtual root strategy
produces fewer RPL control packets than the multiple-DODAG strategy with
low and high packet losses but more packets with medium loss. The figure
shows that the number of DIO messages in the virtual root strategy is larger
than in the multiple-DODAG strategy. In addition, the multiple-DODAG
strategy has more DAO messages than the virtual root strategy.

As figure 6.8 shows, the performance of three strategies in PDR varies
depending on loss conditions. As the packet loss ratio increases, the
performance difference becomes more apparent. All three strategies have good
PDR performance with low packet loss, whereas the multiple-instance strategy
performs better than the other two with high packet loss. One particular
case is that the variance of the multiple-instance strategy is significantly a
significant value. Besides the multiple-instance strategy, the virtual root
strategy performs better than the multiple-DODAG strategy with high packet
loss.

The final parameter is the energy consumption of the RPL network. As
shown in figure 6.9, energy consumption increases as packet loss increases.
The multiple-instance strategy costs much more energy than the other two
strategies. In addition, the multiple-DODAG strategy performs better than the
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Figure 6.8: Packet Delivery Ratio in Linear Topology

virtual root strategy with less energy consumption.

Figure 6.9: Energy Consumption in Linear Topology

6.4.2 Data Analysis
The multiple-instance strategy performs better in the PDR field with high
packet loss because the linear topology is a simple symmetric topology.
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Except for the lowest packet loss condition, the multiple-instance strategy
has a significant variance in PDR and energy consumption metrics. As the
paths are limited, connection maintenance and rebuilding or traffic congestion
affects the whole network. One possible reason for the high variance is that
different experiments have different events affecting the connection, resulting
the different performances and high variance. Depending on the root selection
algorithm of the multiple-instance strategy, the data packet transmission is
simple without determining and switching the root, leading to good PDR
performance in the multiple-instance strategy with high packet loss. However,
the energy consumption is much more than the other two strategies because of
the large number of RPL control packets.

Besides the multiple-instance strategy, the virtual root strategy performs
better than the multiple-DODAG strategy in the RPL control packet field but
without much advantage. In contrast, the multiple-DODAG strategy has good
performance in the energy consumption area. As for the number of DAO
messages, sensor nodes need to transmit DAO messages to DODAG roots to
maintain the connection and two DODAGs. One single node can handle the
transmission overhead since packets are only transmitted from two directions.
Under high packet loss conditions, the virtual root strategy performs better
than the multiple-DODAG strategy. Since the virtual root network has a big
DAG, common nodes can change the parent simply within a DAG, resulting
in a stable connection and high PDR. However, the parent switch produces
more packets and retransmission packets than the multiple-DODAG strategy,
which costs more energy. The topology is simple with limited paths, so the
virtual root network produces more control and data packets, but the difference
is insignificant. Therefore, the difference between the two strategies’ energy
consumption performance is insignificant.

6.5 Circular Topology

6.5.1 Result
With the increase of packet loss, the total number of packets increases, as
figure 6.10 shows. The multiple-instance strategy produces significantly more
RPL control messages than the other two. In addition, the difference in
RPL control packets between the virtual root strategy and multiple-DODAG
strategy is not apparent.

As shown in figure 6.11, the difference between the multiple-DODAG and
virtual root strategies is insignificant regarding PDR performance under low
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Figure 6.10: Number of RPL Control Packets in Circular Topology

packet loss conditions. However, the multiple-DODAG strategy demonstrates
better PDR than the virtual root strategy, especially in high packet loss
conditions. Furthermore, while the PDR performance of the multiple-instance
strategy has worse PDR performance than the others under low packet loss, it
outperforms the other two strategies in high packet loss scenarios.

Figure 6.12 shows the energy consumption in circular topology. Compared
to the multiple-DODAG strategy, the virtual root strategy costs more energy in
the low packet loss scenario but less energy than the multiple-DODAG strategy
with the high packet loss. In addition, the multiple-instance strategy costs
much more energy than others.

6.5.2 Data Analysis
In the circular topology, the virtual root strategy performs worse than the
multiple-DODAG strategy in all three aspects. The simple topology allows
sensor nodes to determine two paths towards the primary and secondary sinks
in two directions without interference. However, according to the data packet
record file, sensor nodes between the two sinks switch the destination more
frequently because of the route switch or loop detection function in the virtual



54 | Results and Analysis

Figure 6.11: Packet Delivery Ratio in Circular Topology

Figure 6.12: Energy Consumption in Circular Topology

root network, resulting in higher packet loss during destination exchange. In
addition, as all nodes are common in the topology, the whole network has
a big DAG and many node hops in the virtual root strategy. Therefore, if a
sensor node detects a large rank value, it will choose the other neighbor. If
the other neighbor has a big rank value either, the node must pause and wait
for the new version to be updated. This problem can be solved but need some
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time. Since the packet transmission speed is high and the virtual root network
has a big DAG, the virtual root strategy causes low PDR. Consequently, the
multiple-DODAG strategy performs better PDR than the virtual root strategy.
Additionally, the virtual root strategy consumes more energy compared to the
multiple-DODAG strategy.

As for the multiple-instance strategy, it performs worse than the other
two strategies regarding RPL control packets and energy consumption. The
establishment and maintenance of two instances provide a high overload of
RPL control packets, leading to decreased PDR performance in low packet
loss conditions. However, due to the implementation of preferred instances,
the strategy performs better in the PDR field than the others in a high packet
loss scenario.

6.6 Crossing Topology

6.6.1 Result

Figure 6.13: Number of Packets in Crossing Topology

As figure 6.13 shows, the virtual root strategy produces fewer RPL control
packets than the multiple-DODAG strategy. The difference in DAO messages
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is most significant in the two strategies. However, the virtual root strategy
has more DIS and DIO messages than the multiple-DODAG setup. In terms
of the multiple-instance network, the number of RPL control packets in the
multiple-instance strategy is much more than in the other two.

As figure 6.14 shows, the PDR performance decreases significantly with
the packet loss increase. The virtual root strategy performs better than the
multiple-DODAG strategy. However, the PDR performance of both the virtual
root and multiple-DODAG strategies decreases significantly with high packet
loss. As for the multiple-instance strategy, the PDR performance is worse
than the other two strategies with low packet loss conditions. However, the
multiple-instance strategy has the best PDR performance among all three
strategies with the high packet loss.

Figure 6.14: Packet Delivery Ratio in Crossing Topology

For the energy consumption, as the figure 6.15 shows, the multiple-
instance strategy costs the most energy under each packet loss condition. In
addition, the virtual root strategy costs more energy than the multiple-DODAG
strategy, but the difference is insignificant.

6.6.2 Data Analysis
According to the results and figures, the virtual root strategy performs better
than multiple-DODAG except for energy consumption, even if the strength is
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Figure 6.15: Energy Consumption in Crossing Topology

insignificant. However, both virtual root and multiple-DODAG strategies have
significantly bad PDR performance with high packet loss, while the multiple-
instance performs well. One possible reason is that the sensor node, located
at the center, affords much traffic pressure from all four directions, leading
to significant packet loss during the destination exchange. Another factor is
that some nodes are located far away from two sinks. Therefore, the virtual
root and multiple-DODAG strategy has bad performance with high packet loss
because of the long distance, destination switch, and traffic pressure on the
central node. Meanwhile, since the multiple-instance arranges the preferred
instance, the packet loss during the destination switch period does not affect the
data packet transmission, leading to higher PDR than the other two strategies.
However, since the PDR decreases significantly under the high packet loss
condition, the long distance and traffic pressure factors also negatively affect
the packet delivery ratio in the multiple-instance network.

6.7 Discussion
To summarize the above sections, some regular patterns can be concluded.
This section mainly discusses the virtual root and multiple-DODAG strategies.
In addition, it just concludes with an overview of the multiple-instance strategy
since it produces significant RPL control packets and costs much more energy
than the others.
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6.7.1 Discussion without Multiple-Instance Strategy
In this section, a topology is referred to as a ”dense topology” if most nodes
have more than two neighbors in the topology, indicating that nodes are located
in a dense area. The grid and random topologies are examples of dense
topologies, where nodes have multiple paths to reduce traffic overhead. On
the contrary, a topology is considered a ”sparse topology” if most nodes have
only two neighbors, as nodes are located more loosely rather than bounded to
a small area. All topologies except for the grid and random topologies belong
to the sparse topology category, where most nodes only have two neighbors.

1. The multiple-DODAG strategy usually consumes less energy than the
virtual root strategy, especially in dense topologies. For example, the
difference between the two strategies in the energy consumption field
in the grid and random topology is more than in the circular and linear
topology. One reason the difference in sparse topologies is not apparent
is that nodes have limited paths towards the next hop, leading to low
consumption of analyzing and identifying the actual destination. In
addition, loop detection and route switch are also the reasons. If a node’s
parent has a larger value than a threshold, the node will set the parent as
invalid and change the route. Sensor nodes in the virtual root network
can simply switch the parent as the network performs as a big DAG.
Therefore, the virtual root strategy has good PDR performance because
the parent switch design can maintain the data packet transmission task.
Meanwhile, more packet transmission costs more energy. In addition,
since nodes in dense topology have many neighbors, the route switch
experiences more paths and produces more packets, which causes a
larger energy consumption difference between the two strategies than
the sparse topology.

2. Regarding the number of RPL control packets, the virtual root strategy
outperforms the multiple-DODAG strategy in dense and crossing
topologies. However, the virtual root strategy has slightly more
packets in the linear and circular topologies than the multiple-DODAG
strategy. As the virtual root strategy can simplify the establishment
and maintenance of the RPL network with the big DAG, the strategy
produces fewer RPL control packets than the multiple-DODAG strategy,
especially in dense topologies. Meanwhile, the virtual root network
does not reduce the RPL control packets in the sparse topology
because the topology has specific paths. As for different kinds
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of RPL control packets, the main difference lies in the number of
DAO messages. The DAO message is used to transmit information
upward along the link. Due to nodes in the multiple-DODAG strategy
must maintain connections with two root nodes with different DAG
information, the number of DAO messages is larger than in the virtual
root strategy. Additionally, the virtual root strategy generates more
DIO messages than the multiple-DODAG strategy, especially in dense
topologies. There are two primary reasons. Firstly, the transmission
of DIO messages is triggered by DIS messages, which the virtual root
strategy produces more frequently than the multiple-DODAG strategy.
Secondly, DIO messages are used to maintain the upward route in
the RPL network. Although sensor nodes in the virtual root strategy
do not need to maintain connections with two sinks, DIO messages
are still necessary to join the DODAG, particularly during the sink
switch period. Furthermore, a node with multiple neighbors may
send additional DIO messages along different links with different sink
information.

3. For the packet delivery ratio section, the virtual root strategy’s
performance is better than the multiple-DODAG strategy in most
topologies. The main reason is that nodes in the virtual root strategy do
not need to maintain the backup link. Therefore, nodes in the virtual
root strategy can use more transmission capacity to deliver packets
rather than maintain the RPL network connection. In addition, nodes
in the virtual root strategy can switch the parent and route simply
because nodes are located in a big DAG network. The route switch
function can maintain the packet transmission task. However, for the
circular topology, common sensor nodes in the virtual root network
switch the destination frequently, leading to packet loss during the
exchange period. As all nodes are common in the topology and belong
to a big DAG with many hops, the loop detection function may cause
bad performance. For example, if a sensor node detects a large rank
value, it will choose the other neighbor. If the other neighbor also
has a big rank value, the node must pause and wait for the new DAG
version to be updated. This problem can be solved but need some
time. Since the packet transmission speed is high and the virtual root
network has a big DAG, the virtual root strategy cannot deliver data
packets correctly during the root exchange period. Besides comparing
the two strategies, the parent switch affects the PDR negatively in both
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strategies. Therefore, the two strategies both have lower PDR than the
multiple-instance strategy with high packet loss.

In conclusion, the virtual root strategy demonstrates a high packet delivery
ratio and reduces the transmission pressure of RPL control packets in most
scenarios, particularly in dense topologies. However, the multiple-DODAG
strategy outperforms the virtual root strategy regarding energy consumption.
In addition, in the circular topology, the multiple-DODAG strategy performs
better than the virtual root strategy across all three aspects. The crossing
topology presents a unique case where the central node experiences a high
traffic overhead. Although both strategies indicate poor PDR performance
in this topology, the virtual root strategy outperforms the multiple-DODAG
strategy. Even the difference in energy consumption between the two
strategies is not significant. The hops between sinks and distant sensor nodes
along the central node are negative factors in the crossing topology. Moreover,
as sensor nodes switch their destination, the exchange period introduces packet
loss, negatively impacting the PDR.

Overall, the virtual root strategy is more suitable than the multiple-
DODAG strategy in various scenarios, especially in dense topologies. Since
the virtual root strategy costs more energy but the difference is insignificant,
the strategy can be selected as long as the system is not a highly energy-
sensitive system.

6.7.2 Multiple-Instance Discussion
The multiple-instance strategy is a special topic because of its complex
implementation and complicated performance. Although the standard of RPL
mentions the availability of the multiple-instance strategy, some modifications
are necessary to allow the Contiki-NG to support some functions in the
multiple-instance network. More specifically, the source code needs to be
modified to satisfy the UDP packet transmission task in this project. According
to experiments, it is obvious that the multiple-instance strategy produces
much more RPL control packets than the other two because each node in the
multiple-instance strategy must receive and deal with information from two
independent instances. In addition, sensor nodes also send many RPL control
packets toward the root to maintain the DODAG connection in two instances.
Besides the number of packets, nodes in the multiple-instance strategy cost a
lot of energy because nodes must process many packets. In addition, the heavy
RPL control packet overhead occupies traffic resources, leading to a slightly
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lower delivery ratio of the UDP packet transmission under low packet loss
conditions.

However, the multiple-instance strategy has good PDR performance with
high packet loss in each topology. In contrast, the number of RPL control
packets and energy consumption is much more than the other two strategies.
The main reason is that the multiple-instance implementation applies the
preferred instance design, leading to little packet loss during the destination
switch period. This design provides high PDR performance, but it reduces the
flexibility in the multiple-instance network. Although the multiple-instance
strategy demonstrates good performance in scenarios with high packet loss,
it underperforms compared to the other two strategies regarding PDR with
low data transmission speed, as observed in some supplementary experiments.
Some additional experiments were designed to transmit one UDP data packet
per three seconds. In these extra experiments, the multiple-instance strategy
consistently exhibits a lower packet delivery ratio than the other two under all
packet loss conditions.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion
In this project, the main idea is to compare the different RPL strategies in
different situations and conclude some regular patterns as a reference while
implementing the RPL network. There are three strategies with multiple sinks
designed in this project. Multi-sink mechanism of RPL is mainly applied to
a large-scale network and provides redundancy and backup. However, three
different strategies have different features. The multiple-DODAG strategy is
the default strategy with the most straightforward implementation process.
The virtual root strategy needs a unique configuration but simplifies the RPL
network. The multiple instances strategy is the most complex strategy with
much modification for the default system. Contiki-NG and Cooja are applied
to build simulation experiments to compare the performance of three strategies
in multiple scenarios. As for evaluating the performance in different scenarios,
the project implements five topologies: grid, random, linear, circular, and
crossing topology. Among the five topologies, grid and random topology are
called dense topology because nodes are located in a dense area, and most
nodes have more than two neighbors. On the contrary, the other topologies
are called sparse topologies since nodes are not clustered in a certain area, and
most nodes have two neighbors. The crossing topology is unique because most
nodes have two neighbors at most, but the central node has four neighbors.
After determining the topologies, the evaluation metrics are determined in the
same section. There are three evaluation areas: the number of RPL control
packets, PDR, and energy consumption. Then the implementation of the
node and topology are indicated in detail. The method of collecting data
from the three evaluation metrics is determined before introducing the results.
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By analyzing the result, the multiple-instance strategy performs worst among
all three strategies except for some specific scenarios. The multiple-instance
strategy has better PDR performance under the high packet loss condition.
Apart from the multiple-instance strategy, the virtual root strategy performs
better in the number of packets and PDR field but worse in energy consumption
than the multiple-DODAG strategy in most scenarios, especially in dense
topologies. While applying the circular topology, the virtual root strategy
performs worse than the multiple-DODAG strategy across all three aspects.

7.2 Limitations
The first limitation of this study is that the experiments were conducted on
a simulation platform. Although the configuration of the Contiki-NG can be
simulated, practical experiments are preferred for IoT networks. For example,
practical experiments can help identify issues during practical use and allow
adjustments to ensure the system works well in real-world scenarios.

The second limitation of this project is the number of topologies used in the
experiments. Although five topologies are enough to conclude several regular
patterns, they can only contain some scenarios. Therefore, the conclusion and
rules are more solid with additional experiments and topologies. However,
due to limitations in the length of the thesis, only five topologies were used in
this project.

The third limitation is related to implementing the multiple-instance
strategy in the experiments. While this strategy was implemented to evaluate
the system’s performance, there are some remaining flaws. For instance, it is
unclear how the system would perform if the root were allowed to join another
root’s instance. Additionally, the preferred instance function negatively affects
the flexibility of the multiple-instance network. As this project’s primary goal
is not to provide a detailed implementation and deployment of the multiple-
instance strategy, the multiple-instance network can be applied to finish the
project, but the implementation is limited.

7.3 Future Work
Based on the work shown in this project, there are several areas for potential
future improvement.

Firstly, the experiments could be expanded to include more scenarios, such
as larger network scales, diverse topologies, increased data packet numbers,
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and experiments conducted on practical devices. Due to limitations in the
laptop’s performance used in this project, certain ideas, like extensive network
scales and more data packets, cannot be completed in this project. Therefore,
improving the experiments makes the conclusions and rules more accurate,
enabling more efficient comparisons between different strategies.

Secondly, the implementation improvement is limited since deploying the
virtual root strategy and the multiple-DODAG is straightforward. However,
one potential modification involves enhancing the virtual root strategy’s
synchronization method among practical sinks. Furthermore, the experiment
with different mote types and MAC layers can be applied to evaluate the
performance in different scenarios.

Lastly, further research can be conducted on the multiple-instance strategy.
In this project, sensor nodes in the multiple-instance strategy were assigned
the preferred instance, resulting in good PDR performance with high packet
loss. However, this design limits the flexibility of the RPL network. Unlike
sensor nodes in the other two strategies, nodes in multiple-instance networks
are unable to switch destinations frequently. In addition, further research can
examine how the network would perform if the root were permitted to join
another instance. Different implementations of the multiple-instance strategy
may lead to different results.
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