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Abstract

Detecting defects in industrially manufactured products is crucial to ensure their
safety and quality. This process can be both expensive and error-prone if done
manually, making automated solutions desirable. There is extensive research
on industrial anomaly detection in images, but recent studies have shown that
adding 3D information can increase the performance. This thesis aims to ex-
tend the 2D anomaly detection framework, PaDiM, to incorporate 3D informa-
tion. The proposed methods combine RGB with depth maps or point clouds and
the effects of using PointNet++ and vision transformers to extract features are in-
vestigated. The methods are evaluated on the MVTec 3D-AD public dataset using
the metrics image AUROC, pixel AUROC and AUPRO, and on a small dataset col-
lected with a Time-of-Flight sensor. This thesis concludes that the addition of 3D
information improves the performance of PaDiM and vision transformers achieve
the best results, scoring an average image AUROC of 86.2+0.2 on MVTec 3D-AD.

Keywords - Machine Learning, 3D anomaly detection, feature extraction, manufac-
turing, computer vision, vision transformer, PointNet
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Introduction

1.1 Motivation

Detecting anomalies in industrial manufacturing using machine learning can be
challenging as the types of anomalies are often unknown beforehand. More-
over, anomalies are typically rare in practice, making it difficult to gather enough
anomalous data for training machine learning models. These factors make super-
vised methods unsuited for the task. To address these challenges, unsupervised
methods are often used instead, which seek to learn the distribution of the nor-
mal data. Anomalies are then detected when a sample that deviates from the
norm is encountered. Anomaly detection is an area of study that goes far beyond
industrial manufacturing; finance, cyber security and medicine are just a few ex-
amples of fields in which anomaly detection is used to detect inconsistencies in
data [32].

In practice, detecting anomalies is both costly and error-prone to do manually.
One solution is to automate the process by letting a machine perform the task in-
stead of a human. There is extensive research on industrial anomaly detection
on images, however, not much attention has been put on 3D anomaly detection.
Modern technology allows for high-resolution 3D sensors and since the release of
the MVTec 3D-AD dataset [7], the research on 3D anomaly detection has begun
to increase. Some examples of data from the MVTec 3D-AD dataset are given in
Figure 1.1. Recent studies have shown that 3D representations provide relevant
information useful for detecting anomalies [4, 47], especially when combined
with RGB data [7, 40]. Furthermore, with the rapid advances in computer vi-
sion, more modern architectures have been proposed that achieve state of the art
performance on staple vision tasks, such as image classification [16].

Combitech is a consulting company whose main area of focus is to provide
technical solutions to its customers. Recently, the company has seen a growing in-



2 1 Introduction

terest amongst its customers to automate the process of detecting defective items
in industrial manufacturing. The Patch Distribution Modeling Framework for
Anomaly Detection and Localization (PaDiM) is an example of an unsupervised
anomaly detection framework designed to detect and localize anomalies in indus-
trial images.

Cookie

Point Cloud

Ground Truth

RGB

Depth Map

Figure 1.1: Examples of data in the MVTec 3D-AD dataset. The dataset
includes both RGB images and 3D information. Ground truth anomalies
indicated in red are also provided.

1.2 Aim

The aim of this master thesis was to investigate if 3D information can be inte-
grated into PaDiM to increase its performance. PaDiM has already been investi-
gated on 2D data by Combitech and showed promising results on real-life images,
it was therefore interesting to investigate if the performance could be further im-
proved by adding 3D information. The end goal was to produce a working frame-
work based on PaDiM that detects and localizes anomalies in real objects using
both 2D data and 3D data, and that would be beneficial to Combitech.
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1.3 Research Questions

* What performance can be achieved when testing the proposed methods on
the MVTec-3D AD dataset?

* What performance can be achieved when testing the proposed methods on
a small dataset collected with a time-of-flight camera?

* Can the proposed 3D anomaly detection methods achieve better perfor-
mance than the original PaDiM?

* How does the resolution of the sensor affect the performance of the pro-
posed methods?

* Can the proposed methods achieve real-time inference times to be used in
a real industrial environment?

1.4 Delimitation

All models were trained and tested on the MVTec 3D-AD dataset or a small real-
life dataset collected with a Helios2 time-of-flight! sensor during the project. De-
termining the optimal threshold for predicting anomalies was not part of the in-
vestigation and the methods instead generated scalar-valued anomaly heat maps
which could be visually interpreted. The hardware used for training and test-
ing the models were: Intel Core i7-8700K, NVIDIA GeForce GTX 1080 Ti and
19-9880H, NVIDIA GeForce RTX 2070 (mobile).

1.5 Contributions

Marcus was responsible for the depth methods and Kevin for the point cloud
methods. Each member was responsible for writing the chapters in the report
specifically relating to their work, and the rest was written together.

1https ://thinklucid.com/product/helios2-time-of-flight-imx556/
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Related Work

2.1 Unsupervised 2D Anomaly Detection and
Localization

Unsupervised 2D industrial anomaly detection is a well-established field of re-
search and the methods can broadly be divided into two categories: Representation-
based methods and Reconstruction-based methods [32]. Currently, representation-
based methods achieve the best results [32].

2.1.1 Representation-based Methods

Representation-based methods involve two main components: feature extraction
and density estimation [32]. The feature extraction aims to extract visual fea-
tures from images, usually using a pre-trained CNN backbone trained on a large
dataset such as ImageNet [42]. Examples of commonly used CNN architectures
used are ResNet [19] and EfficientNet [48]. After the feature extraction, some
form of density estimation is performed to learn the distribution of the features
in normal images. During inference, anomalies are indicated by a low density.
PaDiM [13] falls under this category.

Sub-image anomaly detection with deep pyramid correspondences (SPADE)
[11] and PatchCore [38] are two methods that resemble PaDiM. Both methods
utilize a memory bank which stores features seen during training. SPADE uses a
two-step approach where anomaly localization is only performed if an anomaly
is first detected on an image level. SPADE introduces a very resource-demanding
anomaly localization process that PatchCore attempts to solve by using greedy
coreset subsampling to reduce the size of the bank, while still keeping the most
relevant information. For density estimation, k-nearest neighbours (kNN) is used,
where a large distance to the neighbours indicates a high probability of an anomaly.

5
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One downside of the memory bank approach is that it scales linearly with the size
of the dataset [11]. In contrast, PaDiM is independent of the size of the training
set.

More recent works propose a type of parametric neural density estimator
called normalizing flows to estimate the density of the features. This solution
relaxes the strong assumption of the underlying distribution and can approxi-
mate more complex distributions. DifferNet, proposed by Rudolph et at. [39]
concatenates features extracted from images at different scales before feeding
them into a normalizing flow network for density estimation. Moreover, differ-
ent transformations are applied on the images to improve the robustness of the
model. Following the work of Rudolph et al., CFLOW-AD [18] seeks to improve
the localization performance by adding positional encoding to the feature rep-
resentations, which achieves excellent localization performance on the MVTec
2D-AD dataset. Rudolph et al. extend DifferNet [39] by incorporating feature
maps at different scales. This is shown to improve the anomaly detection and
localization performance.

The Mixture Density Network (MDN) [8] is another type of neural density
estimator that has been applied to anomaly detection and localization. VI-ADL
proposed by Mishra et al. [31] implements a Gaussian Mixture Density Network
to estimate the density of the features extracted from a vision transformer to local-
ize anomalies. VT-ADL trains a vision transformer to learn both the parameters
of the MDN and to reconstruct the feature vectors from the input images, hence
it is a combination of a representation-based and reconstruction-based method.
A possible drawback with VT-ADL is that the vision transformer is trained from
scratch on a small dataset with ~ 300 samples per class. It has been stated in
previous research [16] that vision transformers typically require large amounts
of data to reach their full potential. Moreover, estimating the feature distribution
and reconstruction parameters simultaneously may slow down the convergence
speed of the model.

2.1.2 Reconstruction-based Methods

In Reconstruction-based methods, a model is trained to reconstruct the normal
images which it receives as inputs. When presented with an image that contains
an anomaly, the model is unable to properly reconstruct the anomalous region
which is indicated by a large reconstruction error. Commonly used architectures
for reconstruction-based methods are generative models such as generative ad-
varsarial networks (GANs) and auto-encoders (AEs). Schlegl et al. [44] developed
the framework f~AnoGAN to detect anomalies in medical images. The method
consists of first training a variant of the GAN called Wasserstein Generative Ad-
versarial Network (WGAN) to generate non-anomalous images from a normal
distributed latent space. A WGAN measures the Wasserstein distance between
the distribution of the input data and the generated data. Secondly, an encoder
network is trained to map input images to the latent space to be decoded by the
generator module in the WGAN. The anomaly score of a test sample is computed
as the weighted sum between the reconstruction error and the feature error which
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is the squared-error between the discriminator output of the original image and
the discriminator output of the generated image. An illustration of f~AnoGAN
is given in Figure 2.4. The f-AnoGAN has also been evaluated in an industrial
setting on the MVTec 2D-AD dataset by Bergmann et al. [6], but achieved poor
performance. Baur et al. [3] train an AE network to first map input brain MR im-
ages to a low dimensional latent space which can be sampled from to reconstruct
the inputs. The reconstruction error is used to compute the anomaly score for
each test sample. A similar approach has also been studied on industrial images
by Youkachen et al. [56].

2.1.3 Patch Distribution Modeling Framework for Anomaly
Detection

Patch distribution modelling framework for anomaly detection (PaDiM) is a method
proposed in 2020 by Defard et al. [13] to solve the problem of anomaly detection
and localization in industrial images. PaDiM concatenates features from different
layers in a ResNet [19] backbone to obtain patch embeddings from different se-
mantic levels. These embeddings are used to learn the parameters of a multivari-
ate Gaussian distribution for each patch. Anomalies are detected and localized
by computing the Mahalanobis distance [28] between the patch embeddings of
the test image and the learnt Gaussian distributions of the patches where large
distances indicate anomalous patches. An illustration of the PaDiM framework is
given in Figure 2.1 and 2.2. PaDiM was originally designed for 2D anomaly detec-
tion and localization, and was tested on the MVTec 2D-AD dataset [6] achieving
state-of-the-art performance in 2020 [13].

N Train Images

Pre-traind GNN Gaussian distrubutions

N{mean, cov)

TOO000]
onannannn

N Embeddings I

Figure 2.1: Learning the Gaussian distribution
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Test Image

Figure 2.2: Locating anomalies

2.2 Unsupervised 3D Anomaly Detection and
Localization

2.2.1 3D Variational Auto-Encoder

Bengs et al. [4] use a variational auto-encoder (VAE) to detect anomalies in Mag-
netic Resonance Imaging (MRI) scans of the human brain. The MRI scans are
represented as 3D voxel grids of the brain volumes. To work with the voxel data,
3D convolutional layers were used to build the VAE’s encoder and decoder. Fig-
ure 2.3 shows an illustration of the architecture. The goal is to train the VAE to
reconstruct healthy scans so that it fails to reconstruct abnormal MRI scans. The
method was further optimized by erasing regions of the input image to force the
method to learn the in-painting of data. The method was compared to an identi-
cal VAE structure, but created with a 2D convolutional layer and trained on slices
of MRI scans instead. This method was evaluated on the MVTec 3D-AD dataset
by Bergmann et al. [7]. The reported area under the PRO curve (AUPRO) with
an integration limit of 0.3 was 49.2% using only XYZ data and a score of 47.1%
when using both RGB and XYZ data.

2.2.2 3D Fast Unsupervised Anomaly Detection with Generative
Adversarial Networks

Simarro et al. [47] and Presa et al. [33] both presented fast unsupervised anomaly
detection with generative adversarial networks methods to detect anomalies in
brain data represented by voxel grids. These methods are 3D extensions of the
2D f-AnoGAN by Schlegl et al. [44] described in Section 2.1.2. They extend the
method by using 3D WGAN instead of a 2D WGAN. The 3D f-AnoGAN proposed
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Input voxel B ) Encoder ’ . . a Decoder ’ *. oxel recostruction

Reconstruction error

Figure 2.3: Illustration of an 3D Variational Auto-Encoder

by Simarro et al. [47] was evaluated by Bergmann et al. [7] on the MVTec 3D-AD
dataset. They reported an AUPRO score of 58.3% with an integration limit of 0.3
using only XYZ voxel data and 63.0% using both RGB and XYZ voxel data.

.| Reconstruction,

" Error ~ |
; ) Reconstruction
Encoder — N(01) — Generator —
PR Feature ——
Discriminator -
- —5‘ B |¢— Discriminator

Figure 2.4: Illustration of the f~AnoGAN structure

2.2.3 3D Student-Teacher

Bergmann et al. [5] propose a method called 3D Student-Teacher (3D-ST) which
is designed to detect and localize anomalies in point cloud data. The method has
been evaluated on the MVTec 3D-AD dataset and is the first published anomaly
detection and localization method that operates directly on 3D point clouds. A
teacher network is pre-trained on the pretext task of outputting local descriptors
for each point in a 3D point cloud and was pre-trained in a self-supervised man-
ner on synthetic point clouds from ModelNet10 [55]. They show that training a
teacher on a synthetic dataset yields descriptors that are useful for 3D anomaly
detection and localization. A student network that has the same architecture as
the teacher is then trained on the MVTec 3D-AD dataset to match the outputs
of the teacher network. Anomalous regions are localized by measuring the dif-
ference between the output of the student and the output of teacher where a big
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difference indicates anomalies. 3D-ST achieves an average AUPRO score of 83.3%
on MVTec 3D-AD, with an integration limit of 0.3. 3D-ST is proven to be effective
for detecting and localizing anomalies in 3D point clouds achieving above 90%
AUPRO on most classes in MVTec 3D-AD, however, the method performs poorly
on certain classes where it scores around 50% AUPRO.

2.2.4 Asymmetric Student-Teacher

The Asymmetric Student-Teacher (AST) architecture for industrial 3D anomaly
detection was proposed by Rudolph et al. [40] in 2023 and is one of the few meth-
ods that have been implemented for both 2D anomaly detection and 3D anomaly
detection. The method concatenates RGB features extracted from the pre-trained
backbone network, EfficientNet-B5 [48], with depth images to incorporate 3D
information. Moreover, a positional encoding is added to include information
about the position of the pixels. In contrast to the traditional student-teacher ar-
chitecture; the student and teacher networks are purposely chosen to be different
from each other to combat over-generalization that often leads to low anomaly
scores for certain anomalies. The teacher network is a 2D normalizing flow that
is trained on the pretext task of transforming the input to a normal distribution,
thereby creating targets for the student network. The student network is a con-
ventional feed-forward neural network that is trained to match the outputs of
the teacher network. The anomaly score is given by the difference between the
teacher network and the student network. The AST method reports an image
area under the receiver operating characteristic (AUROC) score of 93.7 + 0.2%
and a pixel AUROC score of 97.6 + 0.02%. It is shown that a combination of RGB
and depth data improves the performance over using a single input type. In their
work, only the effect of using raw depth map information is studied and the effect
of using features extracted from depth maps is excluded.



Theory

3.1 Anomaly Detection and Localization

An anomaly can be defined as a rare event that deviates from the expected pat-
tern of a system. Anomaly detection refers to the binary classification problem
of finding such events and correctly classify them as anomalous. In anomaly
localization, the location of the anomaly is also of interest [49]. For example,
determining which pixels in an image constitute the anomaly.

3.2 Machine Learning

Machine Learning is a subdomain of artificial intelligence that describes a set of
methods that learn how to solve problems without explicit instructions, given
that enough training data is provided [29]. The end-goal is that the models are
able to generalize to previously unseen data. Two common machine learning
paradigms are Supervised Learning and Unsupervised Learning [29]. In supervised
learning, a model is given training data which has been (manually) labelled with
the expected outputs, and the model then attempts to learn a mapping from the
inputs to the true labels. In contrast, unsupervised learning discovers patterns in
data without the requirement of any labels.

3.3 Neural Network

A Neural Network (NN) [30] models a typically nonlinear function and is in-
spired by the neurons in the brain. The model is composed of a collection of
neurons that are ordered in layers. The first layer is often referred to as the input
layer and the last layer is usually called the output layer. In-between these layers,

11
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a chosen number of hidden layers are typically added, which allows the neural
network to solve more complex tasks. An illustration of a simple neural network
is given in Figure 3.1. The output of a neuron is dependent on the output of the
neurons in the previous layer. The output of a single neuron is given by:

z=(wix+b)e R (3.1)

w € RN*! are called the weights, x € RN*! the inputs and b € R'*! is called the
bias term. The output of a neuron is the weighted sum of all of its inputs plus the
bias term. When there are multiple neurons in a layer, matrix notations become
useful. The weights are now stored in the matrix W € RV and the biases in the
vector b € RM*! where N is the input dimension and M is the output dimension.
The equation now becomes:

z=(WTx+b)e RMX! (3.2)

by I

Qutput
Layer

Input

Laysr

Hidden
Layer

Figure 3.1: A neural network consisting of one input layer (with two inputs),
one hidden layer and one output layer (with one output).

3.3.1 Activation Function

To introduce non-linearity to a neural network, a (non-linear) activation function
o(z) = o(wTx + b) is applied to the output of a neuron. The final output of a
single neuron then becomes:

y = o0(z) e R™*! (3.3)

Figure 3.2 illustrates a neuron with three inputs xy;, and output y with the
activation function o.
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Figure 3.2: A single neuron of a network

3.3.2 Learning

The weights and biases of a neural network are updated during training where a
loss function computes the error between the expected output and the predicted
output. Common loss functions are the mean-square error (MSE) for regression
problems and the cross-entropy (CE) for classification problems. The fitting of
a neural network is typically done in an iterative manner by first computing
the gradient of the loss function with respect to the weights, then updating the
weights in the opposite direction of the gradient. Backpropagation [41] is com-
monly used as an efficient way to compute the gradients. The updating of the
weights is performed with an optimization algorithm such as Adam [22].

3.4 Convolutional Neural Network

A convolutional neural network (CNN) [24] is a type of neural network that usu-
ally operates on image data. A common application for CNNs is object recogni-
tion where the goal is to correctly classify the categories of the objects in images.
Such a CNN usually consist of two main parts: A feature extractor and a classifier.
The feature extractor transforms the data using the convolution operator result-
ing in a set of feature maps. The classifier is a traditional neural network (see
Section 3.3) that consists of a set of fully-connected layers that return the class
scores.

3.4.1 Convolutional Layers

The convolutional layers of feature extraction consist of learned kernels that are
used to perform convolution operations on the data. The layer contains L kernels
with the shape of K; € RE*5*5 for each kernel I = {1,..,, L} where C represents
the number of channels and S represents the size of the kernel. The operation is
performed on the input X with the height and width of M and N. An illustration
of a convolution with one channel is displayed in Figure 3.3.

C 0 )
(X * K;)[m, n] = Z Z Z x[z,i,j]- Ki[z,m — i, n — j] (3.4)

z=1 j=—00 i=—00



14 3  Theory

Figure 3.3: 2D Convolution on an image with one channel.

The convolution operator can also be defined for data of different dimensionality
than two. A 1D convolution can be used for signal data and a 3D convolution for
voxel grids.

3.4.2 Residual Networks

The residual networks (ResNets) by He et al. [19] are CNN architectures that
introduce residual layers to ease the training of deeper networks. Created in
2015 to classify images in the CIFAR-10' and object detection/localization on
the ImageNet [14] datasets. The method achieved state-of-the-art performance
for both datasets. The network managed to receive this performance by using
residual layers to mitigate the vanishing/exploding gradient problem, allowing
the network to extend the number of layers used compared to other networks.
The residual layer that builds the ResNet architecture is illustrated in Figure 3.4.

-

‘ Machine learning Layers ‘

Fix)

F(yi+ ®

Figure 3.4: A Residual Layer

3.5 Time-of-Flight Sensor

Time-of-Flight (ToF) [23] is the measurement of the time it takes for light to travel
from a point A to a point B. The method is used to calculate the distance to a
target by using the time it takes for light to travel from the sensor and back.
Figure 3.5 shows an example of ToF when a light beam moves to the target and
back. Using the measured time and the universal constant of the speed of light,
the distance to the target can be calculated.

1https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 3.5: Time-of-Flight concept.

3.6 3D Data Representations

3.6.1 Depth Map

Depth maps are typically grayscale images where the intensity of each pixel is
determined by the distance from the viewpoint to the surface covered by that
pixel.

3.6.2 Point Cloud

Point Clouds can be used to represent 3D shapes and are typically generated
with a 3D scanner. Point clouds are either organized or unorganized [21]. An
unorganized point cloud is represented as a list, where every entry contains x,
y and z values. In contrast, an organized point cloud is represented as a 2D
matrix where the points are stored according to the spatial relationship between
the points [21]. The MVTec-3D AD dataset [7] uses organized point clouds to
represent the 3D data.

3.7 Feature Extraction

3.7.1 RGB Images

Feature extraction is effectively a transformation of data that conserves the most
valuable information used to solve a task. An example of a feature extractor is the
Convolutional Neural Network (CNN) [24] such as ResNet-50 [19], which makes
use of the convolution operator in order to compress the data into a smaller fea-
ture space, while still preserving the most vital information about the data. In
contrast to a CNN, which is a learned feature extractor, there are also handcrafted
feature extractors designed by experts and theorized to give effective represen-
tations of data. Examples of handcrafted features are: Histogram-of-Oriented-
Gradients (HOG) [12] and Scale-Invariant-Feature-Transform (SIFT) [27].

3.7.2 Depth Map

Feature extraction on depth maps using a pre-trained CNN has been investigated
in previous works relating to other research fields, for example pose estimation
[45]. Handcrafted features such as HOG [12] and SIFT [27] have also been inves-
tigated for head pose estimation using depth images [54].
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3.7.3 Point Cloud

Extracting features from a point cloud can be done using either handcrafted fea-
tures like Fast Point Feature Histogram (FPFH) [43] or learnt features that are ei-
ther tree-based or point-based methods [26] like PointNet [34]. The FPFH method
finds features by using the geometric relation between a point and its k nearest
neighbours. The features are obtained by calculating the angular variations be-
tween estimated normals between the neighbouring points. The PointNet algo-
rithm learns the features by applying one-dimensional convolution on the point
cloud.

3.8 Probabilistic Concepts
3.8.1 Probability Density Function

Let X be a continuous random variable. The probability that X falls between the
limits a and b can be determined by integrating the probability density function
f over the limits. This relation can be mathematically expressed as [46]:

b
Pla<X<b)= Jf(x)dx (3.5)

Any point along the probability function is commonly referred to as the likelihood.
An example of a probability density function is that of the univariate Gaussian
distribution:

flx) = 35 (3.6)

3.8.2 Density Estimation

Estimating the probability density function of the data given a set of observed
samples is called density estimation [46]. One of the oldest techniques for density
estimation is to group points that share the same value into bins that together
form a histogram. Given a set of n observed points X = (X, ..., X,,), the histogram
with bin width & can then be defined as [46]:

A

1
=—k 3.7
flo = — (3.7)
where k is the number of X; in the same bin as x. More advanced density estima-

tors exist, but the histogram provides an intuitive idea to the concept.

3.8.3 Multivariate Gaussian Distribution

The Multivariate Gaussian Distribution (MVG) is a generalization of the continu-
ous univariate Gaussian distribution. The MVG of a k-dimensional random vec-
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tor X = (Xy, Xy, ..., X;)T can be written as [50]:
X ~ Ny(.E) (3.8)
where p is the k-dimensional mean vector

p = E[X] = (E[X;], E[X3], .. E[Xi])" (3.9)

and X is the k x k dimensional covariance matrix

Tij = El(X; = ui)(Xj = pj)] = Cov[X;, X] (3.10)

3.8.4 Mahalanobis Distance

The Mahalanobis distance [28] can be used to determine the distance from a test
point x to a distribution and is computed by the equation:

V= gz x— p) (3.11)

where p is the mean vector of the distribution and 7! is the inverse of the covari-
ance matrix.

3.8.5 Mixture Model

A mixture model combines m probability density functions called components, i,
to form a more complex probability density function [9]. Typically, a mixture
consists of multiple components originating from the same type of distribution,
where each distribution is associated with a weight a; [9]. An example is the
univariate Gaussian mixture model (GMM) given by:

px) =) aiN (o) (3.12)
i=1

3.8.6 Mixture Density Network

The Mixture Density Network (MDN) proposed by Bishop [8] is a neural density
estimator that combines a Neural Network with a Mixture Model. The model
seeks to learn the conditional probability:

plth) = ) a;(x)b;(tx)) (3.13)
i=1

where m is the number of mixture components, a;(x) is the mixing coefficient
and ¢;(t|x) is the conditional density of the target vector t for the ith kernel. For
the purpose of this project, let ¢;(t|x) be the Gaussian function, this gives:

pithx) = ) ai N (tlp; (%), 07 (%) (3.14)
i=1
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The mixing coefficients «;(x) must satisfy the constraint:

m
a;(x)=1 (3.15)
i=1

1

where 0 < a;(x) < 1, which is achieved by the softmax function:

_exp(z])
LiLi exp(z)

The variances o; are constrained to be positive using the exponential function:

(3.16)

i

o; = exp(z]) (3.17)

No constraint is imposed on the mean vector:

Hik = Ziﬂk (3.18)
Finally, the loss function that is minimized is given by the negative log-likelihood
[8,9]:

m

N
Lw) ==Y " In() " i, w), N (tpt; (x5, W), 07 (%, W))) (3.19)

n=1 i=1

where w are the weights and biases of the MDN and N is the number of samples.
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Figure 3.6: Overview of the architecture of the vision transformer.

3.9 Vision Transformer

The Vision Transformer (ViT) was first proposed by Dostrovitskiy et al. [16]
in 2021 and is inspired by the Transformer originally proposed by Vaswani et
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al. [53] in 2017 that achieves state-of-the-art performance for many natural lan-
guage processing (NLP) tasks [15]. The ViT was the first vision model relying
exclusively on self-attention that was proven to outperform the long standing
ruler, the CNN, in many vision tasks [16]. One of the advantages of the ViT is
that it can be trained using fewer resources than an equivalent CNN, however at
the cost of requiring large amounts of data [16]. A Vision Transformer does not
come with the same inductive biases as CNN, for example, translation equivari-
ance and locality and thus has to learn it from scratch by observing more data
[16]. An architetural overview of the ViT is given in Figure 3.6.

3.9.1 Patch Embedding

The ViT receives as input an image x € R*W*C where H and W are the height
and width of the image and C is the number of input channels. The image is
divided into patches of size P x P, resulting in a total of N = HW/P? patches.
These patches are flattened resulting in the sequence of flattened patches x, €

RN*(P?*C) The flattened patches are linearly projected using the learnable ma-

trix, E € R(P* %D to the embedding dimension D that is constant throughout
the network.

3.9.2 Class Embedding

A learnable class embedding (CLS), x.;; € R'*P that has the objective to capture
relevant information for classification, is prepended to the patch embeddings.
The class embedding interacts with the patch embeddings through self-attention.

3.9.3 Position Embedding

A learnable position embedding E,,s € RN+1D*D js added to the class and patch
embeddings to inject positional information to the embeddings as a transformer
does not have any pre-knowledge of the sequence of the input patches.

3.9.4 Transformer Encoder

The transformer encoder takes as input the position enhanced embeddings and
outputs contextualized embeddings that are learnt through self-attention. In
addition to the two components described below, the transformer encoder em-
ploys two residual connections [19] which are applied after the multi-head self-
attention (MSA) and after the multi-layer perceptron (MLP) inside the encoder
block. Moreover, Layer normalization [2] is applied before the MSA and MLP
blocks respectively. Most ViT architectures stack multiple transformer encoders
sequentially [16, 51, 52]. The architecture of the encoder block is illustrated in
Figure 3.7.
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Figure 3.7: The encoder block of the vision transformer.

Multi-Head Self-Attention

The MSA layer takes as input the layer-normalized position encoded class and
patch embeddings, z € RN*1*D | The input is linearly transformed using the
transformation matrix Uy, € RP*3Dr, resulting in [q, k,v] = 2Ugy € RN*3Dn
The (scaled dot product) attention is computed as:

A = softmax(qkT/y/Dy) € RNV (3.20)

The output of one self-attention operation is SA(z) = Av € RN*Ph, In multi-
headed self-attention, k self-attention operations are computed in parallel where
each block is called a head. Typically, Dy, is set to D/k [16]. The k outputs are
concatenated, and a linear transformation with matrix U,,s, € RKP#*D jg applied
which yields the result:

MSA(z) = [SA1(2); SAy(2); ...; SAK(2)]U e € RV*P (3.21)

The result of the multi-head self-attention layer has the same dimensionality as
the input z.

Multi-Layer Perceptron

The MLP layer consists of two linear layers with GELU [20] non-linearity and re-
ceives as input the layer-normalized output from the MSA block. The first linear
layer expands the dimensions, and the second linear layer shrinks it back to D.
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3.9.5 Multi-Layer Perceptron Head

The feature vector of the CLS embedding is fed into a MLP classification head on
top of the final transformer encoder block.

3.9.6 Data-efficient image Transformer

The Data-efficient image transformer (DeiT) was proposed by Touvron et al. [51]
and closely follows the architecture of the original ViT proposed by Dosovitskiy
et al. [16]. In addition to the CLS token that is prepended to the patch embed-
dings in the ViT, DeiT also appends a distillation token. The distillation token
works similarly to the class token, but attempts to reconstruct the output of a
teacher network instead of the true labels. The distillation token also interacts
with the class and patch tokens through self-attention. The best performance
was achieved when letting the teacher be a convolution neural network, RegNetY-
16GF [36], for which the DeiT performs on par with the best convolution neural
networks on the image classification task on ImageNet-1k [42] in terms of effi-
ciency vs. accuracy. It is theorized by the authors that one of the reasons for why
a convolution neural network is more effective than a vision transformer as the
teacher, is because the inductive biases are inherited.

3.9.7 Class-attention image Transformer

In contrast to convolution neural networks, vision transformers have not shown
to benefit from deep architectures [52]. The Class-attention image transformer
(CaiT) was proposed by Touvron et al. [52] and scales the ViT to deeper archi-
tectures. It features two main improvements over the ViT, LayerScale and Class-
Attention. LayerScale adds a learnable diagonal matrix to the output of each resid-
ual block in the encoder block to improve the training dynamic. Class-attention
is a mechanism that separates the self-attention between patches and the self-
attention between the patches and the class token. This is achieved by inserting
the CLS token later in the network while freezing the weights learnt through
self-attention, allowing the network to focus on one task at a time.

3.10 PointNet++

In 2017 Qi et al. [35] introduced PointNet++ as a model for different 3D point
cloud tasks. The model is an improvement on the PointNet [34] model. The
method is divided into two main parts: classification and segmentation network;
where it achieved state-of-the-art results on challenging benchmarks in classifica-
tion and segmentation tasks.

3.10.1 Farthest Point Sampling

Farthest point sampling (FPS) [17] is a sampling method for point clouds, that
takes the set N consisting of # points and samples them down to a subset N’
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consisting of m points. Given the point cloud N = {xy, x,,..., x,} a point x; is
appended to the N’ subset. Then until the subset N’ is full the farthest point
from all points in N’ is appended to the subset. The resulting subset N’ =
{x1, x2, ..., x;;,} where the point x; is the farthest point from the subset {x1, x5, ..., x;_1}.

3.10.2 Layers

PointNet++ consists of two different types of layers: the set abstraction layer to
learn the features of the data and the feature propagation layer to interpolate the
features back to the input size.

Set Abstraction

The set abstraction layer consists of three parts: the sampling, grouping, and
PointNet layers. The inputs to a set abstraction layer are N points with d di-
mensions and C channels, represented as N x C and N x d matrices. The sam-
pling layer takes these points and uses FPS to sample N’ points as centroids from
the point cloud into a matrix of N’ x C. Then, the grouping layer uses the ball
query method to collect all points within a radius around the centroids into a
N’ x K x C matrix. Where K is the maximum number of neighbours and has
a flexible amount of points. The last part is the PointNet layer from the Point-
Net architecture [34] consists of multi-layer perceptions (MLP) that extract local
features and return a N’ x C’ matrix.

Feature Propagation

The feature propagation layer interpolates the feature vectors using the centroid
grouping from the set abstraction layers. The features from the centroids are
propagated to the neighbouring points; this is done by first using the inverse
distance to weigh the features and then using a one-by-one convolutional layer
and multiple shared fully connected layers and rectified linear unit (ReLU) layers
over the features.

3.10.3 Centroid Grouping

The set abstraction layer samples a set of centroids and groups the data using the
ball query method using a set radius; called Single-scale grouping (SSG). This
can lead to a situation where there is a large variance in the density of the cen-
troid grouping. To avoid this, two methods were developed: Multi-scale grouping
(MSG) and Multi-resolution grouping (MRG).

Multi-Scale Grouping

The MSG variant concatenates multiple ball query groupings using different radii.
This allows the layer to group data from a region while still containing useful in-
formation. This method is computationally expensive as it has to run the set
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abstraction layer multiple times for different resolutions. An illustration of this
method is shown in Figure 3.8.

Figure 3.8: Multi-scale grouping.

Multi-Resolution Grouping

MRG was developed to solve the problem of low-density regions while avoiding
the cost of the MSG method. MRG consists of two parts that are concatenated.
First, a region is sampled using SSG. Then, the region is divided into sub-regions
that are put through the set abstraction layer, then these sampled sub-regions
are fed through the set abstraction layer resulting in a large grouping of points.
This is computationally more efficient as grouping over large areas is costly. An
illustration of this method is shown in Figure 3.9.

Figure 3.9: Multi-resolution grouping.

3.10.4 Architectures

The original PointNet++ paper created different architectures for different tasks?.
The three different tasks are classification, semantic segmentation and part seg-
mentation. All tasks can use the three different groping methods (SSG, MSG,
MRG) in the set abstraction layers. The general structure of a classification and
segmentation network is shown in Figure 3.11 and Figure 3.10 respectively.

Classification

The classification network has three set abstraction layers that feed into fully
connected layers. The first layer samples 512 points with a radius of 0.2, the
second with 128 points with a 0.4 radius and the last layer samples down the
points to 1 point with 1024 channels. These 1024 channels are fed into three
fully connected layers that classify the point cloud.

2https://github.com/charlesq34/pointnet2
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Part segmentation

The part segmentation network uses three set abstraction layers followed by three
feature propagation layers. The three set abstraction layers use the same param-
eters as the classification network. The feature propagation layers use the group-
ings from the set abstraction layers to reconstruct the point cloud.

Semantic segmentation

The semantic segmentation network has a similar structure to the part segmen-
tation network, the main difference is that it uses four set abstraction and fea-
ture propagation layers. The first set abstraction layer starts with sampling 1024
points with a radius of 0.1, the second layer samples 256 points with a radius
of 0.2, the third layer samples 64 points with a radius of 0.4 and the last layer,
samples 16 points with a radius of 0.8.
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4.1 Data

Most experiments were conducted on the MVTec 3D-AD public dataset [7]. The
dataset was downloaded from MVTec’s official website .

4.1.1 Aluminium Can Dataset

A real-world dataset consisting of aluminium cans was used to validate the meth-
ods. The data was collected using a Helios2 time-of-flight? sensor. The cans were
placed approximately 1.2 meters from the sensor. 10 scans were taken per object
at different rotations to get a sufficiently large dataset. The collected dataset con-
sisted of a total of 120 samples of which 105 were used during training and 15
were used during testing. The training set included only normal samples and the
test set included both normal and anomalous samples. The dataset included only
XYZ-information.

4.1.2 Depth Map Preprocessing

The depth maps were created using the XYZ-information included in the MV Tec
3D-AD dataset. Due to the low information content, the x and y values were
scrapped and only the z-values were stored as an image. Since many of the depth
maps had irregular backgrounds which could potentially result in false positives,
a background removal inspired by Rudolph et al. [40] was used. First, the average
depths of the 5 x 5 corner regions were calculated. With these four values, a
background plane was interpolated and each pixel located less than 5mm away

1https ://www.mvtec.com/company/research/datasets/mvtec-3d-ad
2https ://thinklucid.com/product/helios2-time-of-flight-imx556/
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from this plane was considered to be part of the background and therefore set
to 0. This threshold was conservative as a higher threshold sometimes resulted
in parts of the objects being removed. However, this solution instead caused
some parts of the background remaining after the background plane removal.
These parts were detected using connected-component labelling in the binary
mask using the scikit-image library®. Only the largest connected component was
kept in the resulting binary mask, therefore the assumption was made that the
largest connected region was the object of interest. An illustration of the depth
map preprocessing pipeline is given in Figure 4.1.

Unprocessed depth map After plane removal After connected components removal Finished depth map
T 0 oreor [ 0

Figure 4.1: The two-step preprocessing pipeline for depth maps.

4.1.3 Point Cloud Preprocessing

In the first preprocessing step, a background plane was created by interpolating
the points between the average position of the non-zero 5x5 corner points of the
XYZ image. The difference compared to the depth map preprocessing is that
the interpolated background contained XYZ information. All null values (stored
as (0,0,0) values) were moved to this interpolated background. A segmentation
mask was also created where any point within a 7mm distance from the interpo-
lated background was considered as the background. Then, the point cloud was
fed through a 2D adaptive pooling layer to decrease its size. Lastly, all points
were normalized by setting the mean point to (0,0,0) and the maximum distance
from the mean to 1. A step-by-step illustration of the preprocessing is given in
Figure 4.2.

4.1.4 RGB Preprocessing

Unless specified otherwise, the RGB input to the backbone networks was resized
to 224 x 224 using bilinear interpolation and normalized using ImageNet’s nor-
malization constants: mean = [0.485, 0.456, 0.406] and standard deviation =
[0.229, 0.224, 0.225].

3https://Scikitfimaqe.org/
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Figure 4.2: The step-by-step preprocessing pipeline for point clouds

4.2 Implementation

4.2.1 PaDiM

A lightweight Python implementation of PaDiM using PyTorch* was downloaded
from GitHub® and was used as a baseline for this project. The MVTec 2D-AD
dataset [6] was downloaded from the official website of MVTec® and a quick eval-
uation of the baseline was performed on the dataset. It was determined that the
implementation achieved satisfactory results that were near the ones reported by
the original authors of PaDiM [13]. The baseline was extended in the various
ways described in the following sections to investigate the effects.

4.2.2 PaDiM Baseline

The baseline implementation of PaDiM was evaluated on the RGB data in the
MVTec 3D-AD dataset using the backbones ResNet-18 and Wide ResNet-50 as
proposed by the original authors [13]. These results were used to compare with
the proposed methods.

4.2.3 PaDiM-3D

The baseline PaDiM implementation was extended to work on depth maps in the
two different ways that are described below. The depth maps were repeated 3
times to create a 3-channel input required for the ResNet backbones.

Method A

In the first approach, a multivariate Gaussian distribution was learnt for each
patch in the RGB images and depth maps independently and during inference

4https://pytorch.org/
5https://github.com/xiahaifengl995/PaDiM—Z—\nomaly—Detection—Localization—master
6https://www.mvtec.com/company/research/datasets/mvtecfad
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Figure 4.3: A multivariate Gaussian distribution is learnt for the RGB images
and the depth maps separately.

the two anomaly score maps were summed to yield a final score map. The idea
behind this method is that the RGB model would be more capable of detecting
RGB-related anomalies such as discolouration, while the depth model would be
more effective at finding anomalies such as cracks or holes. By summing their re-
spective anomaly maps, both types of anomalies could be detected and the mod-
els would complement each other. An illustration of this architecture is given in
Figure 4.3. Features were extracted from the RGB images and the depth maps
using the same backbone model. As proposed by the original authors of PaDiM
[13], 100 feature channels from ResNet-18 were sampled randomly from the first
three convolutional layers and the spatial dimensions (56 x 56) of the first layer
were used for the multivariate Gaussian matrix. The same spatial dimensions
were used for Wide ResNet-50, but 550 randomly sampled channels from the
first three convolutional layers were used instead.

Method B

In the second approach, the embedding vectors of the patches in the RGB images
and depth maps were concatenated and only one model was trained on these new
embedding vectors. An illustration of the architecture is given in Figure 4.4. The
anomaly score maps were computed in the same way as in the traditional PaDiM.
For ResNet-18, 100 feature channels were sampled randomly for RGB and depth
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Figure 4.4: The embedding vectors of the RGB images and depth images are
concatenated.

I

respectively resulting in a total of 200 channels after concatenation. For Wide
ResNet-50, 550/2 = 275 channels were randomly sampled per input resulting in
a total of 550 channels after concatenation.

4.2.4 PaDiM-ViT

PaDiM-ViT is a variant of PaDiM-3D in which the ResNet backbone is replaced
with a vision transformer (ViT). Three different vision transformers were investi-
gated, all of which share similar architectures. The vision transformer implemen-
tations used were borrowed from the timm? library and had pre-trained weights
associated with them. The ViT model was pre-trained on ImageNet-21K [37] at
an image resolution of 224 x 224 and fine-tuned on the smaller ImageNet-1K [42]
using a resolution of 384 x 384. DeiT and CaiT were both pre-trained and fine-
tuned on ImageNet-1K at resolutions 224 x 224 and 384 x 384 respectively. The
vision transformers were used exclusively as feature extractors and were not fur-
ther trained. PaDiM-ViT uses the same method A and method B as described in
Section 4.2.3. PaDiM-ViT was tested on two different image resolutions, 224 x 224
and 384 x 384. The fine-tuned models were only used for the higher input reso-
lutions. The same vision transformer was used to extract features from the RGB
images and the depth maps. An illustration of PaDiM-ViT for method B is given
in Figure 4.5.

ViT

The ViT used had a patch size of 16 x 16 and a feature dimension of 768. The
CLS token was ignored, resulting in a total of 196 patches for 224 x 224 images
and 576 patches for 384 x 384 images, which were reshaped into 14 x 14 and

7https://huggingface.co/docs/timm


https://huggingface.co/docs/timm

30 4 Method

N Train RGB Images

0

Encoder layer nf

Gaussian distributions

N Train Depth Images

= 5

2
il
g
g
=
S
o
g
3
L
— s

gonooononoooooonon (uonoooooonoaooooo J
(uonononooaoanaono

Encoder layer m

B e—
M Encoder layers

N Embeddings [ it

Figure 4.5: A vision transformer is used to extract features instead of a
ResNet.

24 x 24 sized feature maps respectively. For method A, the full feature vectors
were used and for method B, 768/2 = 384 channels were randomly sampled from
the RGB and depth features respectively. This was done to reduce the feature
dimensionality and saved both memory and time.

DeiT

The DeiT backbone had a patch size of 16 x 16 resulting in 196 patches for an
input resolution of 224 x 224 and 576 patches for an input resolution of 384 x
384. Each patch had 768 feature channels. The class and distillation tokens were
ignored. For method B, 768/2 = 384 channels were randomly sampled from each
of the RGB features and depth features, which resulted in a total of 768 features
after concatenation.

CaiT

The CaiT architecture was composed of 24 transformer encoder layers and only
the features from the patch self-attention part of the network were used. The im-
age was divided into 16 x 16 patches yielding a total of 196 patches for 224 x 224
images and 576 patches for 384 x 384 images. The full-sized feature vectors were
used in both method A and method B as the feature dimension for CaiT is lower
than for the other vision transformers. This resulted in the feature dimension
384 for RGB and depth respectively.
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4.2.5 Investigating Possible Improvements to the Depth Methods
Object Alignment

The effect of first translating the object to the center of the image and then ro-
tating it to the x-axis was studied. Since PaDiM learns what is normal for each
patch, it was hypothesized that this would improve the ability to learn. To per-
form this operation, the resulting foreground mask obtained by the depth map
preprocessing described in Section 4.1.2 was used to compute the appropriate
transformation. The scikit-image library® was used to find the center of mass of
the object that could then be aligned with the center of the image using transla-
tion. To determine the angle of rotation, scikit-image computes the covariance
matrix of the image intensity along the image axes. The eigenvector of the covari-
ance matrix with the largest eigenvalue points in the direction along the largest
covariance. The angle between this vector and the x-axis was picked as the rota-
tion angle. This resulted in an object effectively having two possible orientations
instead of an infinite number. This was due to the axis sometimes facing 180
degrees in the opposite direction.

Gap Filling on the Depth Maps

A common issue with the depth maps were the missing values that could result in
false positives, these pixels always had the value 0. Gap filling was investigated as
a method to address these. The foreground mask acquired from the foreground
extraction described in section 4.1.2 was used as a starting point. Next, binary
closing” was applied on the mask to fill the holes inside the foreground. By taking
the pixels that were 0 in the original mask and 1 in the closed mask, the missing
values inside the object were obtained. These values were repeatedly filled over
3 iterations using the mean of the surrounding valid pixel intensities [40].

Zeroing the Background in the RGB Images

In the same way as described in the previous section, binary closing was applied
to the foreground mask obtained from the preprocessing. Element-wise multipli-
cation between the RGB images in the MVTec 3D-AD dataset and the new mask
was done to zero the background in the RGB images. This removed the inconsis-
tent lighting that some classes had.

Histogram Equalization on the Depth Maps

It was hypothesized that increasing the contrast in the depth maps could help the
model with detecting anomalies. Adaptive equalization from the Scikit-image
library'® was added to the depth maps. This made small surface variations more
apparent.

8https://scikitfimage.org/
9https://scikit—imaqe.org/docs/stable/api/skimaqe.morphology.html
1Ohttps://Scikitfimage.org/docs/stable/api/skimage.exposure.html
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Figure 4.6: The extracted features are fed into an MDN that learns the pa-
rameters of multiple Gaussian distributions.

4.2.6 Mixture Density Network for Density Estimation

The outputs of the feature extractor were fed into a MDN consisting of three
linear layers that replaced the MVG as the density estimator. Only the parameters
of the Gaussian mixture model were fit during training. Let N be the number of
patches and D be the dimensionality of the feature vector for each patch. The
input vectors stored in a matrix X € RN*P were linearly transformed using the
three weight matrices: W, € RDX(D-m) W e RP*D ™ and W, e RP*P-m)
where m is the total number of mixture components. The matrices p = XW, €
RN*(P ™) and ¢ = XW, € RNX(P*™ contained the D-dimensional mean and
standard deviation for each mixture Gaussian distribution. & = XW, € RNX(P ")
contained the mixture coefficient for each Gaussian distribution. The models
were trained using the Adam optimizer [22] with a learning rate of 0.0001 and a
weight decay of 0.0001. A batch size of 2 was used.

During inference, the log-likelihood of the patches belonging to the estimated
distribution was used. A low log-likelihood indicated a high probability of an
anomaly. In contrast to the MVG approach, a distribution per patch was not
learnt, as it was practically infeasible to train a separate model per patch. Instead,
a single distribution over all the patches was learnt. An illustration of PaDiM-ViT-
B with the MDN is given i Figure 4.6. The covariance between the features was
assumed to be zero, as the computational cost would become too high otherwise.
Furthermore, as pointed out by Bishop [8], given that the correct number of mix-
ture components is chosen, it is not necessary to have full covariance to estimate
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the density of any distribution.

4.2.7 Point-PaDiM

The Point-PaDiM method replaces the CNN backbone of the PaDiM method with
a PointNet++ backbone. This is so that PADiM may work on point clouds instead
of images. Pre-trained PointNet++ networks were acquired from ModelZoo!!
where three networks were used: classification, part segmentation and semantic
segmentation. For all three networks, the points were preprocessed according to
Section 4.1.3 and then fed to the network; the abstracted positions and features
are extracted from the layers. An illustration of this process is presented in Figure
4.7. Each point extracted from the largest layer was defined as a patch. After a
list of patches and features were collected, the mean and covariance matrix of a
multivariate Gaussian was calculated for each patch.

To calculate the anomaly scores using point cloud data, the point cloud went
through the same preprocessing steps as during training, but before the distribu-
tion was calculated. Then, the Mahalanobis distance between the features and
the multivariate Gaussian was first calculated to get the anomaly score for each
patch. Then, two approaches were used depending on the structure of the data:
reshaping or point placement. Reshaping was done if the output had a square
size and kept the image structure then reshaped the scores into a map. This was
possible as the order of the points was the same between the input and output.
Point placement instead approximates which index corresponds to the position
of a point. If the maximum x and y values are known, the 0-1 normalized values
for x and y coordinates were used to calculate the x and y indices in the anomaly
map, by multiplying the x or y value with the size of the anomaly map. The point
placement method was only used if the reshape method could not be used, as the
reshape method correctly maps the indices to the scores in the anomaly map.

N Training point clouds Distrubutions  Positions

PointMNet++ :l
|t et : :

Hmrzﬂ
RN . —

Figure 4.7: Learning distribution with PointNet++ backbone (part segmen-
tation)

11https://modelzoo.co/model/pointnetfpointnet27pytorch
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PointNet++ Classification MSG

The classification network was pre-trained to classify the point clouds in the Mod-
elNet40 dataset [55] and uses the MSG method to sample points in the point ab-
straction layers. None of the set abstraction layers has a square sampling size,
thereby breaking the image structure. Therefore the point placement method
had to be used to create the anomaly map.

PointNet++ Part Segmentation

The part segmentation network was pre-trained on the ShapeNet dataset [10]
consisting of 16 different classes of objects. Each object is divided into 50 parts.
The output of the part segmentation network is the same size as the input. If the
image structure is maintained for the input by using 2D downsampling, then the
anomaly map can be created using reshaping. Otherwise, if the image structure
is broken for the input then point placement has to approximate the anomaly
map.

PointNet++ Semantic Segmentation

The semantic segmentation network was pre-trained on the S3DIS dataset [1] to
separate 13 different objects in an environment. The reshape method was used
when the input had a square size, otherwise the point placement method was
used.

4.2.8 Investigation of Point Cloud Improvements
Downsampling the Input

The final layer in the segmentation network reconstructs the size of the input
with 128 features per point. For example, the Peach class in the MVTec 3D-AD
dataset has 361 samples, each consisting of 360000 (600x600) points and 128 fea-
tures. This requires a lot of memory to store, therefore the point cloud needed to
be downsampled to reduce the memory consumption. Four different downsam-
pling methods were tested:

* IDX: Selecting random points by the indices
* FPS: Farthest point sampling

* BQAVG: FPS with the mean Ball Query point
* BILIN: Bilinear downsizing

AVG: 2D Adaptive average pooling

The methods are divided into two categories: IDX and FPS which select individ-
ual points, and BILIN, BQAVG and AVG which combine groups of points. The
point selection sampling methods must use the point placement method when
creating the anomaly maps. Although the sampling size may be square-shaped,
the sampling breaks the image structure of the data.
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Layer Concatenation

Similar to the original PaDiM, multiple layers in the PointNet++ backbone were
concatenated to include more channels. The output from a layer in PointNet++
does not contain spatial information like CNNs, as the positions of the points in
the point cloud are kept in a separate list. To concatenate the layers, the Euclidean
distance between the points in each layer was calculated, where the channels of
the closest points in each layer were concatenated together.

Segmentated Background

By using the segmentation mask created during the preprocessing of the point
cloud, the points in the background were removed. As PointNet++ does not
need a square-shaped input, the data in the background could be removed. This
method is intended to reduce the distraction of the background points. As the
number of points that an object consists of is inconsistent between samples, 1D
average pooling was used to get a manageable and consistent size. To create the
anomaly map, the point placement method was used because the original data
structure was lost.

Combine with RGB

The PointNet++ backbone only uses XYZ data which may result in the model
missing colour-related anomalies such as discolouration. To include colour infor-
mation in model, PointNet++ and ResNet were combined. The backbones were
combined using the methods A and B from PaDiM-3D, described in Section 4.2.3.
Because a different backbone was used for each input type, the two anomaly maps
in method A were normalized with a minimum value of 0 and a mean of 1 before
being combined. When using the B method the output shape from the Point-
Net++ network has to be 56 x 56 x C, to be able to concatenate the channels with
the ResNet18 output.

Channel selection

In the original PaDiM framework when using the ResNet-18 backbone, 100 chan-
nels are selected at random to lower the complexity of the model. The last layer
in the PointNet++ segmentation network has 128 channels, using all channels in-
stead of 100 channels may lead to a performance increase without a large increase
in the complexity of the model.






Evaluation

5.1 Metrics

The three evaluation metrics used to measure the performance of the models
were: Image AUROC, pixel AUROC and AUPRO. Image AUROC measures the
anomaly detection performance on an image level, while the remaining two met-
rics focus on anomaly localization on a pixel level. Anomaly detection and local-
ization can be viewed as a binary classification task where a positive corresponds
to an anomaly and a negative represents a non-anomaly. In the MVTec 3D-AD
dataset, each sample is associated with a binary ground truth mask where the
value of 1 indicates an anomaly and the value of 0 indicates a non-anomaly. There-
fore, a true positive (TP) on an image level is when the model predicts the sample
as being anomalous and the associated ground truth mask for that sample has at
least one pixel value that is equal to 1. A TP on a pixel level is when a pixel is
predicted as anomalous and the corresponding pixel value in the ground truth
mask is equal to 1. Based on this logic, the definitions for false positive (FP), false
negative (FN) and true negative (TN) can also be deduced. The false positive rate
(FPR) can then be defined as:

FP

FPR = ——+F— 1
FP+TN (5-1)
and the true positive rate (TPR) by:
TP
TPR= 5 N 52
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Figure 5.1: Illustrates the FN, TP, TN and FP relation to each other

Area Under the Receiver Operating Characteristic

The receiver operating characteristic (ROC) measure compares the true positive
rate (TPR) and the false positive rate (FPR) for varying thresholds. The area un-
der the ROC (AUROC) measures how these thresholds influence the model per-

formance [49].

TPR

AUROC

FPR

Figure 5.2: Illustrates the AUROC curve

Area under the Per Region Overlap

As pixel AUROC favours large anomalies, the AUPRO score was suggested by
Bergmann et al. [6] as an alternative measure that scores different-sized anoma-
lous regions equally. The PRO curve plots the PRO against the FPR and is also
measured over varying thresholds. PRO considers C; ; as the set of all pixels in
each connected component k in the ground truth mask i. The set of all pixels that
are predicted as anomalous for a threshold t is denoted by P;. Furthermore, let N
denote the total number of connected components in the evaluation dataset. The
PRO is computed with the following equation [6]:
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|P F1CZH
PRO = ZZ ] (5.3)

Similarly to the AUROC measure, the area under the PRO curve (AUPRO) is cal-
culated and an integration limit is often set at a decided FPR. In this project, this
limit was set to 0.3.

Visual Inspection

To make it easier to interpret the number results obtained from the previous
metrics, an anomaly heat map containing the normalized anomaly scores was
created for each test sample.

5.2 Experiments

5.2.1 Accuracy

Image AUROC was used to evaluate anomaly detection and pixel AUROC and
AUPRO were used to measure anomaly localization. AUPRO was used as the
main localization metric, but the pixel AUROC metric made it possible to com-
pare to previous studies. The best performing methods were measured over five
runs and the mean and standard deviations were reported. Some possible im-
provements were also investigated for the depth and point cloud methods respec-
tively.

5.2.2 Inference Time

The average inference time in seconds across all 10 classes in MVTec 3D-AD was
measured on the hardware-specific equipment mentioned in Section 1.4. The
time of loading the weights from disk into memory was not included in the cal-
culation. The time in-between the point when the weights had been filly loaded
into memory to the point when the anomaly score map generation was complete
was measured. The time! module in Python was used.

5.2.3 Resolution

To simulate a lower-resolution sensor, downsizing using nearest neighbour in-
terpolation was done on the input data. The models were tested on the four
resolution settings: 400x400, 300x300, 200x200 and 100x100.

1https://docs.python.org/3/library/time.html
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Results

6.1 PaDiM Baseline

The results of evaluating PaDiM on the RGB images in the MV Tec-3D-AD dataset
are presented in Table 6.1, and serve as baselines to the 3D methods. Wide
ResNet-50 significantly outperformed the smaller ResNet-18 in all categories, ex-
cept for in image AUROC on Tire. Moreover, the class that received the greatest
relative improvement compared to ResNet-18 was Rope.

Method Bagel Cable Carrot Cookie Dowel Foam Peach Potato Rope Tire | Mean
Gland
¥ Resl8 96.1 748 551 542 854 572 678 46.6 73.8 77.8 | 68.9
% WideRes50 97.7 79.7 70.7 60.2 956 699 853 56.0 94.6 77.4 78.7
¥ Resl8 99.1 96.8 97.0 963 983 87.6 982 965 888 93.6 | 952
E WideRes50 99.3 97.9 98.2 97.6 99.0 927 99.0 979 99.1 97.5 97.8
O Res18 ‘

959 903 90.0 887 928 686 937 88.0 587 749 | 842
97.2 939 938 920 954 773 964 928 93.1 89.6 | 92.2

Table 6.1: Results of PaDiM with ResNet-18 and Wide ResNet-50 as feature
extractors.
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6.2 PaDiM-3D

The results of PaDiM-3D are presented in Table 6.2. The depth information was
more beneficial for ResNet-18, than for Wide ResNet-50 and the larger model sig-
nificantly outperformed the smaller one. The classes Cookie, Potato and Peach
received the greatest relative improvement compared to the RGB baselines, while
Cable Gland, Dowel and Tire benefited the least from the added depth informa-
tion. Method A marginally outperformed method B for Wide ResNet-50, but the

41
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opposite effect was observed for ResNet-18. Three of the most difficult classes
were Tire, Cable Gland and Foam, all of which received AUPRO scores below
90%. With the exception of average AUPRO for Res18-224-A, the PaDiM-3D
methods outperform the baselines in all three average metrics. Moreover, WideRes50-
224-A scored the highest out of the PaDiM-3D methods.

Method Bagel Cable Carrot Cookie Dowel Foam Peach Potato Rope Tire | Mean
Gland

O Res18-224-A 99.3 734 632 91.7 870 686 868 645 89.7 639 | 788
& Res18-224-B 99.1 76.5 643 942 89.1 63.4 888 685 889 685 80.1
2 WideRes50-224-A 99.8 756 70.0 96.7 94.1 77.2 940 721 949 719 | 84.6
— WideRes50-224-B 99.8 746 72.6 942 935 78.1 88.7 71.9 959 71.2 | 84.0
O Res18-224-A 99.4 948 97.8 99.0 982 94.1 99.3 987 98.6 948 97.5
& Res18-224-B 99.4 957 98.1 99.1 98.6 948 994 99.0 986 959 | 97.8
3 WideRes50-224-A 99.5 96.0 987 99.2 989 958 99.6 992 993 97.2 | 98.3
A, WideRes50-224-B 99.5 96.4 986 99.2 99.0 952 995 993 993 97.1 98.3
o Res18-224-A 98.1 84.6 927 972 923 818 976 959 921 79.7 | 91.2
g Res18-224-B 98.1 87.1 935 975 939 839 980 968 91.3 836 | 924
> WideRes50-224-A 98.2 877 952 978 95.0 86.2 984 974 956 88.8 | 94.0

WideRes50-224-B 98.4 88,5 949 979 954 844 981 97.6  95.8 88.0 | 93.9

Table 6.2: Results of PaDiM-3D.

6.3 PaDiM-ViT

The results of PaDiM-ViT are presented in Table 6.3. This includes the results
for all vision transformer architectures that were investigated. Out of the two
methods investigated, method B generally performed the best. At a high resolu-
tion, DeiT and CaiT surpassed both of the baselines in anomaly detection and
localization by a significant margin. ViT achieved higher anomaly detection than
Wide ResNet-50 however, was not able to beat the baseline in anomaly local-
ization. Bagel, Cookie and Dowel achieved some of the highest image AUROC
scores, while Tire, Potato and Carrot received some of the lowest. Despite their
low anomaly detection scores, Carrot and Potato had relatively high anomaly lo-
calization scores. DeiT-384-B achieved the best performance in average image
AUROC, pixel AUROC and AUPRO out of the vision transformer methods.

6.4 Comparison Between PaDiM-3D and PaDiM-ViT

PaDiM-3D outperformed the vision transformers in anomaly localization at an
input resolution of 224 x 224. Furthermore, the Wide ResNet-50 methods also
scored higher than the vision transformer methods in anomaly detection at this
input resolution. However, at a higher resolution, DeiT and CaiT outperformed
all PaDiM-3D methods in both anomaly detection and localization. PaDiM-3D
did not scale up to higher input resolutions, therefore could not be tested at reso-
lution 384 x 384.
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Method Bagel Cable Carrot Cookie Dowel Foam Peach Potato Rope Tire | Mean
Gland
ViT-224-A 96.7 77.7 67.6 954 899 76.6 87.0 637 779 674 80.0
ViT-224-B 96.8 773 683 938 899 776 886 679 675 66.1 79.4
ViT-384-A 96.1 846 742 945 866 773 904 711 70.4 629 80.8
O ViT-384-B 96.7 86.6 749 935 872 80.8 91.8 744 709 60.6 81.7
O CaiT-524-224-A 944 799 683 866 926 748 77.6 537 97.2 708 79.6
% CaiT-524-224-B 93.8 787 71.2 901 935 73.8 853 581 95.9  69.7 81.0
< CaiT-S24-384-A 96.8 87.2 711 86.5 945 81.7 832 612 975 79.6 83.9
™ CaiT-S24-384-B 96.4 889 744 906 946 823 914 651 98.2 76.6 85.9
DeiT-224-A 97.1 824 697 965 945 763 875 589 971 70.3 83.0
DeiT-224-B 97.6 820 714 968 942 789 893 638 959 699 84.0
DeiT-384-A 99.4 857 731 96.3 934 790 908 715 960 69.4 85.5
DeiT-384-B 99.6 854 756 96.0 934 796 915 71.8 96.1 72.2 | 86.0
ViT-224-A 98.6 943 943 973 974 862 98.0 97.1 96.8  90.2 95.0
ViT-224-B 98.4 947 942 971 97.5 859 981 97.4 96.8 89.8 95.0
ViT-384-A 99.4 964 96.7 98.1 98.1 924 987 986 963 93.1 96.8
© ViT-384-B 99.3 96.7 969 97.8 983 926 988 988 965 93.1 96.9
O CaiT-524-224-A 99.1 95.6 96.6 984 975 90.7 986 97.7 984 951 96.8
5 CaiT-524-224-B 99.1 96.1 97.3 984 980 91.2 989 983 984 955 97.1
< CaiT-524-384-A 99.6 982 987 99.0 986 934 995 989 983 98.1 98.2
- CaiT-$24-384-B 99.6 985 99.0 99.0 989 935 99.7 99.2 988 975 98.4
DeiT-224-A 99.3 952 975 989 982 939 99.1 98.3 99.0 96.1 97.6
DeiT-224-B 99.3 956 977 988 984 941 99.2  98.6 99.1 96.4 97.7
DeiT-384-A 99.7 972 989 99.2 988 958 99.7 993 99.2 974 98.5
DeiT-384-B 99.7 97.6 99.0 99.2 98.9 95.8 99.7 994 99.2 97.4 98.6
ViT-224-A 91.9 820 81.0 909 89.0 648 91.8 89.1 80.3  66.0 82.7
ViT-224-B 91.2 832 80.8 903 89.1 64.4 924 90.0 79.8 646 82.6
ViT-384-A 97.0 886 89.0 949 924 764 956 946 824 738 88.5
ViT-384-B 96.8 893 894 943 928 768 957 954 830 73.6 88.7
8 CaiT-524-224-A 95.6 86.6 884 939 886 745 942 903 89.1 81.0 88.2
A~ CaiT-S24-224-B 95.7 88.0 90.7 944 904 753 957 927 89.1 82.2 89.4
< CaiT-S24-384-A 983 945 955 969 939 804 981 949 907 921 | 935
CaiT-S24-384-B 98.3 956 96.6 97.1 95.1 80.4 986 963 952 89.2 94.2
DeiT-224-A 96.3 852 91.3 96.0 921 80.2 96.2 927 929 86.1 90.8
DeiT-224-B 96.3 864 922 960 927 813 96.6 941 93.4  86.2 91.5
DeiT-384-A 989 914 959 97.8 951 86.4 988 969 957 895 94.6
DeiT-384-B 98.8 926 962 97.8 955 863 988 973 96.0 89.5 94.9

Table 6.3: Transformer results.

6.5 Visual Inspection of the Depth Methods

Figure 6.1 shows three examples of heat maps created by Wide ResNet-50 base-
line, WideRes50-224-B and DeiT-384-B. Some of these anomalies are difficult to
spot by simply looking at the RGB images, but are more evident in the depth
images. This is reflected in the results where the Wide ResNet-50 baseline does
not successfully detect all the anomalies in examples one and two, and does not
locate the anomaly in the third example.

6.6 Investigating Possible Improvements for the
Depth Methods
The results of the possible improvements described in Section 4.2.5 are presented

below. The effects were only tested on DeiT-384-B as this method achieved the
best performance across Tables 6.1, 6.2 and 6.3. Object alignment had the biggest
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WideRes50 WideRes50-224-B  DeiT-384-B

Depth map GroundTruth Predicted heat map Predicted heat map Predicted heat map

GroundTruth Pradicted heat map

Depth map GroundTruth Predicted heat map Predicted heat map

Figure 6.1: Examples of the heat maps generated by the Wide ResNet-50
baseline and two depth methods.

Image Predicted heat map Pradicted heat map

Predicted heat map

impact on the results out of the improvements considered. Cable Gland, Carrot,
Dowel and Tire achieved large improvements in both anomaly detection and lo-
calization compared to the standard model. Foam, Bagel and Cookie did not ben-
efit from the object alignment. Setting the background to zero had little effect on
the performance. Gap filling and contrast enhancing both increased the ability
to detect anomalies and the latter also displayed a significant improvement to
localizing them.

Method Bagel Cable Carrot Cookie Dowel Foam Peach Potato Rope Tire | Mean
Gland
DeiT-384-B 99.6 854 756 960 934 796 915 71.8 96.1 72.2 86.0
DeiT-384-B-Align 98.8 87.4 824 96.7 969 735 948 734 942 82.0 | 88.0
©DeiT-384-B-ZeroBG 99.4 85.8 747 96.4 932 809 91.0 735 951 73.8 | 86.4
2DeiT-384-B-GF 98.9 81.0 81.4 983 957 836 962 70.0 96.7 713 | 87.3
~Dein384foHEq 98.0 835 77.8 96.0 953 81.6 942 75.8 96.1 74.8 | 87.3
DeiT-384-B-ZeroBG-GF-HEq || 98.4 81.1 80.2 96.6 938 853 953 719 959 763 | 87.5
DeiT-384-B 99.7 97.6 99.0 99.2 989 958 99.7 994 99.2 974 98.6
DeiT-384-B-Align 99.6 98.9 99.3 99.2 99.6 929 997 994 993 99.6 | 98.7
£DeiT-384-B-ZeroBG 99.6 97.6 99.0 99.0 98.6 96.2 99.7 994 99.1 99.1 | 98.6
?Dein384foGF 99.7 97.6 99.2 99.1 989 951 99.8 994 993 974 | 98.6
“DeiT-384-B-HEq 99.6 97.6 99.1 99.0 99.0 96.4 99.7 99.5 99.2 98.0 | 98.7
DeiT-384-B-ZeroBG-GF-HEq || 99.6 97.8 99.3 984 987 96.7 99.8 99.5 99.2 984 | 98.7
DeiT-384-B 98.8 926 962 97.8 955 863 988 973 96.0 89.5 94.9
ODeiT—384-B-Align 98.6 96.5 97.7 97.8 98.0 783 989 974 964 98.0 | 95.8
£DeiT-384-B-ZeroBG 98.6 92.8 96.4 97.4 948 873 989 972 946 91.6 | 95.0
2DeiT-384-B-GF 98.7 927 973 979 957 835 993 975 969 894 | 949
DeiT-384-B-HEq 98.8 92.8 96.6 97.5 958 87.4 99.0 979 96.2 91.8 | 95.4
DeiT-384-B-ZeroBG-GF-HEq || 98.6 93.3 974 96.2 951 885 99.2 978 955 93.3 | 955

Table 6.4: Results of possible improvements of the depth-based methods.
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6.7 Mixture Density Network

6.7.1 DeiT

The result of DeiT-384-B with a MDN with 50 Gaussian components, trained for
400 epochs is presented in Table 6.5. A large improvement in image AUROC was
observed for Carrot and Potato, and a small improvement was obtained for Dowel
and Peach. Despite the large improvement in performance on some classes, not
all classes benefited from the neural density estimator which ultimately brought
down the average score. Two of such classes were Tire and Foam.

Method Bagel Cable Carrot Cookie Dowel Foam Peach Potato Rope Tire | Mean
Gland

g DeiT-384-B 99.6 854 756 96.0 934 79.6 915 71.8 961 72.2 86.0
% DeiT-384-B-MDN 983 819 942 91.0 939 783 93.0 905 949 585 87.5
g DeiT-384-B 99.7 97.6 99.0 99.2 989 958 99.7 994 99.2 97.4 | 98.6
% DeiT-384-B-MDN 99.7 978 995 99.0 99.2 934 996 997 994 97.0 | 984
2 DeiT-384-B 988 926 962 97.8 955 86.3 988 973 960 89.5 | 94.9
~ DeiT-384-B-MDN 98.6 936 979 975 96.6 79.4 986 98.8 969 883 94.6

Table 6.5: Results for MDN with 50 Gaussian components trained for 400
epochs.
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Figure 6.2: Training and validation losses for a MDN with 150 mixture com-
ponents trained for 500 epochs on Cable Gland.
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Method Bagel Cable Carrot Cookie Dowel Foam Peach Potato Rope Tire | Mean
Gland
CaiT-524-384-B 96.4 889 744 906 94.6 823 91.4 651 98.2 76.6 | 859

§ CaiT-524-384-B-MDN1gg || 941 886 973 881 89.9 847 932 792 981 76.0 | 839
2 CaiT-524-384-B-MDNjyq¢ || 95.1 89.6 972 883 907 855 934 793 981 76.6 | 89.4
% CaiT-524-384-B-MDN\3¢¢ || 95.6 89.5 972 881 903 857 934 791 981 76.1 89.3
E CaiT-524-384-B-MDN|49¢ || 95.5 89.8 97.0 879 899 853 931 794 981 76.6 | 89.3

CaiT-524-384-B-MDN5¢¢ || 957 897 970 879 899 858 933 793 981 764 | 893

CaiT-524-384-B 99.6 985 99.0 99.0 989 935 997 99.2 988 975 | 98.4
g CaiT-524-384-B- MDNjqqg [| 996 991 99.4 989 992 898 99.6 995 99.2 975 | 982
3 CaiT-524-384-B-MDN|5q¢ || 99.6 99.1 99.4 989 993 89.6 996 995 99.2 97.6 | 98.2
s CalT 524-384-B-MDNj3p0 || 996 99.1 99.4 989 993 895 996 99.5 99.2 97.6 | 98.2
£ CaiT-S24-384-B- MDNjg09 || 996 99.1 994 989 993 895 996 995 99.2 97.6 | 982

CaiT-524-384-B-MDN|50¢ || 996 991 994 989 993 895 996 995 99.2 97.6 | 98.2

CaiT-524-384-B 98.3 956 96.6 971 951 80.4 986 963 952 89.2 | 94.2
CalT 524-384-B-MDNjqoo || 97.5 972 98.0 963 963 726 984 973 974 89.8 | 941
m CaiT-524-384-B-MDN5g¢ || 97.6 972 98.0 963 964 724 984 974 974 90.0 | 94.1
D CaiT-524-384-B-MDN39¢ || 97.6 97.3 98.0 963 964 723 984 974 974 90.0 | 94.1
CaiT-524-384-B-MDN 400 || 97.6 97.3 98.0 963 96.4 722 984 974 974 90.0 | 941
CaiT-524-384-B-MDN50¢ || 97.6 97.3 98.0 963 964 723 984 974 974 90.0 | 94.1

Table 6.6: Results for MDN with 150 Gaussian components trained for dif-
ferent epochs.

6.7.2 CaiT

The results of CaiT-524-384-B with a MDN with 150 mixture components trained
for 100, 200, 300, 400 and 500 epochs respectively are presented in Table 6.6. On
average, the anomaly detection improved significantly with the neural density es-
timator. However, a small decrease in average anomaly localization performance
was observed. The loss curves for Cable Gland is presented in Figure 6.2, which
displays the loss over epoch for the training and the validation data. For more
examples on loss curves, please refer to the Appendix B.1. It can be observed that
after ~ 200 epochs the loss change is minimal and as can be seen in Table 6.6, the
performance does not noticeably improve beyond this point.
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Table 6.7: The heat maps produced by the MDN have less noise than the
heat maps produced by the MVG.
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Figure 6.3: The MDN is less sensitive to varying object orientations than the
MVG.
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Table 6.8: The MDN is not as effective as MVG at localizing anomalies that
are part of the background.

6.7.3 Mixture Density Network Visual Inspection

The results of applying random rotations to the images at test time are presented
in Figure 6.3. It is evident that the MDN is less sensitive to rotation than the
MVG and is able to both detect and localize anomalies despite the inconsistent
orientations. Moreover, the MDN resulted in significantly less noise in both the
foreground and the background of the anomaly heat maps. This can be seen
in Table 6.7. A negative consequence of the MDN can be observed in Table 6.8,
where the model was not able to detect the large bite in the cookie.
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6.8 Point-PaDiM results

In Table 6.9 the image AUROC, pixel AUROC and pixel AUPRO scores are com-
pared between the three PointNet++ backbones. The classification backbone re-
sulted in the overall lowest scores, receiving around 10-15% points lower in mean
anomaly detection and around 15% points lower in mean anomaly localization.
The PointNet++ backbones trained for part segmentation and semantic segmen-
tation received closer scores than the classification network, where the semantic
segmentation backbone received a 5% higher score in anomaly detection and 3%
points higher anomaly localization compared to the part segmentation network.
Figure 6.4 shows examples of resulting anomaly maps of the three backbones.
The anomaly maps of the classification network show the effect of having fewer
points, resulting in heat maps that are less smooth than the ones created by the
other two backbones. The classification backbone uses point placement, which
resulted in the anomaly scores not being placed in the correct positions, this is
most clear for the Bagel class where the inner circle of the anomaly scores is not
matching the shape of the Bagel. More visual results are shown in Appendix B.

Method Bagel Cable Carrot Cookie Dowel Foam Peach Potato Rope Tire | Mean
Gland

g CLS-56-AVG|100 60.8 50.4 548 48.8 553 59.6 482 42.6 543 65.0 | 54.0
% SEM-56-AVG|100 80.2 588 583 947 733 40.7 641 394 804 68.7 | 659
I PART-56-AVG|100 68.1 61.2 521 925 721 372 441 385 769 61.0 | 60.4
g CLS-56-AVG[100 76.0 831 858 71.8 90.1 740 785 837 81.8 77.8 | 803
; SEM-56-AVG|100 81.8 873 882 934 894 731 842 872 934 89.7 | 86.7
< PART-56-AVG|100 80.3 864 905 89.8 925 786 852 887 925 825 | 86.7
° CLS-56-AVG|100 37.3 489 535 314 669 305 46.7 49.7 41.2 323 | 438
& SEM-56-AVG|100 51.4 581 593 81.0 638 277 574 581 66.8 67.5 | 59.1
< PART-56-AVG|100 419 569 66.8 656 739 357 544 625 64.7 454 | 56.8

Table 6.9: The AUROC and AUPRO % scores received with PointNet++ net-
works.

6.8.1 Sampling Method

Table 6.10 shows the results when using the different sampling methods. The
BQAVG method is not reported as it needed over 100 GB of RAM to run with the
entire point cloud. Average 2D pooling resulted in the highest anomaly detection
score, followed by the BILIN method. The highest anomaly localization score was
received for the FPS sampling method, and the AVG pooling method received the
second localization highest score with about 3% points less.

6.8.2 Layers

Table 6.11 presents the results of concatenating the last two layers. The results
indicate that using the last two layers increases the anomaly localization score by
3% points, but at the cost of a slight decrease in anomaly detection score.
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Object Truth Class Semantic Part

Figure 6.4: Visual results from the different PointNet++ networks.

Method Bagel Cable Carrot Cookie Dowel Foam Peach Potato Rope Tire | Mean
Gland

O SEM-56-1DX[100 541 56.3 51.5 844 69.6 561 51.7 358 80.2 68.1 60.8
2 SEM-56-FPS|100 47.7 422 434 594 57.7 437 637 434 642 488 | 514
2 SEM-56-BILIN|100 79.8 633 604 955 59.7 450 60.0 37.2 827 589 | 642
~ SEM-56-AVG|100 80.2 588 583 947 733 40.7 641 394 804 68.7 | 65.9
8 SEM-56-IDX[100 75.6 79.8 787 863 86.0 763 815 834 898 864 | 824
& SEM-56-FPS|100 835 795 89.1 854 939 80.2 902 925 93.0 86.0 | 87.3
2 SEM-56-BILIN|100 90.4 70.3 837 919 804 702 867 769 894 76.1 81.6
A, SEM-56-AVG|100 81.8 873 882 934 894 731 842 872 93.4 89.7 | 86.7
o SEM-56-1DX[100 36.4 46.6 423 638 573 41.1 506 50.8 63.4 649 | 51.7
g SEM-56-FPS|100 49.6 445 67.0 626 784 387 686 731 784 621 62.3
> SEM-56-BILIN|100 71.7 365 493 803 404 29.0 651 376 56.1 33.7 | 50.0

SEM-56-AVG|100 514 581 593 81.0 638 277 574 581 668 67.5 | 59.1

Table 6.10: The AUROC and AUPRO % scores received with different down-
sampling metods.

6.8.3 Removing Background Points

Table 6.12 reports the results of removing the background points, thereby forc-
ing the model to only consider anomaly scores in the foreground. This resulted
in a higher localization score with about 10% points. However, the methods suf-
fered for some classes where the anomalies were often part of the background,
for example Bagel and Cookie.

The anomaly detection score dropped by around 5% points for all networks.
This can be seen in Figure 6.5 as the cookie has a missing chunk that is part of the
ground truth, but it can not be detected as the background points were removed.
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Method Bagel Cable Carrot Cookie Dowel Foam Peach Potato Rope Tire | Mean

‘ Gland
SEM-56-AVG-CAT[100 H 79.8 57.9 582 944 76.0 385 639 41.1 809 66.2 ‘ 65.7

PART-56-AVG-CAT|100 67.7 59.2 524 925 702 451 470 411 78.0 61.0 | 61.4
SEM-56-AVG-CAT[100 ‘ 83.4 89.0 89.0 944 907 769 874 894 94.0 91.2 ‘ 88.5

PART-56-AVG-CAT|100 80.1 87.2 90.8 914 924 81.6 871 90.8 924 87.0 | 88.1

SEM-56-AVG-CAT[100 55.0 62.6 60.7 847 67.6 319 642 637 694 722 | 63.2
PART-56-AVG-CAT|100 44.0 60.1 67.6 70.7 743 433 589 683 62.6 59.6 | 60.9

Table 6.11: The AUROC and AUPRO % scores received with or without mul-
tiple layers.

PRO | [P-ROC| [ I-ROC]

The images also show the negative effect of the point placement method used to
insert the anomaly scores into the anomaly map, as the scores do not fill up the
whole object. The lack of points in the classification backbone is less noticeable
in the images compared to results in Figure 6.5 as the point are closer. Visual
results for the other classes are shown in Appendix B.

Method Bagel Cable Carrot Cookie Dowel Foam Peach Potato Rope Tire | Mean
Gland

g CLS-56-NoBG|100 353 51.0 53.8 658 43.8 356 457 51.5 821 358 | 50.0
£ SEM-56-NoBG|100 46.2 640 62.6 856 726 294 61.1 496 789 544 | 60.4
= PART-56-NoBG|100 59.1 43.1 565 738 685 459 499 466 66.6 543 | 56.5
g CLS-56-NoBG[100 823 91.0 97.0 841 942 839 91.2 963 96.2 90.0 | 90.6
; SEM-56-NoBG|100 81.5 93.0 955 87.1 945 822 913 97.0 91.2 92.7 | 90.6
< PART-56-NoBG|100 81.5 921 960 837 943 832 90.7 97.0 92.0 92.2 | 90.3
° CLS-56-NoBG[100 428 71.2 905 556 819 471 699 87.1 81.6 66.8 | 69.5
& SEM-56-NoBG|100 41.8 761 851 66.6 821 41.2 702 90.0 63.0 76.2 | 69.2
< PART-56-NoBG|100 43.0 738 86.7 53.0 819 435 689 894 663 750 | 68.2

Table 6.12: The AUROC and AUPRO % scores received when comparing
with or without background points.

Object Truth Class Semantic Part

Figure 6.5: Examples results when removing the background.
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6.8.4 Combining With RGB

Table 6.13 shows the results of combining the PointNet++ and ResNet18 back-
bones. Both methods A and B increase the overall scores and a significant im-
provement of around 25% points was received in anomaly localization. The
anomaly detection performance increased by around 3-9% points. The A method
received the largest increases in anomaly detection, while both methods received
similar increases in anomaly localization. The scores for some of the classes de-
clined when introducing the ResNet18 backbone, Cookie received between 91%
and 55% in anomaly detection.

Method Bagel Cable Carrot Cookie Dowel Foam Peach Potato Rope Tire | Mean
Gland

8 SEM-A-56-AVG|100 88.6 669 61.2 913 854 536 709 391 875 76.0 | 72.1
& SEM-B-56-AVG|100 96.3 749 552 657 857 574 69.6 464 743 77.7 | 703
2 PART-A-56-AVG|100 85.0 687 602 853 841 574 623 377 847 701 | 69.6
- PART-B-56-AVG|100 96.0 743 551 552 855 573 68.0 46.6 740 77.8 | 69.0
Q SEM-A-56-AVG|100 97.9 957 958 978 974 883 975 95.0 955 95.0 | 95.6
2 SEM-B-56-AVG|100 99.1 969 97.0 975 983 888 985 965 90.8 942 | 95.8
2 PART-A-56-AVG|100 97.5 956 965 97.1 97.8 89.6 97.2 951 95.7 923 | 954
A, PART-B-56-AVG|100 99.1 968 97.0 965 983 87.8 983 96.5 892 93.7 | 953
o SEM-A-56-AVG[100 89.2 859 856 927 895 669 91.3 831 754 819 | 84.2
& SEM-B-56-AVG|100 96.2 903 902 921 93.0 703 947 881 622 767 | 854
D PART-A-56-AVG|100 87.4 858 87.8 90.0 91.0 69.4 901 835 774 71.0 | 833
< PART-B-56-AVG|100 959 902 901 891 928 689 938 879 595 748 | 843

Table 6.13: The AU-ROC and AU-PRO % scores received when combining
PointNet++ and ResNet18.

6.8.5 Channels

Table 6.14 shows that using all the channels instead of randomly sampling 100,
can increase the anomaly detection score. The B method received a higher in-
crease than the A method. Both the A and B methods received similar anomaly
detection scores, but the B method received a higher anomaly localization score

of about 2-3% points.

6.8.6 Downsampling

Table 6.15 shows the effect of using different downsampling sizes. The size 170
was the largest size that could be measured because of memory limitations. As
the Part segmentation network uses more memory than the semantic segmenta-
tion one, the size 170 x 170 was not measured. Increasing the size to 100 x 100
marginally increased the anomaly detection for the semantic segmentation net-
work, but at the cost of a decrease in anomaly localization score of 3% points. The
part segmentation network decreased both scores. Increasing the size to 170x170
lowered the anomaly detection and localization performance on average.
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Method Bagel Cable Carrot Cookie Dowel Foam Peach Potato Rope Tire | Mean
Gland

o SEM-A-56-AVG|128 91.7 689 609 93.0 852 561 726 393 882 734 | 729
S SEM-B-56-AVG|128 96.7 77.8 57.0 727 874 591 715 474 775 783 | 725
2 PART-A-56-AVG|128 90.7 694 556 88.0 849 652 634 407 828 683 | 709
~ PART-B-56-AVG|128 964 778 569 623 868 59.1 694 468 769 783 | 71.1
o SEM-A-56-AVG|128 985 957 955 983 973 89.5 979 940 955 90.4 | 953
2 SEM-B-56-AVG|128 99.2 97.0 972 97.6 984 89.5 986 967 934 951 | 96.2
2 PART-A-56-AVG|128 98.4 954 965 97.8 97.8 87.8 97.1 945 969 883 | 950
® PART-B-56-AVG|128 99.1 969 971 967 98.4 88.6 983 966 923 947 | 959

SEM-A-56-AVG|128 93.0 857 848 946 893 701 928 799 746 655 | 83.0
% SEM-B-56-AVG|128 96.3 90.7 90.5 925 932 714 948 887 69.7 80.3 | 86.8
2 PART-A-56-AVG|128 91.8 854 881 928 91.2 656 89.6 813 8l.1 58.7 | 82.6

PART-B-56-AVG|128 96.0 90.6 904 89.8 931 702 941 885 67.8 789 | 859

Table 6.14: The AUROC and AUPRO % scores received with different
amount of channels.

Method Bagel Cable Carrot Cookie Dowel Foam Peach Potato Rope Tire | Mean
Gland
SEM-100-AVG|100 815 579 51.6 984 689 421 659 350 873 593 | 64.8
O SEM-100-AVG-A[100 91.8 68.2 584 967 829 538 766 368 903 72.6 | 72.8
2 PART-100-AVG|100 62.1 57.0 47.1 90.6 683 50.1 46.1 383 741 544 | 58.8
2 PART-100-AVG-A|100 88.8 68.6 531 86.7 795 622 601 376 789 66.1 | 682
~ SEM-170-AVG|100 77.4 656 532 97.8 66.6 52.0 57.1 353 853 583 | 649
SEM-170-AVG-A|100 90.8 69.8 587 959 813 552 573 37.0 889 70.1 | 705
SEM-100-AVG|100 91.3 86.0 851 956 904 757 90.1 803 944 71.4 | 86.0
8 SEM-100-AVG-A|100 98.6 954 949 982 975 91.2 983 93.6 96.1 89.5 | 953
& PART-100-AVG|100 855 86.9 941 928 927 795 840 854 951 65.1 86.1
E:’ PART-100-AVG-A|100 98.2 950 969 974 97.7 90.0 97.0 937 96.6 84.6 | 947
A, SEM-170-AVG|100 91.7 840 830 96.0 90.2 786 835 81.8 928 746 | 856
SEM-170-AVG-A[100 98.7 949 946 983 975 90.2 96.0 939 954 90.3 | 95.0
SEM-100-AVG|100 70.6 538 506 869 665 36,5 709 404 685 328 | 57.8
o SEM-100-AVG-A|100 93.5 849 830 941 89.8 725 940 785 757 63.1 | 829
g PART-100-AVG|100 495 579 797 759 759 429 51.8 520 720 187 | 57.6
2 PART-100-AVG-A|100 91.5 845 895 91.8 91.0 716 89.6 789 789 475 | 81.5
SEM-170-AVG|100 68.6 51.7 430 86.1 663 379 50.2 449 650 350 | 549
SEM-170-AVG-A[100 93.2 835 817 940 901 708 86.1 79.6 73.6 658 | 81.9

Table 6.15: The AUROC and AUPRO % scores received with different down-
sampling sizes.

6.9 Final PaDiM Results

The performance of the baselines and the highest scoring methods were each
measured across five runs and the mean and standard deviation were calculated.
These results are presented in Table 6.16. The results show that the top-scoring
depth method surpasses both of the baselines in anomaly detection and localiza-
tion. The point cloud method achieved a higher anomaly detection score than
the ResNet-18 baseline, however was not able to surpass either of the baselines
in anomaly localization. DeiT-384-b received the highest average scores in both
anomaly detection and localization out of the methods tested. The possible im-
provements to the depth methods presented in Table 6.4 were not applied in this
experiment.
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Method Mean Mean Mean
I-AUROC | P-AUROC | AUPRO

@ WideRes50-224-A 83.6+0.5 | 98.3+1.8 | 93.7+0.1

5 DeiT-384-B 86.2+0.2 | 98.6 0.0 | 94.9+0.0

© SEM-100-A|128 744+04 | 957+£0.2 | 84.4+0.6

4 Res18 71.6+0.9 | 95.8+0.2 | 85.9+0.5

§ WideRes50 78.8+0.3 | 97.8+0.0 | 92.1+0.2

- 3D VAE - - 47.1

£ f-AnoGAN 63.0

< 3D-ST - - 83.3

~AST 93.7+0.2 | 97.6 +0.02 -

Table 6.16: Final results PaDiM measured over 5 different runs.

6.10 Inference Times

Figure 6.6 presents the inference times of the models and compares the time
with the model performance. The results show an increase in inference time for
all PointNet++ methods. The vision transformer methods achieved sub-second
inference times that were similar to ResNet-18. Wide ResNet-50 had the longest
inference time of 11.53 seconds, 45 times longer than ResNet-18. Further details
about the inference times are reported in the Appendix A.2.
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Figure 6.6: Scatter plot comparing the performance vs inference time. Blue
are model measured on the GTX 1080 machine and red is the models mea-
sured on the RTX 2070 machine.

6.11 Resolution

The effect of using different input resolutions is shown in Figure 6.7. In general,
the performance in decreases with the size of the data and a large drop in image
AUROC and AUPRO can be observed between the 200 x 200 and the 100 x 100
cases. Detailed results are reported in the Appendix A.3.
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Figure 6.7: Bar plot of the % scores on different resolutions.

6.12 Aluminium Can Dataset

An example of an aluminium can collected with the time-of-flight sensor is shown
in Figure 6.8. The resulting point cloud and depth map after cropping had a reso-
lution of 100 x 100. The two leftmost images display the aluminium can from the
side and the rightmost image shows the can from a top-down perspective. The
sensor was not able to correctly capture the aluminium can which is indicated by
the large spread of the points. Furthermore, some points are even located below
the floor.

Figure 6.8: The resulting point cloud of an aluminium can after cropping.

The results of DeiT-384-B and SEM-100|128 on the aluminium can dataset are
presented in Figure 6.9. The images show three examples of which two have
anomalies and one does not. The first column displays the depth maps, the sec-
ond shows the transformer results and the last column the result of the Point-
Net++ model. For more examples, please refer to Appendix B.3. For the trans-
former model, a MDN with 150 mixture components trained for 10 epochs was
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used as the density estimator. The model was able to detect and localize the
anomalies in many of the test images. However, the predicted regions were gen-
erally not that precise and there were numerous false positives. The model was
generally good at correctly predicting the normal images and the noise in the
bottom image is a result of normalizing over a narrow range of low values. The
PointNet++ method fails to detect most anomalies preferring to label the bottom
of the can as anomalous.

Depth Map DeiT-384-B

Hole

Dent

Normal

Figure 6.9: Examples of results on the aluminium can dataset.






Discussion

7.1 Results

7.1.1 Vision Transformers vs. ResNets

The results indicate that a higher performance in anomaly detection and localiza-
tion can be achieved with the vision transformers than with the ResNets. How-
ever, this does not necessarily mean that vision transformers extract features with
richer semantic meaning than the ResNets and in fact, Wide ResNet-50 often pro-
duced better results than both CaiT and DeiT when the input resolution was set
to 224 x 224. The big advantage of the vision transformers is that they are more
cost-efficient. PaADiM demands a lot of memory because the parameters of a Gaus-
sian distribution is stored for each patch in an image. Having smaller feature
maps like the vision transformers is thus beneficial from a memory perspective,
as there are fewer patches. The trade-off is that the smaller feature maps result
in lower anomaly localization accuracy, because the patches are less fine-grained.
However, the vision transformers compensate for this flaw by allowing larger in-
put resolutions than the ResNets. At an input resolution of 384 x 384, the vision
transformers outperformed the Wide ResNet-50, while also requiring less mem-
ory.

Layer Selection

The vision transformer is architecturally different from the CNN, but has been
shown to be similar in some aspects. For instance, the vision transformer learns
to pay more attention to distant patches in the deeper layers than in the shal-
lower layers [16]. Similarly, the receptive field in a CNN increases with depth,
an inductive bias that is native to the architecture. The authors of PaDiM con-
catenate features from the three first layers in ResNets as it balances between
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local and global features. They argue that the features from deeper layers may
be too specific for the task for which it was trained and therefore may not be as
general-purpose [13]. This is reasonable as a CNN is forced to compress informa-
tion into a smaller feature space and learns to keep only what is essential to solve
the task. Investigating the effect of combining different layers in the vision trans-
former would have been interesting. In contrast to a CNN, a vision transformer
represents global information through the CLS embedding, which has a similar
purpose as the feature vector obtained at the end of a CNN. However, a vision
transformer is also able to preserve local information through the patch embed-
dings even in the deep layers. It is therefore likely that the effect would not be as
significant for a vision transformer as for a CNN.

7.1.2 Mixture Density Network

One of the main advantages with the MDN is that it is less sensitive to different
object orientations than the MVG. As the MVG learns one distribution per patch,
the model considers it anomalous if the position of the object during testing is
different from the one during training. This theory is backed up by the empiri-
cal results from this thesis where aligning the objects significantly improved the
performance of the MVG on elongated classes.

The MDN learns a global distribution which makes the model less susceptible
to orientation shifts. Given that the features are also invariant to transformations
and kept consistent regardless of placement, MDN should not depend on the
object position at all. Another effect that was observed when using the MDN was
that the noise significantly decreased in both the foreground and the background,
indicating that the MDN more accurately learns the appearance of the object than
the MVG and also learns that the background is normal. A drawback of this
however, is that it can not as effectively detect anomalies that are part of the
background. This was apparent on Cookie where the MDN did not consider
the large missing chunks as anomalous. Another drawback of the MDN is that
although it discovers the anomalous regions, the localization was not as accurate
as for the MVG.

The poor performance achieved by the MDN on Foam and Tire can be ex-
plained by the difficulty of estimating the distribution of irregular surfaces; Foam
has peaks and valleys and Tire has tracks. The MDN likely learned that incon-
sistent surfaces are part of the normality and could therefore not appropriately
discover anomalies in these classes. For classes such as carrot where MDN per-
formed the best, the surfaces are smooth and fairly consistent across the images.

From a practical point of view, the robustness of the MDN is desirable as
objects are rarely placed at consistent orientations in real-life applications. More-
over, an approximate localization of anomalies is often sufficient in practice.

7.1.3 Point-PaDiM

The results from the Point-PaDiM method indicate that only using the Point-
Net++ backbone can not beat the ResNet-18 backbone in overall anomaly de-
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tection and localization performance. Combining a segmentation PointNet++
backbone and the ResNet-18 backbones using the A or B method results in a
higher anomaly detection score than when only using the ResNet-18 backbone.
The method that received the highest performance was SEM-100-A|128, achiev-
ing an AUPRO score of 84.4 + 0.6, which is well above the 3D VAE and f-AnoGAN
methods discussed in Related Work. Point-PaDiM also scored 1.1% points higher
in AUPRO than 3D-ST that also operates directly on point clouds.

Networks

Out of all the three networks, the classification network received the lowest scores.
A possible reason for this outcome is that the classification network does not have
feature propagation layers; which results in the features being extracted from
the set abstraction layers, that have at most 512 patches. Comparing the num-
ber of patches between the classification- and segmentation network shows that
the amount of patches is an order of magnitude higher for the segmentation net-
works. This lack of patches may lower the performance, or that the layer does not
sample the same point each time.

The semantic segmentation network received the highest scores in all the tests.
There are two likely reasons why: the data structure and the network depth. The
structure of both datasets is a top-down scan of the object including its surround-
ings, this is closer to a semantic segmentation task where there are multiple ob-
jects in the point cloud compared to a part segmentation task where there is only
one object. The semantic segmentation network is deeper than the part segmen-
tation network respectively having four set abstractions and four feature propa-
gation layers compared to three set abstractions and three feature propagation
layers.

Variations

The sampling methods that combined points resulted in higher detection scores
for most classes. For localization, there is no clear winner between point sam-
pling and point combination methods. The BQAVG method may have been able
to increase the detection score of the FPS method, as the other combining sam-
pling methods receive higher scores. This may have succeeded in improving the
scores in general over the AVG sampling method as the FPS sampling method
received the highest anomaly localisation score. But as the ball query implemen-
tation required too much memory when applying it on a large point cloud, this
could not be evaluated.

Removing the background increased the localization scores for all networks
as most anomalies were part of the foreground. However, since anomaly scores
could only be placed in the foreground, some anomalies such as the large bites in
Cookie could not be detected. There is also the problem that the patches between
different objects are inconsistent as the position and rotation of the object effect
with paces are segmented. The average 1D pooling also causes a problem as it
may take the average over points that are far away from each other.
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Concatenating different layers did not have a large effect on the performance
of the model. This may be because the difference between the feature values in
different propagation layers is small because the features are propagated and may
not change much. There is also the possibility of an implementation error due to
the non-conventional concatenation method.

When increasing the size of the point cloud fed into the PointNet++ segmen-
tation network the number of patches increases equally. Interestingly, increasing
the number of patches did not equal an increase in performance. This may be
because the downsampling of the data removes local variations in the normal
samples; this can result in the Gaussian distribution of normal samples having
a lower variance, leading to a larger Mahalanobis distance between normal and
abnormal data.

7.2 Method
7.2.1 PaDiM-3D

Although the pre-trained ResNets and vision transformers were shown to extract
semantically meaningful features from depth maps, they were originally trained
on RGB images from ImageNet. To simulate RGB images, the grayscale depth
maps were repeated three times and concatenated which may have resulted in
images that did not accurately resemble the original images in ImageNet.

7.2.2 Point-PaDiM

The downsampling method that performed the best for the point cloud meth-
ods is designed for images, so the possible preprocessing steps were limited as
the image structure of the data could not be broken. If a point cloud downsam-
pling method was found that returned consistent sampling size, there would be
fewer limitations on the preprocessing stages. For example, null points could be
removed from the data entirely instead of moving them into the background.

After removing the background, the number of points remaining varies, so 1D
adaptive average pooling was used. However, there is no guarantee that points
that are next to each other in the point cloud are also next to each other in the
point list.

The PointNet++ model used was not the original implementation and the net-
work is from 2017, using a newer model or the original implementation may have
resulted in better performance. The original model was implemented in C++ and
may have increased the inference time.

7.2.3 Aluminium Can Dataset

The sensor had to be placed at a relatively large distance from the aluminium
cans or else they were not captured correctly. This resulted in a relatively small
portion of the points in the point cloud being part of the object of interest. To
work around this, the small region of points containing the aluminium cans were
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cropped from the entire point cloud, resulting in a large waste of information. A
higher performance could have been achieved had the resolution of the points on
the aluminium cans been higher, this hypothesis is backed up by the experimen-
tal results conducted in this thesis.

When creating the anomalies, many of them turned out rather ambiguous
and some would argue that whole can itself could be considered an anomaly,
please refer to the Appendix B.3 for examples. For this reason, it was difficult
to correctly assess the performance of the models. A better choice of anomalies
would have been small and more local regions, ideally also difficult to spot in
intensity images. These types of anomalies are likely more probable in practice
too.

7.2.4 Reliability

Measuring the results over multiple runs and taking the mean and standard de-
viation is useful to describe how sensitive a method is to factors such as random-
ness. This was done in one of the experiments, but could have been applied more
often to increase the credibility of the results.

7.2.5 Mixture Density Network

The hyperparameters for the MDN should have been selected more systemati-
cally, instead of picking them arbitrarily. Moreover, investigating how the num-
ber of Gaussian mixture components affects the performance of the model would
have been interesting from a scientific point of view. In theory, having too many
components is preferred over having too few, as this would simply mean that
the weights for some mixtures would become 0 [8]. Analyzing the weights could
therefore have been used when deciding upon the optimal number of mixtures.

Investigating the MDN for the ResNets would have also been interesting as
they were heavily constrained by the computational bottleneck of computing a
Gaussian distribution per patch in large feature maps. The MDN is a way to re-
duce the high memory cost which would have likely benefited the ResNet meth-
ods.

7.2.6 Evaluation

Although most research on anomaly localization on the MVTec 3D-AD dataset
use Pixel AUROC and AUPRO to measure anomaly localization, it is evident that
these metrics produce optimistic results for this particular dataset. This is due to
the large portion of background pixels which make up the majority of the true
negatives and will in most cases sum up to a large number, resulting in low false
positive rates. In turn, this results in high AUROC scores and AUPRO scores that
do not properly reflect the actual localization ability of the methods. A metric
that is less sensitive to the pixel imbalance is the area under the precision-recall
curve (AUPRC), which could have been used as a complimentary metric. How-
ever, it would have been difficult to compare these results to previous research.
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7.2.7 Heat Map Visualization

Since the values of each heat map were normalized per image, the results are
sometimes misleading. A high heat map value does not necessarily point to a
high absolute anomaly score and likewise, a low heat map value does not impli-
cate a low absolute score. Rather, it displays the scores relative to each other. For
example, in a heat map where all the values are low, the normalization is still
going to spread the values across the full intensity range, resulting in the back-
ground appearing as though it had high values, when in reality they were just
lower relative to the maximum value in that heat map. The consequence is that
the heat maps are most accurate in cases where the model is highly certain of an
anomaly, indicated by a maximum value that is relatively much larger than the
other values. In contrast, the anomaly maps are not as accurate in cases where
no anomalies are present, as all the absolute scores are expected to be low. An al-
ternative to this normalization method is to instead normalize across all images.
However, this would instead hide the anomalies that have low maximum values
relative to the maximum value in the dataset.

7.3 Limitations With 3D Information

As can be seen in the Appendix A.3, the 3D methods resulted in poorer perfor-
mance than the baselines on some classes and this can be explained by the type
of data and also its quality. Notably, classes such as Tire received significantly
lower image AUROC when 3D information was added, compared to when only
RGB data was used. The irregular surfaces caused by the tracks, likely resulted in
a large variance in the 3D data and may have reduced the model’s ability to learn
the distribution. Moreover, Tire had many missing values in both the foreground
and the background that were caused by shadows and this is a consequence of
the data acquisition. In contrast, the RGB data for Tire had significantly lower
variance in the pixel intensity and did not include any missing values.

7.4 The work in a wider context

Although the use of automated programs may be a cheap solution compared to
manually detecting defects in items, they are by no means foolproof. Industries
need to be aware of that automated solutions can make mistakes that can lead to
disastrous consequences. For critical systems, it is therefore encouraged to view
these programs as assisting entities, rather than relying exclusively on them.



Conclusion

This thesis investigated industrial 3D anomaly detection with the PaDiM frame-
work. The methods PaDiM-3D and PaDiM-ViT combine RGB and depth data
with a ResNet or vision transformer to extract features. Point-PaDiM combines
RGB with point cloud data and uses PointNet++ to extract XYZ features and
ResNet to extract RGB features. PaDiM-ViT with the DeiT backbone achieved
the highest average image AUROC, pixel AUROC and AUPRO on the MVTec 3D-
AD dataset, while also achieving sub-second inference times. Vision transformers
allowed for larger input resolutions, which was required to outperform ResNet-
50. PaDiM-3D with the Wide ResNet-50 backbone achieved similar results to
PaDiM-ViT, but required approximately 40 times more time to compute. Point-
PaDiM achieved reasonably fast inference times and was able to outperform the
ResNet-18 baseline on average, but performed poorly on some individual classes.
A mixture density network was investigated as an alternative density estimator
for PaDiM-ViT, which improved the anomaly detection performance and robust-
ness of the model. It was however shown that the model had difficulties with
detecting anomalies in objects that have irregular surfaces.

The proposed 3D methods improved the performance of PaDiM on MVTec
3D-AD and were also able to detect certain anomalies on the aluminium can
dataset. However, these results were in some cases inaccurate, which can partially
be explained by the poor quality of the data. The resolution of the input data was
shown to have a large impact on the performance and a significant drop was
observed when reducing the resolution from 200 x 200 to 100 x 100 pixels.

It was shown that the performance of the models depends on the object type
and classes that have a large variance in the 3D data may benefit from using only
RGB data. A larger dataset or data augmentation could have helped the models
learn the distributions of the 3D data better. Another factor that greatly affects
the performance is the quality of the data and missing values are common in
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3D scans. The causes might vary depending on the sensor, but reflective objects
like the aluminum cans were difficult to capture with the time-of-flight sensor.
Choosing the appropriate sensor and setup for the problem helps reducing the
frequency of error values.

8.1 Future Work

This work has shown that pre-trained vision transformers extract useful features
for anomaly detection and localization on industrial data. This should not be lim-
ited to only PaDiM, but other 2D representation-based methods such as Patch-
Core [38], could also benefit from this architecture. Furthermore, such methods
may also be extendable to 3D using a similar method to the one proposed in
this thesis. Transformer architectures have also recently been adopted to point
clouds, such as Point-M2AE by Zhang et al. [57]. Combining feature extraction
with a point cloud transformer with a vision transformer to extract image fea-
tures would certainly be interesting future work. A better pooling method such
as AFPS [25] could mitigate the time bottleneck of the FPS sampling in the point
clouds. Finally, more relevant depth features can be obtained by using models
pre-trained on depth maps, instead of models pre-trained on RGB data like the
ones investigated in this thesis. Alternatively, a model could be trained from
scratch on depth maps to learn to extract depth features.
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Appendix






Detailed Results

A.1 PaDiM 2D

The results in Table A.1 were used to confirm that the implementation of PaDiM
was correct.

| Class || Image AUROC | Pixel AUROC | AUPRO (FPR limit: 0.3) |

Bottle 99.6% 98.1% 94.7%
Cable 85.5% 94.9% 86.1%
Capsule 87.0% 98.2% 90.5%
Carpet 98.4% 98.8% 95.6%
Grid 89.8% 93.6% 84.4%
Hazelnut 84.1% 97.9% 92.7%
Leather 98.8% 99.0% 97.1%
Metal nut 97.4% 96.7% 90.6%
Pill 86.9% 94.6% 90.7%
Screw 74.5% 97.2% 90.7%
Tile 95.9% 91.7% 75.0%
Toothbrush 94.7% 98.6% 91.6%
Transistor 92.5% 96.8% 90.2%
Wood 99.0% 94.0% 90.5%
Zipper 74.1% 97.6% 92.2%
Average 90.3% 96.8% 90.7%

Table A.1: PaDiM results on the MV Tec 2D-AD dataset.

73



74 A Detailed Results

A.2 Inference Times Details

Table A.1 and A.2 report the inference times of the methods.

Method Inference Time (s)

Res18 0.35 Method Inference Time (s)
PART-56|100 0.7 Res18 0.25
SEM-56[100 0.9 WideRes50 11.53

PART-56-CAT|100 1.27 Res18-224-A 0.45
SEM-56-CAT|100 1.47 Res18-224-B 0.25
PART-56-A[100 0.91 ViT-224-A 0.23
PART-56-A[128 1.18 ViT-224-B 0.19
SEM-56-A[100 1.08 ViT-384-A 0.36
SEM-56-A[128 1.31 ViT-384-B 0.31
PART-56-B|100 1.12 CaiT-S24-224-A 0.21
PART-56-B|128 1.86 CaiT-524-224-B 0.18
SEM-56-B|100 1.25 CaiT-S24-384-A 0.37
SEM-56-B|128 1.91 CaiT-524-384-B 0.34
PART-100/100 1.47 DeiT-224-A 0.24
SEM-100/100 1.58 DeiT-224-B 0.23
PART-100-A|100 1.70 DeiT-384-A 0.42
SEM-100-A[100 1.87 DeiT-384-B 0.31
Figure A.1: The inference time us- Figure A.2: The inference time us-

ing the i9-9880H and RTX 2070 ing the i7-8700K and GTX 1080.
(mobile).
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A.3 Downsampling Details

Table A.2 contains the detailed results of downsampling the data.

Method Bagel Cable Carrot Cookie Dowel Foam Peach Potato Rope Tire | Mean
Gland

ResNet18 400x400 953 748 542 569 854 598 721 475 684 779 | 69.2

ResNet18 300x300 95.2 71.6 589 60.0 833 469 685 450 61.8 80.0 | 67.1

ResNet18 200x200 95.7 752 61.7 56.0 859 489 750 43.8 57.7 63.6 | 66.4

ResNet18 100x100 92.7 623 47.7 604 746 741 643 357 59.0 753 | 64.6

O SEM-56-A[100 400x400 925 71.3 61.3 919 837 524 724 389 873 718 | 723
2 SEM-56-A[100 300x300 90.2 695 625 928 818 366 674 380 855 755 | 70.0
2 SEM-56-A[100 200x200 91.3 68.6 632 91.8 845 389 71.2 371 850 73.1 | 705
~ SEM-56-A[100 100x100 90.1 68.8 61.6 90.5 81.6 601 604 365 863 724 | 70.8

DeiT-384-B 400x400 99.6 845 752 96.7 934 804 917 705 97.1 97.1 | 86.0
DeiT-384-B 300x300 984 76,6 762 945 923 809 913 704 959 61.0 | 837
DeiT-384-B 200x200 99.0 773 741 949 933 715 864 707 949 64.0 | 82.6
DeiT-384-B 100x100 99.8 751 725 957 915 660 796 71.1 83.1 539 | 78.8
ResNet18 400x400 99.0 96.8 97.0 963 983 863 983 96.6 888 934 | 951
ResNet18 300x300 99.0 96.5 969 963 982 855 982 965 87.4 926 | 947
ResNet18 200x200 99.0 96.7 946 963 982 817 981 964 79.2 924 | 933
ResNet18 100x100 98.2 94.0 915 953 974 727 972 949 48.0 850 | 874

8 SEM-56-A[100 400x400 98.2 957 959 978 975 874 976 948 958 945 | 955
& SEM-56-A[100 300x300 90.2 695 625 928 818 366 674 380 855 755 | 70.0
2 SEM-56-A[100 200x200 97.9 957 950 97.7 975 852 975 942 93.6 944 | 949

2. SEM-56-A[100 100x100 971 93.0 931 97.2 96.6 789 963 935 879 92.0 | 926

DeiT-384-B 400x400 99.7 97.6 99.0 992 99.0 955 997 994 993 973 | 985
DeiT-384-B 300x300 99.6 97.1 989 993 988 951 997 994 99.2 973 | 984
DeiT-384-B 200x200 99.6 96.7 98.8 994 989 952 996 993 99.0 96.3 | 98.3
DeiT-384-B 100x100 99.5 947 981 993 985 923 99.2 99.2 985 91.9 | 97.1
ResNet18 400x400 95.8 90.3 90.0 884 928 66.1 93.8 88.2 58.7 747 | 83.9
ResNet18 300x300 955 893 893 885 922 650 936 881 563 725 | 83.0
ResNet18 200x200 95.8 90.0 825 883 924 583 933 872 441 722 | 804
ResNet18 100x100 923 814 738 858 886 433 90.2 828 149 558 | 709

o SEM-56-A[100 400x400 90.7 86.0 86.1 923 898 650 91.4 824 764 80.2 | 84.0
E SEM-56-A[100 300x300 88.6 848 853 920 89.6 642 909 825 743 798 | 83.2
D SEM-56-A[100 200x200 89.4 86.0 830 919 89.7 584 909 805 683 80.4 | 81.9
< SEM-56-A[100 100x100 854 779 764 90.7 859 469 871 789 522 724 | 754

DeiT-384-B 400x400 98.8 926 962 979 955 851 989 973 964 89.1 | 94.8
DeiT-384-B 300x300 98.5 91.0 96.0 98.1 951 837 987 973 957 89.2 | 943
DeiT-384-B 200x200 98.4 90.0 958 981 955 843 983 969 933 852 | 93.6
DeiT-384-B 100x100 97.9 829 934 97.6 939 747 968 965 91.1 68.2 | 89.3

Table A.2: The AUROC and AUPRO scores of the methods at different input
resolutions.
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A.4 Extended Final PaDiM Results

Table A.3 contains the results of the individual classes when comparing the best
methods across five runs.

Method Bagel Cable Carrot Cookie Dowel Foam Peach Potato Rope Tire
Gland

Res18 945+1.4 735+3.5 59.6+1.6 57.8+59 88.4+0.6 60.4+45 73.4+2.4 49.2+1.6 80.8+2.3 784+1.0
© WideRes50 97.6+0.4 80.0+1.4 70.4+1.1 629+21 959+0.2 69.0+1.4 85.0+2.1 53.7+1.6 942+0.6 79.3+1.3
%WideResSO—ZM—A 99.6+0.2 749+1.2 68.6+1.2 96.1+0.8 93.7+0.5 77.1+1.1 90.3+1.4 70.8+1.9 944+0.5 71.1+1.2
< Deil-384-B 99.5+0.1 84.9+0.5 75.6+0.1 96.6+0.4 93.1+0.4 81.0+0.7 91.3+0.4 71.9+0.9 96.0+0.5 71.7+0.8
" SEM-100-A|128 924+0.5 71.1+1.7 60.3+0.8 96.9+0.5 851+1.3 57.5+4.6 783+1.2 43.6+1.3 92.3+0.8 66.7+1.8

Res18 98.9+0.1 96.5+0.4 97.1+0.1 96.5+0.2 98.2+0.1 89.7+0.5 98.2+0.3 96.7+0.2 93.5+2.3 93.0+ 1.0
© WideRes50 99.4+0.0 97.9+0.1 98.2+0.0 97.6+0.1 99.0+0.0 92.9+0.1 98.8+0.1 97.8+0.1 99.1+0.0 97.3+0.2
DWIdeReSSO 224-A 99.5+0.0 95.9+0.0 98.6+0.0 99.2+0.0 98.8+0.0 95.6+0.1 99.5+0.0 99.2+0.0 99.3+0.0 97.2+0.2
< DeiT-384-B 99.7+0.0 97.6 +£0.0 99.0+0.0 99.1+0.0 98.9+0.0 95.9+0.0 99.7+0.0 99.4+0.0 99.2+0.0 97.4+0.0
MSEM—IOO—A\IZ& 98.7+0.1 95.9+0.3 953+0.3 98.5+0.0 97.7+0.1 91.9+0.8 98.1+0.2 94.0+0.1 97.1+0.3 89.4+0.6

Res18 95.6+0.6 89.4+1.3 90.5+0.6 89.4+04 924+0.5 724+1.2 93.9+1.1 888+0.7 73.0+51 740+25
QO WideRes50 97.2+0.2 93.7+0.2 93.9+0.2 92.2+0.2 955+0.1 77.9+0.3 957+ 0.4 92.6+0.4 93.7+0.3 88.7+0.9
£& WideRes50-224-A 98.2+0.1 87.3+0.2 95.0+0.2 97.7+0.0 95.0+0.1 85.8+0.3 98.1+0.2 97.2+0.2 95.4+0.1 87.6+0.8
< DeiT-384-B 98.8+0.0 92.6+0.1 96.3+0.1 97.8+0.0 95.5+0.0 86.3+0.2 98.8+0.0 97.3+0.1 96.1+0.0 89.7+0.1

SEM-100-A|128 94.8+0.4 87.6+1.2 849+1.1 947+0.0 90.4+0.3 749+2.0 93.9+0.5 79.9+0.5 80.6+1.7 62.4+2.1

Table A.3: The individual class results of evalua
runs.

-—+

ating the methods over five



Extended Visual Results

B.1 PaDiM-ViT

B.2 Point-PaDIiM
B.2.1 Networks

Figure B.2 shows anomaly map examples of classes not shown when comparing
PointNet++ backbones in the result chapter.
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A
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Figure B.1: The loss curves from MDN with 150 Gaussian components
trained for 500 epochs.

B.2.2 Background Removal

Figure B.3 shows the anomaly maps of the objects not shown in the result chapter.
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Object Semantic

Figure B.2: Resulting anomaly maps using different PoinNet++ backbones.

B.3 Aluminium Can Dataset

Figure B.4 shows all the results from the aluminium can dataset. The depth maps
were preprocessed using the steps described in 4.1.
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Semantic
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Figure B.3: Resulting anomaly maps using no background for PointNet++.
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Depth Map DeiT-384-B SEM-100/128 De DeiT-384-B SEM-100/128

"\

Figure B.4: Resulting heat maps from DeiT-384-B and SEM-100/128 on the
aluminium can dataset.
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