
Salle Helevä

IMPLEMENTING CLIENT-SIDE FILE

ENCRYPTION FOR AN ENTERPRISE

DOCUMENT MANAGEMENT PLATFORM

Master of Science Thesis

Faculty of Information Technology and Communications

Examiners: Associate Professor Antonis Michalas

Doctoral Researcher Eugene Frimpong

March 2023

i

ABSTRACT

Salle Helevä: Implementing Client-Side File Encryption for an Enterprise Document Management
Platform
Master of Science Thesis
Tampere University
Master’s Degree Programme in Information Technology
March 2023

M-Files is a document management platform used by enterprise customers. Customers may
wish to use M-Files for sensitive documents, the confidentiality of which cannot be trusted with
third parties. To this end, a system should be implemented that enables a customer to use M-
Files for managing such documents, without requiring trust in the security capabilities of M-Files.
This thesis examines how client-side file encryption can be implemented for M-Files. This the-
sis proposes the M-Files Confidential Document System (MFCDS), a client-side file encryption
system. A customer of M-Files can use the MFCDS to create confidential documents, that are
encrypted on the client side with keys owned by the customer. The system is integrated as part of
the web client of M-Files, using browser-based technology.

An implementation plan for the MFCDS system is presented. Hybrid encryption is used to
enable users to share access to encrypted files using public key cryptography. More efficient sym-
metric cryptography is used for encrypting files. User keys are stored in a remote key management
system, owned by the customer. The key management system is accessed via a web API, that
implements a simple protocol for key management. The protocol enables envelope encryption
and public key infrastructure with user keys.

The proposed implementation plan is followed to its completion, and a proof of concept is
implemented. The protocol of the key management API is defined and the API is implemented as
a cloud application on the Azure cloud computing platform. The client-side implementation entails
changes to the web client of M-Files. The built-in browser-based cryptography module Web Crypto
is used for cryptographic algorithms on the client side. A simple user interface is implemented to
demonstrate the system in practice.

The efficiency of the implementation is evaluated with performance tests. It is found that the
implementation provides good performance for files of a moderately large size. The performance
was also found to scale well when the system is used to share encrypted files with hundreds of
users.

Keywords: client-side encryption, applied cryptography, web-development, information security,
key-management

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Salle Helevä: Client-puolen salauksen toteuttaminen yritysdokumentinhallinta-alustalle
Diplomityö
Tampereen yliopisto
Tietotekniikan diplomi-insinöörin tutkinto-ohjelma
Maaliskuu 2023

M-Files on yritysasiakkaille tarkoitettu dokumentinhallinta-alusta. Asiakkailla voi olla tarve käyt-
tää M-Filesia arkaluontoisille dokumenteille, joiden luottamuksellisuuden turvaamisessa ei voi
luottaa kolmansiin osapuoliin. Tähän tarkoitukseen olisi implementoitava järjestelmä, joka mah-
dollistaa asiakkaan käyttämään M-Filesia tällaisten dokumenttien hallintaan ilman, että asiakkaan
on luotettava M-Filesin tarjoamaan tietoturvaan. Tässä diplomityössä tarkastellaan, miten client-
puolen tiedostosalaus voidaan implementoida osaksi M-Filesia. Diplomityössä esitetään MFCDS
(eng. M-Files Confidential Document System), client-puolen tiedostosalausjärjestelmä. MFCDS:iä
käyttämällä M-Filesin asiakas voi luoda omistamillaan avaimillaan salattuja, luottamuksellisia do-
kumentteja client-puolella. Järjestelmä integroidaan osaksi M-Filesin web-sovellusta hyödyntäen
selainpohjaista teknologiaa.

Tässä diplomityössä esitetään implementaatiosuunnitelma MFCDS:lle. Hybridisalauksella käyt-
täjät voivat jakaa salattuja tiedostoja keskenään julkisen avaimen menetelmää hyödyntäen. Te-
hokkaampaa symmetristä salausta käytetään tiedostojen salaamiseen. Käyttäjien avaimet säily-
tetään erillisessä asiakkaan omistamassa avaintenhallintajärjestelmässä. Avaintenhallintajärjes-
telmään tarjotaan pääsy web-rajapinnan kautta, joka implementoi yksinkertaisen avaintenhallinta-
protokollan. Protokolla mahdollistaa envelope-salauksen ja julkisen avaimen infrastruktuurin käyt-
täjien avaimilla.

Esitetty implementaatiosuunnitelma viedään loppuun toteuttamalla konseptin oikeaksi toteava
implementaatio. Avaintenhallintaan käytettävän web-rajapinnan protokolla määritellään ja toteu-
tetaan pilvisovelluksena Azure-pilvipalvelualustalla. Client-puolen implementaatiossa toteutetaan
muutoksia M-Filesin web-sovellukseen. Selaimen tarjoama Web Crypto -kryptografiamoduuli to-
teuttaa vaaditut kryptografiset algoritmit client-puolella. Järjestelmän käytännön demonstrointia
varten toteutetaan yksinkertainen käyttöliittymä.

Implementaation aikatehokkuutta mitataan suorituskykytesteillä. Tulokset paljastavat, että imple-
mentoitu järjestelmä tarjoaa hyvän suoritusnopeuden kohtuullisen isokokoisille tiedostoille. Suori-
tusnopeuden huomataan myös skaalautuvan hyvin, kun järjestelmää käytetään salattujen tiedos-
tojen jakamiseen sadoille käyttäjille.

Avainsanat: client-puolen salaus, sovellettu kryptografia, web-kehitys, tietoturva, avaintenhallinta

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

Writing this thesis was a great challenge for me. The process was as difficult as it was

rewarding. Not only did I learn about the fascinating subject of cryptography, but also

about writing and thinking. I wish to thank my supervisors Antonis Michalas and Eugene

Frimpong from Tampere University, and my company supervisor Esa Kettunen. Their

feedback was invaluable, and their guidance throughout the process kept me on a clear

track. I also wish to thank my employer, M-Files, for the opportunity to write my thesis

about such an interesting topic. I owe thanks to all the colleagues, with whom I had great

discussions about the topic as I was writing. Their genuine enthusiasm gave me the

motivation to really apply myself. I must also thank my friends and my family. Without the

continuous support of all the important people in my life, this undertaking would not have

been possible.

Tampere, 7th March 2023

Salle Helevä

iv

CONTENTS

1. Introduction . 1

1.1 Motivation . 2

1.2 Contribution . 2

1.3 Thesis Outline . 3

2. Related Work . 4

2.1 Advanced Encryption Standard and Client-side Encryption 4

2.2 Key Sharing for Client-side Encryption 5

2.3 Searchable and Homomorphic Encryption 6

2.4 Key Management in Cloud Encryption Systems 7

3. Overview of Client-side Encryption. 9

3.1 Client-side Encryption as a Security Solution 9

3.2 The Problem Domain of Client-side Encryption Implementations in Web

Applications . 11

3.2.1 Algorithm Implementations in the Client-side Application 11

3.2.2 Managing and Using Cryptographic Keys in a Client-side Applica-

tion . 12

3.2.3 Convenient Management for Personal Keys of Users 13

3.2.4 Shared Access to Encrypted Data 14

3.3 An Alternative Approach Using a Dedicated Encryption Service 15

4. Client-side Encryption for M-Files 17

4.1 Documents in M-Files . 17

4.2 Access Control . 18

4.3 Authentication and Client Authorization to External Services. 19

4.4 User Interface Considerations 21

5. Proposed Implementation . 23

5.1 Overview . 23

5.2 External KMS and the Key Management Web API. 25

5.3 Use Cases and Required Operations of the Implementation 26

5.3.1 Creation . 26

5.3.2 Viewing . 28

5.3.3 Updating . 29

5.3.4 Creating Backups of DEKs 29

5.4 Evaluation of the Proposal and Discussion on Further Improvements . . . 29

5.4.1 Hybrid Encryption . 30

v

5.4.2 Choice of Public Key Encryption Algorithm 30

5.4.3 Protection of Confidentiality and Integrity. 31

5.4.4 Alternative Solutions For Convenient Management of User Keys . . 31

6. Design and Implementation of the Key Management API 33

6.1 Defining the Endpoints of the Key Management API 33

6.1.1 Getting a Public Key . 33

6.1.2 Listing Public Keys . 34

6.1.3 Creating a Backup of a Key 34

6.1.4 Unwrapping a Wrapped Key. 35

6.1.5 Signing Data . 36

6.2 Implementing the API as a Cloud Application. 36

6.2.1 Assigning Keys to Users 37

6.2.2 Enabling Authentication and Authorization 38

6.2.3 Example of an Endpoint Implementation 38

7. Client-side Implementation . 40

7.1 Using Cryptographic Algorithms on the Client-side 40

7.1.1 Generating and Using a DEK 40

7.1.2 Importing Public RSA Keys 41

7.1.3 Wrapping a DEK . 41

7.1.4 Verifying Signatures . 41

7.1.5 Variant Using Elliptic-Curve Cryptography 41

7.2 User Interface Implementation 42

8. Evaluation of Performance . 46

9. Conclusion . 50

References . 52

Appendix A: Performance Measurements 58

vi

GLOSSARY OF ABBREVIATIONS

AAD Azure Active Directory

AES Advanced Encryption Standard

AES-GCM AES with Galois/Counter Mode

AKV Azure Key Vault

API Application Programming Interface

CA Certificate Authority

CSP Cloud Service Provider

DEK Data Encryption Key

ECC Elliptic-curve Cryptography

ECDH Elliptic-curve Diffie–Hellman

HSM Hardware Security Module

JWK JSON Web Key

JWT JSON Web Token

KEK Key Encryption Key

KMS Key Management System

MFCDS M-Files Confidential Document System

MFS M-Files Server

MFW M-Files Web

NIST National Institute of Standards and Technology

OIDC OpenID Connect

PBKDF Password-based Key Derivation Function

PKCE Proof Key for Code Exchange

PKI Public Key Infrastructure

RPC Remote Procedure Call

RSA Rivest–Shamir–Adleman algorithm

SaaS Software as a Service

SPA Single Page Application

vii

UI User Interface

UUID Universally Unique Identifier

1

1. INTRODUCTION

Digitalization has brought an ever-increasing amount of company data to the cloud. Busi-

nesses leverage cloud platforms for storing different types of data, including confidential

documents. Since cloud computing distributes functionality to potentially multiple third

parties, the cloud service consumer forfeits control of their data, and a level of trust is

required [22, p. 5][77, p. 67][45, p. 18]. It is not always clear what level of security

the consumer is provided with [22, p. 5-6]. The threat of a security breach on the cloud

provider’s end and legal regulations are incentives against trusting third parties with the

most sensitive data of a company [82, p. 295, pp. 70–72]. These issues can be mitigated

by adopting client-side encryption, which refers to the practice of encrypting data with a

user-owned key before it leaves the user’s device [78, p. 124]. With client-side encryp-

tion, the untrusted cloud can be used for storing even confidential information. Client-side

encryption gives the end user control and responsibility over access to their data, allow-

ing cloud services to be used without requiring trust in the provider’s guarantees for the

confidentiality of data at rest. [71, pp. 126–127] This motivation has driven researchers

to propose various frameworks [70][56][32].

For protecting the confidentiality of an individual user’s data, client-side encryption ap-

pears to be an ideal solution, giving the user complete control. However, there are chal-

lenges in finding an implementation strategy to meet the expectations of enterprise cus-

tomers. The customer may wish to control their users’ access to company data, which

in the case of client-side encryption implies administrative control over key management.

Thus, the customer may wish to use their own identity and access management system

or a trusted third party one, to control access to encryption keys. Furthermore, key man-

agement must follow best practices for security, allowing the customer to, for example,

audit user activity and manage key life cycles [13, pp. 43–44, 29–30]. Additionally, as

opposed to personal use, with a userbase of company employees, it would be desirable

to share access to the same encrypted files between a group of users, posing yet another

implementation challenge.

This thesis investigates how client-side file encryption may be implemented for a doc-

ument management platform used by enterprise customers. The customer is enabled

to centrally manage the keys of their users. The users are enabled to share access to

encrypted files, allowing collaboration while working with confidential documents. The pri-

2

vacy perspective in this thesis is not on the level of the individual user. As users are often

the employees of the customer, the privacy of their personal files is not a focus. Privacy

is to be provided on the level of the whole customer enterprise, implying protection for

confidentiality from third parties. The goal is to build a client-side encryption system, that

allows the customer to use M-files for files of a sensitive nature, without requiring trust in

M-Files as a provider of confidentiality.

1.1 Motivation

M-Files Corporation commissioned this thesis with the goal of evaluating the viability of

client-side file encryption functionality as part of M-Files, a content services platform spe-

cializing in document management. M-Files protects data-at-rest with server-side encryp-

tion, but currently, there is no standard way for users to selectively encrypt files before

uploading them to M-Files [46]. Thus, client-side encryption would be a new feature in

M-Files. For a customer, client-side encryption provides a way to store highly sensitive

documents on M-Files, while keeping them confidential from M-Files itself. The imple-

mentation of the feature is, therefore, interesting from a business point of view. It can lead

to new customer use cases and potentially open new customer segments. Equally well,

the implementation poses interesting challenges for a thesis, requiring the correct appli-

cation of security best practices in the context of a new feature’s design process, where

security is a critical priority.

1.2 Contribution

This thesis is constructive research that begins with a hypothesis that client-side file en-

cryption can be integrated with the web-based client software of M-Files while adhering

to a clear notion of security and fulfilling implementation requirements. Namely, the con-

fidentiality of encrypted files must be protected from M-Files itself, while allowing shared

access to the encrypted files among a group of users. Furthermore, customers must have

administrative control over encryption keys and their users’ access to encrypted files.

The M-Files Confidential Document System (MFCDS) is proposed. MFCDS is a client-

side file encryption system, that utilizes a web API for external key management with a

trusted key management system (KMS). The API provides the required cryptographic op-

erations to enable authenticated users to create and access encrypted files using their

personal keys. MFCDS utilizes public key infrastructure (PKI) to allow users to share

encrypted files with a select group of other users. MFCDS is a hybrid encryption sys-

tem; public key encryption and symmetric encryption are combined with a methodology

similar to established encryption systems [33][52]. A proof of concept implementation for

MFCDS is implemented. The viability of the implementation is evaluated by measuring its

3

performance.

1.3 Thesis Outline

This thesis begins with a review of related works in chapter 2. In chapter 3, an overview

of client-side encryption is given. Relevant concepts are defined to accurately describe

the problem domain of the implementation. Chapter 4 describes how the problem domain

relates to M-Files as a product. In chapter 5, an implementation plan is described and

proposed. Chapter 6 details the design and implementation of the key management

web API. Chapter 7 details the implementation of changes to the client-side application.

Chapter 8 is an evaluation of the performance of the implementation. In the final chapter

9, the conclusions are presented.

4

2. RELATED WORK

Client-side encryption, the underlying cryptography, and its applications have been the

focus of extensive research. With the increasing popularity of the cloud computing model,

the topic has garnered more interest as there are new challenges and avenues for inno-

vation. Still, the basic functionality of client-side encryption relies on fundamental, time-

tested concepts, such as symmetric and asymmetric encryption. For using encryption in

cloud applications with multiple clients, the importance of robust key management is mag-

nified. This chapter is a review of research on client-side encryption, related cryptography,

and works on key management.

2.1 Advanced Encryption Standard and Client-side Encryption

The Advanced Encryption Standard (AES) is a symmetric encryption algorithm. It is rec-

ommended by the National Institute of Standards and Technology (NIST) and widely used

in the industry today [14, p. 25] AES supports keys of 128, 192, and 256 bits in size. [30]

AES is considered to be very secure. There is a theoretical increase in security between

the different key sizes, but the greater efficiency with a smaller 128-bit key has made it

the most common option. [7, p. 59, 65] A notion of security to describe AES is seman-

tic security, as defined by Micali et al. [66]. A cryptosystem is said to be semantically

secure if, for any given ciphertext, an adversary can conduct no computation that can

produce information about the plaintext that is more accurate than random guessing [66,

p. 417]. Simply put, the ciphertext contains no information about the underlying plaintext.

Indeed, the only known attacks against a secure AES implementation are side-channel

attacks, where additional data leaked into the environment such as noise produced by the

encrypting device, are exploited, instead of the algorithm itself [83, p. 362].

Being a widely adopted and highly trusted algorithm, AES has been used in existing

constructive research for client-side encryption. Feldman et al. proposed a client-side

encryption framework for collaboration on documents encrypted on the client-side and

stored on the backend of an untrusted cloud service provider (CSP) [32]. Similar systems

have been proposed by Kanezaei & Hanapi, Kadam & Khairnar, Hosam & Hammad Ah-

mad, and Orobosade et al. [51][55][68][42]. These proposals use AES to encrypt data

on the client-side before it is uploaded to the cloud. Recipients share the symmetric key

5

to the data using public key cryptography. With this shared key, the data can again be

decrypted when it is downloaded to the user’s device. The choice of the AES algorithm in

these works is attributed to its security and efficiency even with larger blocks of data [68,

p. 29][55, p. 60][51, p. 52][42, p. 242].

2.2 Key Sharing for Client-side Encryption

Since many cloud services allow collaboration and include sharing features, the imple-

mentation of sharing data between users combined with client-side encryption is inter-

esting. Because the data is encrypted, a decryption key must be shared. The proposals

examined above use a hybrid encryption model. Data itself is encrypted using AES due to

its higher efficiency compared to asymmetric schemes. To share the symmetric key over

an untrusted CSP, these proposals use asymmetric cryptography. [68][51][55][32][42]

Public keys of asymmetric encryption key pairs can be shared with other users and even

the untrusted CSP. The symmetric AES encryption key can be protected from the CSP, by

encrypting it with the public key of some user. This allows the owner of the corresponding

asymmetric key pair to then download the encrypted data and the encrypted AES key.

The owner can then use their private key to recover the AES key and use it to recover the

plaintext data.

For example, the framework proposed by Feldman et al. allows multiple users to share

and collaborate on documents encrypted by one user with AES. To allow a group of other

users to decrypt the document, the AES key is encrypted with the public key of each user.

These encrypted copies of the encryption key, one for each user, are appended to the

encrypted document. The document with the attached ciphers of keys can then be stored

with the untrusted CSP. Now when the user downloads the encrypted document to their

client, they receive a copy of the symmetric encryption key, which they’re able to decrypt

with their private key, thus also granting them access to the document. To revoke a user’s

access to the document, the document must be encrypted again with a new key, which is

again stored encrypted with the updated list of users’ public keys. [32]

The Rivest–Shamir–Adleman algorithm (RSA) [75] is often chosen as the asymmetric

algorithm for sharing keys [51][55]. While RSA is inefficient, it is efficient enough for

encrypting the relatively small AES key [51, p. 53]. However, asymmetric encryption

using Elliptic-curve Cryptography (ECC) may be considered a better option, since security

is improved even with smaller key sizes and efficiency is better. Newer proposals have

chosen to use ECC for this reason. [68, p. 27][42, p. 242]

6

2.3 Searchable and Homomorphic Encryption

One major theme that appears to be of particular interest to researchers currently is com-

putations on encrypted data [29, p. 27]. With conventional methods, encrypted data at

rest cannot be searched or otherwise operated on in a meaningful way on the server-side

without decrypting it; an untrusted cloud service can run no operations on data encrypted

on the client-side. However, one major benefit of cloud computing is the outsourcing of

computational resources to a third party [65][78, p. 7]. Therefore, it would be ideal to

be able to run computations on encrypted data, without being revealed, ideally, anything

about the underlying plaintext. Untrusted cloud services could then be used for process-

ing confidential data.

Searchable encryption allows queries to find matches within cipher text [17][36][24][28]. In

addition to searchable encryption, homomorphic encryption schemes allow even arbitrary

computations [86, p. 124][35, p. 99]. Since semantic security, such as provided by AES,

ensures there is no information about the plaintext in the ciphers, how could an equally

secure algorithm be searchable? Or perhaps more importantly, if information is allowed

to be present in the ciphertext, to what extent is its security compromised? Much recent

research about client-side encryption revolves around this exact problem.

Bellare et al. proposed deterministic encryption to allow conducting database queries

for data encrypted on the client-side [17]. The proposal involves associating a block of

encrypted data with deterministically encrypted tags. A server can then build an index

to allow the client to query for the tag. Whenever the client wants to query for that block

of data, it can choose the desired plain text tag, encrypt it with a deterministic scheme

and send the cipher to the server. Due to determinism, the tag will result in the same

cipher as when the tag was created as well as with every following query. [17, p. 13] This

proposal allows search queries for encrypted data with similar efficiency to conventional

methods [18, p. 3]. However, the scheme is lacking in confidentiality, because information

about the equality of the tags is leaked [48, pp. 72–73]. More sophisticated schemes

have been proposed by Goh, Chang & Mitzenmacher, Curtmola et al., and many others

[36][24][28][69, p. 3]. These schemes utilize masking to prevent the equality of queries

from leaking and thus achieve better confidentiality than deterministic encryption. [69, pp.

10–11] While such schemes do not leak equality, they can still leak additional information,

making them less than semantically secure. A notion of security can be defined that

permits some leakage of attributes, namely about the query patterns and tag frequency

per block of data. [69, p. 14]

Fully homomorphic encryption schemes are semantically secure while allowing various

computations on ciphertext [86, p. 124][35, p. 99]. With fully homomorphic encryption,

computations can be conducted on the ciphertext that have a desired impact on the un-

derlying plaintext, which can be reduced to addition and multiplication operations, allowing

7

the system to perform any arbitrary computation. The trade-off, however, is substantially

worse efficiency, in exchange for functionality and security. [29, pp. 29–30] [7, p. 17]

Popa et al. proposed CryptDB, a framework that combines homomorphic encryption with

searchable encryption schemes, producing a system that allows running SQL-queries on

an encrypted database with provable efficiency [70].

Clearly, searchable and homomorphic encryption can be useful. However, the application

of these schemes for client-side encryption appears challenging. Their practical, efficient,

and secure implementation, including required server-side changes, would cause a sub-

stantial increase in implementation complexity. Since this thesis is not strictly focused

on such functionality, the additional work required to utilize searchable or homomorphic

encryption is considered outside the current scope.

2.4 Key Management in Cloud Encryption Systems

The strength of an encryption system relies on the proper management of associated

keys. Key management entails managing the storage, access, and life cycles of keys and

any related information. A system that implements this functionality is a key management

system (KMS). [16, p. 1, pp. 12–13][82, p. 137] A KMS thus enables the secure use of

keys by their intended users. Key management is a multi-faceted problem that has lead

to the development of related standards and recommended practices. NIST has pub-

lished a three-part guideline for general key management and a framework for designing

cryptographic key management systems [16][13][14][11].

The OASIS organization has defined the Key Management Interoperability Protocol (KMIP),

a generic protocol for key management. This protocol defines interfaces for standardized

communication between key management servers and clients, enabling the exchange

of cryptographic objects such as keys and certificates across a network. [54] Using a

protocol like KMIP enables application developers to interface with a KMS in a standard-

ized manner. Some cloud computing platforms offer key management as service with

their own key management protocol implementations. In a book on applied cryptography,

Haunts (2019) demonstrates the use of Azure Key Vault, a cloud-based KMS provided by

the cloud computing platform Azure [41]. Another cloud-based KMS provided by Amazon

Web Services is used by Campagna & Gueron in their proposal for a cloud-scale KMS

[21]. Key management as a cloud service brings the benefits of cloud computing to key

management applications, including faster development times, lowered costs, and auto-

matic provisioning of resources [78, p. 8]. Moreover, expensive hardware protection can

be used for a fraction of the cost of a self-hosted equivalent [41, pp. 145–146][21, p. 5].

Chandramouli et al. in their NIST publication further expand on key management issues

specific to cloud computing [23]. They recommend an architectural solution that resolves

key management issues particular to the Software as a Service (SaaS) model of cloud

8

computing with an enterprise cloud consumer. This solution is a reverse proxy that sits

between the CSP and any user traffic, providing encryption and decryption for outgoing

and incoming data, respectively [23, p. 24]. Somewhat similarly, Fahl et al. proposed

a system to mitigate key management related issues by isolating encryption operations

from user environments entirely, instead using a dedicated encryption service with inter-

nal key management based on policies for authenticated users [31]. These solutions fit

an enterprise use-case where the customer may operate an on-premises private cloud.

Since users are not required to access keys, key management becomes simpler. Key

management is only required for use by the reverse proxy or the dedicated encryption

service deployment, which are always contained in the tightly controlled private cloud.

This thesis is focused on implementing client-side encryption from the point of view of an

enterprise customer. The option of a customer-managed KMS is considered, to enable

the customer to own the keys of their users. Customers may host a KMS on their own

premises or trust some other cloud service for key management. A customer-owned KMS

can be interfaced with via a key management protocol.

9

3. OVERVIEW OF CLIENT-SIDE ENCRYPTION

Several different online services implement client-side encryption. Clearly, there are a

variety of use-cases and issues that can be addressed with this encryption system. This

chapter examines client-side encryption in detail to accurately describe the term. The

problem domain of client-side encryption implementations in modern web applications is

examined. Issues that need to be solved to implement client-side encryption for a SaaS

web application are described. Finally, alternative encryption systems, which may be

implemented to solve similar problems, are discussed.

3.1 Client-side Encryption as a Security Solution

Encrypting user data at rest is an important recommended default practice today [78,

p. 119][82, p. 228]. CSPs often protect the confidentiality of user data with server-side

encryption. With server-side encryption, the data is encrypted by the CSP after it has

been uploaded by a cloud consumer, as depicted in figure 3.1 [82, p. 228]. The encryption

procedure, including key management, is handled by the backend infrastructure of the

CSP, and the data is decrypted as required [78, p. 124]. Server-side encryption thus

requires the cloud consumer to trust the CSP to properly secure access to their data [82,

pp. 195–196, p. 228].

Figure 3.1. Server-side encryption

Unlike server-side encryption, with client-side encryption, data is encrypted before it is

uploaded to a CSP. A basic overview is depicted in figure 3.2. The data is encrypted

on the user’s device, by client-side software, with a user-owned key. [71, p. 129][84,

p. 402][43, p. 211] Therefore, the confidentiality of the data is protected from the CSP

itself; the CSP can never decrypt the data since it does not know the decryption key.

10

For this reason, client-side encryption does not require the cloud consumer to trust any

confidentiality claims made by the CSP [82, pp. 195–196, p. 228].

Figure 3.2. Client-side encryption

While CSPs have a clear incentive to protect the data of their customers, there are still

many concerns with trusting a third party for data confidentiality. Firstly, aside from regular

auditing, the cloud consumer may not always truly know what kind of security practices the

CSP has in place. The cloud consumer must trust the claims of the CSP. There is also the

threat of a malicious insider; someone within the organization of the CSP exploiting their

position to gain access to the cloud consumer’s data. [82, p. 55][79, pp. 3–4][25, p. 2] If

the malicious insider has sufficient credentials to access encryption keys, allowing them

to recover plain text data, server-side encryption is insufficient to protect confidentiality

[82, p. 228]. Additionally, legal means by which user data may be leaked to unauthorized

parties can be concerning to a cloud consumer. The CSP may be required to reveal user

data to authorities in countries with varying data privacy laws, leading to uncertainty about

the true level of privacy enjoyed by the cloud consumer [78, pp. 52–53][82, p. 53][22, pp.

44–46].

These threats can be mitigated by using client-side encryption. Assuming strong en-

cryption is used, with client-side encryption, the CSP cannot decrypt user data. Thus,

confidentiality is protected regardless of what the CSP does with the data. However, it is

important to note that client-side encryption does not mitigate the threat of loss of avail-

ability, which is likewise a serious concern. This is illustrated by the recent history of

ransomware attacks. [82, p. 146][6] Neither does client-side encryption address threats

on the side of the cloud consumer. For example, the client-side software, where sensitive

data is encrypted, can be vulnerable. Similarly, any key management system that may be

used can be a point of failure.

In general, encryption alone is entirely insufficient for protection against all threats. It

should be considered a complementary but vital measure as part of a whole system of

protection. [78, pp. 119–120] Client-side encryption can be used to protect the confiden-

tiality of data at rest when stored on a third party CSP.

11

3.2 The Problem Domain of Client-side Encryption

Implementations in Web Applications

Client-side encryption protects the confidentiality of user data. Confidentiality is ensured

by encrypting data on the client-side application, with a key that is not known and never

revealed to the CSP. The implementation should not have functionality that relies on trust

in the CSP. The client-side application, however, must be trusted to allow it to encrypt

plaintext data and access any related cryptographic keys. For example, it can be assumed

that the client-side application does not include any malicious code [84, p. 406]. In the

case of a web application, this code is run in the user’s browser.

This section describes the problem domain of a client-side encryption implementation in a

web application. The cloud service model is SaaS, where a CSP serves a web application

to users and allows the users to upload data and access it again later [65, p. 2]. For the

sake of simplicity, in the rest of this section, the word “server” is used to refer to arbitrary

backend infrastructure of the CSP. Data is encrypted in the client-side code of the web

application prior to uploading to the server. When data is later fetched by recipients, users

with whom the data is intended to be shared, they must be able to decrypt it again. Thus,

a decryption key must be shared, all the while keeping it confidential from the server.

3.2.1 Algorithm Implementations in the Client-side Application

To encrypt on the client side, the web application must contain secure implementations

of the required cryptographic algorithms. Web browsers provide Web Crypto, a stan-

dard API providing various cryptography-related functionality. The API is implemented by

the browser, and exposes algorithms so that they can be called via JavaScript [39, pp.

959–960] For example, Web Crypto provides implementations of AES and RSA. Via the

provided API, cryptographic keys can be generated or imported and then used in crypto-

graphic algorithms. The supported algorithms depend on the type of key. For example,

AES keys, being symmetric keys, support encryption and decryption operations. Various

cipher modes are supported for AES, importantly, authenticated encryption, to protect the

integrity of encrypted data. ECC is likewise supported. Web Crypto enables using the

Elliptic-curve Diffie–Hellman (ECDH) protocol for sharing a secret between participants

[44]. Using the ECDH implementation provided by Web Crypto, the shared secret can

be derived into a shared AES key. [63] The performance of Web Crypto has been found

promising, likely making it viable for most web applications [62, pp. 195–196].

12

3.2.2 Managing and Using Cryptographic Keys in a Client-side

Application

To enable encryption and decryption in the client-side application, cryptographic keys

must be generated or imported. It should be noted that the security-critical nature of

cryptographic keys warrants caution. Where keys are stored and how they are used have

implications for the security of the whole encryption system. Ideally, keys would only be

generated, stored, and used within hardware security modules (HSM) [15, p. 11]. If en-

cryption or key generation is done within the client-side application, this recommendation

is violated. Another option would be to use a web API to request some external service to

handle encryption, where keys are stored and used within HSMs. This means there would

be no keys present in the client-side application at all, avoiding the problem altogether.

However, encrypting via some external service would require transmitting potentially large

amounts of data in requests, which could have a significant performance impact. Using

the user’s own device for encryption can lead to better scaling and a simpler implementa-

tion, but the security of such a system appears lacking.

Figure 3.3. Envelope encryption, adapted from [8]

Envelope encryption: Envelope encryption allows the use of cryptographic keys in a

client-side application while protecting them by encryption with another key stored strictly

within a secure KMS. The client-side application can generate and use cryptographic keys

for encryption and decryption. These keys are called data encryption keys (DEK). DEKs

are protected by encrypting them with a key encryption key (KEK), which is stored in a

remote KMS, ideally within a HSM. Encrypting a DEK with a KEK is known as wrapping.

By wrapping the DEK, its confidentiality is protected, and it can be stored even on the

untrusted server of the application. When the wrapped DEK is again used in the client-

side application, it must first be unwrapped by requesting a decryption operation from the

KMS. See figure 3.3 for a basic overview. [27][8] To enable envelope encryption, the KMS

must implement these two operations. There must also be some way for the client-side

application to request these operations, such as a web API, for example.

13

3.2.3 Convenient Management for Personal Keys of Users

For a user of the web application to have ownership of encrypted data intended for them

to access, they must have ownership of a personal key. Technically, each user could store

their key on their own device and manually enter it into the client-side application when

encrypting or decrypting data. From a user experience point of view, this leaves room for

improvement. Security issues arise as well since this places the responsibility of secure

key storage on the user, who is likely ill-equipped for the task. Furthermore, keys should

ideally be stored within a HSM, as mentioned before [15, p. 11].

Password-based key derivation function (PBKDF): To enable users to own crypto-

graphic keys without bearing the burden of their secure handling and storage, a PBKDF

can be used. A PBKDF is a function that deterministically derives a cryptographic key

from a password. Typically, the user already holds one secret, their password to the SaaS

application in question. If the encryption key is derived from the password, the client-side

application can regenerate the key by running the PBKDF with the user’s password as

input and the user does not have to store an additional secret. However, when the user

changes their password, all data encrypted with the key must be re-encrypted. This solu-

tion, therefore, relies on the user not forgetting their password, or else the encrypted data

may never be recovered. Furthermore, user-chosen passwords are likely to lack sufficient

entropy to be a safe source for generating cryptographic keys. An attacker could run at-

tacks against the PBKDF and quickly discover the correct key if the source password is

too short or easy to guess. With a complex password, high in entropy, using a PBKDF is

a viable method of generating secure keys. [81, p. 5, 11] The client-side encryption sys-

tems of MEGA and SpiderOak, two cloud-based storage services under the SaaS model,

both utilize PBKDFs [80][10, p. 3].

External KMS: Another option for user key management is to store the private keys of

users in a trusted, external KMS and access them via a web API from the client-side

application. Using an external KMS for key management allows ensuring confidentiality

from the cloud service, without relying on the user’s abilities to securely store their key or

having to build a more intricate system like one based on PBKDF. Private keys of users

can be stored in the KMS. The required operations for the keys can be exposed to the

client-side application via a web API. For example, Google Workspace’s implementation

of client-side encryption allows a number of options for external key management. Via

the provided web API, the customer can use their own KMS or use a service provided by

Google’s partners. [37] Using an external KMS via a web API also has the benefit of en-

abling the use of envelope encryption, as discussed previously. The client-side encryption

system of Google Workspace utilizes envelope encryption [27]. Operations for wrapping

and unwrapping the DEK are provided by the specified web API [38]. The downside of

this type of client-side encryption system is that it requires another trusted service, where

14

as a system utilizing a PBKDF can be self-contained by the SaaS application.

3.2.4 Shared Access to Encrypted Data

To allow users to share access to data encrypted on the client side, the intended recipients

must be able to decrypt the ciphertext data, encrypted by another user, after fetching it

from the server. Importantly, the confidentiality of the data and cryptographic keys must

still be protected from the server. For example, the server cannot be used as a trusted

channel for distributing keys to other users. However, the server could be used to share

keys if the confidentiality of the keys is protected by encryption. Intuitively, public key

encryption seems useful here. Indeed, this has been proposed by various client-side

encryption frameworks (see section: 2.2), where a symmetric encryption key is protected

by encrypting it with the public key of a recipient. The wrapped symmetric key can then be

shared even via the untrusted server and distributed to recipients. [32] This system is also

used by OpenPGP to allow multiple recipients to decrypt an encrypted email [33, p. 17].

This combination of asymmetric and symmetric cryptography is called hybrid encryption.

Hybrid encryption allows combining the efficiency of symmetric algorithms such as AES

with the ability to protect the confidentiality of data when it is shared on an untrusted

medium. [41, pp. 113–119][51] Several cloud services with client-side encryption, too,

leverage hybrid encryption for the same purpose [43, pp. 215–216][84].

Figure 3.4. Envelope encryption with asymmetric key pairs

Envelope encryption with a remote KMS works as a key management solution when hy-

brid encryption is used in the client-side encryption system. Users’ private keys can be

stored in a remote KMS. Public keys and private can be used for wrapping and unwrap-

ping, respectively. See figure 3.4 for an overview. In the figure, Alice encrypts data with a

symmetric DEK generated on her client. She shares the encrypted data and the DEK with

Bob over the untrusted CSP, by wrapping the DEK with Bob’s public key. This allows Bob

to retrieve the plaintext DEK by requesting an unwrap operation from the remote KMS,

15

where his private key is stored. For users to verify the authenticity of each other’s public

keys, they are dependent on existing PKI, specifically, a certificate authority (CA) to verify

that a public key belongs to the claimed user [20, p. 53]. Wilson and Ateniese investi-

gated the confidentiality claims made by a number of cloud providers offering client-side

encryption [84]. They found that due to the untrusted cloud provider fulfilling the role of a

CA, the true level of confidentiality enjoyed by the users was doubtful. The cloud storage

provider can claim its own public key to belong to one of the privileged users, thus allow-

ing it to retrieve the shared decryption key. [84, pp. 406–407, p. 411] Therefore, the user

must trust that the server is cooperative and not actively malicious. Alternatively, some

other trusted service can be used as the CA.

3.3 An Alternative Approach Using a Dedicated Encryption

Service

In the previous sections, the option of external key management via a web API was men-

tioned. This solution moves some of the cryptographic operations outside the client-side

application. For example, the wrapping and unwrapping operations used in envelope en-

cryption via a web API imply that the KMS implementing the API can encrypt and decrypt

the DEK. If an external service can be practical for such limited cryptography, would it

be possible to move the handling of all client-side encryption operations into an external

service altogether? Especially for enterprise customers, this solution can allow leveraging

the company’s private cloud (see section 2.4). It would be reasonable to utilize the com-

pany’s private cloud for hosting a dedicated encryption service. It may even be assumed,

that the end-user environments, such as the personal devices of the company’s employ-

ees, are considered less trustworthy, and certainly less secure, than an on-premises

service. In this case, instead of client-side encryption, an alternative encryption system

deployed in some trusted environment can be used for the same purpose of protecting

the confidentiality of company data from the CSP used for data storage.

A dedicated encryption service deployed on the private cloud of a company has benefits

for key management. Both the KMS and the encryption service can be contained within

the company’s private cloud. Instead of having to manage keys for multiple users, the

service could even use a single key for all operations. Security guarantees are better

because no keys must ever be exposed to uncontrollable and potentially compromised

user devices and networks. A proxy service can be used, that encrypts outgoing data

before it leaves the internal company network and decrypts data coming in. [23, p. 24][78,

pp. 124–125] Alternatively, the encryption service could be a cloud service, that allows

authenticated users to encrypt and decrypt data according to configured access control

policies. User key management is handled entirely within this service. Its internal access

control allows sharing access to encrypted data, without requiring the users to share keys

16

across the untrusted CSPs application. This model of cloud service has been proposed

as Confidentiality as a Service and Encryption as a Service. [73][31]

A remote encryption service was first proposed in 2001 by Berson et al. [19]. They

proposed cryptography as a network service to address the issue of limited computing

power of end-user devices, relevant at the time. This benefit could still be relevant today,

depending on the size of the data, the computational power of the devices of end-users,

and the number of requests the encryption service has to handle. In a modern client-

side web application, however, cryptographic algorithms on user devices promise good

performance in most use-cases [62, pp. 195–196]. Especially in the cloud computing

context, as opposed to user device limitations, performance bottlenecks are often caused

by heavy usage load on the backend infrastructure, requiring the provisioning of more

physical resources to solve. Instead of efficiency, the better security guarantees of a

dedicated encryption service should be considered its greatest benefit. Still, a solution

such as envelope encryption in a client-side encryption system can be considered a good

compromise (see section 3.2.2). The most sensitive keys are protected in an external

KMS, and similarly, never exposed to end-users.

17

4. CLIENT-SIDE ENCRYPTION FOR M-FILES

M-Files is a document management platform primarily used by companies to digitalize

their internal document management. M-Files can be deployed on customer premises as

well as used as a cloud service. It has client software for Microsoft Windows and mobile

platforms, as well as a web application, M-Files Web (MFW). All client software, including

MFW, are served by the same backend infrastructure, henceforth referred to as M-Files

Server (MFS). This thesis implements a proof of concept client-side file encryption system

as a new feature for MFW. The basic functional requirements of the implementation are

that users of M-Files must be able to encrypt files on the client side and share them with

a group of other users. All the while, the confidentiality of the files must be protected

from MFS. In this chapter, some basic concepts of M-Files are explained, to define more

specific implementation requirements. This includes concepts related to backend logic, as

implemented in MFS, as well as user interface considerations, as implemented in MFW.

4.1 Documents in M-Files

Files are stored in M-Files as documents. A document can have one file or many files

(multi-file document). Each document has a title, metadata, version history, and per-

missions attached to them. A document’s metadata can contain multiple properties of

different types such as numeric values, text properties, date and time values, etc. Proper-

ties can even refer to other documents or objects within M-Files. Whenever a document

or its metadata is modified by a user, a new version of the document is created. The

old version is preserved in version history, and it can be easily recovered later. The per-

missions associated with the document dictate which users can view, modify and delete

documents. Documents are stored in M-Files vaults. A customer may have multiple vaults

with different configurations. The vault configuration includes, for example, settings for the

different clients, authentication method configuration, and configuration of user accounts.

[58][57] Documents in M-Files, therefore, are a lot more than just file storage. M-Files is

a complex document management system, a comprehensive description of which is well

outside the scope of this chapter.

The file part of the document can be thought of as its content, in addition to all the meta-

data that is associated with it. M-Files documents can store arbitrary types of files, for

18

example, plain text files, pdf-documents, or photos and videos. It is important to note that

client-side file encryption only encrypts the contained file, not any other data associated

with the document. Encrypting the title of the document or some other metadata on the

client-side are outside the scope of this implementation. A functionality such as client-side

metadata encryption would be interesting because metadata is a widely utilized concept

in M-Files, and using it to store confidential information might open interesting use-cases.

However, metadata must remain functional. MFS can, for example, build indexes from

metadata fields and have complex rules based on metadata values. Therefore, this type

of implementation would warrant the use of searchable or homomorphic encryption (see

related works in section 2.3), and further examination of how such functionality could be

supported by MFS.

Since documents can store arbitrary types of files, storing ciphertext files is simpler than

storing ciphertext metadata. While M-Files does have support for server-side functionality

based on file content, it is not assumed that every file must be readable by the server.

For example, MFS supports indexation based on file content, but the feature is only en-

abled for certain file types. [59] A file of any format can be stored and thus there are no

assumptions that file contents need to be readable by MFS in some way. Therefore, files

encrypted on the client side can be stored as ciphertext, without breaking functionality.

Documents that contain files, which were encrypted on the client side, are henceforth

referred to as confidential documents. Confidential documents are defined as M-Files

documents, with encrypted file content, that is kept confidential from MFS.

4.2 Access Control

MFS implements a comprehensive access control system to allow for restricting users’

access to documents. For example, document-specific permissions can be used to de-

fine the access rights of a user or a group of users [58]. Under the normal use-case,

this internal access control is a sufficient guarantee to protect the confidentiality of doc-

uments from unauthorized users. However, with confidential documents, it is assumed

that confidentiality requires further protection even from MFS itself. Therefore, access

control, to the extent of protecting the confidentiality of files, must be implemented using

cryptography. The client-side encryption system cannot rely on trust in MFS to protect the

confidentiality and integrity of files in confidential documents.

With cryptographic access control, a user is prevented from viewing the file of a confi-

dential document, by simply not sharing the decryption key with that user. Ultimately,

however, MFS serves the document from cloud storage to the end-user. Therefore, the

internal access control of MFS must be relied on for controlling which users can modify or

delete the document. As such, MFS must be trusted and enabled to do this task correctly.

There must be some way to allow the internal access control of MFS to cooperate with

19

the access control of the client-side encryption system, to allow MFS to only give access

to confidential documents to the correct users. Still, the confidentiality and integrity of the

contained file is protected with cryptography, not with internal access control of MFS; The

content of the confidential document cannot be viewed by unauthorized users, and if the

content is tampered with, it can be noticed.

A lack of cooperation between internal access control and cryptographic access control

can cause loss of access to data. For example, while only the users who can decrypt the

file of a confidential document can view its contents, another user with permission from

M-Files could still delete the document. Therefore, MFS must be able to read which users

are able to decrypt the file, and subsequently prevent other users at least from deleting

and modifying the confidential document, and perhaps from even viewing it. Similarly,

MFS must ensure that all the users who can decrypt the file can also view it.

Another consequence of misbehaving internal access control can be observed with the

version history system of M-Files. For each document, a version history is tracked. An

older version of a document can be recovered, including the contents of any contained

files. This has consequences for the implementation of access revocation with confidential

documents. For example, a salary information document’s file might be encrypted on the

client-side with a key known to Alice, Bob, and Charlie. Charlie’s role in the company

changes and he should no longer be able to read the salary information contained in that

file. Bob and Alice will then re-encrypt the document with a new symmetric key only known

to them. As a result, the document’s contents change, and a new version is created in

M-Files. Charlie is not able to decrypt the file of this version with his old key. However,

Charlie can find the old version from document history and still decrypt it. This too can be

mitigated, with cooperation from internal access control. Whenever the cryptographically

enforced permissions of a confidential document are updated, it should be possible to

update the internal access control of MFS to reflect these changes.

4.3 Authentication and Client Authorization to External Services

M-Files allows administrators to configure internally managed user accounts for each

document vault, allowing users to authenticate directly with MFS. However, since the

confidentiality and integrity of files in confidential documents is to be protected from MFS

itself, internal identity management, and the associated internal access control, cannot

be relied on by the client-side encryption system. M-Files also allows configuring Azure

Active Directory (AAD) as an external identity management service. [60] AAD is thus an

intuitive first choice for a trusted external identity provider for the implementation. For

example, the implementation can use AAD to authenticate users and authorize MFW to

access a web API, that enables envelope encryption with an external KMS (see section

3.2.2).

20

Authentication with AAD is enabled by the OAuth 2.0 protocol extended with the OpenID

connect protocol [67]. Depending on the type of application, different grant flows can

be used to acquire access tokens for the user’s resources. If the application has an

application server, such as MFS, the plain authorization code flow can be used. This

flow is designed to be used with a shared secret between the application server and

the OAuth provider’s authorization server. This shared secret is used to authenticate the

application server, preventing an illegitimate server of an attacker from making requests

on behalf of the user. [40] However, in this implementation, even the genuine application

server is not trusted to access the user’s resources in a way that could compromise the

confidentiality provided by the client-side encryption system. For example, MFS is not

trusted to use an external web API for key management on behalf of the user. As such,

the plain authorization code flow is unsuitable for the implementation.

Figure 4.1. OAuth 2.0 plain authorization code flow

Some other grant flow that enables the client-side application to access the user’s re-

sources must be used. The user must be authenticated with AAD and then MFW must

be authorized to use any required services on behalf of the user. All the while, the re-

sources must be protected from MFS; MFS should not be authorized to access them. The

plain authorization code flow cannot be used without the shared secret, for the reasons

described above. The shared secret likewise cannot be stored in a public client-side ap-

plication such as MFW, as it could easily be leaked or stolen. To solve this problem, the

authorization code flow can be extended using RFC 7636 protocol also known as Proof

Key for Code Exchange (PKCE), which is designed specifically to allow using OAuth 2.0

with public clients [76]. PKCE introduces a simple mechanism for creating temporary

21

Figure 4.2. OAuth 2.0 authorization code flow extended with PKCE

secrets to provide similar security to the plain authorization code flow. With PKCE, the

client generates its own secret and transforms it into a code challenge using some known

function, typically by hashing. This code challenge is sent to the authorization server in

exchange for an authorization code. The next time this authorization code is sent to the

authorization server in exchange for an access token, the server expects to also receive

the secret that was used to create the code challenge. The server thus challenges the

request, by transforming the received secret and comparing its equality to the initial code

challenge it received. If the challenge fails, the request is forbidden. This mechanism

prevents an attacker from abusing a stolen authorization code. [76, pp. 8–10] See figures

4.1 and 4.2 for an overview of the plain authorization code flow and authorization code

flow with PKCE respectively.

Using OAuth 2.0 with PKCE allows authorizing MFW to use services on the behalf of the

user, without involving MFS in the authorization flow. AAD supports the PKCE grant flow

and can thus be used as the trusted identity provider [67].

4.4 User Interface Considerations

MFW is a single-page web application (SPA) that is used to browse content within M-

Files. In this thesis, user interface (UI) changes are implemented to the extent that the

basic functionality of the proof-of-concept implementation can be demonstrated.

Users can create new documents of different types via MFW. Similarly, users should be

able to choose confidential document as the type of document to create. Upon creation,

options specific to client-side encryption should be displayed to the user, such as options

related to sharing the document with other users. To initiate creating a new document,

the user can drag and drop a file into the browser window or click the corresponding

22

Figure 4.3. M-Files Web user interface [61]

icon from the top bar of the UI. In the latter case, the initial file of the document will be

empty. In the former, the dropped file is immediately uploaded to MFS, after which the

user is prompted to define metadata properties and a title for the document. The file of a

new confidential document needs to be encrypted before it is uploaded to MFS, and thus

the existing flow requires changes. Furthermore, additional options specific to creating

confidential documents must be displayed to the user before encryption and subsequent

uploading of files.

Files contained in documents can be viewed in MFW. A preview area is used for this, the

middle panel shown in figure 4.3. To demonstrate the functionality of the proof of concept

implementation, this preview area is used to view the file of a confidential document after

it has been successfully decrypted.

23

5. PROPOSED IMPLEMENTATION

This chapter proposes the implementation plan for MFCDS, enabling client-side file en-

cryption for M-Files. MFCDS enables users to create confidential documents, encrypted

on the client side. Hybrid encryption is used; Files contained in confidential documents

are encrypted with symmetric encryption, while public key cryptography is used to share

symmetric keys between users. The key pairs of users are stored with an external KMS.

Envelope encryption is used for wrapping and unwrapping DEKs with user key pairs.

Files are encrypted and decrypted with DEKs on the client side, while the most sensitive

keys of users are kept strictly inside the external KMS. The required key management

operations are exposed via a web API. To access the API and use client-side encryption

functionality, users are required to authenticate with a trusted identity provider.

5.1 Overview

MFCDS adds capability to the client-side application, MFW, to enable users to create

confidential documents, share them with a group of users (henceforth referred to as the

allowed group), and allow anybody in that group to consequently decrypt and view the

document. See figure 5.1 for a high-level overview of the architecture. The file content

of a confidential document is encrypted using a symmetric DEK generated on the client.

The public key of each user in the allowed group is used to wrap the DEK. These wrapped

DEKs are stored with the document on MFS. Each user in the allowed group can use their

externally stored private key to unwrap their copy of the DEK and retrieve the plaintext file

of the document.

A simple file format is defined, that is followed by the files in confidential documents. The

client-side application parses the file, as dictated by this format, enabling subsequent

decryption by users in the allowed group. The file format is depicted in figure 5.2. The

first 4 bytes of the file contain the length of the following metadata block. This block

contains copies of the DEK, encrypted with each public key in the allowed group. Any

other required metadata is also to be contained in the metadata block. The metadata

block is formatted as a JSON Web Token (JWT). The JWT is signed with the private key

of the creator of the document, to ensure integrity and prevent, for example, a malicious

MFS from tampering with the contents. While the DEK is technically a shared secret

24

Figure 5.1. Overview of the proposed client-side encryption system

between users in the allowed group, it should not be used to sign the JWT. If the JWT is

signed with the DEK, a malicious server could replace the contents of the file and make it

appear legitimate by generating its own DEK, encrypting another file with this DEK, and

re-creating the JWT accordingly, signed with the false DEK. When the JWT is signed with

the creator’s private key, other users can verify the integrity of the file by verifying the

creator’s identity with a trusted CA.

Figure 5.2. Confidential document file format

The metadata block is followed by the ciphertext of the file itself, encrypted using the

DEK. The symmetric algorithm used with the DEK is AES with the Galois/Counter mode

of operation (AES-GCM) [53]. Using AES-GCM makes the encryption operation authen-

ticated, thus protecting integrity of the ciphertext. While difficult, it is possible to modify

25

the ciphertext in such a way that the resulting plaintext content has meaningful changes.

With AES-GCM, such tampering would be noticed upon decryption, and the file can be

flagged as compromised. [7, p. 16, p. 152] Finally, the fixed length initialization vector

(IV) is appended at the end of the file.

To define the allowed group for a confidential document, the user creating the document

must have access to the public keys of other users. Similarly, each user in the allowed

group must be able to use their own private key to decrypt their copy of the DEK. As dis-

cussed in section 3.2.3, giving users the responsibility of safely storing cryptographic arte-

facts such as private keys is risky. Instead, a trusted external KMS is used to store users’

private keys securely. In this case, the KMS is accessed via a key management web API,

which interfaces with the KMS and exposes the required operations to the client. Users

are not burdened with key management. Instead, the client-side application code re-

quests the required key management operations from the web API. As mentioned above,

the user must verify the integrity of the metadata block with a CA. This operation should

likewise be provided by the API. The operation essentially entails mapping public keys to

user identities, so that the user can verify the identity of the owner of a public key, before

using the key to verify a signature.

5.2 External KMS and the Key Management Web API

In MFCDS, user keys are stored in an external KMS that is accessed via a web API.

Because the API is used to access the personal keys of users, the caller must be authen-

ticated, and the client-side application (MFW) must be authorized to use the web API.

Users authenticate with a trusted external identity provider, so as to not rely on trust in

internal identity management of MFS. As discussed in section 4.3, AAD can be used for

this purpose. For key management, the Azure cloud platform provides Azure Key Vault

(AKV), a cloud-based KMS solution. AKV offers multiple options for secure key storage,

compliant with different levels of the security standard for cryptographic modules speci-

fied by NIST [34]. The highest level of security is provided by managed HSM instances

and the lowest by standard multi-tenant key storage without hardware protection. [4] AKV

provides an API with the required functionality for envelope encryption [26]. Asymmetric

key pairs can be stored on AKV and, via the provided API, used for wrapping, unwrap-

ping, signing of data, and other operations. [9] While there are other similar services, like

the KMS provided by Amazon Web Services [8], the easy AAD integration provided by

AKV makes it a convenient choice for this implementation.

The key management API must also provide the role of CA. The role of the CA entails

associating a user identity with a public key [7, p. 238][5]. The desired client-side func-

tionality in MFW is to allow users to verify the identity of another user based on their public

key. Furthermore, MFW should be able to list the public keys of other users, associated

26

with some unique ID (a name or an email address, for example). However, AKV does not

provide the functionality to allow assigning keys to individual users. Another service must

be built to implement this functionality. Such a service maps the identity of a user to their

key and implements the required endpoints of the key management API, by delegating

calls to AKV.

The required operations for a CA as well as operations for envelope encryption can all

be defined into a set of web API endpoints. Any KMS with similar functionality to AKV

could be used. For example, a customer can host their own KMS or use another cloud-

based service and implement the defined key management API to be compatible with it.

For the proof of concept implementation, AKV is used as the KMS to demonstrate the

viability of MFCDS. A web service that implements the API, delegating key management

to AKV, will be implemented to enable envelope encryption as a key management solution

for user keys. The API also enables the PKI required by public key cryptography of the

implementation, by fulfilling the role of the CA.

5.3 Use Cases and Required Operations of the Implementation

This section examines the use cases required to fulfill the basic functionality of the im-

plementation. Namely, users must be able to create, update, and view confidential doc-

uments. Users must also share access to the document with other users in a chosen

group. These use cases rely on operations implemented by the key management API

and MFW. To authenticate the user and authorize MFW to use the endpoints of the API,

an identity management service is also required. The operations provided by these com-

ponents enable the use cases of the implementation and outline the requirements of the

key management protocol that the key management API implements.

5.3.1 Creation

Users must be able to create confidential documents. This use case requires listing the

public keys of other users, to allow the creator of a confidential document to choose the

allowed group of users, by whom the file of the document can be decrypted. The creator

must also be able to use their own private key to sign the metadata section of the con-

tained file. A backup of the DEK must also be created. Creating a confidential document,

therefore, entails using API endpoints for a number of operations. It is assumed that the

key pairs for the users already exist in the KMS, having been, for example, created by an

administrator.

Diagram 5.3 describes the flow of the procedure of creating a confidential document and

choosing the allowed group of users. First, the creator chooses the UI option to start cre-

ating a confidential document and consequently uploads a plaintext file to MFW, which

27

Figure 5.3. Creating a confidential document

is stored in browser memory for the time of the procedure. Then, to choose the al-

lowed group of users, the creator authenticates and authorizes MFW to use the API.

After successful authentication, the creator’s browser session is allowed access to the

API and the client-side application can list the public keys of other users. The public keys

are listed along with a unique user ID for each key, such as the user’s email or user-

name. After choosing the public keys and thus the allowed group, the creator initiates

the encryption procedure. Client-side code generates a DEK for AES-GCM and creates

encrypted copies of it by wrapping the DEK with each public key in the allowed group.

These wrapped DEKs are then saved into the metadata block of the file, along with the

ID of the owner of the public key. In the metadata block is also saved the ID of the creator

user. This metadata block is then signed with the creator’s private key, again requiring a

call to the API. After signing, the file content is complete. The DEK is once more wrapped

with a master public key, which is stored as a backup via an endpoint of the API. This

allows an administrator to recover the file in case user keys are lost. At this point, there

are no longer any plaintext copies of the DEK in memory. The confidential document is

then uploaded to MFS.

28

5.3.2 Viewing

Users in the allowed group of a confidential document must be able to decrypt the con-

tained file to view it. Also, the integrity of the contained file must be verified with the public

key of the creator.

Figure 5.4. Viewing a confidential document

The procedure to view a confidential document is depicted in diagram 5.4. First, the user

navigates to a confidential document and chooses the UI option to decrypt it. The client-

side application will then begin to parse the content of the included file. To start parsing,

the user is first prompted to authenticate and authorize MFW to use the API. From the

metadata block, first is found the ID of the document’s creator and their signature. The

signature must be verified with the public key of the creator. The user requests the public

key of the creator from the API and then uses it to verify the signature. After successful

verification, the metadata block is considered authentic, and parsing can continue. The

user then finds the DEK wrapped with their public key from the metadata block. Having

been authorized already, the client-side application will now request the API to unwrap

the wrapped DEK using the private key of the current user. The plaintext DEK is returned

in the response. The file content is then decrypted with the DEK, and the file is displayed

to the user.

29

5.3.3 Updating

The procedure to update a confidential document is nearly synonymous with the creation

procedure. Updating entails modifying the file content or redefining the allowed group

(adding or removing users), or both. If the content of the file is modified, the DEK should

be re-generated. Likewise, if only the allowed group is updated, a new DEK must be

generated to prevent a revoked user from using a DEK from a previous version to decrypt

the newer version. In any case, because a new DEK is used for each version, both the

metadata block and the ciphertext content of the file will be created again. Similarly, a new

backup of the DEK should be created that is specific to this newer version. Therefore,

the only differences to the procedure described in diagram 5.3 are how the procedure

is presented to the user via the UI and how the document is stored in MFS. Instead of

creating a new document in MFS, a new version is created.

5.3.4 Creating Backups of DEKs

In the use cases for creating and updating confidential documents, in sections 5.3.1 and

5.3.3, a backup of the DEK is created. Key backups are stored in the remote KMS,

accessed via the key management API. Backups of DEKs mitigate the potential loss of

data due to lost user keys. If user keys were to be destroyed prematurely and later a

document was found that could only be decrypted by those keys, its plaintext content

would be permanently lost.

Whenever a document is created or updated, a new DEK specific to that version of the

document’s file will be created, and likewise backed up. Before uploading the backup DEK

via the API, it is wrapped with a public key of a master key pair, such as the key belonging

to the KMS or an administrative user. This protects the DEK when it is stored, allowing

retrieval of the plaintext DEK only with the private key of an administrator. To allow later

retrieval of the correct backup DEK, in the metadata block of the file will be saved the

universally unique identifier (UUID) of the file version. The backup will be stored in the

KMS, indexed by this UUID.

5.4 Evaluation of the Proposal and Discussion on Further

Improvements

MFCDS aims to address all the issues and requirements that were examined in chapter 4.

The proposed client-side encryption system enables the proof of concept implementation

to demonstrate the viability of this system for further development. Further development

of this system should not require significant changes to the fundamentals of the system

and the basic functionality that is implemented. Still, there would no doubt be much to

30

improve to bring the implementation up to the standard that is required from a feature

used in production and shipped to real customers.

5.4.1 Hybrid Encryption

A similar combination of asymmetric and symmetric cryptography is used by OpenPGP

[33]. The message format of OpenPGP likewise stores a symmetric key, wrapped with

the public keys of recipients, to enable recipients to decrypt the message. [33, p. 17].

Similar systems have already seen wide adoption and, as such, are expected to provide

good security. Related works, too, have proposed similar methods (see section 2.2).

5.4.2 Choice of Public Key Encryption Algorithm

The proof of concept implementation of MFCDS uses RSA as the public key encryption

algorithm. The other option would be to use an application of ECC. Elliptic Curve Diffie-

Hellman (ECDH) can be used in a similar protocol, to share a symmetric key between

users [44, p. 10]. Indeed, an ECC-based extension to OpenPGP defines a protocol

utilizing ECDH [47]. In this protocol, the procedure to wrap the DEK is different than with

RSA, due to the inherent properties of ECC. Namely, ECC public keys are not used to

encrypt data. Instead, ECDH requires the recipient’s public key and the sender’s private

key to compute a shared secret, from which a shared AES key can be derived. The

derived AES key is used as a KEK, which is used to wrap the DEK. The recipient then

needs the sender’s public key to compute their KEK and unwrap the DEK. [47, p. 5-6][44,

p. 11]

In MFCDS, the user’s private key is accessed via the web API. Therefore, deriving shared

keys with ECDH via the API for a large number of recipients would be a very time-

consuming operation. Instead, a temporary ECC key pair could be computed that is

only used on the client side. The private key would only be used to create a KEK for each

recipient, before being destroyed. The public key of this key pair would be attached to the

metadata block, and so on, similarly to the ECC OpenPGP extension. This ECC variant

of the protocol was not used, because AKV does not have an endpoint to support key

derivation according to ECDH. Also, RSA keys are widely used and expected to provide

adequate security, provided the minimum key size of 2048 bits is used [14, p. 12][12,

p. 15]. As such, RSA was chosen for the implementation. For further development, this

implementation could be adapted to support ECC with small changes, provided a compat-

ible external KMS is used. The required changes to support ECC are also documented

in implementation chapters 6 and 7.

31

5.4.3 Protection of Confidentiality and Integrity

The main requirement of the implementation, and possibly its greatest benefit, is the

guarantee of confidentiality for encrypted data. Confidentiality is protected with hybrid

encryption. A sufficiently strong symmetric encryption algorithm (AES-GCM) is used to

encrypt file content. The confidentiality of the symmetric DEK is protected with public key

encryption. The plain text DEK is thus never revealed to MFS. Ultimately, the confiden-

tiality of the DEK is dependent on the strength of the public key encryption algorithm. As

mentioned in the previous section, RSA is considered strong provided keys of sufficient

size are used.

The integrity of the files is likewise protected with cryptography, but ultimately the protec-

tion also relies on the CA functionality provided by the key management API. Files are

encrypted using AES-GCM with the DEK. AES-GCM, being an authenticated encryption

algorithm, means that tampered file content will not go unnoticed, provided that the DEK

also retains its integrity [53]. If a malicious MFS were to replace the DEK of the file in

a confidential document, it would also be possible to create completely new file content,

encrypted with the false DEK. The false file would then appear legitimate. For this rea-

son, the integrity of each wrapped DEK is also protected by the signature of the metadata

block, signed with the creator’s public key. While a malicious MFS can replace the meta-

data block, it cannot spoof its signature. The identity of the creator is verified by the CA,

provided by the key management API.

5.4.4 Alternative Solutions For Convenient Management of User

Keys

MFCDS solves the problem of user key management by using envelope encryption and

an external KMS. Another solution that was considered is a system that utilizes PBKDF

to derive user-owned cryptographic keys from user passwords. In section 3.2.3 some

merits and disadvantages of this system are mentioned. Ultimately, for this implemen-

tation, it was found unsuitable, mainly because such a system would not be compatible

with the identity management system of M-Files. Not only would the implementation of

a PBKDF-based system require heavy modifications to the implementation of user ac-

counts in MFS, but it would also not work in the first place when AAD is used for identity

management. Users are authenticated with OpenID Connect, and thus user passwords

are never present on the client side when logging in. Therefore, envelope encryption with

a remote KMS was found to be the more suitable option.

In addition to client-side encryption, a dedicated encryption system was considered. This

solution was discussed in length in section 3.3. Indeed, a dedicated service for encryp-

tion would provide a better guarantee of security for key storage, because no keys ever

32

need to be even temporarily present in the client-side program. This thesis proposes that

the solution here represents a good compromise. In MFCDS, user keys are likewise con-

tained strictly in a remote KMS and only accessed via the API. Having plain text DEKs

briefly in the client-side application is thought to be an acceptable compromise. Inevitably,

the file content, too, is in plain text during this time, while a confidential document is being

viewed or created. This thesis hypothesizes that the ability to utilize user devices for po-

tentially expensive cryptography with file data can lead to better scaling for the application

as a whole.

33

6. DESIGN AND IMPLEMENTATION OF THE KEY

MANAGEMENT API

This chapter details the implementation and design process of the key management API

(referred to as API in the rest of this chapter). The API implements a simple key man-

agement protocol, enabling envelope encryption for MFCDS with a remote KMS. The

endpoints of the API must provide operations that enable the use cases described in

section 5.3. Via the API, the user can use their private key for the required operations.

Similarly, the API allows the user to list the public keys of other users and get the public

key of a single user.

6.1 Defining the Endpoints of the Key Management API

The API is implemented as a remote procedure call (RPC) protocol. The endpoints of the

API do not always represent resources, but they can also refer to functionality requested

from the KMS, such as wrapping and unwrapping keys. As such, RPC was found to be

the more intuitive choice over the other common option, representational state transfer.

Common to all the endpoints is that they require a bearer access token issued by the

identity management service. If no valid access token is provided, the endpoints respond

with the unauthorized status code, 401. Bodies of requests and responses are in JSON

format. In some cases, binary data must be transmitted. For example, in the operation to

unwrap a DEK, the wrapped DEK is in binary format, but must be passed in the request

body. In this case, the data is encoded as base64, allowing it to be transmitted in JSON

format, like any other string value. In case the request body is in an invalid format, the

status code 400 is returned to indicate this.

6.1.1 Getting a Public Key

The endpoint specified in table 6.1 allows getting the public key of an individual user to

verify their signature, or to get the master public key to create a backup of a DEK. The

endpoint takes one optional input parameter, which is the ID of the user. This can be, for

example, an email, a username, or some other unique identifier, depending on how the

API is implemented. If no user ID is specified, the API returns the master public key of the

34

KMS, which can be used to wrap a DEK to create a backup. The public key is returned in

the JWK format [50]. JWK is a standard data structure to store multiple types of keys. For

example, if an ECC variant of this protocol was implemented, the endpoint could return

an ECC public key as a JWK. [50, p. 25]

By mapping a user ID to a public key, this endpoint, in effect, issues a certificate to the

web-client. There is no need for using a standard certificate format for the purposes of

the MFCDS. Instead, this endpoint suffices as a trusted “source of truth”, for getting the

public key of a user.

Endpoint: get-public-key

Request JSON

Property Name Type Description

user String Optional parameter. A unique identifier of the
owner of a public key. If not provided, returns
the public key of the KMS itself.

Successful response, a JSON object

Property Name Type Description

type String ("user" or
"kms")

Indicates if the returned key belongs to a user
or if is the master key, belonging to the KMS.

key JWK A public key in JWK format.

Table 6.1. The endpoint for getting a specific public key.

6.1.2 Listing Public Keys

The API can be used to list the keys of users. This allows choosing the allowed group of

users when creating or updating a document, as described in sections 5.3.1 and 5.3.3.

The endpoint takes no parameters and returns an array of JSON objects. See table 6.2

for the specification. The returned keys are in the JSON Web Key (JWK) format. This

endpoint could be further improved to allow a query with finer granularity, for example,

by introducing a parameter to filter the result. For the proof of concept implementation of

MFCDS, it suffices that the keys of all users are returned.

6.1.3 Creating a Backup of a Key

Table 6.3 specifies the API endpoint to create a backup of a DEK, as described by the

operation in section 5.3.4. To create a backup of a DEK, the previous endpoint specified

in 6.3 is first used to fetch the public key of the KMS. After the DEK is wrapped with

this key, it can be uploaded to the API in the request body. In addition to the wrapped

DEK, the endpoint requires a parameter to uniquely identify the version of the confidential

35

Endpoint: list-keys

Request JSON

None

Successful response, array of JSON objects

Property Name Type Description

user String A unique identifier of the user.

key JWK A public key in JWK format.

Table 6.2. The endpoint for listing all public keys.

document that the DEK belongs to.

Endpoint: create-key-backup

Request JSON

Property Name Type Description

wrappedKey String (base64) A DEK wrapped with a master public key.

dataUid String The unique identifier for the data that can be
decrypted with the DEK.

Successful response, a JSON object

Property Name Type Description

result Boolean Indicates if the backup was created success-
fully.

Table 6.3. The endpoint for creating a DEK backup.

6.1.4 Unwrapping a Wrapped Key

Each user must be able to use their private key to decrypt a DEK wrapped with their public

key. This operation is offered by the endpoint specified in table 6.4. When this endpoint

is called, the service implementing the API must use the private key of the calling user to

decrypt the document. The ID of the user is thus to be contained in the bearer access

token.

If this API were to be implemented to support an equivalent protocol with ECC using

ECDH, this endpoint would have to be slightly altered. The endpoint would also require

the public key of the creator user as an input parameter in the request body. It would

use this public key with the private key of the calling user to run a key derivation function,

producing a KEK. [47, pp. 5–6] Then, the endpoint would use the derived KEK to unwrap

the DEK. See section 5.4.2 for a further description of how the implementation can be

adapted to support ECC.

36

Endpoint: unwrap-key

Request JSON

Property Name Type Description

key String (base64) The DEK to unwrap. Must be wrapped with the
public key of the user calling the endpoint.

Successful response, a JSON object

Property Name Type Description

result String (base64) The plain text DEK as base64.

Table 6.4. The endpoint for unwrapping a wrapped DEK.

6.1.5 Signing Data

As described in sections 5.3.1 and 5.3.3, when a document is created or updated, the

creator’s private key is used to sign the metadata block. Similarly to the previous end-

point for unwrapping, the caller of this endpoint may only use their own private key. This

endpoint for this operation is specified in table 6.5. The metadata block is signed with

RSASSA-PKCS1-v1_5 using SHA-256, the recommended algorithm for JWK signatures

[49, p. 6].

If ECC keys were to be used, the recommended algorithm that should be used is ECDSA

with the P-256 curve and SHA-256 [49, p. 6].

Endpoint: sign

Request JSON

Property Name Type Description

message String The message to sign.

Successful response, a JSON object

Property Name Type Description

result String (base64) The signature.

Table 6.5. The endpoint for signing the metadata block.

6.2 Implementing the API as a Cloud Application

The API was implemented as a serverless function application on the Azure cloud com-

puting platform. This option was chosen mainly for convenience, as a function application

is easy to integrate with AKV and AAD. This API implementation, being a somewhat

ad hoc solution for the purposes of demonstrating the proof of concept implementation,

warrants further consideration of security aspects in future development. For example,

the API could also be implemented as a server on customer premises. Instead of AKV,

37

another KMS could also be used.

An Azure function application allows each endpoint of the API to be implemented as a

function in a supported programming language, which is executed each time the endpoint

receives a request. JavaScript was chosen as the programming language for this im-

plementation. The JavaScript runtime used by Azure to execute the functions is Node.js

version 16.16.0 (LTS). Three libraries from the official SDK for Azure were used in the

implementation. The library “@azure/keyvault-keys”, part of the official JavaScript SDK

provided by Azure, was used to interact with AKV for key management [2]. Another library

“@azure/secrets” is used to store backups of DEK as secrets on AKV [3]. The library

“@azure/identity” was used to acquire credentials, that allow the function application to

use the API of AKV [1].

6.2.1 Assigning Keys to Users

As required by the endpoints specified in the previous section, the API must map an RSA

key pair to a user ID. The authenticated user can then call the endpoint via the web client

to use their own private key. To achieve this, key pairs were created for each user of the

service in AKV. Keys stored in AKV cannot be assigned to users directly, but they can hold

arbitrary metadata in the form of tags. For each key pair of a user, a tag was assigned

that denotes which user the key belongs to. See figure 6.1 for an example configuration.

Keys are queried from AKV by key name [4]. As an ad hoc solution to enable constant

time queries for the user’s own key, each key was also named by the UUID of the owner

user. The UUID is assigned by Azure automatically when the user account is created

and stays constant. In production, it may be better to use a dedicated database for this

purpose, so that keys can have arbitrary names.

Figure 6.1. A key pair assigned to a user on AKV.

38

6.2.2 Enabling Authentication and Authorization

To protect the private keys of users, the endpoints require that the caller has authenticated

with AAD and has authorized the web client to use the API. The ID of the authenticated

user is read by the function from the bearer token, and this ID is used to find the user’s

key. A function application can be configured to require authentication for all endpoints

by adding an identity provider via the Azure web portal. Multiple providers are available,

including proprietary providers and the protocol OpenID Connect. For this implementa-

tion, AAD was chosen as the provider. To enable a user of the web client to authenticate

with AAD using PKCE, a SPA is configured as the authentication platform for the Azure

application.

To authorize the Azure function application to use keys from AKV, it must be configured

with the appropriate permissions. Each key operation type must be enabled explicitly to

allow its use. [72] For this implementation, the “Get” and “List” permissions are required

for key management. For cryptographic operations, the permissions “Sign” and “Decrypt”

permissions are required. [2] Backups of DEKs are stored as secrets on AKV. Thus,

to implement the endpoint to create DEK backups, the “Set” permission is required for

secrets [3].

6.2.3 Example of an Endpoint Implementation

Code snippet 6.1 is an example of a function’s code for signing a message as required by

the endpoint specified in table 6.5. Less relevant parts of code were omitted, denoted by

an ellipsis on a commented line. On line 12, the function code calls the helper function

getKeyOfCurrentUser [2].

The helper function is shown in snippet 6.2. The ID of the user is used to find the key

from AKV. The ID, in this case, is a UUID assigned to the user by Azure. It is read from a

specific request header on line 4. A malicious client cannot spoof this header by inserting

it themselves. The header is inserted by the Azure function application only after the

access token of the request has been verified. Unauthorized requests will be denied and

will not reach the function. [85] Reading the value of the header is therefore considered

a secure way to deduce the ID of the calling user. The helper function returns the public

key of the user by fetching it from AKV with the function getKey [2].

39

1 const { De fau l tAzureCredent ia l } = requ i re ("@azure/identity") ;
2 const { KeyCl ient , CryptographyCl ien t } = requ i re ("@azure/keyvault-keys") ;
3
4 module . expor ts = async function (context , req) {
5 const c r e d e n t i a l = new Defau l tAzureCreden t ia l () ;
6 const c l i e n t = new KeyCl ient (u r l , c r e d e n t i a l) ;
7 const toSign = req . body ["message"] ;
8
9 // ...

10
11 // Get the key of the current user calling this endpoint.
12 const keyToUse = await getKeyOfCurrentUser (req , c l i e n t) ;
13
14 // Sign the message with the key of the current user.
15 const c ryp to = new CryptographyCl ien t (keyToUse . id , c r e d e n t i a l) ;
16 const r e s u l t = await c ryp to . signData ("RS256" , s t r2ab (toSign)) ;
17
18 // Encode the and return the result.
19 context . res = {
20 body : JSON. s t r i n g i f y ({ r e s u l t : b64Str ing (r e s u l t . r e s u l t) }) ,
21 } ;
22
23 // ...
24 } ;

Snippet 6.1. Azure function to sign a message with a private key.

1 function getKeyOfCurrentUser (req , keyC l ien t) {
2 return new Promise (async (resolve , r e j e c t) => {
3 // Get the identity of the authenticated user.
4 const authent ica tedUser Id = req . headers ["x-ms-client-principal-id"] ;
5
6 // ...
7
8 // Get key by name and return.
9 return keyC l ien t . getKey (au thent ica tedUser Id) ;

10 }) ;
11 }

Snippet 6.2. A helper function to get the key of the current user from AKV.

40

7. CLIENT-SIDE IMPLEMENTATION

For the client-side implementation of the MFCDS, MFW must provide functionality as re-

quired by the use cases described in section 5.3. The implementation of this functionality

entails composing and parsing files of confidential documents. As specified by the use

cases, some functionality of the system is provided by the key management API. The

other functionality, such as encrypting and decrypting file content with a symmetric DEK,

are provided by the client-side application. UI changes were also implemented to allow

the viability of this system to be demonstrated in practice.

7.1 Using Cryptographic Algorithms on the Client-side

A JavaScript library was implemented that provides the required functionality for compos-

ing and parsing files of confidential documents. The library uses the Web Crypto API for

running algorithms and importing and generating cryptographic keys [63].

7.1.1 Generating and Using a DEK

Creating and updating a document, as specified in sections 5.3.1 and 5.3.3, requires

generating a symmetric DEK. The symmetric DEK can be generated via the function

generateKey provided by the SubtleCrypto module. This function is given the key type

and length in the first parameter, "AES-GCM" and 256 respectively. In the second parame-

ter, are given the operations required of the key, in this case, "encrypt" and "decrypt".

The output of the function is a CryptoKey object, which can now be used for encryption

and decryption. [63]

Web Crypto does not provide support for encrypting a stream of data. Data must be

stored in a complete buffer before it is encrypted or decrypted.[63] Thus, when a DEK is

used to encrypt a file, the entire file is first uploaded to the client-side application and then

encrypted as one chunk. The downside is that the client-side application will consume

more memory. This implementation could be improved by reading the file one small chunk

at a time and encrypting each chunk with a different IV.

41

7.1.2 Importing Public RSA Keys

Public keys fetched from the key management API must be imported as CryptoKey ob-

jects, to enable their use for wrapping the DEK. To this end, the function importKey of

the SubtleCrypto module is used. This function takes the desired RSA algorithm and

hash algorithm as a parameter. The padding scheme, RSA-OAEP is used for wrapping

the DEK. The hash algorithm is SHA-256. The imported public key can now be used to

wrap DEKs. [63]

7.1.3 Wrapping a DEK

After encrypting the file, the DEK needs to be converted to a format where it can be

wrapped by the public keys of users. The function exportKey of the SubtleCrypto
module can be used. The generated DEK can be exported in the raw format, converting

it to an array of bytes. The array can be directly encrypted by a public key, and then

encoded as base64 to be stored in the metadata block. [63]

7.1.4 Verifying Signatures

The public key of the creator must be used to verify the signature of the metadata block

when a confidential document is decrypted and viewed. The public key of the creator

is requested via the API. Via the same importKey function, the creator’s public key is

imported. This time, the desired algorithm is RSASSA-PKCS1-v1_5, matching the sig-

nature algorithm of the API (see section 6.1.5). The imported RSA key is then converted

to a CryptoKey object that can be used to verify signatures. The function verify of the

SubtleCrypto module can then be used. [63]

7.1.5 Variant Using Elliptic-Curve Cryptography

Web Crypto supports ECDH. ECDH can be used to enable a similar implementation

with ECC key pairs, as described in section 5.4.2. On the client side, the implemented

logic differs from this implementation with RSA. The documentation of Web Crypto also

provides an example of using ECDH to derive a shared AES key [63].

With ECDH, the shared key is derived between two parties, a sender and the recipient [44,

p. 10]. Both derive the same key. However, with multiple recipients, each one will derive

a different key. To share the same DEK key between all the recipients, for each one an

AES KEK is derived. The shared DEK is then wrapped with the KEK of each recipient. To

enable this implementation to use ECC, the function deriveKey from the SubtleCrypto
module could be used to derive an AES KEK using ECDH. This derived AES KEK could

then be used to wrap the DEK. Now, upon decrypting the file, the recipient would use an

42

ECC version of the API endpoint to unwrap the DEK (see section 6.1.4).

7.2 User Interface Implementation

To enable the use cases described in section 5.3, the implementation included additions

to the UI of MFW. The UI implementation mainly consists of additions to the existing dialog

system in MFW, which is implemented with the React UI component library [74].

The option to create a confidential document was added, according to the use case de-

fined in section 5.3.1. Alongside other document types, users can now select the option to

create a confidential document from the top bar of the UI. This opens a dialog for options

specific to creating confidential documents. This is demonstrated in figure 7.1.

Figure 7.1. An option to create a confidential document and the respective dialog window

When opening the dialog, first the user is prompted to authenticate with the trusted identity

management service, as depicted in figure 7.2. Consequently, the client is authorized to

use the key management API. When the user clicks on the “Log in” button, the Microsoft

login page is opened as a pop-up window, allowing the user to sign in with AAD.

After the user has successfully signed in, the pop-up window is closed and the dialog

displays the next page, shown in figure 7.3. On this page of the dialog, the user can

select the allowed group of users by whom the document is to be accessed.

After the allowed group is selected, the last dialog page shown in figure 7.4 is displayed.

Here the user can either drag and drop the file they wish to encrypt or click the prompt to

43

Figure 7.2. Prompt for the user to sign in

Figure 7.3. Dialog page for selecting the allowed group

select one with the browser’s file picker. After the file is uploaded, the user can encrypt

it by clicking the “Encrypt” button. The file will then be encrypted, and only after that up-

loaded to MFS. Once uploaded, the user is shown the regular document creation dialog,

where they can choose the class and other metadata of the confidential document.

This same dialog flow is also used for updating an already existing confidential document,

according to the use case described in section 5.3.3. A confidential document can be

updated like other documents in MFW, by dragging and dropping a file on the document

in the UI listing.

44

Figure 7.4. Dialog page for uploading a file to be encrypted

Figure 7.5. Decrypt prompt in the preview pane

Users in the allowed group of a confidential document must be able to decrypt the con-

tained file and view it, as defined in section 5.3.2. To enable this, a decrypt prompt is

shown in the preview pane whenever a confidential document is selected, as shown in

figure 7.5. When a user clicks on the prompt to decrypt the file, the client begins the

procedure to parse and decrypt it. If the user is not already signed in with the identity

management service, they are shown the login page pop-up before proceeding. Then, if

45

the user is in the allowed group, the file is decrypted and displayed in the preview pane.

Otherwise, a toast notification is shown to indicate that the user is unauthorized. For any

other error scenario while decrypting, such as a file with tampered content or an invalid

signature, a toast notification is also shown.

46

8. EVALUATION OF PERFORMANCE

Performance tests were written to evaluate the viability of the MFCDS in terms of time effi-

ciency. Tests were executed as scripts in the browser on Chromium version 108.0.5359.128.

Tests were run on a computer with a GNU/Linux operating system, 16 gigabytes of DDR4

memory, and an Intel i5-8600K CPU. The tests measure the time performance of en-

crypting and decrypting a file in relation to control parameters: file size and the number of

public keys that are included in the encrypted file. The tests measure both local execution

time and time spent waiting for an API response for a call to the endpoint to sign data.

It is important to separately measure the time waiting for a response, because network

calls have inherent delay that is not related to the efficiency of the implementation.

Time measurements are recorded using the built-in Performance API provided by JavaScript

runtimes [64]. For the encryption operation, time measurement begins when the client-

side application starts composing the file by writing the metadata block and ends when

the file is fully composed, with the encrypted content included. During this procedure,

there is a call to the API to sign the metadata block, the duration of which is also mea-

sured. In the case of decryption, measurement begins when the client starts parsing the

file and ends when the file is decrypted. There are no API calls during this procedure, so

only the performance on the client side is measured. The cryptographic algorithms that

are run during the measured operations are listed in table 8.1.

Function or endpoint Algorithm Key size (bits) Type Operation

SubtleCrypto.encrypt AES-GCM 256 bit 256 Client Encryption

SubtleCrypto.encrypt RSA-OAEP 4096 Client Encryption

API endpoint to sign RSASSA-PKCS1-v1_5 4096 API Encryption

SubtleCrypto.decrypt AES-GCM 256 bit 256 Client Decryption

SubtleCrypto.verify RSASSA-PKCS1-v1_5 4096 Client Decryption

Table 8.1. The used cryptographic algorithms

The performance of encryption and decryption operations was measured with respect to

variable file size. The results are depicted in two charts in figures 8.1 and 8.2 respectively.

Files of size 1, 250, 500, 750, and 1000 megabytes were used for testing. For each file

size, the execution time was measured three times, the average of which is depicted in

47

the charts. See appendix A and table A.1 for a complete table of measurements. From

these charts, a linear trend can be observed for the execution time of both encryption

and decryption. Predictably, as the size of the metadata block stays constant, the signing

operation provided by the API is not affected by a change in file size, as can be observed

in figure 8.1.

Figure 8.1. Encryption peformance with variable file size

Figure 8.2. Decryption peformance with variable file size

The charts in figures 8.3 and 8.4 depict the measurement of encryption and decryption

operations with respect to a variable number of public keys. A file size of 10 megabytes

was used. The key amounts of 2, 100, 200, 300, and 400 were used. The same method-

ology applies as with the previous measurements. Complete measurements are available

in appendix A in table A.2. The size of the metadata block increases with the number of

public keys. Therefore, an increase in execution time can be observed for the API oper-

ation to sign the metadata block. A hardly noticeable increase can be observed for the

client-side execution time of encryption, due to the plain text file size staying constant.

48

Some of the small increase can be caused by the reading and writing of the increasingly

large metadata block. The decryption time, as can be observed from figure 8.4, does not

appear to be impacted.

Figure 8.3. Encryption peformance with variable number of public keys

Figure 8.4. Decryption peformance with variable number of public keys

The performance of encryption and decryption appears sufficient for files in the measured

size range. For much larger files, the delay caused may become unreasonable. The

increase in execution time when the key amount increases is less drastic. Performance

appears very good even for a fairly large number of public keys, staying well below one

second for both encryption and decryption for the chosen file size. A combination of an

increase in the number of keys and file size can be expected to be additive in nature

(as opposed to multiplicative) because the delays in these measurements are caused

in large part by independent factors. For example, the time to sign the metadata block

is dependent on the number of included public keys. The signed metadata block does

not increase in size as file size increases. Similarly, an increase in file size causes an

49

increase in how long encryption or decryption with the symmetric DEK takes, but this is

not affected by the number of public keys.

These measurements reinforce the conclusions of previous research on the efficiency

of the Web Crypto API [62]. The functions provided by the Web Crypto API provided

practically viable efficiency for this implementation.

50

9. CONCLUSION

This thesis investigated how client-side file encryption could be implemented for M-Files.

The confidentiality of files was to be protected from M-Files itself, only allowing the in-

tended users to access files that were encrypted on the client side. M-Files is used by

enterprise customers, and as such the customer was to be enabled to centrally manage

the keys of their users.

To meet the requirements, this thesis proposed the M-Files Confidential Document Sys-

tem (MFCDS). MFCDS is a client-side file encryption system, that enables the creation of

confidential documents in M-Files. Via the web-client of M-Files, a user can now create

a document in M-Files that is encrypted on their client and shared with a select group of

other users. For managing user keys, a customer-owned KMS is integrated via a web

API with a key management protocol. To the end-user a simple UI is displayed, while key

management is handled automatically by client-side application logic. The implemented

UI changes also enabled the practical demonstration of the MFCDS for basic use cases.

The performance measurements of the implementation showed that the system is viable

when used with files of moderate size. It can be expected that MFCDS can be used with

the files of most documents, providing satisfactory efficiency for the end-user. Sharing

the key to a confidential document, even with a large number of users, does not cause

any significant performance impact. The system would be suitable even for customers

with hundreds of users, where a large group of users might require access to the same

document.

The implementation part of this thesis created a proof of concept for the MFCDS. The im-

plementation can be further improved to make it viable for use in production. The design

of the key management API can be revisited when there is a clearer picture of customer

use-cases. For example, listing the keys of all users is an inefficient operation and could

be improved by allowing the results to be filtered. The API endpoints could also be mod-

ified to take into account different key versions to support key lifecycles. The design of

the API, and the protocol that it enables, while simplistic, was designed to be secure,

following a similar design as key management protocols used elsewhere. However, this

thesis did not address the implementation details of the API. The API implementation cre-

ated here was a somewhat ad hoc solution for demonstration purposes. Further security

analysis is warranted if the API were to be implemented for use in production. This the-

51

sis implemented MFCDS with support for RSA keys. Support could be added for ECC,

and the details of how this could be done were documented in the applicable parts of the

implementation chapters 6 and 7.

This thesis found that with an application of well-established cryptography, a client-side

file encryption system can be built for an enterprise document management platform.

The MFCDS appears viable from the standpoints of perceived security, usability, and

performance. While there is much to improve, the fundamental concepts of the MFCDS

should provide a solid base for future development. Actual productization can build on the

efforts of this work.

52

REFERENCES

[1] @azure/identity package. Azure documentation. URL: https://learn.microsoft.com/

en-us/javascript/api/@azure/identity (visited on 01/28/2023).

[2] @azure/keyvault-keys package. Azure documentation. URL: https://learn.microsoft.

com/en-us/javascript/api/@azure/keyvault-keys (visited on 01/28/2023).

[3] @azure/keyvault-secrets package. Azure documentation. URL: https://learn.microsoft.

com/en-us/javascript/api/@azure/keyvault-secrets (visited on 01/28/2023).

[4] About Keys. Azure documentation. 2022. URL: https : / / learn .microsoft . com/en-

us/azure/key-vault/keys/about-keys (visited on 01/14/2023).

[5] Carlisle Adams and Steve Loyd. Understanding PKI: Concepts, Standards, and

Deployment Considerations. 2nd ed. Addison-Wesley, 2003.

[6] Salem T Argaw et al. “The state of research on cyberattacks against hospitals and

available best practice recommendations: a scoping review”. In: BMC medical in-

formatics and decision making 19.1 (2019).

[7] Jean-Philippe Aumasson. Serious Cryptography. eng. No Starch Press, 2017.

[8] AWS > Documentation > AWS KMNS > Developer Guide > AWS KMS concepts.

URL: https : / /docs.aws.amazon .com/kms/ latest /developerguide /concepts .html

(visited on 12/26/2022).

[9] Azure Key Vault REST API reference. Azure documentation. 2022. URL: https : / /

docs.microsoft.com/en-us/rest/api/keyvault (visited on 01/14/2023).

[10] Matilda Backendal, Miro Haller, and Kenneth G. Paterson. MEGA: Malleable En-

cryption Goes Awry. 2022. URL: https : / / mega - awry. io / pdf / mega - malleable -

encryption-goes-awry.pdf (visited on 07/05/2022).

[11] E Barker et al. “SP 800-130. A Framework for Designing Cryptographic Key Man-

agement Systems, Draft Special Publication 800–130”. In: (2010).

[12] Elaine Barker and Roginsky Allen. “SP 800-131A Rev. 2. Transitioning the Use of

Cryptographic Algorithms and Key Lengths”. In: National Institute of Standards and

Technology (2019).

[13] Elaine Barker and William Barker. SP 800-57 Part 2 Rev. 1. Recommendation for

Key Management: Part 2 – Best Practices for Key Management Organizations.

2019.

[14] Elaine Barker and Quynh Dang. SP 800-57 Part 3 Rev. 1. Recommendation for Key

Management: Part 3 – Application-Specific Key Management Guidance. 2015.

[15] Elaine Barker et al. “SP 800-133 Rev. 2. Recommendation for Cryptographic Key

Generation”. In: (2020).

https://learn.microsoft.com/en-us/javascript/api/@azure/identity
https://learn.microsoft.com/en-us/javascript/api/@azure/identity
https://learn.microsoft.com/en-us/javascript/api/@azure/keyvault-keys
https://learn.microsoft.com/en-us/javascript/api/@azure/keyvault-keys
https://learn.microsoft.com/en-us/javascript/api/@azure/keyvault-secrets
https://learn.microsoft.com/en-us/javascript/api/@azure/keyvault-secrets
https://learn.microsoft.com/en-us/azure/key-vault/keys/about-keys
https://learn.microsoft.com/en-us/azure/key-vault/keys/about-keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html
https://docs.microsoft.com/en-us/rest/api/keyvault
https://docs.microsoft.com/en-us/rest/api/keyvault
https://mega-awry.io/pdf/mega-malleable-encryption-goes-awry.pdf
https://mega-awry.io/pdf/mega-malleable-encryption-goes-awry.pdf

53

[16] Elaine Barker et al. SP 800-57 Part 1 Rev. 5. Recommendation for key manage-

ment: Part 1: General. 2020.

[17] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. “Deterministic and Efficiently

Searchable Encryption”. In: Lecture Notes in Computer Science (2007).

[18] Mihir Bellare et al. “Deterministic Encryption: Definitional Equivalences and Con-

structions without Random Oracles”. In: Advances in Cryptology – CRYPTO 2008.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2008.

[19] Tom Berson et al. “Cryptography as a Network Service”. In: (2001).

[20] Moritz Borgmann et al. “On the security of cloud storage services”. In: Darmstadt

(SIT Technical Report SIT-TR-2012-001) (2012).

[21] Matthew Campagna and Shay Gueron. “Key Management Systems at the Cloud

Scale”. In: Cryptography 3.3 (2019).

[22] Daniele Catteddu. “Cloud Computing: Benefits, Risks and Recommendations for

Information Security”. In: Web Application Security. Communications in Computer

and Information Science. Springer Berlin Heidelberg.

[23] Ramaswamy Chandramouli, Michaela Iorga, and Santosh Chokhani. “Cryptographic

Key Management Issues and Challenges in Cloud Services”. In: Secure Cloud

Computing. 2013.

[24] Yan-Cheng Chang and Michael Mitzenmacher. “Privacy Preserving Keyword Searches

on Remote Encrypted Data”. In: APPLIED CRYPTOGRAPHY AND NETWORK SE-

CURITY, PROCEEDINGS. Vol. 3531. Lecture Notes in Computer Science. Springer

Berlin Heidelberg, 2005.

[25] Long Cheng, Fang Liu, and Danfeng Daphne Yao. “Enterprise data breach: causes,

challenges, prevention, and future directions: Enterprise data breach”. In: Wiley

interdisciplinary reviews. Data mining and knowledge discovery 7.5 (2017).

[26] Client-side encryption for blobs. Azure documentation. 2022. URL: https : / / docs.

microsoft . com / en - us / azure / storage / blobs / client - side - encryption (visited on

07/14/2022).

[27] Cloud Key Management Service > Documentation > Guides > Envelope Encryp-

tion. 2022. URL: https://cloud.google.com/kms/docs/envelope-encryption (visited

on 12/16/2022).

[28] Reza Curtmola et al. “Searchable symmetric encryption: improved definitions and

efficient constructions”. In: Conference on Computer and Communications Secu-

rity: Proceedings of the 13th ACM conference on Computer and communications

security; 30 Oct.-03 Nov. 2006. CCS ’06. ACM, 2006.

[29] Josep Domingo-Ferrer et al. “Privacy-preserving cloud computing on sensitive data:

A survey of methods, products and challenges”. In: Computer communications 140-

141 (2019).

[30] Morris Dworkin et al. Advanced Encryption Standard (AES). 2001. DOI: https://doi.

org/10.6028/NIST.FIPS.197.

https://docs.microsoft.com/en-us/azure/storage/blobs/client-side-encryption
https://docs.microsoft.com/en-us/azure/storage/blobs/client-side-encryption
https://cloud.google.com/kms/docs/envelope-encryption
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197

54

[31] Sascha Fahl et al. “Confidentiality as a Service – Usable Security for the Cloud”. In:

2012 IEEE 11th International Conference on Trust, Security and Privacy in Com-

puting and Communications. IEEE, 2012.

[32] Ariel J Feldman et al. “{SPORC}: Group Collaboration using Untrusted Cloud Re-

sources”. In: 9th USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI 10). 2010.

[33] Hal Finney et al. OpenPGP Message Format. RFC 4880. 2007. URL: https://www.

rfc-editor.org/info/rfc4880.

[34] FIPS 140-2. Security Requirements for Cryptographic Modules. 2002.

[35] Craig Gentry. “Computing arbitrary functions of encrypted data”. In: Communica-

tions of the ACM 53.3 (2010).

[36] Eu-Jin Goh. Secure Indexes. Cryptology ePrint Archive, Paper 2003/216. 2003.

URL: https://eprint.iacr.org/2003/216.

[37] Google Workspace Admin Help > Security and data protection > Use client-side

encryption for users’ data > About client-side encryption. 2022. URL: https://support.

google.com/a/answer/10741897?hl=en#zippy=%2coverview-of-cse-setup (visited

on 11/06/2022).

[38] Google Workspace for Developers > Client-side Encryption API > Reference >

Google Workspace CSE API Reference. 2022. URL: https : / / developers .google .

com/workspace/cse/reference (visited on 12/16/2022).

[39] Harry Halpin. “The W3C web cryptography API: motivation and overview”. In: Pro-

ceedings of the 23rd International Conference on world wide web. WWW ’14 Com-

panion. ACM, 2014.

[40] Dick Hardt. RFC 6749: The OAuth 2.0 Authorization Framework. 2012. URL: https:

//www.rfc-editor.org/rfc/rfc6749.

[41] Stephen Haunts. Applied Cryptography in . NET and Azure Key Vault: A Practical

Guide to Encryption in . NET and . NET Core. eng. Apress L. P, 2019.

[42] Osama Hosam and Muhammad Hammad Ahmad. “Hybrid design for cloud data

security using combination of AES, ECC and LSB steganography”. In: International

journal of computational science and engineering 19.2 (2019).

[43] Md. Alam Hossain et al. “Measuring Interpretation and Evaluation of Client-side

Encryption Tools in Cloud Computing”. In: Security, Privacy and Reliability in Com-

puter Communications and Networks. 1st ed. Routledge, 2017.

[44] Kevin Igoe, David McGrew, and Margaret Salter. Fundamental Elliptic Curve Cryp-

tography Algorithms. RFC 6090. 2011. URL: https://www.rfc-editor.org/info/rfc6090.

[45] Wayne Jansen and Timothy Grance. SP 800-144. Guidelines on Security and Pri-

vacy in Public Cloud Computing. 2011.

[46] Mika Javanainen. What You Need to Know about Encryption in M-Files. 2022. (Vis-

ited on 10/22/2022).

https://www.rfc-editor.org/info/rfc4880
https://www.rfc-editor.org/info/rfc4880
https://eprint.iacr.org/2003/216
https://support.google.com/a/answer/10741897?hl=en#zippy=%2coverview-of-cse-setup
https://support.google.com/a/answer/10741897?hl=en#zippy=%2coverview-of-cse-setup
https://developers.google.com/workspace/cse/reference
https://developers.google.com/workspace/cse/reference
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/info/rfc6090

55

[47] Andrey Jivsov. Elliptic Curve Cryptography (ECC) in OpenPGP. RFC 6637. 2012.

URL: https://www.rfc-editor.org/info/rfc6637.

[48] Yehuda Lindell Jonathan Katz. Introduction to Modern Cryptography. 2nd ed. Chap-

man and HallCRC, 2014.

[49] Michael Jones. JSON Web Algorithms (JWA). RFC 7518. 2015. URL: https://www.

rfc-editor.org/info/rfc7518.

[50] Michael B Jones. “RFC7517: JSON Web Key (JWK)”. In: Internet Engineering Task

Force (IETF) (2015).

[51] Kalyani Ganesh Kadam and Vaishali Khairnar. “Hybrid RSA-AES Encryption for

Web Services”. In: International Journal of Technical Research and Applications”,

Special 31 (2015).

[52] Burt Kaliski. PKCS #7: Cryptographic Message Syntax Version 1.5. RFC 2315.

1998. URL: https://www.rfc-editor.org/info/rfc2315.

[53] Emilia Käsper and Peter Schwabe. “Faster and timing-attack resistant AES-GCM”.

In: International Workshop on Cryptographic Hardware and Embedded Systems.

Springer. 2009.

[54] Key Management Interoperability Protocol Specification Version 1.0. 2015. URL:

https://www.oasis-open.org/committees/download.php/37965/kmip-spec-1.0-cd-

11.pdf (visited on 02/26/2023).

[55] Nasrin Khanezaei and Zurina Mohd Hanapi. “A framework based on RSA and AES

encryption algorithms for cloud computing services”. In: 2014 IEEE Conference on

Systems, Process and Control (ICSPC 2014). IEEE, 2014.

[56] Jinyuan Li et al. Secure Untrusted Data Repository (SUNDR). eng. 2003.

[57] M-Files User Guide > Home > Daily Use > Managing Content > Editing Content >

Version History. URL: https://www.m-files.com/user-guide/latest/eng/History.html?

hl=version%2Chistory (visited on 01/03/2023).

[58] M-Files User Guide > Home > Introduction > M-Files Terminology. URL: https : / /

www.m- files.com/user - guide / latest /eng /M- Files_ terminology.html (visited on

01/03/2023).

[59] M-Files User Guide > Home > System Administration > Configuring M-Files > Cus-

tomizing Server and Vault Behavior > Defining File Types for Indexing. URL: https:

//www.m-files.com/user-guide/latest/eng/defining_files_for_indexing.html (visited

on 01/03/2023).

[60] M-Files User Guide > Home > System Administration > Setting Up and Maintaining

M-Files > Managing Document Vaults > Vault Operations > Creating a New Docu-

ment Vault > Document Vault Authentication. URL: https://www.m-files.com/user-

guide/latest/eng/document_vault_authentication.html (visited on 01/03/2023).

[61] M-Files Web User Guide > Home > Overview. URL: https://www.m-files.com/user-

guide/web/latest/eng/web_overview.html (visited on 12/29/2022).

https://www.rfc-editor.org/info/rfc6637
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc2315
https://www.oasis-open.org/committees/download.php/37965/kmip-spec-1.0-cd-11.pdf
https://www.oasis-open.org/committees/download.php/37965/kmip-spec-1.0-cd-11.pdf
https://www.m-files.com/user-guide/latest/eng/History.html?hl=version%2Chistory
https://www.m-files.com/user-guide/latest/eng/History.html?hl=version%2Chistory
https://www.m-files.com/user-guide/latest/eng/M-Files_terminology.html
https://www.m-files.com/user-guide/latest/eng/M-Files_terminology.html
https://www.m-files.com/user-guide/latest/eng/defining_files_for_indexing.html
https://www.m-files.com/user-guide/latest/eng/defining_files_for_indexing.html
https://www.m-files.com/user-guide/latest/eng/document_vault_authentication.html
https://www.m-files.com/user-guide/latest/eng/document_vault_authentication.html
https://www.m-files.com/user-guide/web/latest/eng/web_overview.html
https://www.m-files.com/user-guide/web/latest/eng/web_overview.html

56

[62] Michael S MacFadden and Meikang Qiu. “Performance Impacts of JavaScript-Based

Encryption of HTML5 Web Storage for Enhanced Privacy”. In: 2022 IEEE 7th Inter-

national Conference on Smart Cloud (SmartCloud). IEEE. 2022.

[63] MDN Web Docs > References > Web APIs > Crypto. 2022. URL: https://developer.

mozilla.org/en-US/docs/Web/API/Crypto (visited on 11/05/2022).

[64] MDN Web Docs > References > Web APIs > Performance. 2022. URL: https : / /

developer.mozilla.org/en-US/docs/Web/API/Performance (visited on 02/04/2023).

[65] Peter Mell and Timothy Grance. SP 800-146. The NIST Definition of Cloud Com-

puting. 2011.

[66] Silvio Micali, Charles Rackoff, and Bob Sloan. “The Notion of Security for Proba-

bilistic Cryptosystems”. In: SIAM journal on computing 17 (1988).

[67] OpenID Connect on the Microsoft identity platform. Azure documentation. URL:

https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-protocols-oidc

(visited on 01/03/2023).

[68] Alabi Orobosade et al. “Cloud Application Security using Hybrid Encryption”. In:

Communications on Applied Electronics 7.33 (2020).

[69] Geong Poh et al. “Searchable Symmetric Encryption: Designs and Challenges”. In:

ACM computing surveys 50.3 (2017).

[70] Raluca Popa et al. “CryptDB: protecting confidentiality with encrypted query pro-

cessing”. In: Proceedings of the Twenty-Third ACM Symposium on operating sys-

tems principles. SOSP ’11. ACM, 2011.

[71] Principles of Security and Trust Second International Conference, POST 2013,

Held as Part of the European Joint Conferences on Theory and Practice of Soft-

ware, ETAPS 2013, Rome, Italy, March 16-24, 2013, Proceedings. Keys to the

Cloud: Formal Analysis and Concrete Attacks on Encrypted Web Storage. Springer

Berlin Heidelberg, 2013.

[72] Provide access to Key Vault keys, certificates, and secrets with an Azure role-based

access control. Azure documentation. 2022. URL: https://learn.microsoft.com/en-

us/azure/key-vault/general/rbac-guide (visited on 01/28/2023).

[73] Hossein Rahmani et al. “Encryption as a Service (EaaS) as a Solution for Cryptog-

raphy in Cloud”. In: Procedia technology 11 (2013).

[74] React. A JavaScript library for building user interfaces. URL: https : / / reactjs . org

(visited on 01/05/2023).

[75] R Rivest, A Shamir, and L Adleman. “A method for obtaining digital signatures and

public-key cryptosystems”. In: Communications of the ACM 21.2 (1978).

[76] Nat Sakimura, John Bradley, and Naveen Agarwal. RFC 7636: Proof Key for Code

Exchange by OAuth Public Clients. 2015. URL: https : / /www. rfc - editor.org / info /

rfc7636.

[77] Abdul Salam. Deploying and managing a cloud infrastructure : real world skills for

the CompTIA cloud+ certification and beyond. eng. John Wiley & Sons, 2015.

https://developer.mozilla.org/en-US/docs/Web/API/Crypto
https://developer.mozilla.org/en-US/docs/Web/API/Crypto
https://developer.mozilla.org/en-US/docs/Web/API/Performance
https://developer.mozilla.org/en-US/docs/Web/API/Performance
https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-protocols-oidc
https://learn.microsoft.com/en-us/azure/key-vault/general/rbac-guide
https://learn.microsoft.com/en-us/azure/key-vault/general/rbac-guide
https://reactjs.org
https://www.rfc-editor.org/info/rfc7636
https://www.rfc-editor.org/info/rfc7636

57

[78] Security Guidance for Critical Areas of Focus in Cloud Computing v4.0. 2017.

URL: https:/ /cloudsecurityalliance.org/artifacts/security- guidance- v4/ (visited on

07/08/2022).

[79] Adil Hussain Seh et al. “Healthcare Data Breaches: Insights and Implications”. In:

Healthcare (Basel) 8.2 (2020).

[80] SpiderOak Support > One Backup > No Knowledge Explained. 2022. URL: https:

//spideroak.support/hc/en-us/articles/115001855103-No-Knowledge-Explained

(visited on 02/24/2023).

[81] Meltem Turan et al. SP 800-132. Recommendation for Password-Based Key Deriva-

tion: Part 1: Storage Applications. 2010.

[82] John R. Vacca. Cloud Computing Security: Foundations and Challenges. CRC

Press, 2016.

[83] Mike Wills. The Official (ISC)2 SSCP CBK Reference. eng. 6th ed. John Wiley &

Sons, Incorporated, 2022.

[84] Duane C. Wilson and Giuseppe Ateniese. ““To Share or not to Share” in Client-Side

Encrypted Clouds”. In: Information Security. Lecture Notes in Computer Science.

Springer International Publishing, 2014.

[85] Work with user identities in Azure App Service authentication. Azure documen-

tation. URL: https : / / learn . microsoft . com / en - us / azure / app - service / configure -

authentication-user-identities (visited on 01/28/2023).

[86] Xun Yi. Homomorphic encryption and applications. SpringerBriefs in Computer Sci-

ence. Springer, 2014.

https://cloudsecurityalliance.org/artifacts/security-guidance-v4/
https://spideroak.support/hc/en-us/articles/115001855103-No-Knowledge-Explained
https://spideroak.support/hc/en-us/articles/115001855103-No-Knowledge-Explained
https://learn.microsoft.com/en-us/azure/app-service/configure-authentication-user-identities
https://learn.microsoft.com/en-us/azure/app-service/configure-authentication-user-identities

58

APPENDIX A: PERFORMANCE MEASUREMENTS

Encryption

Size (MB) Time total (ms) Time API (ms)

284 246

1 262 238

318 287

1542 296

250 1185 284

1110 272

1823 223

500 1854 214

1852 219

2727 247

750 2770 284

2764 273

3682 199

1000 3547 307

3566 271

Decryption

Size (MB) Time total (ms)

341

1 305

276

1100

250 1071

1131

1897

500 1969

1931

2640

750 2671

2646

3478

1000 3448

3471

Table A.1. Time measurements for encryption and decryption with variable file size

Encryption

Public keys Time total (ms) Time API (ms)

335 219

2 387 273

328 206

397 306

100 401 297

455 310

475 375

200 528 419

575 403

584 432

300 548 422

544 417

582 444

400 606 430

666 410

Decryption

Public keys Time total (ms)

308

2 339

310

408

100 389

368

350

200 366

357

336

300 440

322

340

400 366

352

Table A.2. Time measurements for encryption and decryption with a variable number of
public keys

	Introduction
	Motivation
	Contribution
	Thesis Outline

	Related Work
	Advanced Encryption Standard and Client-side Encryption
	Key Sharing for Client-side Encryption
	Searchable and Homomorphic Encryption
	Key Management in Cloud Encryption Systems

	Overview of Client-side Encryption
	Client-side Encryption as a Security Solution
	The Problem Domain of Client-side Encryption Implementations in Web Applications
	Algorithm Implementations in the Client-side Application
	Managing and Using Cryptographic Keys in a Client-side Application
	Convenient Management for Personal Keys of Users
	Shared Access to Encrypted Data

	An Alternative Approach Using a Dedicated Encryption Service

	Client-side Encryption for M-Files
	Documents in M-Files
	Access Control
	Authentication and Client Authorization to External Services
	User Interface Considerations

	Proposed Implementation
	Overview
	External KMS and the Key Management Web API
	Use Cases and Required Operations of the Implementation
	Creation
	Viewing
	Updating
	Creating Backups of DEKs

	Evaluation of the Proposal and Discussion on Further Improvements
	Hybrid Encryption
	Choice of Public Key Encryption Algorithm
	Protection of Confidentiality and Integrity
	Alternative Solutions For Convenient Management of User Keys

	Design and Implementation of the Key Management API
	Defining the Endpoints of the Key Management API
	Getting a Public Key
	Listing Public Keys
	Creating a Backup of a Key
	Unwrapping a Wrapped Key
	Signing Data

	Implementing the API as a Cloud Application
	Assigning Keys to Users
	Enabling Authentication and Authorization
	Example of an Endpoint Implementation

	Client-side Implementation
	Using Cryptographic Algorithms on the Client-side
	Generating and Using a DEK
	Importing Public RSA Keys
	Wrapping a DEK
	Verifying Signatures
	Variant Using Elliptic-Curve Cryptography

	User Interface Implementation

	Evaluation of Performance
	Conclusion
	References
	Performance Measurements

