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a b s t r a c t 

One of the most difficult tasks for the physicians is to acquire a quality foetal electrocardiogram (fECG) 

to analyze, manage and plan according to the condition of the foetus in the womb. Hence the foetal 

electrocardiogram signal is not preferred to execute the analysis to monitor the Foetal condition. Other 

traditional methods are being used to access the foetal condition. The foetal electrocardiogram signal can 

be acquired either by using invasive or non- invasive techniques. Since the invasive technique is harm- 

ful for the foetus, non-invasive technique is mostly adopted. The foetal electrocardiogram signal can be 

acquired only after twenty five weeks the foetus is developed in the womb, which is referred as the 

Antepartum period. This article portrays the use of Deep learning techniques for non-invasive foetal elec- 

trocardiogram signal synthesis using artificial intelligent techniques. Convolutional neural network (CNN), 

Deep belief neural networks (BNN) and Back propagation Neural Network (BPNN) have been utilized and 

tested for the proposal. The outcomes and performance are compared with reference to the synthesized 

high quality foetal electrocardiogram signal. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

The graphical replica of foetal heart’s electrical activity, the

foetal electrocardiogram (fECG) is depicted in Fig. 1 Cardiac com-

plications are amongst the most common birth defects. Hence, di-

agnosis is very important in the foetal stage to plan and manage

the baby during Antepartum stage - 26th week of pregnancy un-

til the birth of a child, as well as the Intrapartum stage - dur-

ing child birth when the baby is born. It is from the Antepartum

stage where the foetal electrocardiogram signal can actually be de-

tected. A descriptive detail of pregnancy stages and Foetal growth

is shown in Table 1 . Though the first observations of foetal electro-

cardiogram was made by Cremer et al. in 1906 [1] , foetal electro-

cardiogram (fECG) signal acquisition has always been a challeng-

ing assignment for Physicians and Engineers. In the clinical per-

spective, foetal signals recorded by electrocardiogram (ECG) con-

vey more information compared to conventional sonography, aus-

cultation and other techniques. The foetal electrocardiogram sig-

nal can be acquired either by using invasive or non- invasive tech-

niques. Since the invasive technique is harmful for the foetus, non-

invasive technique is mostly adopted. Non-invasive foetal electro-

cardiogram signal can be acquired from electrodes placed over the

maternal abdomen. This signal is a composite of three different
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ignals. First, the non-linearly transformed maternal electrocardio-

ram (mECG). Second, the weak foetal electrocardiogram (fECG).

hird, various Internal/external - high/ low frequency noisy signals.

he unwanted signals must be eliminated to synthesize high qual-

ty foetal electrocardiogram. Bayesian procedures for filtering are

dapted in this work. This article portrays the deep learning strate-

ies using Convolutional neural network (CNN), Deep belief neural

etworks (BNN) and Back propagation Neural Network (BPNN) to

ynthesize high quality foetal electrocardiogram. 

. Literature survey 

The field of artificial intelligence is the major contributor to

he problem discussed in this article. Convolutional Neural Net-

ork is among the top of the list of machine learning techniques.

o list a few, Chen et al. 2015 [2] have shown Ultrasound modal-

ty using Convolutional Neural Network to locate abdominal plane

rom foetal ultrasound videos. Chen et al. 2015 [3] have adapted

he Ultrasound modality using Recurrent Neural Network to Lo-

ate abdominal plane from fetal ultrasound videos. Baumgartner

t al. 2016 [4] have used the Ultrasound modality using CNN for

he purpose of labeling 12 standard frames in 1003 mid-pregnancy

oetal US videos. Yu et al. 2016 [5] adapts the Ultrasound modal-

ty using CNN for the purpose of labeling frame-by-frame segmen-

ation by dynamically fine-tuning CNN to the latest frame. Ravis-

ankar et al. 2016 [6] adapts the Ultrasound modality using CNN

or the purpose of l Hybrid system using CNN and texture features

https://doi.org/10.1016/j.patrec.2020.06.016
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Fig. 1. Foetal electrocardiogram signal replica. 
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o find abdominal circumference. Rajchl et al. 2016 [7] adapts the

RI using CNN and CRF for segmentation of structures. Rajchl et al.

016 [8] adapts the MRI using CNN for Crowd-sourcing annotation

fforts to segment brain structures. Kumar et al. 2016 [9] adapts

he Ultrasound modality using CNN for the purpose of labeling 12

tandard anatomical planes, CNN extracts features for support vec-

or machine. Deep learning artificial intelligent neural networks are

eferred to as Deep Neural Network (DNN) which includes Deep

uto encoder (DA), convolutional neural networks (CNN), deep be-

ief networks (DBN), Recurrent Neural Network (RNN), Deep Con-

olutional Inverse Graphics Network, stacked auto encoder (SAE),

eep Boltzmann Machine (DBM), Deep Residual Network, etc. [10] .

eep learning is one among the major explored area with remark-

ble applications in the field of time series signal evaluation, ob-

ect recognition, facial recognition, medical image examination and

mage classification. Mirowski et al. 2008 [11] used convolutional

eural networks for epileptic seizure prediction from EEG signals.

. Huanhuan et al. 2014 [12] utilized a combination of deep be-

ief network (DBN) with support vector machine (SVM) for clas-

ification of ECG signals. DBN was used for feature learning and

VM was utilized for learning and classification. Acharya et al.

017 [13] portrayed a deep learning algorithm for traditional di-

gnosis support systems. The technique showed the advantage of

ot having to execute feature extraction and de-noising processes.

riya Ranjan Muduli et al. 2016 [14] proposed deep learning ap-

roach for fECG signals. The methodology improved the computa-

ion speed imposed in the telemonitoring system. E. Fotiadou et

l. 2019 [15] proposed a convolutional encoder-decoder framework

as proposed to eliminate the residual noise from single-channel

ECG. Shenda Hong et al. 2020 [16] reported an in-depth review

n Deep learning methods have been portrayed with promising re-

ults on predicting health-care tasks specially for ECG signals. 
Table 1 

Pregnancy stages and Foetal growth (Google adapted). 
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H  
Bayesian procedures for filtering have been utilized by sev-

ral researchers in the perspective of the problem. Y. Yin et al.

010 [17] used Bayesian methodology in combination with Arti-

cial Neural Networks (ANN) for fECG signal extraction. General-

zed Gaussian distribution was used for modeling the ECG signal.

ack propagation neural network (BPN) was imposed for estimat-

ng the nonlinearity. Real-time ECG signal recordings were used to

est the Bayesian neural networks technique. Simulated ECG signal

ecording was experimented with polynomial neural networks. The

ethodology was effective but the quality of signal mining was

ot reported. R. Sameni et al. 2007 [18] published that Bayesian

ltering technique can be employed for denoising ECG signals.

ikonomou et al. 2005 [19] presented good performance for foetal

CG signal extraction by using Bayesian technique for fECG signal

xtraction using PCA (principle component analysis) methodology. 

. Proposed methodology 

The proposed Deep Learning strategy is depicted in Fig. 2 . The

roposed system uses two input channels, one from the chest and

he other from the abdomen of the maternal subject. The maternal

lectrocardiogram (mECG) signal recorded from the chest consists

f the mECG and other noises. The abdominal electrocardiogram

aECG) recorded from the abdomen constitutes the weak foetal

lectrocardiogram (fECG), transformed version of mECG and other

oises. High and low frequency noises are eliminated by traditional

ltering. The Bayes filter is used to predict a faultless approxima-

ion of the nonlinearly transformed mECG ingredient in the aECG.

xtended Kalman filter and extended Kalman smoother were em-

loyed for this purpose. The deep learning neural network system

s employed to adaptively estimate the nonlinear relationship of

he nonlinear transformed signal of mECG and faultlessly ally into

ine the estimated mECG signal with the maternal signal compo-

ent in the aECG signal for removal. The removal of mECG signals

nd noise signals leads an outcome with the desired high qual-

ty fECG signal. This article portrays the deep learning strategies

sing three different architectures, Convolutional neural network

CNN), Deep belief neural networks (BNN) and Back propagation

eural Network (BPNN) to synthesize high quality foetal electro-

ardiogram. 

.1. The back propagation neural network 

One of the most widely used multilayer, feed forward neural

etwork is the Back propagation neural network - BPNN. Liszka-

ackzell J et al. [ 20 ] implemented BPNN several decades ago
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Fig. 2. Proposed deep learning strategy. 

Fig. 3. Back propagation neural network - BPNN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Convolutional neural network - CNN. 
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Table 2 

CNN Architectural details. 

CNN Layers Neurons Function Kernel Tread 

0–1 475 ×3 Convolution 92 1 

1–2 210 ×3 Max-pooling 2 2 

2–3 192 ×10 Convolution 22 1 

3–4 86 ×10 Max-pooling 2 2 

4–5 42 ×10 Convolution 9 1 

5–6 34 ×10 Max-pooling 2 2 

6–7 26 Fully connected – –

7–8 8 Fully connected – –

8–9 1 Fully connected – –
in 1994. Typical back propagation neural network architecture is

shown in Fig. 3 . It consists of an input layer, hidden layer and out-

put layer. The hidden layer may have more than one layer depend-

ing upon the requirements. The well known Back propagation tech-

nique works by estimating the non-linear relationship between the

input signal and the output signal by adjusting the network con-

nection weights. Back propagation network works in two phases,

the training phase and the testing phase. In other words, feed for-

ward and Back propagation phases. During the feed forward phase,

an input signal pattern is applied to the input layer and this is

disseminated to the entire layers one after the other through the

network until the output layer produces an output. This output is

then compared to the expected output, which results with an error

signal for each of the output nodes. These output error signals are

propagated in reverse direction from the output layer to the hid-

den layer. This process is repeated until each node in the network

has received an error signal. The errors are then utilized by the

nodes to update the weight for each connection weights until the

network converges to a state which permits all the learning sig-

nal patterns to be encoded. The network architecture was imple-

mented with 72 neurons in the input layer. The hidden layer con-

stitutes for 2 layers of 84 neurons each. The learning rate for ini-

tial signal patterns was 0.06 which is referred as the unsupervised

learning rate. This initial learning was established for 800 epochs.

The supervised learning rate was about 0.07 with 970 epochs. 

3.2. The convolutional neural network 

CNN is a multilayer artificial neural network design which is

made up of single or multiple convolutional layers followed by a
ingle or multiple fully connected layers as shown in Fig. 4 . The

NN topology can be implemented with alternating convolution

nd pooling layers. In this research work, a three layer CNN was

mployed. The Convolution layer constitutes the first layer of the

NN. The vital job of the convolution layer is to extract features

rom the input ECG signals. These features are compressed by the

ax – pooling function. The softmax layer implemented with a

ni-dimensional output is the fully connected network layer. The

NN is initially convolved with a definite kernel size with the input

ayer which yields the first layer of CNN. To reduce the number of

eurons in the hidden layer, max-pooling is employed. The map-

ing features from the second layer are convolved with the ker-

el to yield the third layer. The process was repeated awaiting the

tructure to result with six layers. Finally the fully connected sev-

nth and eighth layers were devised to be fully linked to the last

ayer with a single output neuron. The CNN topological detail are

rovided in Table 2 , where the Kernel size refers to the filter size
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Fig. 5. Deep belief neural network - BNN. 

w  

f  

f  

f  

s

3

 

i  

i  

fi  

l  

(  

i  

l  

i  

b  

p  

n  

T  

p  

a  

n  

e  

n  

7  

e

F

f

hich convolves just about the mapping features and the tread

eature controls the tactic of filter convolution about the mapping

eatures. The tread is set with a value to be 1in this work, there-

ore the filter and the layers of mapping features are convolved by

liding one unit every time. 
ig. 6. Synthesized fECG signals. (a) Thoracic Signal Recording, (b) Abdominal Signal Reco

ECG – BPNN, (f) Synthesized fECG – CNN, (g) Synthesized fECG – BNN. 
.3. The deep belief neural network 

The BNN topological structure is shown in Fig. 5 . The BNN

s triggered one layer after another by a proficient greedy learn-

ng method using unsupervised learning algorithm and it is then

ne tuned with respect to the output targets using supervised

earning. BNN is a composition of restricted Boltzmann machine

RBM) which is comprised of a two-layer neural network, a vis-

ble layer and a hidden layer. The neurons in the first layer are

inked to every other neuron in the second layer. Every neuron

n a layer is trained to learn one feature from the input data

y constructing random decisions on whether to convey the in-

ut or not. The received inputs by the RBM are encoded into

umbers. To reconstruct the inputs, reverse translation is done.

he network is learned to rebuild in both forward and backward

hases. This process is repeated until all layers in the structure

re trained. The network architecture was implemented with 98

eurons in the input layer. The hidden layer constitutes for 2 lay-

rs with a total of 84 neurons. The learning rate for initial sig-

al patterns was 0.05. This initial learning was established for

00 epochs. The supervised learning rate was about 0.07 with 760

pochs. 
rding, (c) Filtered Abdominal Signal, (d) Maternal signal estimation, (e) Synthesized 



290 D.J. Jagannath, D. Raveena Judie Dolly and J. Dinesh Peter / Pattern Recognition Letters 136 (2020) 286–292 

Fig. 7. (a) SNR improvement accomplished (b) Radar plot of SNR improvement. 
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3.4. Deep learning approach 

Conventional Back propagation learning algorithm has been en-

gaged for all the network topologies. Back propagation algorithm

was enforced with a definite size of ten in a batch. The activa-

tion function that was imposed in this work is the linear activa-

tion function. In CNN, it was imposed for all the convolutional and

the first 2 fully connected layers. The softmax function was used

to establish the last fully connected layer. In BPNN the learning
ate for initial signal patterns was 0.06 which is referred as the

nsupervised learning rate. This initial learning was established for

00 epochs. The supervised learning rate was about 0.07 with 970

pochs. In CNN for data convergence the learning rate was set to

.7 with regularization 0.2 to prevent over-fitting of data and mo-

entum 3 × 10 −4 to control the learning speed during training

hase. The learning rate in BNN for initial signal patterns was 0.05.

his initial learning was established for 700 epochs. The supervised

earning rate was about 0.07 with 760 epochs. 
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Fig. 8. (a) PRD accomplished (b) Radar plot of PRD. 
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. Results and discussion 

All possible signals were investigated in this work. Different

ariety of data sets including data from Physionet and DaISy

atabase, real time maternal signals and simulated signals were

mployed. Deep learning strategies using three different architec-

ures, Convolutional neural network (CNN), Deep belief neural net-

orks (BNN) and Back propagation Neural Network (BPNN) were

ested and their performance is validated to synthesize quality
 S
oetal electrocardiogram. The explorations were evaluated with the

referred performance parameters, signal to noise ratio (SNR), im-

roved signal to noise ratio (SNR enh ) and percentage root mean

quare difference (PRD) defined by Eqs. (1) to (3) . 

NR = 10 log 10 

∑ N 
n =1 

ˆ S 2 
f 
(n ) 

∑ N 
n =1 

[
ˆ S f (n ) − S f (n ) 

]2 
dB (1) 

N R = SN R out − SN R (2) 
enh in 
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P RD = 

∑ n 
k =1 { x (k ) − y (k ) } 2 
∑ n 

k =1 { x (k ) } 2 × 100 (3)

To depict an end result of the research work, the result of one

of the explored examination with recordings obtained from a ma-

ternal subject is portrayed in Fig. 6 . (a) Thoracic Signal Record-

ing, (b) Abdominal Signal Recording, (c) Filtered Abdominal Signal

Recording, (d)Maternal signal estimation, (e) Synthesized fECG –

BPNN, (f) Synthesized fECG – CNN, ( g) Synthesized fECG – BNN.

The abdominal signal is embedded with other noise signals due to

several factors. These noisy signals were eliminated with conven-

tional filters. The resulted noise free abdominal signal is shown in

Fig. 6 (c). The Bayes filter is used to predict a faultless approxima-

tion of the nonlinearly transformed mECG ingredient in the aECG,

the outcome of this filter is shown in Fig. 6 (d). The deep learn-

ing strategies using three different architectures, Back propaga-

tion Neural Network (BPNN), Convolutional neural network (CNN)

and Deep belief neural networks (BNN) to synthesize high quality

foetal electrocardiogram are depicted in Fig. 6 (e), (f) and (g). 

The imposed input SNR in this work ranges from −30 dB to

15 dB which was estimated using Eq. (1) . The SNR of the syn-

thesized signal was also evaluated using Eq. (1) . SNR improve-

ment was calculated using Eq. (2) . The SNR improvement attained

for the synthesized fECG signal from 10 sets of data is ploted in

Fig. 7 (a). To analyze the SNR improvement accomplished a radar

plot is depicted in Fig. 7 (b). The plot clearly shows that CNN of-

fered better SNR improvement compared to BPNN and BNN. How-

ever, all the three deep learning strategies showed good improve-

ment in SNR, their SNR improvement is arround 39. On an average

the SNR improved by Back propagation Neural Network (BPNN),

Convolutional neural network (CNN) and Deep belief neural net-

works (BNN) were 39.454, 39.732 and 39.54. Similar analysis to

check the quality of the synthesized fECG signal was carried out

and depicted in Fig. 8 (a) and (b). There is not much of a differ-

ence seen between the three techniques. The PRD for all the three

methodologies was arround 0.3, which proves that the synthesized

fECG is of high quality. 

Conclusion 

This article portrays the use of Deep learning techniques for

non-invasive foetal electrocardiogram signal synthesis using arti-

ficial intelligent techniques. Convolutional neural network (CNN),

Deep belief neural networks (BNN) and Back propagation Neural

Network (BPNN) have been utilized and tested for the proposal.

The outcomes and performance are compared with reference to

the synthesized high quality foetal electrocardiogram signal. All

possible signals were investigated in this work. Different variety

of data sets including data from Physionet and DaISy Database,

real time maternal signals and simulated signals were employed.

CNN offered better SNR improvement compared to BPNN and BNN.

However, all the three deep learning strategies showed good im-

provement in SNR, their SNR improvement is arround 39. The PRD

for all the three methodologies was arround 0.3, which proves that

the synthesized fECG is of high quality. The methodology was in-

vestigated by running the algorithm in PyTorch using a single GTX

1080 Ti X GPU with the training data sizes from 64 to 1024. The

projected time was about 10 0 0 to 90 0 0 s for training 450 epochs.

This research work would definitely trigger a wider research vision

to extend further analysis with deep learning strategies and the

available diverse artificial intelligent networks. This research work
an be extended further to extort twin fECG signals. The proposed

ethodology can be implied on IURG (Intrauterine growth restric-

ion) affected signals for extraction of good quality fECG signals

hich can be very near to high quality. 
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