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Deep learning model for traffic flow prediction in wireless network
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ABSTRACT
In wireless networks, the traffic metrics often play a significant role in forecasting the traffic
condition in traffic management systems. The accuracy of prediction in data-driven model gets
reduced when it is influenced by non-routing or non-recurring traffic events. The analytical data
model used in the proposed method takes into account not only traffic volume and conges-
tion, but also the characteristics of individual applications and user behaviour. This allows for
more accurate traffic prediction and better traffic management in wireless networks. The sim-
ulation conducted in the paper evaluates the performance of the proposed method in terms
of connection success probability and latency. The results show that the proposed method
achieves a connection success probability of 93% and a latency of less than 2ms, demonstrating
its effectiveness in improving traffic prediction and management in wireless networks.
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1. Introduction

Over the past few years, NTMA (Network Traffic
Management using Artificial Intelligence) has gar-
nered a great deal of attention due to its central
role in the development of networking performance.
NTMA approaches are both employed by industry and
academia in network management [1]. New network-
ing technologies and concepts complicate the creation
of efficient networks. In networks where the number
of nodes is in the thousands, such as the Internet of
Things (IoT), regular monitoring is required to ensure
performance [2,3]. Active approaches include the use of
probes to place and later remove probe traffic to identify
the state of the network. When we inject test traffic into
the network and then analyse various network perfor-
mance indicators, we are saying that these tests aremore
precisely known as test traffic injection.

NTMA, or Network TrafficManagement using Arti-
ficial Intelligence, is a technique that employs machine
learning algorithms to enhance network traffic man-
agement and boost network performance. This method
is becoming increasingly popular as a result of the
surge in network traffic and the need for more effec-
tive network management solutions. NTMA strategies
entail gathering network traffic data, analysing it using
machine learning algorithms to recognize patterns and
trends, and employing the knowledge gained to make
informed decisions about network traffic management.
These decisions may involve load balancing, traffic pri-
oritization, congestion control, and network routing
optimization, among other things. Overall, NTMA is a
promising technique that employs machine learning to

enhance network traffic management and improve net-
work performance. As the demand for more efficient
and reliable network management solutions continues
to rise, NTMA methods are anticipated to play a more
important role in the networking sector.

The primary way to control Service Level Agree-
ments (SLAs) for services is through active monitor-
ing techniques [4–6]. Passive methods are more often
utilized to evaluate and monitor real network traffic
in the network, whereas active methods are typically
employed to study theoretical network traffic. A great
deal of interest has been generated within the indus-
try for management and planning purposes for passive
techniques [7,8]. Passive techniques don’t need to have
another site in the network in order to take advantage
of them. This kind of traffic monitoring can be utilized
for cases like post-incident scenarios [9].

There are distinct everyday difficulties for NTMA
because of the number of people who utilize these
communication systems and networks, as well as the
amount of generated traffic. Increasing the number of
linked nodes and the volume of data raises the com-
plexity of the network, which needs continued moni-
toring and research to maintain network performance
[10]. More importantly, the large and diverse traffic
dataset mandates the use of novel monitoring and anal-
ysis methodologies for network management data [11].
Many NTMA-focused works focus on a single NTMA
process, such as anomaly detection, traffic classifica-
tion, or quality of service (QoS) [12].

Problem Definition: Traffic data collecting creates
major difficulties for NTMA, especially when it comes
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to measuring critical network parameters that must be
tested regularly over time. To replicate network traf-
fic, an active probe initiates the activity. Then, to test
the end-to-end performance, the probe emits simulated
network traffic throughout the network. Passive probes
give a separate vision of the network compared to active
probes. Links in the network have passive probes that
monitor all the traffic that passes through the link.

One way to describe the diverse network require-
ments and traffic data gathering purposes is to describe
the distinct objectives of traffic data collection. To put
it another way, in a traffic acquisition task, it is not
needed to capture all the accessible data fromanetwork.
This also means that network packets are the funda-
mental pieces of data that need to be analysed in the
task of gathering traffic data. Probes are capable of uti-
lizing both of these strategies while gathering network
information, butDeep Packet Inception (DPI) has a few
drawbacks, the most significant of which is that: The
results of user data analysis could compromise the pri-
vacy of the users. It takes more time and resources to
process the entire packet than the header.

Stateful Packet Inspection (SPI) is utilized in most
modern NTMA probes due to the difficulties previ-
ously described when utilizing DPI [13–15]. Next, we
describe the issues that NTMA faces in obtaining a
large amount of trustworthy traffic data. Some useful
tools to meet this difficulty, such as [16] and [17], have
been developed throughout the years for data collecting
and data collection. Though a ubiquitous and efficient
data collection strategy that can be employed in big
and heterogeneousmodern networks is still unavailable
[18].

Network packets are the most common method of
data traffic gathering for networks. Also, the above
methods are inadequate when used with high-speed
networks, and therefore rendered ineffectual. Another
prominent data collection mechanism is flow-based
data gathering. In Gigabit networks, flow-based data
gathering approaches outperform packet-based data
gatheringmechanisms.Despite this, packet and flowfil-
tering make things more difficult for these approaches.
In the academic literature, several surveys have been
published, such as [19–21].

Because of the emergence of newphenomena known
as big data, modern networking technologies are being
put under strain. One of the primary consumers of
large amounts of data is the NTMA approach [22].
Once you have raw traffic data, NTMA approaches
should execute a series of processes to extract meaning-
ful information. There are several obstacles and issues
with typical big data analytics methodologies, includ-
ing accuracy, rapid analytics, and real-time processing
of massive data. The more connected devices there are,
the raw data they generate every day, and thus we will
need better approaches to monitor and analyse this
data.

In this paper, a ResNet and DenseNet models are
used to learn the network traffic and predict the future
network traffic. Both ResNet and DenseNet models uti-
lize traffic parameters from different scenarios to study
the traffic condition.

The main contribution of the paper involves the
following:

• The author contributed to the development of
analysing the network traffic using Residual neu-
ral network architecture and dense neural network
architecture based on several parameters associated
with network traffic.

• The parameters involving traffic scheduling and
routing enables the users to accommodate the net-
work condition without lapses in communication.

• The combination of ResNet and DenseNet is
designed as a flow-based approach that provides out-
standing classification of traffic instances based on
the condition of the network.

This research work discusses the challenges in traffic
data collection and management for wireless networks.
The paper proposes a deep learning analytical model
that can learn from network traffic and provide accu-
rate traffic predictions. The simulation results show that
the proposed method achieves high success rates and
reduced latency. The paper highlights the importance of
active and passive monitoring techniques for maintain-
ing network performance and service level agreements.
The paper also discusses the challenges in obtaining
trustworthy traffic data and the limitations of current
data gathering methods. Finally, the paper emphasizes
the role of big data analytics in network management
and the obstacles and issues associated with it.

2. Related works

The current work is the only one we know of that
explores the interaction between NTMA and DL and
highlights the use of DL models in NTMA [23]. Sev-
eral research papers exist in the literature that investi-
gates the usage of data mining techniques and classical
machine learning models.

The research findings given in [24] examined var-
ious DL-based traffic classification models. However,
the application did not include any other NTMA appli-
cations for evaluation, as discussed in the current
research.

In [25], the authors performed an in-depth review
of the common mathematical models used in malware
analysis. The challenges and issues associated with this
subject are further examined in this study. Additionally,
the researchers did not study the critical role of DL in
malware identification and analysis.

This study on network traffic analysis [26] is quite
in-depth. They use three classification systems to assign
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relevant works to three classifications. Several algo-
rithms, such as C4.5 decision tree, Naive Bayes, k-
means, and Random forest, were tested, analysed,
and considered. The focus is on mobile devices and
includes discussion on methods of analysis, valida-
tion, and outcomes obtained. Furthermore, the focus
of was on conventional ML methods, which are exclu-
sively based on Machine Learning, whereas our study
focuses on DL models. The authors in [27] applied
a big data technique to the National Transportation
and Safety Board (NTSA). Using big data methods, the
authors studied works that use network traffic data.
They also described machine learning ability to handle
four NTMA-oriented tasks: classification, prediction,
management, and security. It also collected real-time
massive IoT data for their study. The current network
data analytics methodologies used in real-time IoT net-
works are examined in this paper. The fundamentals
of real-time IoT analytics, applications, and platforms
are also explored in that study. One of the major chal-
lenges associated with using deep learning (DL)models
for traffic classification is the requirement for a large
amount of labelled data for training. DL models often
require a significant amount of training data to gener-
alize well and make accurate predictions, but collect-
ing and labelling data for traffic classification can be a
time-consuming and costly process. In addition, traffic
patterns and behaviours can change rapidly, requiring
the constant updating and retraining of models with
new labelled data. Another challenge is the class imbal-
ance problem, where some traffic classes may be sig-
nificantly underrepresented in the labelled data. This
can make it difficult for the DL model to learn to clas-
sify these classes accurately, leading to biases in the
model’s predictions. Finally, DL models can be com-
putationally expensive and require significant hardware
resources for training and inference, making them less
accessible for smaller organizations or those with lim-
ited resources. That paper did not explore DL mod-
els for data analytics; rather, it studied DL models for
information retrieval. Most of the methods considered
above focus on the network infrastructure and laying
new routes for optimal traffic delivery. However, these
method takes less network parameters into considera-
tion for optimal traffic classification and management.

3. Proposedmodel

The ResNet and DenseNet look at wireless network
traffic parameters, as well as the routing and traffic
scheduling. To accommodate the needs of primary and
secondary users, as well as the handover rate, the study
takes into consideration the locale of the primary and
secondary users. The transport planning and optimiza-
tion of network traffic are precisely suited to deep
learning models.

3.1. Flow-based ResNet and DenseNet

The classification technique handles both encrypted
and normal traffic, a flow-based classifier is the most
suitable model for the task. This study uses ResNet
and DenseNet for traffic classification, a flow-based
approach. While the DL (Deep Learning) model accu-
racy is outstanding, a substantial amount of labelled
data is required for modelling. Figure 1 shows the flow-
based DL model.

This paper examines the significance of utilizing
Artificial Intelligence (AI) in Network Traffic Manage-
ment (NTMA) to ensure optimal performance in large
and intricate networks like the Internet of Things (IoT).
Active and passive approaches are utilized for moni-
toring network performance, with passive techniques
being more commonly employed for management and
planning. However, traffic data collection for NTMA
poses challenges, particularly in measuring essential
network parameters that require regular testing over
time. While Deep Packet Inception (DPI) is available,
it is not commonly used due to privacy concerns and
resource requirements. On the other hand, Stateful
Packet Inspection (SPI) is utilized in most modern
NTMA probes, and flow-based data gathering mech-
anisms are more effective than packet-based ones in
Gigabit networks. To analyse network traffic and pre-
dict future traffic, this paper suggests utilizing ResNet
and DenseNet models based on different parameters
linked to network traffic. The paper’s primary contri-
bution is the development of Residual neural network
architecture and dense neural network architecture for
analysing network traffic using various traffic parame-
ters.

Recurrent Neural Networks (RNNs) have been
widely used in network traffic analysis due to their abil-
ity to model sequential data. In the proposed model,
RNNs can be used to capture the temporal dependen-
cies of network traffic data over time. By processing
the data in a sequence, RNNs can learn the patterns
and trends of network traffic and use them to make
predictions about future traffic. This can be especially
useful in predicting network congestion and identifying
potential network failures before they occur.

3.2. Mathematical model

The complex channel coefficient hu,k represents the
communication quality between the User Equipment
(UE) and eNodeB over Resource Block (RB) at each
Transmission Time Interval (TTI). It considers vari-
ous propagation effects over the LTE channel, including
shadowing, path loss, and small-scale fading. The sys-
tem has good antenna gains and a coherence channel
bandwidth larger than the RB bandwidth, leading to flat
fading and a complex channel response denoted by the
complex channel coefficient. This coefficient is mainly
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Figure 1. Flow-based DL model.

associated with the subcarrier (middle range) and the
first OFDM symbol. The hu,k is estimated using UE
through pilot symbols and gets transmitted using eNB.
Then the channel estimated is ĥu,k, which is modelled
as:

ĥu,k =
√

(1 − ξ)hu,k + √
ξη (1)

where the channel estimation degradation is ξ ∈ (0, 1)
and channel estimation error is η ∈ C. This is consid-
ered as the random variable, which is called as Zero
Mean Circularly Symmetric Complex Gaussian (ZMC-
SCG), with E{|η|2} = E{|hu,k|2}.

The present study finds the CSI imperfections asso-
ciatedwith the channel estimation error and the param-
eter ξ is evaluated based on its impact and finally the
reports are considered at each TTI and without any
delay the eNB acquires the measures.

Further, the instantaneous SNR γ̂u,k estimated with
individual UE u on k during each TTI is calculated as:

γ̂u,k = pu,k|ĥu,k|2
σ 2 (2)

where pu,k represents the power of eNB used for trans-
mitting the UE u over k; σ 2 is the average AWGN
power.

Similar to LTE, the link adaptation mechanism is
used to select the MCS (m) using eNB from the set of
MCSs (M).

TheMCS selection uses γ̂u,k and considersM = |M|
with varying MCS, where |·| defines the cardinality,
when applied over the set. The MCSmu,k related to the
UE u in k is calculated as:

mu,k = f (γ̂u,k) (3)

where f (γ̂u,k) represents the function of link adapta-
tion.

The eNB in this work selects the better MCS over
given UE u on k leading to the maximized data rate for
power allocated in the network.

The required value of block error rate is used to
acquire the link adaptation curve with minimum SNR,
γ̂u,k,m and the eNB transmit information to UE u in k
usingmth MCS and this guarantees the block error rate
value. The minimum SNR is calculated as:

γ̂u,k,m = f−1(mu,k) (4)

where f −1(·) defines the inverse function of link adap-
tation.

The γ̂u,k,m value obtain the pu,k,m transmit power
(minimum) linked with MCSm. The flat fading is con-
sidered over the RB during each TTI and the value ĥu,k
is made constant for each {u,k} pair.

The throughput ru,k,m of UE u over k through MCS
m is given as,

Ru =
K=|K|∑

k=1

M=|M|∑

m=1
ru,k,mxu,k,m (5)

where xu,k,m represents the assignment index allocation
of RB in UEs.

Finally, the QoE τu of the desired UE u is acquired
from rate Ru through the function φ(·) that maps into
MOS, as

τu = φ(Ru) (6)

3.3. ResNet

These networks primarily focus on using an identifica-
tion shortcut thatmisses at least one ormore levels. This
block is referred to as the Residual Block, asmay be seen
in the diagram below. The output from the previous
layer is only used in the next layer. However, for some
values of x, F(x) does not have the same dimensions.
With regard to spatial resolution, a 32× 32 convolution
will result in an image with 30× 30 dimensions.

Increased identity mapping occurs because the
shortcut channels map to the residuals, allowing the
identity to be expanded. Thus, the two additional input
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Figure 2. ResNet model.

variables x and F(x) are introduced to the subsequent
level as inputs. Connections in the Skip Layer group are
used to connect the outputs of previous layers to the
stacked layer outputs.What this means is that networks
can create far deeper relationships than before.

This ResNet 50 employs a 5-stage model consisting
of a convolution and an identity block. On each level
of the convolution, three layers are contained, and for
each degree of identity, three layers are included as in
Figure 2.

The model can be built with two fully connected
layers, which include a SoftMax activation and a 50%
activation drop. Even if no sound file is present, the
user can input the binary value once themodel is estab-
lished. The parameters used for this example include a
learning rate of 0.001, a batch size of 32, binary cross-
entropy as the loss function, and the Adam optimizer
as the optimization function.

Hence, to resolve the optimization problem, the
study uses the following objective function:

f ∗F = argmin
f

L(X, y, f )s.t f ∈ F (7)

where X is the features from the input dataset; y is the
label; F is the class of function f.

3.4. DenseNet

DenseNet-169+ is a type of dense network that uses
dense links to connect all layers directly, from layers
to dense blocks. This helps to maintain the classifica-
tion characteristics of the featuremaps by allowing each
subsequent layer to receive inputs from all the earlier
layers and pass on its feature maps to the subsequent
levels. Consider a single image x0 via the initial layer of
the network i.e. convolutional network. The DenseNet-
169+ network is designedwith L layers or strata, where
each layer adopts a non-linear Hl(·) transformation,
in which the l layers are considered as indexed. The
composite function Hl(·) of such operations including
convolution, pooling, rectified linear units and batch
normalization. The study indicate “lth layer” output as
xl. This DenseNet employs a 5-stage model consisting
of a convolution and an pooling layer which is shown
in Figure 3.

3.4.1. ResNets
The lth layer output act as an input to the consecutive
layer i.e. (l+ 1)th layer is connected through a tradi-
tional convolutional feeding network, which results in
transition on a layer:

xl = Hl(xl−1) (8)

ResNets further adds a skip connection using a fol-
lowing identity function to bypass the operations of
non-linear transformations:

xl = Hl(xl−1) + xl−1 (9)

ResNets have the advantage that the gradient can
directly pass from conventional layers to previous layers
via identity function. The output ofHl however hinders
the data flow in the network.

3.4.2. Dense connectivity
The study proposes a distinct connectivity pattern to
further improve the flow of data between the layers i.e.
from any layer and to improve the dense learning, the
study introduce direct connections to all the following
layers. Figure 2 shows the layout schematically of the
DenseNet.

3.4.3. Composite function
The study definesHl(·) as a three-fold composing func-
tion that includes batch normalization, rectified linear
unit and 3× 3 Conv.
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Figure 3. DesNet model.

3.4.4. Pooling layers
Concatenation in Equation (3) is based on the feature
map size. Nevertheless, the down sampling layers that
change the feature map size that are required for dense
networks are used in the network as an essential ele-
ment. Down-sampling is simplified in networks where
the layers are closely connected, with the results of the
down sampling operation contained in those blocks.
The study uses the term transitional layers to refer to
block layers that come together and pool.

3.4.5. Growth rate
The number of feature maps provided by eachHl func-
tion in DenseNet-169+ tends to be k, where the lth
layer with k0 +k× (l−1) feature-maps with k0 channels
in its input layer. The network growth rate hyperpa-
rameter is referred to as k. The study shows a reduced
growth rate is enough to achieve the most advanced
data sets on which the study is tested.

Table 1. Simulation parameters.

Parameters Value

System Bandwidth 20MHz
Subcarrier per Resource Block 12
Subcarrier spacing 15 kHz
Total subcarriers 1200
Total Resource Block 100
FFT Size 2048
Modulation 64QAM
Total Macrocells 7
Inter-cell distance 500m
Carrier Frequency 2.1 GHz
AWGN power per sub-carrier −123.24 dBm
Users speed 1m/s
TTI 1ms
eNB antenna radiation pattern Three-sectored
Subcarriers per RB 12
Number of antenna 1 Transmitter and 1 Receiver

3.4.6. Bottleneck layers
Although the output characteristics of each layer are
k only, typically there are many more entries. It is
observed that before each three to three convolutions,
the 1× 1 convolution could be introduced as a bottle-
neck layer to reduce the number and thus increase the
computational efficiency of inputs.

4. Results and discussion

The ResNet andDenseNet algorithms are implemented
in MATLAB, and are present in the MATLAB envi-
ronment. In the simulation, a map with an area of
2000m× 2000m grid pattern is considered. Network
environments have nodes with a speed between 10 and
40 km/h. When various characteristics, such as vehicle
speed, traffic type, and network density, are used, the
DenseNet and ResNet performance is compared to that
of the RNN. The parameters for simulation are given in
Table 1:

In Figure 4, the overall network performance varies
depending on how many vehicles are arriving in dif-
ferent transmission ranges with varied vehicle arrival
rates. The conclusion drawn from this experiment is
that as the average distance grows, the connectedness
will decrease. When the average distance is 50m, the
likelihood of connecting goes to zero. Therefore, it is
proven that as the traffic density grows, network con-
nectivity improves to within 50m of the original posi-
tion.

The cumulative distribution function (CDF) among
DenseNet, ResNet, and existing RNN models, along
with the likelihood of connection among 100 nodes,
200 nodes, and 300nodes, is demonstrated in Figure 5–7.
Using the DenseNet and ResNet technique, the
algorithm is tested for several mobility conditions. The
density of mobile nodes, which means the likelihood of
frequent network connections, is larger than 0.9. When
comparing morning, noon, and night time connection
rates with other methods, the successful connection
rate was determined to be 77%, 88%, and 93%.
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Figure 4. Network connectivity.

Figure 5. Successful connection probability with 100 nodes.

Figure 6. Successful connection probability with 200 nodes.

According to Figure 8, the DenseNet and ResNet
approach is contrasted with vehicle velocity. When
vehicle speed increases, average latency increases. This
paper varies the total number of nodes between 100 and
500. Higher densities of vehicles in the network cause
an increase in average delay.

Due to the relay vehicle optimal selection of for-
warders, the higher average delay is present. In

Figure 7. Successful connection probability with 300 nodes.

Figure 8. Average latency.

DenseNet and ResNet training, nodes with the lowest
processing speed are assigned to increase the proba-
bility of packets reaching their destinations. Because
of this, lower vehicle density has lower delay, and vice
versa. This is what was discovered: Increasing velocity
increases the packet delivery latency.

With variable vehicle density (Figure 9), ResNet
and DenseNet offer lower average end-to-end delay.
Packet delivery ratio strongly influences communica-
tion delays. The rise in traffic density results in grow-
ing data packet redundancy. Since the delay minimum
and maximum values are calculated based on the node
density of 50 and 300, respectively, As previously men-
tioned, the ResNet training methods outperform the
RNN technique.

ResNet and DenseNet hops received are lower than
those of other approaches in Figure 10.When the num-
ber of nodes is high, the lowest hop count is recorded
in the RNN. On the other side, when the node density
is reduced, the RNN will hop over more connections.
Specifically, along the periphery, the density is often
high, thus we record few hops there.
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Figure 9. Average end-to-end delay.

Figure 10. Reduced hop with varying nodes.

It is assessed against the various previous techniques
in terms of average end-to-end latency (Figure 11). This
experiment shows that RNN technology reduces delay
while other technologies do not. However, the ever-
growing number of nodes in the network contributes to
increasing the time it takes for a two-to-six packet data
rate to propagate. The DenseNet and ResNet lowest
delay is calculated to be 7 packets per second.

The ResNet andDenseNet approaches reduce packet
errors as the velocity increases, as shown in Figure 12.
In terms of its capabilities, however, the ResNet and
DenseNet perform better than the RNN. RNN gets the
highest error rates while maintaining near proximity
to ResNet and DenseNet. This is beneficial for increas-
ing the overall sustainability of vehicle connectivity in
neighbourhoods because vehicles can be driven while
using the Internet. Collisions of data packets are mostly
responsible for the losses. When speeding, vehicle per-
formance may decrease because of higher packet loss
or error rate, which is why the RNN algorithm prefers
vehicles that are less fast.

Figure 11. Average end-to-end delay with varying transmis-
sion rate.

Figure 12. Packet error rate.

The data delivery ratio between RNN and conven-
tional approaches is shown in Figure 13. The data deliv-
ery ratio increased forRNN,whereas velocity decreased
with increasing velocities for all techniques. Vehicles
moving at a higher speed have a lower delivery ratio,
whereas vehicles travelling at a lower speed have a
higher delivery ratio. Packet loss increases as the vehi-
cle’s velocity increases. There are more collisions in the
network now, and this causes the data transfer to drop
to the bare minimum.

According to the results of Figure 13, ResNet and
DenseNet have better PDR and throughput than RNN.
There is no consistency in the data rates for both met-
rics, and they vary depending on the network density,
with the highest throughput typically occurring at the
base station and the lowest at the network edges. The
packet delivery ratio is improved by using high-quality
segments with appropriate forwarding paths for data.
Selecting the next hop can increase the number of pack-
ets sent to the destination node while decreasing the
packet error rate. To ensure reliability, it is important to
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Figure 13. Packet delivery ratio.

monitor the packet delivery rate. However, increasing
the packet rate may lead to decreased performance.

5. Conclusion

In this paper, a deep learning analytical model that
reads the entire network traffic is developed that learns
and provides prediction of future network traffic. The
deep learning model utilizes traffic parameters from
different scenarios to study the traffic condition. The
traffic analysis in wireless networks is investigated in
terms of routing and traffic scheduling that includes
queuing, prioritization and network capacity. The study
takes into account the location of primary and sec-
ondary users and the handover rate. The deep learning
model is designed for transport planning and optimiza-
tion of network traffic in such environment. The results
of the simulation show that the proposed method
achieves 93% success probability.
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