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a b s t r a c t 

Image segmentation for 3D printing and 3D visualization has become an essential component in many fields 

of medical research, teaching, and clinical practice. Medical image segmentation requires sophisticated com- 

puterized quantifications and visualization tools. Recently, with the development of artificial intelligence (AI) 

technology, tumors or organs can be quickly and accurately detected and automatically contoured from medical 

images. This paper introduces a platform-independent, multi-modality image registration, segmentation, and 3D 

visualization program, named artificial intelligence-based medical image segmentation for 3D printing and naked 

eye 3D visualization (AIMIS3D). YOLOV3 algorithm was used to recognize prostate organ from T2-weighted MRI 

images with proper training. Prostate cancer and bladder cancer were segmented based on U-net from MRI images. 

CT images of osteosarcoma were loaded into the platform for the segmentation of lumbar spine, osteosarcoma, 

vessels, and local nerves for 3D printing. Breast displacement during each radiation therapy was quantitatively 

evaluated by automatically identifying the position of the 3D printed plastic breast bra. Brain vessel from multi- 

modality MRI images was segmented by using model-based transfer learning for 3D printing and naked eye 3D 

visualization in AIMIS3D platform. 
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. Introduction 

How to apply AI technology to detect diseases has attracted more

nd more attention [ 1–2 ]. Stanford University used AI to diagnose skin

ancer with an accuracy rate of 91% [3] . Google has developed an aug-

ented reality microscope (ARM) that aids in the detection of cancer.

ecause of the complexity and diversity of cancer diseases, using AI has

 long way to go [4] . In this work, we developed artificial intelligence-

ased medical image segmentation for 3D printing and naked eye 3D

isualization (AIMIS3D) by integrating AI technology into medical im-

ge analysis for automated organ segmentation. For example, prostate

5] , bladder [6] , spine [7] , eyeball can be automatically contoured by

sing a convolutional neural networks (CNN) algorithm [8] . The auto-

atically delineated organ border from each 2D cross-sectional image

an be combined as a 3D object for 3D visualization and 3D printing. 

AIMIS3D platform integrated with naked eye 3D visualization may

mprove the efficiency of communication among clinical doctors, who

ay use our interactive naked eye 3D visualization system to discuss a
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atient’s disease and to optimize treatment planning. The doctors may

it around the visualization system and see a patient’s internal 3D organs

rom different viewing angles without wearing any virtual reality (VR)

lasses [9] . Each doctor may rotate, translate, or zoom in/out the 3D

bjects, and make annotations or marks by using either hand gesture

ecognition or voice control [10] . Naked eye 3D visualization system

ay facilitate doctor’s ability to explain the details of the disease to

atients [11] . 

. Program design 

AIMIS3D platform, written in the interactive data language (IDL)

rogramming language, is modular in design, and takes advantage of

DL’s object-oriented features and ready-to-use image processing func-

ions. A functional overview and its core feature is diagrammed in

igure 1 . The bottom block lists a subset of currently supported 2D cross-

ectional image formats. Using information stored in the digital imaging
y, Xidian University, No.2 South Taibai Road, Xi’an, Shaanxi 710071, China 
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Figure 1. Functional overview of AIMIS3D’s design. AIMI3D: artificial 

intelligence-based medical image segmentation for 3D printing and naked eye 

3D visualization; DICOM: digital imaging and communications in medicine. 
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Figure 2. Two windows, load window (a) and modify window (b), were de- 

signed. The modify window has three orthogonal views and four-angle views 

for naked eye 3D visualization. Multi-modality images can be loaded in load 

window and registered for comparison in modify window (c). 

Figure 3. Multi-modality image registration. The reference image (a) and orig- 

inal unregistered image (b) can be registered and overlapped based on DICOM 

image orientation label information (c), based on mutual information (d), and 

based on mutual information and Gaussian pyramid (e). 
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nd communications in medicine (DICOM) file header, medical images

re read into the 3D isotropic data buffer (such as 256 × 256 × 256

r 512 × 512 × 512), which can be processed to generate 3D polygon

bjects. The 3D object can have different types, such as IDLgrPolygon

bject, 3D mask with matrix size of 256 × 256 × 256 or 512 × 512 × 512,

TL file, SAV file, or WRL file. Two functional blocks interface with the

D objects and 3D isotropic data buffer: the Visualization and Algo-

ithms. The “Visualization ” interface provides the user with a graphical

ser interface to view and modify the 3D objects, to export STL files for

D printing, and to generate four viewing angles for naked eye 3D vi-

ualization. The “Algorithms ” module contains AI-based 3D image seg-

entation, 3D object splitting and modification, and vessel thickness

easurement tools. The functionality of these tools is distributed over

n intuitive user interface. 

AIMIS3D platform is mainly composed of two windows: Load win-

ow and Modify window ( Figure 2 ). The Load window allows user to

reprocess DICOM images by using DICOM crawler, to load DICOM im-

ges for an automatic segmentation of 3D objects, and to open STL files

or 3D visualization. One or multiple 3D objects could be selected and

odified by going into the modify window. A user could do all sorts of

anipulations to the selected 3D objects and use naked eye 3D visual-

zation to see the whole process from four viewpoints (front, back, left,

nd right) by using the naked eye 3D projection hardware. 

AIMIS3D enables the loading of multi-modality images for registra-

ion and comparison. The image registration algorithm is based on mu-

ual information and Gaussian pyramid. The registration process not

nly considers the correlation of gray level information, but also uses

aussian pyramid to improve the registration efficiency, which im-

roves the registration accuracy layer by layer from coarse resolution

o fine resolution image ( Figure 3 ). The orthogonal views from multi-

odality images can be combined with segmentation result visualiza-

ion for interactive distance or angle measurements. 

AI-based segmentation in AIMIS3D platform uses deep convolutional

eural network (DCNN) to automatically extract organ border and tu-

or border [12] . DCNN is an emerging form of computer-aided design

CAD) analysis that allows for the automatic extraction of features and

he supervision of large amounts of data to form quantitative decisions

13] . There is growing evidence that deep learning analysis may be a po-

ential alternative to traditional handcrafted methods for pattern recog-

ition and imaging classification problems. However, the focus of re-

earch is on combining DCNN and multiparameter MRI to address lesion

etection and classification. Le et al. [14] used T2-weighted, apparent

iffusion coefficient (ADC) and their combinations as inputs to explore

hree traditional DCNN models (VGG Net, Google Net and ResNet) [15] .

he enhancement method was used to increase the number of samples

n the training data set. Liu et al [16] proposed XmasNet inspired by

GG Net. Batch normalization was added after convolution to accelerate

onvergence during backpropagation. In these studies, patches (square

egions) were extracted from the image as input to the DCNN model
49 
o help the DCNN focus on the number of regions of interest (ROI),

ultiparametric-MR images, and to increase the number of samples in

he data set. 

AIMIS3D platform can be embedded into a naked eye 3D visual-

zation system. The four viewing angels (front, back, left, and right)

re patched together and projected to a screen. A flipped pyramid-

haped plastic/glass frame covered with holographic film can reflect

ach viewpoint to the eyes of the surrounding audiences. For mixed re-
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Figure 4. Naked eye 3D holographic projection system was built by using a 

mini-holographic projection user client system from with hand gesture recogni- 

tion and control. 

Figure 5. Prostate detection based on YOLOV3 algorithm. 
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Figure 6. U-net algorithm was used to automatically detect prostate tumor 

borders. 

Figure 7. GC-Unet-based algorithm was used to detect bladder wall and tumor. 
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lity, HoloLens depth camera can capture and recognize hand gesture,

hich can be used to control the displayed 3D objects in combination

ith voice control. 3D objects can be rotated, translated, zoomed, mea-

ured, and marked by voice control and hand gesture recognition. The

aked eye 3D visualization supports multiple users to share and simul-

aneously manipulate 3D objects. A user client system installed in a cell

hone or an iPad allows user to view 3D objects via a mini-holographic

rojection system ( Figure 4 ). 

. Clinical applications 

.1. Prostate cancer MRI analysis 

One of the hot topics in recent years is using convolutional neu-

al networks to segment organs and detect cancer [17–20] . Li et al.

sed YOLOV3 algorithm to locate carotid artery and detect lesions on

hree-dimensional MRI. YOLO outperforms the detection methods in a

moothing way from others like Medical image DPM, SSD, CNN and R-

NN [21] . Our platform has a built-in YOLOV3 algorithm that can be

sed to recognize organs from T2-weighted MRI images with proper

raining ( Figure 5 ). Prostate data were downloaded from the I2CVB

 http://i2cvb.github.io/#prostate-data ). The data set consisted of a to-

al of 19 patients, 17 of whom had biopsy-confirmed prostate cancer

nd 2 patients were negative for biopsy. T2-weighted MRI images and

arameter maps (ADC and DCE) were rescaled to 8-bit grayscale image

nd combined into RGB color images as the components of red, green

nd blue respectively. 

Take prostate for example, AI in prostate cancer detection has been

aking progress. In 2002, researchers prospectively developed an arti-

cial neural network (ANN) to detect prostate cancer by early detection

f male prostate specific antigen (PSA) levels [ 22–23 ]. Lemaitre et al.
50 
eveloped a computer-aided diagnosis system based on random forest

o provide a probability map of prostate cancer location [24] . In the past

wo years, several computer-aided diagnostic systems for prostate can-

er detection based on convolutional neural networks were developed

or multi-parameter MRI [25–27] . 

The U-net algorithm was developed to detect prostate cancer masks

ased on T2-weighted MRI images and functional images (diffusion

nd perfusion MRI images) ( Figure 6 ) [28] . Use the I2CVB data set

entioned above to do prostate cancer segmentation based on U-Net

etwork. We randomly selected 13 out of 17 patients diagnosed with

rostate cancer as the training set and the remaining cases as the test

et. For T2-weighted sequence only, the segmentation accuracy is low,

nly 0.5877. ADC map only and DCE map only are better for prostate

egmentation, and the accuracy is about 0.88. After the three parameter

aps were combined into color images, the segmentation accuracy is

.91. 

.2. Bladder cancer MRI analysis 

Deep learning methods based on convolutional neural networks

an be applied to T2-weighted MRI for automatic classification and

egmentation of bladder cancer ( Figure 7 ). Bladder cancer dataset

as from ISICDM2019 bladder cancer segmentation challenge

http://i2cvb.github.io/\043prostate-data
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Figure 8. 3D printing of bony structure was used to assist the resection of lum- 

bar osteosarcoma of an eight-year-old patient. 
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Figure 9. Tumor border was automatically delineated in order to monitor ra- 

diotherapy responses. The relative breast position changes between two radia- 

tion treatments were quantitatively evaluated. 

Figure 10. Brain vessels was segmented using transfer learning with U-net net- 

work. 
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 http://www.imagecomputing.org/2019/challenge.html ), in which

 total of 2,000 T2-weighted MRI images of 38 bladder cancer cases

ere included. 794 images with tumor bearing were defined as positive

amples and 1,206 images without tumor bearing as negative samples.

he proportion of training, verification and test images is 7:2:1. 

The Dice coefficient is 0.841 using U-net and 0.875 using GC-Unet.

he sensitivity is 0.851 using U-net and 0.907 using GC-Unet. The speci-

city is 0.954 using U-net and 0.981 using GC-Unet. 

.3. Osteosarcoma visualization and 3D printing of CT images 

Osteosarcoma is a kind of tumor with the highest malignancy among

one tumors and the highest incidence rate among orthopedic malignan-

ies. The incidence rate of osteosarcoma is 1%–3%. 90% of osteosar-

oma occurs in teenagers. The common incidence site of male is the

etaphysis of the long shaft and mainly around the knee joint. Most of

he tumors are found in the distal femur and proximal tibia. 

CT images of osteosarcoma were loaded into the platform, in which

he lumbar spine, osteosarcoma, vessels, and local nerves were sepa-

ated and visualized as 3D objects. 3D printing of the lumbar spine

ould clearly show that tumor tissue infiltrates and lyses the bone cortex

 Figure 8 ). 

.4. Breast cancer visualization and treatment response assessment of 

erfusion CT images 

In radiation therapy of breast cancer, it is difficult to ensure that

he patient’s exposure position is identical and appropriate during every

reatment. We conducted a study to determine whether 3D printing of a

lastic breast bra could improve the accuracy of breast cancer’s clinical

adiation therapy. 

Perfusion CT images of breast cancer during radiation therapy were

nalyzed by using 2-compartment pharmacokinetic modeling. Pharma-

okinetic parameter mapping of breast cancer could be visualized in a

D mode for therapy response assessment [29] . Changes of tumor vol-

me and pharmacokinetic parameters could be evaluated [30] . 

During radiation therapy, it is crucial to accurately irradiate the tu-

or target position. However, the patient’s position may change and the

reast may shift to different positions during each treatment. 3D printing

f a plastic breast bra was used to restrict breast motion and to mini-

ize breast position change, which was quantitatively evaluated on CT

mages. CT images of patients with breast cancer were converted to 3D
51 
bjects. Breast displacement during each radiation therapy was quan-

itatively evaluated by automatically identifying the position of the 3D

rinted plastic breast bra ( Figure 9 ). 

.5. Brain vessel 3D printing, and naked eye 3D visualization of 

ime-of-flight MRI images 

Cardiovascular and cerebrovascular disease has always been the se-

ere problem faced by the patients in many countries and is a leading

ause of mortality and morbility. More and more evidence suggests that

t is the ingredient of the vascular wall and stenosis degree of the lumina

etermining the vessel vulnerability. 

A total of 6 cases with intracranial atherosclerosis were imaged at

T MRI scanner at Shaanxi Provincial People’s Hospital. The dataset is

omposed of 72 maximum intensity projection (MIP) images generated

rom time-of-flight MRI ( Figure 10 ). Blood vessel exhibits a bright sig-

al on time-of-flight MRI and was segmented by using Res-Unet-based

ransfer learning [ 31–32 ]. The proportion of training, verification and

est images is 6:1:2. The Dice coefficient is 0.798 using U-net and 0.914

sing Res-Unet. The accuracy was 0.849 using U-net and 0.906 using

es-Unet. 

Key advantages of the AIMIS3D platform are that it utilizes morpho-

ogical information, such as local wall thickness, and active contour of

he aorta to limit the impact from noise and artifacts in MRI images.

hin vessels were labeled with red and yellow as a warning sign for

therosclerotic plaques ( Figure 11 ). 

Vessel wall MRI is a hot topic in detecting atherosclerotic disease

33] and evaluating the vulnerability of atherosclerotic plaques based

n wall enhancement [ 34–35 ]. High-resolution MRI has demonstrated

etter potential in the identification of the components of atheroscle-

otic plaque, such as the fibrous cap (FC), intraplaque hemorrhage,

alcification, and the lipid-rich, necrotic core, as well as quantifying

laque areas and volumes. Moreover, high-resolution MRI with a 3D

ime-of-flight protocol was capable of differentiating an intact, thick

C from an intact, thin, and ruptured cap. With the guidance of seg-

http://www.imagecomputing.org/2019/challenge.html
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Figure 11. Segmented brain vessels were exported to STL file for 3D printing 

with nylon material (left). Vessel thickness was calculated and displayed with 

rainbow color bar (middle). Four views with front, back, left, right were com- 

posed together for naked eye 3D visualization (right). 
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ented blood vessels from time-of-flight MRI, flow void artifacts on

ost-contrast black-blood MRI could be removed and atherosclerotic

laques could be better visualized. AI algorithms on plaque detection

nd plaque vulnerability were trained by using intracranial plaque cases

ith Radiologist’s labels [36] . 

. Conclusions and future directions 

Significant progress has been achieved in building a platform-

ndependent, 3-dimensional, automated-segmentation, extensible image

rocessing application. However, much work still remains to meet the

roader needs of the clinical practice and 3D visualization environment.

A stand-alone runtime distribution of AIMIS3D can be created in IDL.

he newest version and user manual have been uploaded to the public

ebsite for free usage and evaluation (A Collection of Chinese Med-

cal Imaging AI Software, http://www.cvnis.net/caimi/index.html) .

IMIS3D could be developed by other languages, such as Matlab. IDL

as strong image processing capability and bridge technology that allow

IMIS3D software to share AI-based medical image segmentation infor-

ation between IDL and other languages, such as Python and Java. The

xecutable version of AI algorithm developed in Python can be executed

hrough the SPAWN procedure in IDL for integration into AIMIS3D plat-

orm. 

A variety of naked eye 3D visualization hardware was added with

and gesture and voice control. Future enhancements will also include

I-based disease delineation, a more complex AI algorithm for accu-

ate organ and tumor segmentation, and the continuous modification of

pecialized components to address specific requirements identified by

linical physicians, such as ultrasound-based heart valve segmentation

nd perfusion CT-based breast tumor segmentation, and atherosclerotic

laque analysis. While AIMIS3D platform has primarily addressed radi-

logical imaging modalities for 3D printing and naked eye 3D visual-

zation, it is suitable for other types of datasets and applications, such

s microarrays, microscopy images, micrographs, virtual reality, mixed

eality, teaching, architecture, and industrial design. Future enhance-

ents will add functionality for these technologies as required. 
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