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Abstract | i

Abstract
For manufacturing enterprises, the potential of collecting large amounts of
data from production processes has enabled the usage of machine learning
for prediction-based monitoring and maintenance of machines. Yet common
maintenance strategies still include reactive handling of machine failures or
schedule-based maintenance conducted by experienced personnel. Both of
which are time-consuming and costly for manufacturing enterprises. The
incorporation of anomaly detection for production processes alleviates several
problems connected to these resource-intensive maintenance strategies.
Anomaly detection enables real-time maintenance alarms derived from the
occurrence of anomalies and thereby a foundation for proactive maintenance
during manufacturing. However, to realize this, one needs to investigate
the correlation between machine failure and anomalies in the data. For the
machine learning models, it is also of essence to handle the imbalance between
failure and normal working condition data. In this work, we investigate the
potential of anomaly detection to predict future tool failures of an active
CNC-machine based on multivariate time series data collected through the
standardized data collection protocol MTConnect. Two semi-supervised
anomaly detection methods, DeepAnT and ROCKET OCSVM, were tested.
Training and evaluation of the two models were conducted on three production
part processes and the difference in anomaly distribution previous to failure
and in the normal machine working condition was investigated. The results
showed that both models, for all the investigated tool failures belonging
to the three production part processes, found an abundance of anomalies
preceding failure when compared to the normal working condition of the
machines. For certain tool failures, the anomalies were found as far back
as seven production cycles before failure, while other anomalies were mainly
uncovered close to the failure. Furthermore, it was shown that both models
performed optimally with 100 production cycles before tool failures excluded
from training, indicating that more anomalies further back connected to failure
or possible long-term degradation of machine tools could exist. Lastly,
ROCKET OCSVM with RBF kernel showed greater reliability compared to
the DeepAnT method in separating the normal working condition data of the
CNC machine against the pre-failure data based on anomaly distribution. In
conclusion, anomaly detection shows promising results in indicating future
machine failure and could serve as a foundation for proactive maintenance
strategies of machines. By incorporating proactive strategies, machine
downtime, operator maintenance time, and resources and expenses resulting
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from machine failure could be reduced.

Keywords
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manufacturing, predictive maintenance



Sammanfattning | iii

Sammanfattning
För produktionsföretag har potentialen att samla in stora mängder data
från produktionsprocesser möjliggjort användningen av prediktionsbaserad
övervakning och underhåll av maskiner genom maskininlärning. Ändå
så utgörs fortfarande vanliga underhållsstrategier av reaktiv hantering av
maskinfel eller schema baserat underhåll som utförs av erfaren personal. Båda
dessa är tidskrävande och kostsamma för tillverkningsföretag. Införandet av
anomali detektering för produktionsprocesser lindrar flera problem kopplade
till dessa resursintensiva underhållsstrategier. Det möjliggör underhålls-larm
i realtid härledda från förekomsten av anomalier, vilket skapar en grund
för proaktivt underhåll under tillverkningen. Men för att möjliggöra detta
måste man undersöka sambandet mellan maskinfel och anomalier i data
utifrån definierade insamlingsmetod. Det är också viktigt att hantera obalansen
mellan fel och normal arbetstillstånd data för maskininlärningsmodellerna.
I det här arbetet undersöker vi potentialen för delvis övervakad anomali
detektering för att förutsäga framtida verktyg fel hos en aktiv CNC-maskin
baserat på multivariat tidsseriedata som samlats in genom det standardiserade
datainsamling protokollet MT Connect. Två anomali detekterings metoder
som endast tränats på normala arbetsförhållanden för maskiner testades,
DeepAnT och ROCKET OCSVM. Träning och utvärdering av de två
modellerna genomfördes på tre produktionsdelprocesser och skillnaden i
anomali fördelning före fel och i det normala maskinens arbetstillstånd
undersöktes. Resultaten visade att båda modellerna, för alla undersökta
verktygsfel som hör till de tre produktionsdelprocesserna, fann ett överflöd
av anomalier före fel i jämförelse med maskinernas normala arbetstillstånd.
För vissa verktygsfel hittades anomalierna så långt tillbaka som sju
produktionscykler före fel, medan andra anomalier huvudsakligen upptäcktes
nära felet. Vidare visades det att båda modellerna presterar optimalt med 100
produktionscykler före verktygsfel uteslutna från träningen, vilket tyder på
att fler anomalier tidigare än de åtta produktions cyklarna undersökta innan
fel eller eventuell långvarig försämring av verktygsmaskiner kan förekomma.
Slutligen visade ROCKET OCSVM med RBF som kärnfunktion större
tillförlitlighet i jämförelse med DeepAnT metoden gällande att separera
CNC-maskinens normala arbetstillstånd data från pre-failure-data baserat på
anomali fördelning. Sammanfattningsvis visar avvikelse detektering lovande
resultat för att indikera framtida maskinfel och kan fungera som en grund för
proaktivt underhåll av maskiner. Genom att införskaffa proaktiva strategier
kan maskinernas stilleståndstid, operatörens underhållstid samt resurser och
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kostnader till följd av maskinfel minskas.

Nyckelord
Maskin inlärning, Anomali Detektion, DeepAnT, ROCKET, OCSVM,
tillverkning, prediktivt underhåll
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Chapter 1

Introduction

Machine learning has seen a wide variety of use cases in industrial settings
during the later years [1], including performance predictions [2] online quality
controls [3], defect and anomaly detection [4], among many others. The
increase in use cases is largely due to the big data revolution, the large
amount of available data following industry 4.0 with the widespread increase
in sensory data collection techniques [5] have resulted in machine learning
algorithms seeing both an increase in applications and performance.

For manufacturing, following the increased complexity of production pro-
cesses, non-automated maintenance strategies enabled by human intervention
are generally difficult to realize. Furthermore, the most common maintenance
strategies used today have been shown to decrease the overall productivity
of manufacturing equipment by five to twenty percent [5]. This is because
of several unwanted consequences following poor maintenance, including
increased downtime, machine failure, and other costly repercussions. It has
been shown that the consequent loss of time followed by machine failure costs
manufacturing enterprises around $50 billion each year [5]. It is therefore
necessary for manufacturing organizations to leverage the usage of machine
learning to counteract these complications and stay competitive in the market.
This has led to the emerging interest in predictive maintenance, a cross-
interdisciplinary field between data analytics and manufacturing maintenance.
It can be defined as any proactive maintenance strategies that utilize data
analytics and machine learning to monitor equipment health to address
potential future failures [6]. Several surveys have discussed its positive
effects on production processes [7], [8] and it has been shown to achieve
a ten times return rate of investments [9] further supporting the integration
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of machine learning models into the maintenance pipeline of manufacturing
organizations.

For predictive maintenance, the first step [10] in automating and streamlining
the maintenance process of manufacturing machines is anomaly detection
[11]. Anomaly detection aims towards investigating abnormal patterns that
do not belong in the normal distribution of the investigated data [5] and which
are correlated or causally linked to later machine failures, and thereby can
enable automatic alarm systems with the intent of indicating future machine
failure.

The potential of using anomaly detection to indicate future failures of a
CNC machine monitored by the company of Nytt will be investigated in this
research. This, in an attempt to widen the knowledge about anomaly detection
in manufacturing settings and reflect on the potential of improving the current
maintenance strategies conducted at Nytt.

1.1 Context
Nytt is a company that developed a dashboard interface based on time
series data collected continuously through a data collection platform for
manufacturing companies [12]. The machine monitoring system developed
by the company of Nytt was created to aid manufacturing companies
in becoming more data-driven and enable better communication between
operators, managers, and machines. One of the data-gathering processes
follows the MTConnect protocol [13], which is a standardized data vocabulary
used for collecting manufacturing machine data. Through this information,
companies can follow a bottom-up approach in their decision-making, where
statistics regarding the data can be followed in a dashboard and help operators
make informed decisions while sharing knowledge with managers. The system
has been used by multiple small to medium-sized manufacturing enterprises
and created a foundation to improve strategies, productivity, and resource
usage.

Currently, the data collection methodology is active at Precima enterprise
[14], where it monitors a CNC-machine. CNC-machines, or computer
numerical control (CNC) machine, are a commonly occurring type of
manufacturing machine that relies on computer-aided assistance, or computer-
aided design draftings (CADs), of each production part produced by the
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machine. These computer programs control machine tools for the sequential
removal of layers from raw material work-pieces to produce specific parts
[15]. Because of the material removal, the process is generally referred to
as subtractive manufacturing and is commonly occurring in industries such
as telecommunication, and aerospace [15], and for the investigated machine
at Precima, drains for the sewage industry. Tools controlled by the CAD
programs are grouped into three different parts; drilling operations, milling
operations, and turning operations. Drilling operations involve perpendicular
or angular feeding of raw material onto drilling tools. Milling operations
involve rotational and dual-point cutting of raw material. Turning operations
involve positioning the raw material in the 3D space for the drilling and
milling operations [15]. It is important to get a basic understanding of these
operations since maintenance work on the machine is generally tool-based and
data collection processes like MTConnect focus on features such as load [16],
positioning, vibration, and acoustics [17] of the different machine tools.
While the current system has been shown to increase manufacturing
productivity by twenty to thirty percent, there is still potential for growth.
Nytt wants to extend its services by incorporating automatic monitoring of
machine health and thereby build maintenance strategies that are independent
of human intervention. They want to do so by using the historical data of the
Precima CNC-machine to investigate the possibility of realizing a proactive
maintenance strategy.

1.2 Problem

1.2.1 Problem and definition
This thesis was proposed by the company of Nytt, motivated by the rapid
growth in predictive maintenance services. Nytt wanted to investigate the
possibility of using their standardized data to enable indications of future
machine failures. Indeed, the potential of using the collected data to
predict future failures in the machines has not been fully explored and it
is of interest to investigate the data characteristics and draw conclusions
regarding the possible correlation between data patterns and machine failures.
Predictive maintenance is indeed a necessity for companies to remain
competitive in today’s market since it brings several crucial benefits to
manufacturing enterprises, including increased equipment lifetime, reduction
of the maintenance cost, decreased downtime, safety improvements for
operators, and improved reliability of machines [18].
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Additionally, the efficiency of maintenance strategies in manufacturing
processes today is in many cases inadequate following the use of resource-
intensive maintenance strategies only conducted by experienced personnel.
Using human judgment is inefficient considering the usual delays that could
lead to consequent downtime of machines.
To build a foundation for predictive maintenance, anomaly detection is
usually the first step since it can enable failure indication at early stages and
maintenance can be conducted without unplanned downtime [19]. The field
of anomaly detection also has several future challenges presented in Section
1.2.2 that need to be addressed. Following the need to combat these, as well as
providing a foundation of predictive maintenance for the company of Nytt, two
semi-supervised anomaly detection methods, DeepAnT [20] and ROCKET
OCSVM, will be investigated. The research then aims to answer the following
research questions:

1. How well does the DeepAnT model forecast the multivariate time series
features of a manufacturing machine dependent on different parameter
setups?

2. How well does DeepAnT separate the normal working states and
anomaly states leading up to failures of machines dependent on the
anomaly distribution?

3. How well does ROCKET OCSVM separate the normal working states
and anomaly states leading up to failures of machines dependent on the
anomaly distribution?

4. How early before a failure do the two models, DeepAnT and ROCKET
OCSVM find anomalous behavior that could be linked to the failures?

5. How does DeepAnT and ROCKET OCSVM differ in separating the
normal working states and anomaly states leading up to failures of
machines? Additionally, which seems to be the most reliable for
manufacturing enterprises?

6. To avoid training the semi-supervised models for the class of normal
operation data on anomalous data, what effect does the removal
of different time windows previous to failures have on the anomaly
detection task? What time window size preceding machine failure
should be removed to have all anomalous data removed connected to
failures?
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1.2.2 Scientific and engineering issues
The usage of anomaly detection in monitoring IoT data from sensors has
several future challenges, as described by Stojanovic et al. [11]. In real
manufacturing setups, the data distribution between normal and failure state
data is usually unbalanced. This is indeed the case for the data collected at the
company of Nytt and there is a need to investigate semi-supervised approaches
where models are trained only on only non-anomolous normal state data. They
also state that there is a need to further investigate handling multivariate sensor
data through model selection.

The second problem, which was presented by Villa-Pérez et al., states that the
usage of semi-supervised learning needs further research regarding the impact
of parameter tuning for current models [21]. Several hyper-parameters that
could be of interest but have not been thoroughly investigated are the temporal
window size for the separation of normal and failure data in semi-supervised
models, as well as the anomaly distribution dependent on the time frame before
failures in machines. Indeed, as stated by Ruff et al. the main limitation for
semi-supervised LUPE (see section 2.4.2) is the unclear separation of normal
and failure data [22].

Lastly, the proposed model DeepAnt has shown to perform well for
multivariate time-series anomaly detection tasks based on numerous data sets
from global cloud enterprises [23], as well as in the Yahoo Webscope and
Numenta Anomaly Benchmark (NAB) data sets [24]. However, in the original
article [20], the manufacturing sector was mentioned as a field that could
benefit from the usage of the model, but no further research could be found
that has investigated its potential in an actual manufacturing environment.
The original article also states that future research should investigate the
usage of pre-processing techniques to investigate its effect on the forecasting
component of the model.
For the second model, while ROCKET is currently a state-of-the-art technique
used for time series classification, the availability of work for its usage
in anomaly detection in time series is sparse. It has however been used
for health monitoring of machines and been shown to outperform previous
methodologies [25]. Thereby, there is a need to present its usability in the
area of time series anomaly detection.
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1.3 Purpose
The reason for incorporating anomaly detection to indicate future failures is
because it enables the company of Nytt to aid customer enterprises enhance
productivity and limiting expenses and resources. From a societal perspective,
as explained by Bahrudin & Selver, predictive maintenance in manufacturing
is of great interest in the industry since it could aid organizations in saving
money and resources [26]. This is due to the ability to predict, and thereby
reduce, machine failure and downtime. This is also supported by Hsieh et al.
who states that detecting anomalous behavior of machines in the production
line enables companies to reduce the consequent cost of downtime since
failures connected to anomalies can be detected at early stages [19]. To enable
this, anomalous behavior preceding machine breakdown must be analyzed and
separated from the normal machine working state, which is the purpose of the
thesis. This includes both if there is an abundance of anomalies preceding
failures and if the anomalies have different characteristics than possible normal
working state anomalies.

From a research perspective, as described in [27], the majority of the process-
level built AI models used for monitoring machines are conducted in a
laboratory environment. There is a need to promote AI:s in manufacturing
industry settings to facilitate acceptance of AIs.

Furthermore, as presented in Section 1.2.2, there is a need to investigate the
handling of unbalanced data through semi-supervised methods, as well as
multivariate sensory data. Both these factors are taken into consideration
following the model selection. Both DeepANT and ROCKET OCSVM is
tested in a semi-supervised manner and can handle multivariate time-series
data. Additionally, a pre-processing method is proposed and tested for both
of the models. As stated in Section 1.2.2, this was labeled a future research
direction by the original authors of the DeepAnT model.

Lastly, the lacking hyper-parameter investigations done for semi-supervised
learning models was highlighted in Section 1.2.2. To extend this, we will
first investigate how far-back anomalies connected to failures exist. This is
also of interest to manufacturing enterprises since it can give insights into the
reactive time-window available to handle possible future failures. Secondly, to
explore the separation of normal working conditions and failure data, we will
treat the temporal window size for separating failure and normal state data as
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a hyper-parameter during training. From a research perspective, this could be
an efficient solution to the unclear separation between normal and abnormal
states for semi-supervised models. For manufacturing enterprises, this can
both serve as a guideline for further model training and provide additional
information regarding how far back before failure possible degradation or other
anomalous pattern exist.

1.4 Goals
As mentioned, the goal of this project is to give the company of Nytt further
insights into anomalous behavior of collected data related to machine failure
while also investigating several future challenges of anomaly detection. To
enable this we have divided the work into the following sub-goals:

• Subgoal 1: Propose a standardized data pre-processing methodology
that can aid the company in making the data more compatible with
machine learning models. Subsequently, divide the data into normal
and failure states based on a defined time window connected to failures.

• Subgoal 2: Develop the semi-supervised anomaly detection models,
DeepAnT and ROCKET OCSVM.

• Subgoal 3: Train the models on the normal state data and investigate
the effects of different hyper-parameters, including both model-specific
parameters and non-model-specific parameters such as the temporal
window size needed to separate data belonging to failure states from
normal states. For DeepAnT, investigate the forecasting ability by
monitoring the continued and final training loss.

• Subgoal 4: Evaluate the models individually on the normal and failure
state data to conclude if there is separation in the distribution of anoma-
lies. Furthermore, investigate the characteristics of anomalies preceding
failures, including how early before failure possible anomalies appear.

• Subgoal 5: Compare the evaluation results of the two models and
discuss similarities and differences. Lastly, consider the benefits and
disadvantages of the two architectures and determine which of the two
models that are most reliable for manufacturing enterprises.
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1.5 Research Methodology
The research methodology presented follows a data-driven approach. Consid-
ering the large amount of data available following the emergence of industry
4.0, data-driven approaches are necessary to take advantage of available
information [28]. Data-driven approaches in manufacturing often follow
empirical methods, where one tries to derive and analyze data based on direct
or indirect observations [29]. This follows an inductive process where we will
try to infer general rules on the characteristics of the machine data based on
the collected observations.
To evaluate the results and draw conclusions, the imbalance of the data has to
be taken into consideration through the evaluation metrics and visualization
methods of the result.
Lastly, the methodology will also rely on the assumption that machine failures
do have anomalies in close proximity, this is an assumption that has to be
further discussed through the results.

1.6 Ethics and Sustainability
Several consequences connected to the incorporation of predictive mainte-
nance, including reduction of the maintenance cost, safety improvements for
operators, and increased efficiency for resource usage, bring sustainability
benefits to society. For instance, the reduced maintenance cost can be
connected to the UN sustainable development goal 8.2 through increased
economic productivity following technological advancements, safety improve-
ments for operators can be connected to the UN sustainable development goal
8.8 concerning increased workplace safety, and efficient resource usage can
be linked to the UN sustainable development goal 8.4 concerning reduced
material footprint [30]. Nonetheless, one ethical consideration involves the
automation of human working tasks. It is important to note that the model
designed in this study will not be used to replace human workers but instead
aid them in their tasks. As pointed out by Pavol et al, along with the changing
industry 4.0 there is a need to incorporate AI for efficiency, not by replacing
humans, but by supporting decision-making in the manufacturing industry
[31].
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1.7 Delimitations
The project will only use the available data from one manufacturing
machine. Since different machines can follow highly different feature patterns,
producing a generalized model would be a more advanced task. Thereby
we do not investigate the generalized performance of different manufacturing
machines in the industry. However, considering that the MTconnect protocol
is well established for machine monitoring [32], the methodology can provide
future recommendations for other researchers. It is also worth stating that the
algorithm will simply be used and tested on previously collected data. Testing
the reliability of data collected in real-time is not included in the scope of the
research.

1.8 Structure of the thesis
The report follows the given disposition: Chapter 2 presents relevant
background information with related work to provide the knowledge needed
to understand the methodology. Chapter 3 presents further mathematical
background behind the investigated machine learning models, feature
extraction methods, and evaluation methodologies. Chapter 4 introduces the
data-set, the adaption of the data to the models, and the implementation of
the anomaly detection models with the evaluation strategy used to answer the
research questions. Chapter 5 presents the results following the proposed
methodology and Chapter 6 presents a discussion of the results with
limitations, conclusion and future directions to extend the research.
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Chapter 2

Background

This chapter will present the theoretical background needed to understand
the proposed methodology of this research. In Section 2.1, we will discuss
the current maintenance strategies with disadvantages compared to predictive
strategies. In Section 2.2, we will describe the data type available for data
analytic on the CNC machines, namely time series. In Section 2.3, we will
present an overview of machine learning and then present its relationship to
anomaly detection in Section 2.4. Lastly, In Section 2.5, we will define
feature extraction and the importance of feature construction and selection for
predictive models.

2.1 Maintenance in manufacturing
Effective maintenance is considered strategies in manufacturing that can
minimize equipment failure, improve equipment condition, and prolong the
lifetime of involved tools used in the production process [33]. There exist
several groups of maintenance strategies listed below that, following Figure
2.1, fulfill the aforementioned criteria to different degrees

• Run to failure/reactive maintenance: This methodology is considered
the least reliable and involves conducting maintenance work only when
equipment failure has already happened [34]. The resulting downtime
and inefficiency of machines are usually compromised following this
strategy since handling failures generally requires more extensive work
compared to preventive work.

• Preventive maintenance: This methodology involves scheduling-
based maintenance where the goal is to anticipate failures and counteract
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failures followed by indications seen at the scheduled time of monitoring
[35]. The downside to this is the possible redundant maintenance time
needed by operators that monitors machines, which is both costly and
impractical.

• Condition-based Maintenance: This methodology involves conduct-
ing equipment monitoring when indications of possible performance
degradation are present [33]. The indication can be through both
physical observations or through data collection of the machines.

• Predictive maintenance: This methodology seeks to prevent equip-
ment failure through monitoring and analytics of machine data with
the use of machine learning. It aims to detect deviations from normal
working conditions and schedule maintenance based on high deviations
[36]. This method is generally considered superior in terms of reducing
downtime and increasing overall equipment effectiveness on account of
the ability to use machine data to make predictions at an early stage
of degradation. It also does not require operator intervention which
is efficient but creates a reliability problem since to many false alarms
could decrease the credibility of the system [37].

Predictive maintenance in itself constitutes a large amount of data analysis
techniques, the majority of which rely on the area of anomaly detection [5].
Anomaly detection creates a foundation for alert rules that can be monitored
by operators conducting maintenance since anomalies observed in real-time
can be used as degradation or failure identification [5]. Note that this process
is entirely dependent on the availability of sensory machine data collected over
production time. Next, we will present the most commonly available type of
data for monitored CNC machines, time series.

2.2 Time series data
Time series data relies on features gathered through continuous measurements
over time. The data can be described as an ordered sequence of features
at different timestamps that, most commonly, are collected with a constant
frequency. Time series are easy to obtain and common in many fields
including weather data, stock market analysis [38], or, as in this case, machine
manufacturing sensory data. Consider the following example
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Figure 2.1: Summary of dependency between maintenance strategies and
reliability.

{x1, x2, x3...xt}

Each measurement xi ∈ Rd for i ∈ [1...t] consists of d features that
have been collected at the time i. If d = 1, then it is referred to as a
univariate time series and if d > 1, then it is referred to as a multivariate
time series. However, this definition of time series does not consider temporal
dependencies. Temporal dependencies include factors such as seasonality,
which describes the repeating cycles of the features over time, and trend, which
describes the decrease or increases in feature mean values over time [39]. If
the features measured over time do not have these temporal dependencies, then
the time series is said to be stationary.

Following the definition of time series, we will now present what constitutes
an anomaly in this specific datatype.
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2.2.1 Time series anomalies
Anomalies can be described as unusual behavior that does not follow
the expected pattern in data. When working with time series data, the
anomalies are generally categorized into three different types; point anomalies,
contextual anomalies, and collective anomalies [40].

• Point anomalies: These are single observations in the time series data
that deviate from the expected distribution without considering any
other input data [40]. Since the context of the data point is not needed,
these anomalies are not temporally dependent. An example of a point
anomaly is shown in Figure 2.2a.

• Contextual anomalies: These are data points that can only be con-
sidered anomalous through the context of the data points surrounding
them. Thereby, to detect these anomalies, any anomaly detector needs to
consider the temporal dependency of the measurements by observing an
entire sequence of data points [40]. An example of a contextual anomaly
is shown in Figure 2.2b.

• collective anomalies: Lastly, collective anomalies differ from point and
contextual anomalies through the fact that only a group of time series
data points can be considered a collective anomaly. Here, a set of time-
series points can be considered anomalous, even though no single data
observations are considered to be either a point or contextual anomaly
[40]. An example of a contextual anomaly is shown in Figure 2.2c.

The process of detecting and labeling the aforementioned types of
anomalies is called anomaly detection. Before presenting this field more in
depth, we have to present an overview of the area it belongs to, namely machine
learning.

2.3 Machine learning
Machine learning is the process in which computers learn through experience
using computational methods [41]. Experiences, in this context, refers to
the presence of data describing real-world phenomenon and observations.
Machine learning tasks involve building models holding learning algorithms
deduced from the experience data being fed to the model during the training
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(a) Point anomaly (b) Contextual anomaly

(c) Collective anomaly

Figure 2.2: Anomaly types in time series data, note that the x-axis displays the
observed values y for each time stamp x. The red segments shows the anomaly
of the time series.

phase. The process of deducing these learning algorithms can differ, however,
machine learning models are generally grouped into the following two
categories; supervised and unsupervised. The difference between the two
relies on the presence of labels in the data. Supervised machine learning
models try to learn from predefined output characteristics, more formally
called labels, related to the input data [42]. The training phase and consequent
deduction of learning algorithms involves predicting the label related to each
of the input data points. In the unsupervised setup, labels are not present
during training, the models instead try to perform pattern recognition through
observation of unlabeled data points [42].
Machine learning models can be further grouped on the output characteristics
of the data. When a machine learning models provide discrete output values
as predictions, it’s called a classification model. When the output predictions
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are continuous, it’s called a regression model [41]. To provide examples,
classifications models are well suited in several medical applications, for
example in labeling medical images into categorical values based on presence
of diseases, such as benign or malignant cancer tumors [43]. Regression
models are popular for forecasting applications, for example in predicting
future energy consumption based on previous observations and patterns in
time series [44].

Lastly, considering that labeled instances usually require heavy human
intervention to acquire, which can be time-consuming and expensive, a third
group called semi-supervised learning has gained big interest over the later
years. These models tries to learn through data sets where only a few labeled
instances are defined along with an excessive amount of unlabeled data [45].
In real world applications, where unlabeled data is easily obtained, semi-
supervised machine learning algorithms have shown promising results in
boosting the performance of classifiers.

2.4 Time series anomaly detection
Given the definitions of anomalies in time-series presented in Section 2.2.1,
anomaly detection algorithms try to mark anomalous segments or points
in the time series data using machine learning models. A wide variety of
algorithms have been proposed for both univariate and multivariate time series
in unsupervised, supervised, and semi-supervised setups and will be presented
further in Section 2.6.1. Before doing this, we will extend the definitions
of unsupervised, supervised, and semi-supervised learning to the anomaly
detection task.

2.4.1 Unsupervised and supervised anomaly classifi-
cation

In unsupervised anomaly detection, there is usually an assumption made that
most of the data do not include anomalies. Following this assumption, the
training is conducted on the entire data set where the anomaly detection model
tries to find a compact distribution of the normal samples and label any data
point or sequence that deviates from the distribution as anomalous. The
downside of this approach is the bad generalization of the boundary between
normal and anomalous data depending on the distribution between normal and
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anomalous samples [22]. The assumption of a low amount of anomalies can
indeed not always be guaranteed.

In the supervised classification setting classifiers tries to create a maximal
separating hyperplane between labeled anomalous and normal samples [22].
The supervised classification task is not always optimal considering the small
number of positive labels that are usually present in a lot of real-world anomaly
data sets. As previously stated, labeling is a time-consuming task that requires
extensive domain knowledge. This leads to the alternative approach of a semi-
supervised anomaly detection setup.

2.4.2 Semi-supervised anomaly detection
In anomaly detection, semi-supervised methods involve two alternative
approaches separate from the unsupervised and supervised setup. Either only
labeled non-anomalous instances are used for training, and labeled anomalies
are excluded. Then, the goal is to build a model for the normal class and
use the model for the detection of anomalies in the abnormal class during
testing [45]. This is more generally titled learning from positive and unlabeled
examples (LUPE) [22] and generalized semi-supervised settings where only
a few labeled anomalies are present and exploited during training are less
common and often specific to the involved domain [46].

2.5 Feature extraction
A key consideration for anomaly detection tasks is feature extraction. Feature
extraction aims to transform defined input data into a new feature space to
capture the most relevant characteristics of the data for the involved anomaly
detection models. What defines a suitable format is often domain-specific and
can even require domain knowledge to derive. In either case, this process
frequently involves feature construction or feature selection [47], both of which
will be presented here.

2.5.1 Feature construction
Feature construction involves taking raw data through a defined pre-processing
step to create a new feature space with either the same, an increased, or
decreased dimensionality [47]. Prominent examples used in time series
anomaly tasks that keep dimensionality include input standardization, which
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involves scaling the input features to a zero mean and unit variance,
normalization, which involves scaling the input features to a given range,
and wavelet transforms [48], which involves decomposing input signals
into frequency components that can be analyzed for local features or
variations in the data. Another popular method that reduces dimensionality
is principal component analysis (PCA)[49], an algorithm used to reduce the
dimensionality of data while retaining the majority of the variance. This
involves extracting principal components, which are directions in a subspace
of the original data.

2.5.2 Feature selection
It is important not to confuse feature construction with feature selection,
which is generally done afterward to reduce the input dimensionality. Indeed,
feature selection tries to limit the number of input variables to the most
discriminate for the involved predictive model [47], which, in the case of
anomaly detection, involves finding the input channels that contribute more to
identifying anomalies. This is indeed an important part of the model-building
pipeline considering the curse of dimensionality. Not only do we want to
limit the number of features because of this phenomenon, but feature selection
wants to do so by removing redundant information and thereby achieving
higher predictive performance with lower computational time [50].

Methods for doing so firstly include filtering, which involves creating a feature
rank in the order of how discriminant the features are [47]. An example
of this includes correlation coefficients, which have been used to rank input
features based on interdependence for predicting the target value in anomaly
detection tasks previously [51]. Secondly, we have wrapper techniques,
which involve training predictive models on different feature combinations
and evaluating the performance. Examples of this include Recursive feature
elimination [52]. Thirdly, we have embedded methods, which incorporate the
feature selection process into the model training phase using, for example,
regularization methods such as LASSO [53].

2.6 Related work
Following the theory behind time series data and anomaly detection using
machine learning, we will now present an overview of machine learning
methods used for anomaly detection tasks. This is to give an overview of
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previous and current state-of-the-art methods used in both general time series
anomaly detection, but also anomaly detection applied in the manufacturing
industry. It is worth stating that this is by no means a comprehensive summary
but simply presents an overview to get a fundamental understanding of the
concept of anomaly detection on time series.

2.6.1 Time series anomaly detection
Recent advances in data collection techniques have enabled many fields
to collect data in the form of time series. Consequent mining of the
data properties has become an important field of research, for example in
investigating possible anomalies in the data. Anomalies can both constitute
unwanted patterns that we want to clean from the data sets or present events
of interest that we want to analyze. In either case, outlier detection handles
both situations and has therefore seen significant growth over the last couple
of years [54]. Early methods included estimation models that investigated
the presence of point anomalies in univariate time series. These methods
follow an assumption that the data is generated from one specific process and
that deviations from the normal pattern generated from the process should be
labeled as anomalous. The earliest methods used piece-wise constant values
where anomalies were labeled based on time-window median values or full
time-series median values [55]. Other more recent approaches included error
measures from the true time series values against the exponential weighted
moving average (EWMA) [56], B-splines [57], Gaussian Mixture Models
[58], Time series decompositions [59] among others. In essence, they all rely
on the following formula

δ < f(|xpred − xtrue|)

where, xpred is the predicted observation at time t and xtrue is the true
value at time t, to label points as anomalies. Indeed, separate methods
have been proposed to investigate the error measure through the function
f , for example, using human intervention, extreme value theory or Extreme
Studentized Deviate [54].

The shortcoming of many of these methods includes their inefficiency to
predict anomalies in newly collected data. Which is practical in real-world
applications where streaming data is collected in real-time. Therefore, in
contrast to these estimation-based methodologies, more novel approaches have
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included prediction models such as convolutional neural networks (CNNs) as
done by Munir et al.[20] or Recurrent Neural Networks (RNNs) such as Long-
Short-Term-Memory (LSTMs), as done by Hundman et al. [60]. These use
past observations to make predictions on forthcoming data and can thus label
new points as anomalous, based on an error threshold, in real-time.
Both the estimation-based methods and the prediction models use error
thresholds of prediction errors to label points as anomalies. However, density-
based models have also been investigated, where we define a neighbor criteria
function d, with threshold R for all data points x and investigate the number
of neighbors δ for time point xt as follows [54]

δ < x ∈ X|d(x, xt) ≤ R|

To consider the temporal dependency, previous research has tested the
methodology on sliding windows [61], and some common methodologies for
the neighbor criteria function include local outlier factor (LOF) or density-
based spatial clustering (DBSCAN) [62] .

All the aforementioned techniques are viable alternatives to detect point
anomalies in univariate time series. However, many real-world data sets
consist of multivariate time series. In addition, anomalies are not always
observed over time series points, but instead over sequences in the case of
collective anomalies. The error criteria are then usually rephrased as follows

δ < f(

n+p−1∑
i=n

|xi − x̂i|))

Where n is the time of the first observation in the sequence, p is the
sequence length and x̂i ∈ R+ is the predicted value of xi ∈ R+ that belongs
to a sequence of length p − 1. Numerous models exist to deal with the
given setup. Indeed, models that allows for multi-step predictions have has
been shown to outperform single-step predictions predictions in regards to
capturing changes in amplitude, frequency, or other characteristics connected
to collective anomalies [63]. The methods involved in dealing with this more
general setup can be said to belong to one out of six families of methods [64];
forecasting, for example, DeepAnT [20] or LSTMAD [65], reconstruction, for
example, LSTM-VAE [66], distance, for example, LOF [67], encoding, for
example, Ensemble GI [68], distribution, for example, COPOD [69], and tree-
based methods, for example, Isolation Forest [70]. Each of these can be further
separated based on if they are supervised, unsupervised, or semi-supervised.
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2.6.2 Anomaly detection in manufacturing
There has been a wide variety of anomaly detection techniques applied in
manufacturing setups. For example, Abdelrahman & Keikhosrokiani used
an inspection process to collect positional data of assembly line machines to
evaluate several traditional anomaly detection algorithms, including HBOS,
IForest, KNN, CBLOF, OCSVM, LOF, and ABOD [71]. Furthermore,
Aydemir & Acar investigated using anomaly detection for the prediction
of remaining useful life in the turbofan engine degradation dataset [72], a
commonly used dataset for benchmarking health monitoring algorithms [73].
Other approaches seen in real-world manufacturing settings include the work
of Zhang et al. who combined a feature extraction methodology using PCA
with DBSCAN to detect anomalies in time series data extracted from CNC
machines. The results showed promising results in the detection of injected
anomalies in a real manufacturing setting [74] .
Several deep learning methodologies have also been explored for anomaly
detection in manufacturing. For example, Oh & Yun investigated the usage of
auto-encoder to separate normal from anomalous sound data in manufacturing
machines [75]. The results showed that it was possible to detect anomalies
close to machine failure.
Continuing, due to the nature of the data in industrial machines, many of
the supervised anomaly detection algorithms become futile. The majority
of the data collected from manufacturing machines are usually collected
unlabeled or with a small portion of labeled data, for example, due to failures.
Consequently, there has been an increase in semi-supervised machine learning
anomaly detection methods investigated during the last couple of years, for
example, using auto-encoders [76], including the works of Liu et al. who
used CNN-based auto-encoders to detect surface defects on industrial product
images in a semi-supervised training setup [77].
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Chapter 3

Methods

This chapter will present the theoretical background of the anomaly detection
models, feature extraction techniques and evaluation methods of interest in
this research. In Section 3.1, we will give a theoretical background regarding
the anomaly detection models investigated, DeepAnt and OCSVM, with an
overview of the machine learning models they belong to, CNNs and SVMs.
In Section 3.2, we will present the feature extraction method of interest in
this research, ROCKET. Lastly, in Section 3.3, we will present the evaluation
metrics and methodologies that will be used to measure the performance of
the anomaly detection models.

3.1 Machine learning models
We will now go into detail about the machine learning models used in the
anomaly detection task of this research, DeepAnT and OCSVM. However, to
understand the two models we first need to get a fundamental understanding
of the architecture groups in which they belong, CNNs and SVMs.

3.1.1 Convolutional neural network
Convolutional neural networks (CNNs) are a group of deep learning
architecture that extracts high to low-level features from spatial hierarchical
layers [78]. The architecture is trained through gradient descent with
adapted loss function for the problem description, like common multi-layer
perceptrons (MLP) [79]. What makes CNN different from the MLP is
the architectural building blocks that enable them to understand spatial
relationships. The architecture consists of three building blocks, convolution



24 | Methods

layers, pooling layers and fully-connected layers. The first two mentioned
are the layers responsible for building the hierarchical spatially connected
features. The fully-connected layer is used to create the model output, either
for regression or classification problems. The building blocks are visualized
in Figure 3.1 and will be described in further detail below.

Figure 3.1: Visualization of padding, stride, convolution, and maxpooling
operation.

3.1.1.1 Convolutional layer

The convolutional layers use a kernel, which is an array of numbers that are
multiplied element-wise to the input grid of features, commonly referred to
as a tensor. Summing the values of one element-wise product creates the
output features for the spatial location of the output tensor. Repeating this
procedure over the defined dimensions of the input tensor creates a feature
map that represents different characteristics of the input tensor. Padding is
often done before the convolution operation and involves adding zeros to the
borders of the tensor. It enables the model to preserve dimensionality and to
conduct equally many kernel operations on the borders of the tensor data as
compared to the center of the tensor data, thereby reducing information loss.
Before training, each convolutions layer has two hyper-parameters that have to
be defined, the kernel size and the stride. The kernel size decides the number
of values used by the kernel in the element-wise product. Thereby it defines
the size of the input tensor that will be considered for deducing the features.
The stride defines the number of steps the kernel is moved over the input
tensor at each operation of convolution. During the training, the kernel values
are updated through the loss value during the back-propagation of gradient
descent.

It can be important to note that because CNN has been widely applied to
image recognition tasks [80], the input tensor and kernel dimension are
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usually defined as 2-dimensional grids. CNNs can however be applied to 1-
dimensional time series as well. While 2-dimensional convolution moves the
kernel over both dimensions of the input tensor during feature map extraction,
1-dimensional convolution only moves the kernel over one dimension. In
univariate time series, the data is defined over the time dimension only, which
makes the 1-dimensional CNNs highly applicable [81].

3.1.1.2 Pooling layer

Once the feature maps are extracted from the convolution layers, pooling
is used to downsample the feature map’s dimensionality and introduce
translation invariance [78]. Pooling also decreases the number of parameters
that have to be learned during the training of a CNN. Max-pooling is most
commonly used and includes filter arrays and stride-like convolutions layers.
In the max pooling operation, the maximum value of each patch in the
feature map is extracted and the remaining values are removed. No trainable
parameters are defined in this step, but the filter array size and stride need to
be defined.

3.1.1.3 Fully connected layer

The down-sampled grid from the pooling layer is usually flattened to a 1-
dimensional array and fed as input to the fully connected layer. This layer
is coupled with learnable weights to the output layers, which is followed by
a non-linear activation function (e.g RELU) if it’s not the final layer of the
network. The final fully connected layers activation function has to be adopted
to the task at hand, for example, if it’s a single or multi-label classification
problem or a single or multi-step regression problem.

3.1.2 Support vector machine
Support vector machines (SVMs) are a group of classification and regression
models that tries to find an optimal hyperplane, defined by the vector
orthogonal to the hyperplane w that, for classification tasks, separates the
input data into representative classes, and for regression, tries to minimize the
distance of the hyperplane to the input data points. It is less common to utilize
SVMs for regression tasks and we will focus on its usage for classification.
The hyperplane, or decision boundary, is found by maximizing its margin to
the closest data points, or support vectors, of each class [82]. For a binary
classification task as shown in Figure 3.2, we can denote the closest point
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from the origin to the hyperplane as b. The dot product between w and the data
points to the right side of the decision boundary will be bigger than b. Taking
the dot product between w and any point to the left of the decision boundary
will yield a lower value than b. Assuming that the binary classification task
assigns class values y = −1 to the points on the right side of the decision
boundary and y = 1 to the points on the left side of the decision boundary, and
requiring a margin c, an inequality constraint for the hyperplane is described
as follows

yi(w · xi + b)− c ≥ 0

Where the width of the decision boundary can be calculated as follows

W =
x+ − x−

||w||
x+ and x− are the support vectors which are the closest points and therefore

on the margin. We know that xi · w = c − b and xj · w = c + b. Adding this
to the above expression gives us

W =
2

||w||
Since we want the hyperplane to maximize this width, the objective

function needs to minimize ||w|| subject to yi(w · xi + b) − c ≥ 0. This
is an optimization problem that can be solved by finding where the gradient
of the Lagrangian multiplier with respect to w and b is 0. It can be shown
that solving the optimization problem is only dependent on the dot product of
the input data xi and xj [83]. The resulting w and b attained by solving the
optimization problem are then used for classification on new data points x as
follows

f(x) = sign(wTx− b)

Note that the above formulation presents what is called a hard margin
for the SVM hyperplane and it is only applicable for linearly separable data.
Many data sets are not linearly separable and even though soft margins can
be used for accommodating a certain amount of errors [82], if the data is
highly non-linear, then the decision boundary will likely fail in separating
the classes with high accuracy. Nonetheless, many instances of non-linearly
separable data can become separable in a higher dimensional space, but to
avoid applying a transformation on each input data point, which can be a costly
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Figure 3.2: SVM visualization of features in 2D space with a 1D-hyperplane.

operation, SVMs use the kernel trick. This involves applying a transformation
to pairs of input features to represent the similarity between them in a higher
dimensional space [82]. Since we are only dependent on the dot product,
or similarity, between the input features to maximize the margin the kernel
function simply finds the similarity in a higher dimensional space without
doing the transformation for each of the pairs of inputs.
There exist many choices for the kernel function, the ones that will be further
investigated in the given anomaly detection task is the Gaussian radial bases
kernel function

k(xi, xj) = e−γ||xi−xj ||2

the sigmoidal kernel function

k(xi, xj) = tanh(αxT
i xj + c)

and lastly, the polynomial kernel function
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k(xi, xj) = (xT
i xj)

p

3.1.3 Anomaly detection models
Following the theory behind CNNs and the SVMs, we can now go into
the theory behind the anomaly detection models of interest, DeepAnT, and
OCSVM, and motivate why they are suited for the involved task.

3.1.3.1 DeepAnt

DeepAnt is an CNN-based semi-supervised anomaly detection model created
for univariate and multivariate time series that has been shown to outperform
previous density and distance-based anomaly detection models [20]. The
choice of DeepAnt was based on the previous survey on multivariate time
series anomaly detection methods [64]. Following current scientific problems
presented in Section 1.2.2, any viable alternative needs to handle the semi-
supervised anomaly detection setup following the imbalance between failure
and normal production cycles and multivariate time series data. While
DeepAnT fulfills these criterion, long-short-term-memory (LSTM) or LSTM
and CNN auto-encoders was considered as-well because they fulfill both these
criteria and have shown high performance on previous benchmark data sets.
Nonetheless, the main limitations of these models involves low memory and
time reliability. DeepAnt has been shown to be superior in both of these
aspects and also showed similar results on several benchmark data sets [64].

The proposed model is divided into two parts, a time series predictor and
an anomaly detector. The time series predictor tries to forecast time series
features through regression given a preceding window of feature observations.
The anomaly detector is then responsible for calculating an anomaly score
for each prediction and assigning the predicted time stamps as normal or
abnormal. The architecture of the two parts is described further below

3.1.3.1.1 Time series predictor architecture The time series predictor
uses a CNN built for time series forecasting. To adapt the CNN to time series
data, the time series is divided into history windows, consisting of continued
sequences of features of dimension d, x1....xt−1, with label xt in the case of
single-step prediction. The value of t describes the history window size of
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previous observations used to predict the forthcoming value of xt in the time
series sequence. In many-step predictions, the prediction window is instead
defined as a continuous sequence of features xt....xt+pw , with a length of
pw each of dimension d. The history window is fed as input to the CNN
architecture and the true and predicted regression window is used to calculate
the forecasting discrepancy and final loss.

For the architecture, DeepANT proposed using two 1D-convolutional layers
with a kernel size of 32, ReLU activation, padding, and followed by max
pooling layers. The first convolutional layer has an input size defined by
the history window size t, to make it compatible with the data. The last
convolutional and max pooling layers are connected to a fully connected layer
responsible for the network prediction. The output size has to be adapted to
the constants pw and d. To make sure that the network output matches the
shape of the prediction window size, the output layer is set to pw · d. The full
architecture is visualized in Figure 3.3.

Figure 3.3: The full CNN architecture if the time series predictor in the
deepANT model [20].

The architecture uses MAE for loss, as described below

MAE =
n∑

j=1

|xpred − xt|

Since the CNN architecture is implemented for forecasting, the training
loss describes the discrepancy between the prediction xpred and the observed
true values xt. When training on a large amount of data that mainly belongs to
feature values belonging to a normal state, any large discrepancy will indicate
abnormal patterns in the time series.
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3.1.3.1.2 Anomaly detector During testing, the time series predictor
creates a forecasting prediction ypred ∈ Rd·pw that is compared to the true
value yt ∈ Rd·pw . The consequent anomaly score e is calculated using the
Euclidean distance as follows

e =
√

(y − ypred)2

A large value for e indicates a high deviation between the expected and true
observation of the time series, this is used as an indication that xt is a possible
anomaly. A threshold has to be defined for the value of e that separates normal
from abnormal values, anything below the value is considered normal while
anything above is considered an anomaly [20].

3.1.3.2 One-class SVM (OCSVM)

OCSVM is an extension of SVM for semi-supervised anomaly detection [84].
The choice of OCSVM was based on several previous studies using it as a
baseline model for the semi-supervised anomaly detection setup [85], [86].
Thereby it fulfills the semi-supervised training setup criteria presented in
Section 1.2.2 and it can handle multi-variate time series. Also, the extension
of using ROCKET (see Section 3.2) for feature extraction in anomaly detection
tasks has not been investigated previously, giving a reason for exploring the
setup in this research.

To present the theory behind the model, OCSVM classifies data points as
normal or abnormal by constructing a hyperplane in the feature space between
the origin and the input data that maximizes the distance from the origin while
allowing a certain amount of outliers. A 2D visualization of the hyperplane is
presented in Figure 3.4. Similarly to the standard SVM, an objective function
and inequality constrained are defined, but here they are defined as follows

f(w) = min
||w||2

2
− p+

1

v ·N

N∑
i=1

γi

subject to,

w · ϕ(xi) > p− γi, ∀xi ∈ X

Here, the learnable parameters are w and p, where w are the weights in
feature space and p is a bias term for the hyperplane. γi is a slack variable that
allows for a soft margin meaning that a certain amount of points are allowed to
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lie inside the margin. v denotes the upper bound on the percentage of outliers
and a lower bound for the samples used as support vectors.

As previously, finding w and b by solving the optimization problem using the
Lagrangian multiplier and introducing the kernel trick, the classification of
anomalous points is done as follows

f(x) = sgn(
n∑

i=1

αiyiK(x, xi) + b)

where ai is the Lagrange multipliers.

Figure 3.4: OCSVM visualization of features in 2D space with a 1D-
hyperplane.

3.2 ROCKET
The ROCKET methodology will serve as a feature extraction technique for
the OCSVM model. Note that if we would not find a way to address the time
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dependency of the data then a simple OCSVM model would not be able to find
any significant abnormality in the data outside of point anomalies. To enable
OCSVM to find abnormalities in the high correlation between consecutive
time points we take use of the ROCKET feature extraction.
ROCKET was introduced as a feature extraction technique for classification
that tries to detect patterns associated with the involved classes in each
provided time series [87]. The method was inspired by the success of CNNs,
such as ResNet [88] or InceptionTime [89], and their ability to capture complex
hierarchical patterns and achieve high accuracy in time series classification
tasks. It uses convolutional kernels with random initialization of length (lk),
weight (w), bias (b), dilation (d), and padding that are convolved through a
sliding dot product over the input time series to produce feature maps. This is
done as follows

b+

lk−1∑
j=0

Xi+(j·d) · wj

The method can be extended from the univariate time series setting to the
multivariate setting by applying the convolutional kernels to each feature in
parallel.
The feature maps are then extracted by two aggregation techniques. The first
one involves the maximum value and the second one is the proportion of
positive values (ppv). Per default, 10,000 randomly initialized kernels are
produced leading to 20,000 features consisting of the maximum value and ppv
for each time series.

To clarify the random initialization, the original authors proposed using a
kernel length sampled uniformly from the set {7, 9, 11}, weights sampled
randomly from the normal distribution N (0, 1), bias sampled randomly from
the uniform distribution U(−1, 1), and a dilation of d = ⌊2x⌋ where x is
sampled from U(0, A) (A = log2

li−1
lk−1

). This ensures that the kernel length
with the dilation is always smaller than the input time series. The presence
of padding is chosen randomly, and if chosen, zeros are padded to both ends
of the time series to allow the middle element of the kernel to be centered on
each point of the time series. Indeed, without padding, the kernel can not be
centered at the beginning and end of the time series causing a greater focus
towards the center.

By random initialization of the kernel parameters, the different kernels can
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capture different characteristics of the time series. For instance, dilation
determines the spread of the kernel through insertion of empty values based
on the randomly sampled frequency. A dilation of three would therefore mean
that every third second of the input time series would be convolved with the
kernel weights. Consequently, a large dilation captures low-frequency patterns
while a small dilation captures high-frequency patterns.
Each feature map produced by a randomly initialized kernel thereby represents
the extent to which the pattern represented by the kernel is present in the time
series. For large output values of the kernel operation, a higher presence of
the pattern connected to the kernel exists.

The convolutions have been shown to capture similar patterns as other time
series feature extraction methods, such as shapelets [90], but require a fraction
of the computational time [87]. This further motivates the usage of ROCKET
in this research following previous work that have combined the usage of
OCSVM with shapelet transformations [91]. Since ROCKET has been shown
to find similar patterns to shapelet transformations, but with a fraction of the
training time, it could serve as a more efficient feature extraction methodology.

3.3 Evaluation methods and metrics
Following model training, the evaluation step includes the usage of evaluation
metrics for testing the generalized performance of the given model, comparing
the results of unseen and seen samples. The choice of evaluation metrics is
a key concept, especially in the given task considering the usual imbalance
between failure and functional states of machine data in manufacturing settings
[92]. The imbalance of the data set needs to be considered in the choice
of metrics and following previous recommendations [93], the metrics that
will be presented, Confusion matrix, Precision, Recall, and f1-score, are
highly relevant for the involved task. Furthermore, statistical tests such as the
Wilcoxon signed rank test have also been a popular evaluation method used
for anomaly detection [94]. Lastly, in high multivariate settings, the nature of
anomalies can be hard to interpret and a method previously used in visualizing
high dimensional data to reason about the characteristics of anomalies is t-SNE
[95].
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3.3.1 Confusion matrix
A confusion matrix is an evaluation metric used in classification tasks that can
be used in both binary and multi-class classification tasks. It is constructed
by a NxN matrix where N is the number of class labels in the data. A
demonstration of a confusion matrix for a binary classification problem, with
a negative and positive class, is presented in Figure 3.5. Note that the columns
represent the true labels while the rows represent the predicted value. True
positive (TP) represents the number of correctly classified positive instances,
false positives (FP) represent the number of samples that are classified as
positive while belonging to the negative class, false negatives (FN) represent
the number of samples that are classified as negative while belonging to the
positive class, and true negative (TN) represents the number of correctly
classified negative instances.

Figure 3.5: Visualization of the confusion matrix in a binary classification task
(negative and positive class).

This introduction of TP, FP, FN, and TN further leads to the continued
metrics precision, recall and F1-score.
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3.3.2 Recall, precision and F1-score
Recall and precision are metrics commonly used in time series classification
and anomaly detection settings [96] due to their ability to consider the
imbalance of data sets. For binary classes, Precision is defined as follows

Precision =
TP

TP + FP

and Recall is defined as follows

Recall =
TP

TP + FN

Precision thereby defines the fraction of all detected positive instances that
are real positives. Recall defines the fraction of real positive instances that
is detected. These definitions can also be extended for negative instances.
Precision is then defined as follows

Precision =
TN

TN + FN

and Recall is defined as follows

Recall =
TN

TN + FP

The F1-score is then a measure of the overall accuracy based on precision
and recall. It is defined as follows

F1− score = 2 · Precision ·Recall

Precision+Recall

3.3.3 Wilcoxon Signed-Rank Test
Wilcoxon Signed-Rank Test is a hypothesis test that can be used for pairwise
comparison of independent samples. When comparing independent samples
the hypothesis test tries to answer if there is a statistically significant difference
between the median of the samples [97]. It does so by introducing the null
hypothesis that there is no difference between the two sample means. To test
this hypothesis, the sum of the signed ranks is used for test statistics

W =
N∑
i=1

sgn(x2i − x1i) ·Ri



36 | Methods

Here, x1i, x2i denotes the measurement i in the first and second samples.
Ri denotes the rank of the pair x1i, x2i, particularly, the position of the pair
based on the ordered list |x1i − x2i|. Lastly, to test the null hypothesis, the
critical value based on the sample size N and significance level α is compared
to the value of W . If it’s smaller, then the null hypothesis is rejected, which
means that there is a statistically significant difference between the median of
the two samples.

3.3.4 t-SNE
t-SNE is a dimensionality reduction technique that maps high-dimensional
data into a two or three-dimensional grid space while retaining the
characteristics of the data. If we consider an instance xi ∈ Rd belonging
to data set x, the first step of t-SNE is the calculation of the Euclidean distance
of xi to remaining instances in x. The Euclidean distances are then mapped to
a joint probability space where the probability Pi|j represents the probability
that the instance xj would be picked as a neighbor to xi, if the process of
picking a neighbor for xi followed a Gaussian distribution centered at xi [98].
Calculating the probability Pi|j is thereby done as follows

Pi|j =
e(−|xi−xj |)2/2σ2

i∑
k ̸=l e

−|xl−xk|)2/2σ2
i

Where σi is the variance of the Gaussian function centered at xi. The σ

value has to be adopted for every data point in the time series. Indeed, in
denser regions, a smaller σ value should be prioritized compared to sparser
regions. Consequently, the σ value is calculated through a binary search with
the perplexity provided for the specific task.

After the Gaussian distributions have been defined for each instance in the data,
they will be mapped to a lower dimensional space. This is done by adapting
the student t-distributions to a similar probability as the Gaussian distributions
but in a lower dimensional space

Qi|j =
(1 + (|xi − xj|)2)−1∑
k ̸=l (1 + (|xl − xk|)2)−1

To optimize this distribution the Kullback-Leibler divergence [99] is used.
The high-dimensional instances are then placed in the lower-dimensional
space according to the probability distribution Q.
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Chapter 4

Implementation

This chapter will present how the proposed anomaly detection methods was
adapted for the task. An overview of the methodology is presented in Figure
4.1 and will be used as a foundation in the methodology description. In
Section 4.1, the dataset, the splitting of the data set, and the initial data
cleaning and processing common for both models is is presented. It also
present the implementation of the ROCKET feature extraction used only for
the OCSVM. In Section 4.2, the full setup for the DeepAnT and ROCKET
OCSVM will be presented, including training methodology, model adaption,
and hyperparameters tested. In Section 4.3, the evaluation process for the
two models is described. Lastly, in Section, 4.4 the setup of the experiential
environment is presented for reproducibility purposes.

4.1 Data processing
The data processing method involves gathering the time series data and
processing it to a suitable format for the different models. Before going into
the processing step, I will introduce the structure of the dataset investigated.

4.1.1 Data-set
Time series data from a CNC-machine referred to as machine 50 has been
collected by the company Nytt following the MTConnect protocol for a
duration of 6 months, starting from August 2022 to January 2023, with a
frequency of 1 second. The MTConnect protocol is a technical standardized
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Figure 4.1: Overview of methodology separated into three parts Data
processing, Feature extraction, Model training and Model evaluation

data retrieval protocol and supports extraction of multiple analytical features
connected to machine working status [13]. An overview of the full set of
features is presented in Table 4.1. Note that the highlighted rows are the ones
of importance to the given task, below is a further description of some of the
attributes to understand how failures can be deduced from the data.

• state: This is a categorical attribute taking the values ACTIVE,
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STOPPED and INTERRUPTED. Normal working states will be labeled
ACTIVE which indicates that the machine is running without any
observed failures. The STOPPED label means that the machine is
inactive with the specified reason being presented in EmergencyStop.

• EmergencyStop: As mentioned, this column present the current
stoppage if state is STOPPED and it is not a short stoppage. If
state is ACTIVE the last occurring failure will instead be presented.
The emergency stops are divided into four comprehensive categories,
operator, tool, machine and other stoppages. In this research, we will
focus on the tool stoppages. These stoppages are related to issues in the
current tool that is activated and specified by the line column during the
production of the current part. Operator stoppages are simply stoppages
initiated by the operators and are thereby not predictable through data
monitoring.

Lastly, through the available domain knowledge of operators, Xload,
Yload, Zload and RotatoryLoad have been concluded to be the most reliable
features to indicate the health status of the production machine.

To give a better overview of the time series structure refer to Figure 4.2. As
can be seen, the time series can be divided into both the part being produced,
production cycles, as well as the tools being active in the production process.
A production cycle constitutes the process of finishing one part and the tools
are the involved instruments used in the process, including drillers, cutters,
grinding, and turning tools.
Different parts being produced can follow different cyclic patterns over the
production cycles, it is therefore important to group the data into the different
parts being produced and train separate machine learning models for each
part, since the generalization that otherwise would be needed to model the
normal state data of each production part can affect the anomaly predictions
negatively. To enable this, a new column was created with a unique index
for each production cycle as well as information on which production part
each of the production cycle belongs to. Furthermore, columns holding the
normalized time of the production cycle, categorical data regarding the active
production cycle tool, and the normalized time the tool has been active, were
added. An overview of the processed features used as input to the different
models is presented in Table 4.2. The motivation behind adding these features
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Features Description

mtConnectId Identifier of the procol verision.
machineId Identifier id of the machine.
State Current state of the machine.
Partcount Binary value indicating that the current produc-

tion cycle is complete.
ControllerMode Indicates if the controller is off or on.
RotatoryLoad Pressure to the cutter from the object being feed

to the machine.
PathFeedrate The cutter speed being engaged onto the

production part (units/min).
RotatoryActVelo Rotational speed of cutter
RotatoryOverrideVelo Binary value indicating if rotatory active

velocity was changed by operator
Xload Feeding load on the machine on the x-axis.
Yload Feeding load on the machine on the z-axis.
Zload Feeding load on the machine on the z-axis.
originalTime Time-stamp consisting of

yaer,month,day,hour,minute and second for
the current measurement.

EmergencyStop Description of the last occured, non-short,
machine stoppage.

PathPosition Position with x,y, and z coordinates on the
surface of the part.

line Tool name being activated or program part that
is currently being executed.

Table 4.1: MTConnect time series features

was based on the cyclic behavior over production cycles. As can be seen in
Figure 4.2, tool changes can be followed by a large change in feature values.
The introduction of dummy variables has previously been shown to increase
the predictive performance of volatile time series due to cyclic behavior [100].
Lastly, the tool errors that will be investigated are chosen based firstly on
the operator domain knowledge. Some tools have shown more issues in the
production of specified parts than others and are therefore of greater interest
to investigate. This involves tool T606. Secondly, the tools were chosen based
on the availability of previous failure data and the reason for breakage. Several
tool errors include tool life-count end alarms, which simply indicate that the
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tool has reached its recommended number of production cycles. In several
cases, this is not visible through the data features, and therefore these tool
failures were excluded. In the end, the remaining tools chosen for investigation
were T505 for production part 1, T161 and T404 for production part 2, and
T1228 and T199 for production part 3.

Features Description Input to

originalTime (index) Time-stamp consisting of
year,month,day,hour,minute and
second for the current measurement.

DeepAnt, ROCKET

RotatoryLoad Pressure to the cutter from the
object being feed to the machine.

DeepAnt, ROCKET

Xload Feeding load on the machine on the
x-axis.

DeepAnt, ROCKET

Yload Feeding load on the machine on the
z-axis.

DeepAnt, ROCKET

Zload Feeding load on the machine on the
z-axis.

DeepAnt, ROCKET

line-TXXX Binary value representing if tool
TXXX is active.

DeepAnt

... ... DeepAnt
line-TYYY Binary value representing if tool

TYYY is active.
DeepAnt

cycle-proc Normalized time in seconds the
production cycle has been active.

DeepAnt, ROCKET

Table 4.2: Extracted features used for training. Note that row 6 represents the
other tools activation status. The number of tools might different dependent
on production part.

4.1.2 Data cleaning
After gathering the manufacturing data, data cleaning was of the essence to
make it compatible with the anomaly detection models. One major challenge
present in both this data and many other real-world time series data sets
is missing values [101]. To handle missing time steps in the data, linear
interpolation was implemented. The choice was motivated by its common
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(a) Part 1 production

(b) Part 2 production

Figure 4.2: RotatoryLoad, Yload and Zload for four production cycles in the
machine 50 during production of two parts. The red dots show the end of
one production cycle and the background highlights show the difference tools
being active in the production cycles.

usage in sensory data handling [102]. The method involves replacing missing
values with the intersection point of the timestamp and the line interpolated
between the first available point previous to, and post, the missing timestamp
as follows

ft,i =
ft−1,i((t+ 1)− t) + ft+1,i(t− (t− 1))

(t+ 1)− (t− 1)

Here, t+ 1 is the next time-stamp of the time series, t− 1 is the previous
time-stamp of the time series, ft+1,i is the features i value at time-stamp t+1,
and ft−1,i is the features i value at time-stamp t− 1.
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Next, the data was cleaned from downtime connected to operator stoppages.
This was motivated by the fact that these stoppages are not connected to any
characteristics that could be predicted through the data, as well as causing high
amounts of downtime that the anomaly detection model would be trained on.
Further anomalous cycles characterized by exceptionally long production
times were also removed. Each production cycle connected to the different
production parts has a set time that it is expected to run, however, cumulative
short stoppages can also cause large downtime. Since the models that will be
investigated follows a semi-supervised learning scheme where we only train
on normal production cycles, we want to clean the data out of any abnormal
patterns present in the normal data that can not be linked to failures. Therefore
any cycle with length L, belonging to production part p, that does not follow
the criteria below was removed

Lp,σ − Lp,µ ≤ L ≤ Lp,σ + Lp,µ

Here, Lp,µ is the mean length of the production cycles for a given part p,
and Lp, σ is the standard deviation of the production cycles for a given part p.
Note that 0.02 % of the top and bottom production cycle length was clipped
before calculating the limits to handle large outlier cycle times.

Lastly, incorrect error messages were handled. As described in Table 4.1, the
EmergencyStop column of the MTConnect protocol presents either the last
occurred stoppage, or the current stoppage, if it is not a short stoppage. Short
unlabeled stoppages occur in many production cycles and to make sure that
these are not labeled as failure production cycles, the EmergencyStop label
was changed for all stoppages with a time frame of less than ten seconds. This
allows failures to be extracted with safety based on only the EmergencyStop
and State features.

4.1.3 Initial pre-processing
After the data cleaning, a common pre-processing scheme was implemented
for both of the models. This is a standard procedure when handling time
series data and common techniques used including power transformation to
handle skewness, differencing for removal of trends, and normalization or
standardization of input features [103]. Before conducting any pre-processing,
exploratory data analysis of the cleaned time series was done to get further
insights into its properties. Observing Figure 4.2, it can be concluded that the
raw data features are volatile and, as can be seen observing the feature value
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distribution in Figure 4.3a, the data distribution was highly skewed showing a
clear zero-inflated distribution for several features [104]. These factors are
caused by the cyclic sudden increases in feature value over the production
cycles. These could be falsely labeled as anomalous since they are infrequent
globally over the time series, but normal considering that they repeat over most
production cycles. Furthermore, normalization will become affected by the
big-scale difference caused by these sudden increases.
Because of these factors, a combination of feature-wise log transformation and
exponential smoothing was applied as a pre-processing step. As mentioned
previously, log transformation has been shown to handle data skewness and it
also shortens the sudden peaks in feature values that should not be considered
anomalous. Exponential smoothing is applied to handle noise and uncover the
underlying trend of the time series. Indeed, previous studies have discussed
how it can be an important pre-processing step for handling random fluctuation
and reveal the true inclination of the series previous to anomaly detection
[105]. The two steps to calculate the new value x̂i,tp+1|tp can be summarized
as follows

xi,t = log(yi,t + c) + c

x̂i,tp+1|tp = αxi,tp + α(1− α)xi,tp−1 + α(1− α)2xi,tp−2...

Where, yi,t is the original observation for feature i at time t, c is a constant
factor (chosen as 1 in this research) used to handle 0 or negative valued features
for the log-transformation, tp is the current timestamp in the given production
cycle that is being processed, and α is a weight term deciding the degree to
which we consider previous observations. A α-value closer to 1 gives higher
weights to more recent observations, which is beneficial if we want to keep
certain volatility, while a value closer to 0 gives more weights to previous
values and is therefore more suited for capturing underlying trends. Since we
want to prioritize finding the trend of the time-series, a value closer to 0, 0.3,
was chosen in this research.

Lastly, since we want each feature to give equal weights in the training, we
apply min-max normalization as follows

xi,t =
xi,t − xi,min

xi,max − xi,min

Where i is the feature number, xi,min is the minimum value for the feature
i, i, xi,max is the maximum value for the feature i, and xi,t is the feature value
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at the current time step that is scaled. The resulting distribution of the features
is presented in 4.3b.

Note that the pre-processing can further be motivated through the charac-
teristics of anomalies. While smoothing the time series can cause some
point anomalies to be less apparent, this did not cause large issues since
the normal working condition seemed to have plenty of point anomalies not
connected to failures. Any transformation that enables us to find the trend
of the normal production cycles and separate them from production cycles
close to failures is beneficial for the anomaly detection task. It can be worth
stating that an alternative approach that was considered was to apply time
series decomposition. However, the production cycles do not follow a precise
seasonal pattern, thereby this method was not feasible. Also, there is a possible
information loss connected to the pre-processing used. Ideally, we want to
only remove noise and volatility that is not connected to any anomalies in the
time series, however, it is not guaranteed.

(a) Data distribution previous to pre-processing

(b) Data distribution after pre-processing

Figure 4.3: Feature distribution over the involved features Xload, Yload,
Zload, and RotatoryLoad for production of part 1.
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4.1.4 Splitting dataset
Perhaps the most important part to understand the methodology is the
separation of the time series into the pre-failure anomalous state and the
normal working condition states. Following the research questions, we wanted
to investigate the anomaly distribution in production cycles that leads to failure
and in production cycles that do not lead to failure. We also wanted to
investigate how far-back anomalies connected to failures can be uncovered,
and how many production cycles that needs to be removed pre-failure to ensure
that we do not train the semi-supervised models on anomalies connected to
failures.
To separate the data into the pre-failure anomalous states and normal-working
conditions, for each of the three production parts, the data sets were divided
into normal working condition data (N ) and anomalous data close to failures
(F ). N is defined by the number of production cycles removed before every
failure nw, which is the parameter that enables us to investigate the impact
of training on different time windows in connection to failures. F is defined
by the number of production cycles that should be labeled as anomalous fw.
This parameter was introduced to investigate in what time frame possible
anomalies occur that could indicate a future failure. F is also further divided
into the different tool failures since, as presented in Section 4.1.1, we will
investigate different tool failures individually. The division of the time series
for each production part is presented in Figure 4.4. The values investigated
for each parameter are presented in Table 4.3. Note that fw was chosen as
eight and the value was motivated by the expected production cycle length.
The production cycles are approximately seven minutes long and if anomalies
can be uncovered in the eight production cycles before failure, this would give
sufficient time for reactive maintenance on the machines.

Hyper-parameter Values

Pre-failure data removed for N 9, 100, 200
Pre-failure data belonging to F 8

Table 4.3: Hyperparameters for the semi-supervised setup of each model
investigated.
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Figure 4.4: Visual representation of the division of the original time series
into the normal working production cycles N , and the pre-failure production
cycles F . Note that the same division is repeated for each production part time
series.

4.1.5 ROCKET
The proposal of ROCKET was, as stated in section 3.2, originally proposed for
time series classification. This anomaly detection problem is however treated
as a classification task where we label defined time windows that are not in
close proximity to failures as non-anomolous and production cycles in close
proximity to failures as anomalies. The pre-processing then involves training
the ROCKET-feature extractor with time series sequences si = xi, xi+1...xl+i,
where l is the investigated time window of the time series, from the normal
working state data.

As can be seen in Table 4.2, the categorical features used for the DeepAnT
model is excluded from the training, since the use of categorical features are
not discussed in the original proposal of ROCKET. Furthermore, because of
the high dimensionality of features extracted from ROCKET, a classification
layer was added on top of the kernels that was trained to predict the class
belonging of each time sequence. The top 2 % of the convolutional kernels
with highest weights for the classification task was then selected as features for
the anomaly detection method. This is a filtering feature selection approach
and it is important to note that the hold-out set of 20 % of F belonging to each
tool failure for the specified production part was used for this process together
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with the training data for the OCSVM (see section 4.2.2 and Figure 4.6).

The amount of time-steps l involved in the sequences are a hyper-parameter
that needs to be investigated. When choosing this hyper-parameter, we need
to consider that production cycles can have varying length and that failures
can lead to early stoppages. Since there might be valuable information close
to failures that we want to investigate, the sequence size was chosen as half
and a third of the length of the production cycles leading to failures.

4.2 Adapting models to data
In the following section, we will present how the investigated models DeepAnt
and OCSVM was adapted to the data.

4.2.1 DeepAnt
Firstly, to test the generalized performance of the DeepAnT model, we need
to divide the dataset into the training set, validation set, and testing set. The
datasets connected to each part were thereby divided into 80 % of data from
N used for training. This set was further divided into 90 % for model training
and 10 % for validation monitoring. The remaining 20 % from N was used
for testing and all the data sequences from F , belonging to each specific tool
failure, were used for testing. This follows the semi-supervised approach
where we want the model to learn the normal working condition of the machine
and test it on the anomalous production cycles connected to failures. Note that
each data set was split based on production cycles to keep the time dependency.
Next, a sliding window approach was used on the production cycles of the
training, validation and testing sets. This is a commonly used technique for
transforming time series into suitable structures for machine learning models
[106] and involves iterating over the time series with a stride of 1 and dividing
it into separate inputs based on an assigned history window size, and label,
based on the predictive window size.

For the model setup, the original architecture was replicated, using two
convolutional layers with 32 filter kernels, max-pooling, and Relu-activation.
For training, Adam-optimizer was used and the learning rate was fixed at
0.5 · 10−4. MAE was used as the loss function and the model training was
conducted over 10 epochs with batch size 32, which was chosen through
investigation of the convergence in the loss plots in pilot trials. Only two
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updates were done to the original architecture, the first one in regards to
the anomaly detector. The anomaly threshold was set automatically, and
not through trial observations, using the 95-quantile rule. This method
was motivated by the fact that it would be time-consuming to manually
assign thresholds to each hyperparameter setup of the models. A visual
demonstration of the approach is shown in Figure 4.5. Secondly, following
Figure 4.3, the feature RotatoryLoad is still imbalanced after the pre-
processing. This is caused by several intervals of each production cycle
keeping a constant value of 0. These regions are of less interest to the anomaly
detection method since it simply indicates that the specific type of load is
not present currently during the production process. This can not be further
handled through pre-processing of the data but could cause the forecasting
model to become over-adapted to the dominating constant regions for the
attribute. Therefore, we introduced the method of DenseWeights [107], which
weights the loss function based on the mean probability of observing the target
values of each feature based on kernel density estimations. This is a novel
method for zero-inflated distributions that prioritize rare samples, which, for
RotatoryLoad, consist of the active regions of the production cycles.

Figure 4.5: Visualization of the automatic anomaly threshold assignment in
the training data. Q is the anomaly scores belonging to the predictions that will
be labeled as anomalies while P is the anomaly scores belonging to predictions
that will be labeled as normal. The anomaly score with the 95-quantile value
in the training set is used as threshold and is extended to the testing set.

The adaptable parameters for DeepAnT involve both the history window,
meaning the number of observations to consider for the prediction, and the
predictive window, meaning the number of future observations that should be
predicted by the model. An overview of the parameters investigated in the grid
search for the DeepAnt model is presented in Table 4.4. The history window
was chosen based on the memory availability of the experimental setup.
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The predictive window was chosen as one and ten to investigate the anomaly
detection capabilities dependent on single and multi-step predictions.

Hyper-parameter Values

History window 30, 60
Predictive window 1, 10
nw 9, 100, 200

Table 4.4: Hyper-parameters investigated for the DeepAnT model

4.2.2 OCSVM
To reach the optimal performance of the model, the parameter ν, deciding the
upper bound on the percentage of outliers and a lower bound for the samples
used as support vectors, and the kernel function used for creating the decision
boundary needs to be decided. The ν was selected to be 0.01 to set a strict limit
on the number of false positives. An overview of the parameters investigated
in the grid search for the OCSVM model is presented in Table 4.5. Note that
since we are using a one-class classifier, a new grid-search scheme is needed.
As explained in section 3.1.3.2, the OCSVM is trained on only normal state
data, which will cause several issues for ordinary grid-search models [108].
Using metrics such as precision is not possible when only one class is present,
also, other metrics such as accuracy can be misleading. The accuracy might be
higher for a kernel function that sets a less restrictive limit on the hyperplane
adapted to the normal working state data, which could result in a small number
of true positives, meaning anomalies labeled as anomalies. Therefore, we
evaluate the model with a new k-fold-cross-validation scheme, where 80 %
of the normal working state data, and a hold-out set constituting 20 % of the
failure data is used to calculate the recall score of each k-fold model based on
both the normal validation data Nval of each fold, and the failure hold out set
Fval. The kernel function is then chosen based on the recall over both classes.
A visualization of the scheme is shown in Figure 4.6. The final model training
is then done with the kernel function chosen from the cross-validation scheme,
using the same 80 % of the normal training data, then evaluated the model with
the remaining 80 % of the failure.
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Figure 4.6: Visualization of the k-fold cross validation scheme implemented
for the OCSVM training. Here, N is the normal working condition data, F is
the pre-failure data, Nval is the validation data used for the recall calculation,
Ntrain is the part of N used for training in each k-fold model, Fval is the
validation failure data used for the recall, Ntrain,pred is the predicted values
of Nval, and Fval,pred is the predicted values of Ntrain.

Hyper-parameter Values

Kernel functions rbf, sigmoid, poly
ν 0.01
nw 9, 100, 200

Table 4.5: Hyper-parameters investigated for the OCSVM model

4.3 Evaluation
For the evaluation of the DeepAnt model, training and validation MAE loss
will be monitored during training to investigate which parameter setup that
provides the highest performance in terms of forecasting ability. Another
set of trials is conducted with each parameter setup where we measure the
classification accuracy of normal working conditions and abnormal working
conditions pre-failure using both confusion matrix, f1-score, recall, and
precision. The metrics are motivated by the high-class imbalance, which



52 | Implementation

needs to be taken into account through the evaluation. Note that other metrics
and methods, including ROC-AUC [109] or comparing the anomaly scores
of the pre-failure production cycles and the normal production cycles using
a statistical test such as the Wilcoxon signed ranked test, were considered
but excluded from the evaluation. AUC-ROC depends on the classification
probability of the involved classifier and knowing that OCSVM and DeepAnt
are both semi-supervised models trained on one class, we don’t have access
to this. The Wilcoxon signed ranked test was implemented and tested but
excluded considering the problem of over-powering in statistical tests [110].
Indeed, with the large number of predictions of anomaly scores done between
pre-failure and the normal working state of the machine, the sample size will
be large enough to detect any small deviations as statistically significant when
comparing the two populations. Furthermore, since OCSVM do not have
access to an anomaly score, we would only be able to realize this for the
DeepAnt model.

To draw further conclusions regarding the pre-failure production cycles, the
forecasting predictions of DeepAnT will also be used to train a t-SNE model.
This is done since the characteristics of the data close to failures is unknown.
They could constitute an abundance of anomalies or a small proportion of
anomalies that are of great importance to alarm for possible future failures.
However, the second case is only useful for manufacturing companies if they
can be separated from possible anomalies in the normal working state data.
Using t-SNE, we can visualize the distribution of prediction errors on a lower
dimensional space and thereby observe potential discrepancies between pre-
failure and normal production cycles. This also allows us to reason about
how early anomalous segments appear, given that we can include labels in the
visualization for each of the production cycles leading up to failure.

ROCKET OCSVM will be tested through the same metrics, and the
predictions will be visualized through another t-SNE model. However, for
the ROCKET OCSVM, we will train the t-SNE on the ROCKET features.

It is important to understand that the results will be based on experimental
investigations of the production cycles previous to failure. Little to nothing
is known about the anomalies in production cycles leading up to failures
or in the production cycles that are not connected to failures. The labeling
of pre-failure time steps as anomalous and consequent use of classification
metrics are merely done to investigate to which extent anomalies can be used
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to indicate machine failure based on the distribution of anomalies in normal
and pre-failure production cycles.

4.4 Experimental Setup
The entire set of experiments was conducted on a Windows 64-bit operating
system machine with 16 GB RAM and A NVIDIA GeForce GTX 1060 6GB
GPU enabled for model training. The pre-processing, feature extraction,
model implementation, and evaluation matrix were each implemented in
Python version 3.9.1 with the list of libraries used in the virtual environment
for the project presented in Table 4.6.

Library Version

Numpy 1.23.5
pandas 1.5.3
scipy 1.10.0
seaborn 0.12.2
torch 1.13.1+cu116
statsmodels 0.13.5
lightning-utilities 0.6.0.post0
scikit-learn 1.2.1
matplotlib 3.6.3
sktime 0.16.1

Table 4.6: Summary of the libraries used in the virtual environment where the
implementation was done.

The pre-processing and data collection methodology was enabled through
a combination of numpy, pandas, and sklearn. Pytorch (pytorch-lightning)
was used for the DeepAnt model implementation while the OCSVM, PCA,
t-SNE, and evaluation metrics, were implemented through sklearn. Lastly, the
ROCKET feature extraction was implemented through sktime.
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Chapter 5

Results and Analysis

In this chapter, we present the results following the methodology presented
in section 3. We will begin with presenting the results for the DeepAnT in
Section 5.1. We will then continue to the ROCKET OCSVM In Section 5.2.
It is important to re-iterate the separation of the data following the
methodology presented in Section 4.1.4, to understand what testing data
that is labeled as anomalies and what data is labeled as non-anomalies.
Throughout the results, we will refer to the pre-failure labeled anomalous
production cycles as F , and the normal working condition production cycles
as N . Furthermore, the DeepAnt evaluation firstly involves investigating
the forecasting performance of the CNN-architecture to conclude how well
it learns to model the MTConnect time series data. However, no model
selection is done in this step since the training and validation performance
is only dependent on N and we cant draw conclusion regarding the anomaly
distribution of F following the training loss. Thereby we will present
the anomaly predictions of the pre-failure and normal working condition
production cycles for every parameter setup to conclude if there exist a
difference in the distribution.
For the ROCKET OCSVM, model selection is done during the 5-fold-cross
validation since it includes data from both N and F and thereby possible
separation between the two subsets. After the model selection, the distribution
of anomalies in N and F will be investigated.

5.1 DeepAnt
In this section, we will begin with presenting the results related to the training
of the CNN forecasting model of DeepAnT dependent on the parameter setup.
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We will then continue to investigate the chosen models anomaly detection
results for N and F .

5.1.1 Forecasting results
For the DeepAnt model, following the methodology presented in Chapter 3,
we began with training the CNN forecasting model on the normal working
condition data and monitoring the training and validation loss. A subset of
the models monitored training and validation loss are shown in Figure 5.1.
The full set of trial results, including final validation loss, training loss, and
anomaly threshold values, are presented in Table 5.1.
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(a) Part 1: hw: 30, pw: 1, nw: 9 (b) Part 1: hw: 30, pw: 10, nw: 9

(c) Part 2: hw: 30, pw: 10, nw: 9 (d) Part 2: hw: 30, pw: 10, nw: 9

(e) Part 3: hw: 30, pw: 10, nw: 9 (f) Part 3: hw: 30, pw: 10, nw: 9

Figure 5.1: Training and validation loss for models with the specified hyper-
parameter setup. Note that L1 loss is synonymous with MAE and hw refers to
history window.
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From these results, firstly, we can conclude that independently of the
production part the history windows have little to no effect on the final loss
and anomaly threshold. Interestingly, the smaller history window of 30 results
in a smaller training loss, validation loss, and anomaly threshold, in the
majority of the cases. This indicates that a smaller history window models
the normal production cycles with higher accuracy compared to the larger
predictive window of sixty. Secondly, the generalized performance comparing
the training and validation loss is very high. Indeed, there is little to no
difference between the validation and training loss, indicating that the model
performs well in modeling normal working conditions not seen during model
training. Thirdly, the forecasting performance is very similar over the different
production parts.

For the number of pre-failure cycles excluded the effect varied for production
parts. The best results for production parts 1 and 3 were reached with 9
production cycles excluded. For part 2, the anomaly threshold and validation
loss were similar with 9 and 100 production cycles removed. In general, the
investigated numbers of production cycles pre-failure excluded from training
seem to have little to no effect on the predictive performance, meaning that
the same loss and anomaly threshold is reached independent of the parameter
value.
The predictive window however has a major effect on the training. The training
loss, validation loss, and most notably, the anomaly threshold, are increased
when increasing the predictive window.

Lastly, observing Table 5.1, it is evident that the validation loss is lower than
the training loss for all of the models. Note that this could be misleading since
the training loss is calculated as the rolling average of the loss for the past
hundred sequences while the validation loss is calculated only at the end of
each epoch. Following the training loss, per batch, presented in Figure 5.1 we
see that the training and validation loss is essentially the same. Additionally,
we can see a quick convergence of the training and validation loss, which
indicates that the amount of epochs is sufficient to reach a minimum.
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Forecasting result DeepAnT

pw hw nw
MAE

τTrain Validation
Production part 1

1 60 9 0.0275 0.0241 0.2635
1 30 9 0.0275 0.0275 0.2635
1 60 100 0.0327 0.0290 0.2793
1 30 100 0.0293 0.0259 0.2732
1 60 200 0.0350 0.0315 0.2923
1 30 200 0.0310 0.0280 0.2749
10 60 9 0.0357 0.0316 0.7522
10 30 9 0.0376 0.0335 0.7670
10 60 100 0.0371 0.0328 0.7753
10 30 100 0.0393 0.0350 0.7891
10 60 200 0.0384 0.0351 0.8023
10 30 200 0.0411 0.0383 0.8370

Production part 2
1 60 9 0.0302 0.0265 0.2663
1 30 9 0.0264 0.0224 0.2540
1 60 100 0.0302 0.0264 0.2622
1 30 100 0.0264 0.0222 0.2497
1 60 200 0.0308 0.0271 0.2611
1 30 200 0.0310 0.0280 0.2749
10 60 9 0.0340 0.0297 0.7121
10 30 9 0.0345 0.0304 0.7213
10 60 100 0.0342 0.0308 0.7266
10 30 100 0.0354 0.0314 0.7281
10 60 200 0.0365 0.0324 0.7447
10 30 200 0.0377 0.0336 0.7572

Production part 3
1 60 9 0.0270 0.0235 0.2372
1 30 9 0.0240 0.0198 0.2263
1 60 100 0.0280 0.0249 0.2439
1 30 100 0.0252 0.0210 0.2310
1 60 200 0.0284 0.0248 0.2420
1 30 200 0.0259 0.0215 0.2353
10 60 9 0.0311 0.0272 0.6511
10 30 9 0.0321 0.0285 0.6583
10 60 100 0.0327 0.0287 0.6711
10 30 100 0.0341 0.0298 0.6848
10 60 200 0.0335 0.0293 0.6705
10 30 200 0.0341 0.0299 0.6899

Table 5.1: MAE loss and anomaly threshold (τ ) from each of the trial setups.
Note that production part n refers to the results on the specific part n produced
by the manufacturing machine, pw is the predictive window, hw is the history
window, and nw is the window of cycles before failures excluded from training.
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5.1.2 Anomaly detection
Table 5.2 demonstrates the results of the anomaly detection task. We can see
that certain results hold independent of the production part and tool failure
investigated. To begin, we can see that the recall for N is 0.95 in every case.
Considering that the threshold of anomalies was set to the 95-quantile of the
anomaly scores in the training set, it is evident that the amount of anomalies
is very similar in the training and testing set of N . Furthermore, the precision
for N is decreased while the precision for F is increased following a larger
value of nw. This is trivial since a larger nw decreases the amount of data
belonging to N , causing a smaller amount of false positives, or anomalies in
the normal working condition. Thereby, the most reliable parameter setup will
mainly be based on the recall. Lastly, since the result varies depending on the
production part investigated for F , the discussion will be done separately for
each. Before this, the models that are the best in separatingN andF in terms of
anomalies will be further investigated using confusion matrix and histograms
of anomaly scores. This is to further investigate research question 2, where we
want to answer if there indeed is a noticeable difference between the anomaly
distribution of N and F .

5.1.2.1 Production part 1

In Table 5.2, we see the classification metrics for N and F for tool failures
T505 and T151 belonging to production part 1. To begin, the anomaly
distribution is affected by the parameter values of pw, hw, and nw. For some
of the model setups the eight production cycles leading up to failures reach
a recall score above 0.5 for T505 and 0.2 for T151. This means that over
half of the predictions are classified as anomalies for F belonging to T505
and over a fourth of the predictions for F belonging to T151 is classified
as anomalies. In general, for the multi-step prediction setup, meaning when
pw has the value of 10, and for a larger history window, meaning when hw

has the value of 60, we reach a larger recall for F . With the combination
of a smaller history window and single-step predictions we can see that the
recall score is below 0.1 for both tool failures, meaning that less than 10 %
of the time steps investigated are labeled as anomalies. Lastly, we can see
that a larger nw leads to more anomalies being uncovered before failures for
both tools are investigated. T505 reached the highest recall for F with nw

being 100 and T151 reached the highest recall for F with nw being 200.
Thereby demonstrating a performance increase following a increased amount
of production cycles pre-failure excluded from training.
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DeepAnT anomaly detection

(pw, hw, nw)
Precision Recall F1-score

N Ftool1 N Ftool2 N Ftool1 N Ftool2 N Ftool1 N Ftool2

Production part 1, tool1: T505, tool2: T151

(1,60,9) 0.98 0.24 0.98 0.07 0.95 0.44 0.95 0.15 0.96 0.31 0.96 0.09
(1,30,9) 0.96 0.01 0.98 0.03 0.95 0.02 0.95 0.06 0.96 0.01 0.96 0.04
(1,60,100) 0.97 0.33 0.97 0.1 0.95 0.45 0.95 0.14 0.96 0.38 0.96 0.11
(1,30,100) 0.95 0.08 0.97 0.08 0.95 0.09 0.95 0.11 0.95 0.08 0.96 0.09
(1,60,200) 0.96 0.40 0.95 0.13 0.95 0.45 0.95 0.14 0.95 0.42 0.95 0.13
(1,30,200) 0.94 0.11 0.95 0.10 0.95 0.09 0.95 0.12 0.94 0.10 0.95 0.11
(10,60,9) 0.98 0.28 0.98 0.08 0.95 0.56 0.95 0.19 0.96 0.37 0.96 0.11
(10,30,9) 0.98 0.25 0.98 0.08 0.95 0.50 0.95 0.19 0.96 0.33 0.96 0.12
(10,60,100) 0.98 0.37 0.98 0.08 0.95 0.58 0.95 0.19 0.96 0.46 0.96 0.11
(10,30,100) 0.97 0.35 0.97 0.13 0.95 0.53 0.95 0.20 0.96 0.42 0.96 0.15
(10,60,200) 0.97 0.44 0.97 0.15 0.95 0.55 0.95 0.25 0.96 0.49 0.96 0.19
(10,30,200) 0.96 0.40 0.96 0.16 0.95 0.49 0.95 0.20 0.96 0.44 0.95 0.18

Production part 2, tool1: T606, tool2: T1228

(1,60,9) 0.94 0.18 0.99 0.04 0.95 0.15 0.95 0.13 0.94 0.16 0.97 0.06
(1,30,9) 0.93 0.14 0.99 0.03 0.95 0.11 0.95 0.09 0.94 0.12 0.97 0.04
(1,60,100) 0.88 0.30 0.97 0.08 0.95 0.14 0.95 0.13 0.91 0.20 0.96 0.10
(1,30,100) 0.87 0.15 0.97 0.05 0.95 0.06 0.95 0.08 0.91 0.09 0.96 0.06
(1,60,200) 0.77 0.47 0.94 0.15 0.95 0.14 0.95 0.13 0.85 0.21 0.95 0.14
(1,30,200) 0.76 0.28 0.94 0.10 0.95 0.06 0.95 0.08 0.84 0.10 0.94 0.09
(10,60,9) 0.94 0.24 0.99 0.06 0.95 0.21 0.95 0.23 0.94 0.21 0.97 0.10
(10,30,9) 0.95 0.30 0.99 0.05 0.95 0.29 0.95 0.19 0.95 0.27 0.97 0.08
(10,60,100) 0.90 0.34 0.97 0.11 0.95 0.18 0.95 0.23 0.91 0.24 0.96 0.15
(10,30,100) 0.92 0.43 0.97 0.10 0.95 0.29 0.95 0.19 0.92 0.33 0.96 0.13
(10,60,200) 0.77 0.52 0.95 0.20 0.95 0.17 0.95 0.20 0.85 0.26 0.95 0.20
(10,30,200) 0.79 0.6 0.94 0.17 0.95 0.24 0.95 0.16 0.86 0.34 0.95 0.17

Production part 3, tool1: T404, tool2: T199

(1,60,9) 0.98 0.03 0.98 0.05 0.95 0.08 0.95 0.12 0.97 0.04 0.96 0.07
(1,30,9) 0.98 0.02 0.98 0.03 0.95 0.05 0.95 0.07 0.97 0.03 0.96 0.04
(1,60,100) 0.98 0.03 0.97 0.07 0.95 0.08 0.95 0.12 0.96 0.05 0.96 0.09
(1,30,100) 0.98 0.03 0.97 0.05 0.95 0.07 0.95 0.09 0.96 0.04 0.96 0.09
(1,60,200) 0.97 0.04 0.96 0.09 0.95 0.07 0.95 0.12 0.96 0.05 0.96 0.10
(1,30,200) 0.97 0.04 0.96 0.06 0.95 0.06 0.95 0.08 0.96 0.05 0.95 0.07
(10,60,9) 0.98 0.06 0.98 0.09 0.95 0.19 0.95 0.22 0.97 0.09 0.96 0.13
(10,30,9) 0.98 0.05 0.98 0.09 0.95 0.16 0.95 0.20 0.97 0.08 0.96 0.12
(10,60,100) 0.98 0.08 0.97 0.12 0.95 0.19 0.95 0.22 0.96 0.11 0.96 0.16
(10,30,100) 0.98 0.08 0.98 0.14 0.95 0.17 0.95 0.26 0.96 0.11 0.96 0.18
(10,60,200) 0.97 0.08 0.96 0.15 0.95 0.14 0.95 0.21 0.96 0.11 0.96 0.18
(10,30,200) 0.97 0.09 0.97 0.15 0.95 0.15 0.95 0.20 0.96 0.11 0.96 0.17

Table 5.2: Testing set precision, recall, and F1-score for the DeepAnT model
for N and F . The highlighted models are the ones with highest recall for F .
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The anomaly distribution of the highlighted models is visualized in Figure
5.2. As to be expected following the resulting metrics, F for T505 shows a
clear separation in anomaly score compared to N for T505. The separation
for T151 is less evident, however, we still see an increase in higher anomaly
scores beyond the threshold value for F as compared to N . To visualize the

(a) Anomaly score distribution for T505 (b) Anomaly score distribution for T151

(c) Confusion matrix of anomaly predic-
tions in N and F belonging to T505

(d) Confusion matrix of anomaly predic-
tions in N and F belonging to T151

Figure 5.2: Production part 1 anomaly distribution and confusion metric for
chosen tool errors.

anomaly progression over the eight production cycles preceding and including
the failure, Figure 5.5a shows the embedded space from a t-SNE trained
on the prediction errors leading up to the failure for T505, and Figure 5.5b
shows it for T151. Firstly, for T505, it’s easy to conclude that the prediction
errors of F show big dissimilarities in prediction errors as compared to the
predictions in N . Indeed, almost all production cycles contains time-windows
with prediction errors outside the normal working condition cluster.
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For T151, the majority of the predictions close to failure show similar
characteristics as the predictions for N . The ones that deviate mostly show
similar characteristics as anomalies belonging to N . However, we also see
prediction errors of F not seen in N in the five and six production cycles
before failures.

5.1.2.2 Production part 2

In Table 5.2, we see the classification metrics for N and F for tool failures
T606 and T1228 belonging to production part 2. In the highlighted rows we
see that the recall score of F belonging to T606 received a value of 0.29
and F belonging to T1228 received a value of 0.23. Meaning that 29%
of the time steps belonging to the eight production cycles preceding failure
for T606 are labeled as anomalies and 22 % of the time steps belonging
to the eight production cycles leading up to failure for T1228 were labeled
anomalous. A larger predictive window appears to lead to more anomalies
being uncovered for both the investigated tool failures. When comparing the
results to the smaller predictive window of one, the recall varies between 0.06-
0.14, meaning that 6 to 14 % of the time steps preceding failures are labeled
as anomalous. Furthermore, there seems to be a discrepancy concerning the
optimal history window since more anomalies are uncovered for T606 with
hw being sixty while T1228 uncovers more anomalies with hw being thirty.
Both tool failures investigated do however reach the highest recall for F with
nw being 100.

The anomaly distribution of the highlighted models with confusion matrices is
presented in Figure 5.3. While the majority of the predicted anomaly scores of
F are below the anomaly threshold, we still see spikes in high anomaly score
values above the anomaly threshold for both T606 and T1228. To visualize
the anomaly progression over the eight production cycles preceding failure,
Figure 5.5c and Figure 5.5d shows the t-SNE embedded space of the prediction
errors for tool T606 and T1228 respectively. For T616, we can see that several
prediction errors of F have a clear separation from N in the same production
cycle as the failure occur. In addition, there exist several smaller clusters
outside the range of the normal working condition, for example, looking at
coordinate (25,−125) of the embedded space. Here, we see a cluster with
prediction errors from up to 4 production cycles before failures. We also see
a cluster at coordinate (−125,−55), however, occurrences of anomalies from
N are seen in this section too.
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(a) Anomaly score distribution for T606 (b) Anomaly score distribution for T1228

(c) Confusion matrix of anomaly predic-
tions in N and F belonging to T606

(d) Confusion matrix of anomaly predic-
tions in N and F belonging to T1228

Figure 5.3: Production part 2 anomaly distribution and confusion metric for
chosen tool errors.
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For T1228, the majority of the prediction errors in F with different
characteristics to N are seen in the production cycle containing the failure
and one production cycle before failure.

5.1.2.3 Production part 3

In Table 5.2, we see the classification metrics for N and F for tool failures
T404 and T199 belonging to production part 3. Similar to the previous tool
failures pw has a significant impact on the anomaly distribution of F . Neither
of the model with single steps predictions has a recall for F above 0.08 for
T404 and 0.12 for T199, meaning 8 % and 12 % labeled anomalies previous
to failure. However, T404 and T199 reaches a maximum recall for F of 0.19
and 0.26 respectively with pw being ten. Lastly, most anomalies are uncovered
with nw being set to 100.
The anomaly distribution of the highlighted models with confusion matrices

is visualized in Figure 5.4. For T404, while we still see a larger presence of
high anomaly scores compared to the distribution of N , unlike the previous
production parts, the anomaly distributions of F seem more similar to the
normal data N . This is further demonstrated through the t-SNE visualization
in Figure 5.5e. The predictions belonging to F that are separate from N do,
in almost all cases, have normal anomalies nearby in the embedded space.
Otherwise, there do not seem to be any other deviating clusters formed by F .
T199 shows a slightly more dissimilar distribution of anomalies comparing
N and F in Figure 5.4. In the t-SNE visualization presented in Figure 5.5f
we also see that below four production cycles until failures, several prediction
errors in F show distinct prediction errors compared to N .
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(a) Anomaly score distribution for T404 (b) Anomaly score distribution for T199

(c) Confusion matrix of anomaly predic-
tions in N and F belonging to T404

(d) Confusion matrix of anomaly predic-
tions in N and F belonging to T199

Figure 5.4: Production part 3 anomaly distribution and confusion metric for
chosen tool errors.
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(a) Production part 1, T505

(b) Production part 1, T151

Figure 5.5: T-SNE visualization of the DeepAnt forecasting error for
production part 1. The perplexity of the t-SNE was set to 80.
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(c) Production part 2, T606

(d) Production part 2, T1228

Figure 5.5: t-SNE visualization of the DeepAnt forecasting error for
production part 2. The perplexity of the t-SNE was set to 80.
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(e) Production part 3, T404

(f) Production part 3, T199

Figure 5.5: T-SNE visualization of the DeepAnt forecasting error for
production part 3. The perplexity of the t-SNE was set to 80.
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5.2 ROCKET OCSVM
In this section, we will begin with investigating the cross-validation result
for the model selection phase. We will then continue to evaluate anomaly
distribution and characteristics based on the chosen models predictions of the
testing set for N and F .

5.2.1 Cross validation
To begin, the hyper-parameter tuning with the 5-fold cross-validation scheme
is presented in Table 5.3 and Table 5.4. These results will be used as an
indication for the parameter selection before the final training and evaluation.
The first conclusion that can be made that holds for each production part and
tool failure is concerning the recall of N . We see that the performance on
labeling N as non-anomalous generalizes well for the validation data. The
mean recall for N is never below 0.984 and reaches the limit of 0.01 % errors
set for the training set through the parameter τ in many instances. It is worth
stating that the sigmoidal and polynomial kernels are superior for reaching a
higher recall score for N . This is expected following the reasoning in Section
4.2.2. Indeed, since we are training the OCSVM in a semi-supervised setup
with the assumption that all the data belongs to one class a higher recall might
be a result of a less restrictive hyperplane separation calculated from the kernel
function. When observing the mean recall score ofF , we can also see that RBF
is generally better for separating the normal and failure data.
To continue with the discussion, since the result for F varies between
the different production parts and tool failures we will present the results
separately for each production parts.
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OCSVM cross validation

Kernel l nw
Recallσ

N F

Production part 1: tool T505

Sig 232 9 0.990 0.667
Sig 232 100 0.990 0.667
Sig 232 200 0.986 0.667
Rbf 232 9 0.990 0.667
Rbf 232 100 0.984 0.667
Rbf 232 200 0.985 0.667
Poly 232 9 0.990 0.667
Poly 232 100 0.990 0.667
Poly 232 200 0.985 0.667

Production part 2: tool T606

Sig 96 9 0.990 0.364
Sig 96 100 0.989 0.382
Sig 96 200 0.987 0.364
Rbf 96 9 0.986 0.364
Rbf 96 100 0.988 0.368
Rbf 96 200 0.987 0.364
Poly 96 9 0.990 0.364
Poly 96 100 0.989 0.382
Poly 96 200 0.990 0.364

Production part 3: tool T404

Sig 90 9 0.990 0.111
Sig 90 100 0.989 0.222
Sig 90 200 0.990 0.222
Rbf 90 9 0.988 0.155
Rbf 90 100 0.989 0.4
Rbf 90 200 0.986 0.378
Poly 90 9 0.990 0.011
Poly 90 100 0.989 0.133
Poly 90 200 0.990 0.133

(a) l set to a half of minimum failure
production cycle length

OCSVM cross validation

Kernel l nw
Recallσ

N F

Production part 1: tool T505

Sig 116 9 0.990 0.454
Sig 116 100 0.989 0.455
Sig 116 200 0.990 0.454
Rbf 116 9 0.988 0.636
Rbf 116 100 0.988 0.727
Rbf 116 200 0.987 0.655
Poly 116 9 0.990 0.455
Poly 116 100 0.989 0.455
Poly 232 200 0.990 0.455

Production part 2: tool T606

Sig 48 9 0.989 0.529
Sig 48 100 0.989 0.529
Sig 48 200 0.989 0.517
Rbf 48 9 0.989 0.517
Rbf 48 100 0.989 0.529
Rbf 48 200 0.987 0.529
Poly 48 9 0.990 0.529
Poly 48 100 0.989 0.517
Poly 48 200 0.989 0.517

Production part 3: tool T404

Sig 45 9 0.990 0.111
Sig 45 100 0.989 0.111
Sig 45 200 0.989 0.111
Rbf 45 9 0.988 0.232
Rbf 45 100 0.988 0.222
Rbf 45 200 0.987 0.222
Poly 45 9 0.990 0.11
Poly 45 100 0.990 0.111
Poly 45 200 0.989 0.111

(b) l set to a third of minimum failure
production cycle length

Table 5.3: The resulting mean recall (Recallσ) for pre-failure production
cycles and normal production cycles over each of the 5 cross validation splits.
Kernel is the kernel-function used during OCSVM training, τ , meaning the
upper bound set for the percentage of false positives, is set to 0.01. nw is
the amount of cycles before failures excluded from N . The highlighted rows
indicate the hyper-parameter setups chosen for evaluation.
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OCSVM cross validation

Kernel l nw
Recallσ

N F

Production part 1: tool T151

Sig 243 9 0.989 0.0
Sig 243 100 0.990 0.0
Sig 243 200 0.989 0.0
Rbf 243 9 0.987 0.0
Rbf 243 100 0.987 0.125
Rbf 243 200 0.986 0.225
Poly 243 9 0.989 0.0
Poly 243 100 0.990 0.0
Poly 243 200 0.989 0.0

Production part 2: tool T1228

Sig 220 9 0.990 0.0
Sig 220 100 0.989 0.0
Sig 220 200 0.984 0.0
Rbf 220 9 0.985 0.3
Rbf 220 100 0.978 0.25
Rbf 220 200 0.978 0.25
Poly 220 9 0.990 0.0
Poly 220 100 0.989 0.0
Poly 96 200 0.989 0.0

Production part 3: T199

Sig 90 9 0.990 0.182
Sig 90 100 0.989 0.181
Sig 90 200 0.990 0.181
Rbf 90 9 0.989 0.0911
Rbf 90 100 0.987 0.273
Rbf 90 200 0.987 0.2
Poly 90 9 0.990 0.182
Poly 90 100 0.989 0.182
Poly 90 200 0.989 0.182

(a) l set to a half of minimum failure
production cycle length

OCSVM cross validation

Kernel l nw
Recallσ

N F

Production part 1: T151

Sig 120 9 0.990 0.5
Sig 120 100 0.990 0.5
Sig 120 200 0.986 0.5
Rbf 120 9 0.987 0.5
Rbf 120 100 0.984 0.75
Rbf 120 200 0.983 0.75
Poly 120 9 0.990 0.5
Poly 120 100 0.990 0.5
Poly 120 200 0.986 0.5

Production part 2: T1228

Sig 110 9 0.990 0.0
Sig 110 100 0.990 0.0
Sig 110 200 0.988 0.0
Rbf 110 9 0.989 0.0
Rbf 110 100 0.987 0.029
Rbf 110 200 0.987 0.03
Poly 110 9 0.989 0.0
Poly 110 100 0.990 0.0
Poly 110 200 0.989 0.0

Production part 3: T199

Sig 45 9 0.990 0.14
Sig 45 100 0.990 0.1
Sig 45 200 0.989 0.1
Rbf 45 9 0.989 0.045
Rbf 45 100 0.989 0.2
Rbf 45 200 0.989 0.03
Poly 45 9 0.990 0.14
Poly 45 100 0.990 0.136
Poly 45 200 0.989 0.05

(b) l set to a third of minimum failure
production cycle length

Table 5.4: The resulting mean recall (Recallσ) for pre-failure production
cycles and normal production cycles over each of the 5 cross validation splits.
Kernel is the kernel-function used during OCSVM training, τ , meaning the
upper bound set for the percentage of false positives, is set to 0.01. nw is the
window of cycles before failures excluded from training. The highlighted rows
indicate the hyper-parameter setups chosen for evaluation.
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5.2.1.1 Production part 1

Observing the results for production part 1 of Table 5.3, it is evident that for
T505, with a large time-window, the parameter nw has no impact on the mean
recall for F . Conversely, a large nw seems to lead to a lower recall score for
N without affecting the recall for F . However, when decreasing the window-
size, nw seems to have a more noticeable impact on recall of F , showing the
highest number of uncovered anomalies when nw is set to 100.
Investigating Table 5.4, we can see a noticeable decrease in recall for F

belonging to T151 with a larger window-size. The best performing kernel
function based on the mean recall of F was RBF, it was also the only kernel
function showing a increase in mean recall for F when using a larger nw.

5.2.1.2 Production part 2

Observing the results for production part 2 of Table 5.3, one can conclude that
for T161 the parameter nw seems to have a noticeable impact on the recall
score when using a larger time window l. Independent of the kernel function
the highest mean recall for F was always attained with nw being 100. For
the smaller time window, this pattern is not as visible since the only kernel
function that benefits from a larger nw is RBF. We can also see that we had
equal performance when using the sigmoidal kernel with nw set to 9 and for
RBF with nw set to 100. Since RBF outperformed the other kernel functions
for production part 1, RBF was prioritized for continued testing.

Observing the results for production part 2 of Table 5.4, for T1228, RBF is the
only kernel that uncovers any anomalies in F independent of the time window.
One can also conclude that the optimal value for nw differed depending on
the time window l investigated. Nonetheless, the highest recall for F was
uncovered with a larger window size and in this instance, nw being set to 9
gave the highest mean recall for F .

5.2.1.3 Production part 3

Observing the results for production part 3, we begin with investigating the
recall for T404 in Table 5.3. One can conclude that nw seems to have a great
impact on the number of anomalies detected in F with the larger time window
l. Increasing nw from 9 to 100 increased the mean recall of F by 30 %
for the RBF kernel. A slight increase is also shown for the Sigmoidal and
Polynomial kernels. Additionally, in almost every case using a smaller time
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window decreases the mean recall of F .
In Table 5.4 we see the result for T199. We can conclude that the sigmoidal
and polynomial kernels are negatively affected by an increase in nw for both
time windows l. However, RBF sees a vast increase in recall for F with nw

being set 100 independent of l. It also reaches the highest mean recall for F
with a larger time window chosen.

5.2.2 Evaluation of testing set
Table 5.5 shows the evaluation of the testing set with the parameter setups
chosen from the 5-fold cross-validation for each tool failure of each production
part. To further demonstrate the anomaly distribution and comparingN andF ,
we can observe the true values over the rows in confusion matrices presented
in Figure 5.7. To begin, we can see that N reaches a recall of 99 % for almost
all production parts. Knowing that the threshold τ was set to 0.01, we can
see that this threshold generalizes to the testing data belonging to N . The
only exception is T1228 which received a recall of 0.96. Nonetheless, we can
conclude that the number of anomalies uncovered in the normal training and
testing sets are almost always equal. Following this decreased number of false
positives, we can also see that the precision for F has shown a large increase
as compared to the DeepAnt model. This means that, especially considering
the imbalance of the data-set, ROCKET OCSVM have a significantly smaller
false positive to true positives ratio compared to DeepAnT, ranging from 33 %
to 89 %. Indeed, we also see a increase in recall for F compared to DeepAnt.
The only exception being T199 which showed a decrease from 26 % to 17 %
uncovered anomalies in F with the ROCKET OCSVM setup.
However, while a increase in anomalies is seen previous to all tool failures,
the increase differs significantly between the different tools.
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OCSVM testing result

Precision Recall f1-score Production part
N F N F N F
0.98 0.75 0.99 0.68 0.98 0.71 Part 1, T505
0.92 0.89 0.99 0.49 0.95 0.63 Part 2, T161
0.98 0.41 0.99 0.22 0.98 0.29 Part 3, T404
0.96 0.58 0.98 0.35 0.97 0.44 Part 1, T151
0.96 0.33 0.96 0.31 0.96 0.32 Part 2, T1228
0.98 0.37 0.99 0.17 0.98 0.23 Part 2, T199

Table 5.5: Testing set precision, recall, and f1-score for the models selected
from the 5-fold-cross-validation.
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5.2.3 T-SNE Visualization of anomalies
To get a further understanding of the anomalies, a T-SNE visualization of the
ROCKET features used in the anomaly detection task for each tool failure is
shown in Figure 5.6. Before presenting the results for each production part, we
can see that the time window chosen affects the amounts of clusters belonging
to N in the embedded space. Interestingly, the clusters seem to represent the
different parts of the production cycle process belonging to the specified time
window. Indeed, with a large time window chosen, we get fewer ROCKET
features for each production cycle, each with characteristics over a larger time
frame, which therefore forms a smaller amount of clusters. A small time
window results in a larger amount of ROCKET features per production cycle,
capturing characteristics over smaller time frames of the production process
and resulting in a larger amount of clusters.

5.2.3.1 Production part 1

For production part 1, observing Figure 5.6a, we can see that for T505 N form
4 distinct clusters. Knowing that the time window was chosen as 116, and
the normal production cycle length is around 7 minutes, this further supports
the previous reasoning in Section 5.2.3 in regards to the clusters belonging to
different parts of the production cycles. Furthermore, even though not every
time window belonging to F is classified as anomalies, we see that neither
one is centered in any of the clusters formed by N . Interestingly, already at
production cycle 7 before failure, we can see deviating time windows that are
classified as anomalies by the OCSVM.
Observing Figure 5.6b, for T151, the majority of the predicted anomalous
time windows that deviate from the predicted anomalies of N are seen in 5,6,
and 7 production cycles before failure. Interestingly, the amount of predicted
anomalous time windows closer to the failure decreased, only showing one
labeled anomalous time-step in the three production cycles previous to failure.

5.2.3.2 Production part 2

For production part 2, in Figure 5.6c, we can see that for T161, there are a
larger amount of clusters formed by N , which is likely a result of the smaller
time window of 48. Furthermore, in regards to F , there seem to be no labeled
anomalous segments 5 production cycles or above the investigated failure.
The earliest anomaly is seen 4 production cycles before failure, however, the
majority of the predicted anomalies exist in the same production cycle as the
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failure, with a large cluster forming outside of the normal working state. Small
deviating clusters that include the majority of the production cycles in F are
also formed, for example around the area of coordinate (10, 13). However,
neither of these is labeled anomalous by the OCSVM.
Observing Figure 5.6d, we can see that for T1228, the larger time window
selected from the cross-validation results in two clusters for N . Furthermore,
the only production cycle that shows predicted anomalous time windows
that are different from the normal working condition is the production cycle
previous to failure. However, several non-predicted anomalous time-window
in 4, 5, and 6 production cycles before failure can be observed at the edge of
the lower cluster formed by N .

5.2.3.3 Production part 3

For production part 3, following the visualization of T404 in Figure 5.6e, we
can see that the number of time-windows of F that deviates from the clusters
formed by N increase quickly as we get closer to the investigated failure.
Indeed, no evident deviations is seen before the five production cycles previous
to the failure. However, one can also conclude that several time windows
belonging to F that is outside the clusters formed by N in the embedded space
are not classified as anomalies by the OCSVM.
Lastly, observing Figure 5.6f, we can conclude that for T199 similarities exist
to tool T404. No indication of anomalies is seen above five production cycles
before failure, and a sudden increase in deviating time windows is seen in the
three production cycles leading up to the failure. Also, as for T404, many of
the time windows in F that deviate from the clusters formed by N are not
classified as anomalies by the OCSVM.
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(a) Production part 1, T505

(b) Production part 1, T151

Figure 5.6: T-SNE visualization of the testing data for production part 1. The
perplexity of the t-SNE was set to 80.
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(c) Production part 2, T606

(d) Production part 2, T1228

Figure 5.6: T-SNE visualization of the testing data for production part 2. The
perplexity of the t-SNE was set to 80.
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(e) Production part 3, T404

(f) Production part 3, T199

Figure 5.6: T-SNE visualization of the testing data for production part 3. The
perplexity of the t-SNE was set to 30.



Results and Analysis | 81

(a) Production part 1, T505 (b) Production part 1, T151

(c) Production part 2, T606 (d) Production part 2, T1228

(e) Production part 3, T404 (f) Production part 3, T199

Figure 5.7: Confusion matrices for each of the chosen models used in the
anomaly detection task with ROCKET OCSVM.
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Chapter 6

Discussion

Following the results of the experiments, we now want to turn back the
focus to research questions and discuss them in the context of the results.
We will present a separate discussion for DeepAnT and ROCKET OCSVM
then continue with a comparison, discussing their advantages for usage in
predictive maintenance. Before this, it is important to note that no results
using benchmarks data-sets could be found that use MTConnect data for
CNC-machines. Previous research that have investigated CNC-machines
have mostly taken use of synthetically injected anomalies constructed through
domain knowledge regarding the production process and MTConnect. Also,
the data used in this research comes from an currently active CNC-machine
that has not been investigated previously. Thereby, no direct comparisons
regarding the metrics scores can be done against related works. However,
some work have investigated using dimensionality reduction techniques in
order to visualize possible anomalies connected to failures using MTConnect
data [74], and will serve as a point of comparison in the discussion.

6.1 DeepAnT
We will start with discussing the results of the forecasting ability of the
DeepAnT model and continue with the anomaly distribution between normal
and pre-failure state data.

6.1.1 Forecasting abilities
Following research question 1, we wanted to investigate the forecasting
performance and its dependency on the effect of the parameters nw, pw, and
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hw.
Firstly, we can conclude that the forecasting performance was very similar
independently of hw. In some cases, a smaller predictive window reached
a lower MAE, for example when comparing rows 3 and 4 of Table 5.1 for
production part 1. Possibly, the history window of 30 provides a sufficient
amount of information to make the prediction, and the increase to 60 is
superfluous. Also, since the production cycles can have stoppages between
them and the production part can change over time, we extracted the time
windows separately from each production cycle. With the sliding window
approach used, predictions can only be made after 60-time steps with hw being
60. When hw is 30, predictions can be made after collecting 30-time steps of
each production cycle. Therefore, the smaller history window will contain
data that the larger predictive window does not have available and, possibly,
if this data is more elementary to forecast, this would result in a lower average
MAE. In either case, in terms of forecasting performance, 30-time steps seem
to suffice.

In regards to the parameter nw, there was once again little difference between
the final MAE. The parameter was added to investigate the prolonged
degradation of machine tools. If any long time slight deviations occur in the
data before the machine failures, then these would likely affect the forecasting
performance. Since the MAE was not affected by the parameter of nw,
this trial seemed to indicate that no long-term deviations were leading up to
failures, at least not apparent enough for the CNN to be affected during training
and validation. It can be worth noting however that a larger nw, of course,
results in a lower amount of training data, and since we use the same number
of epochs for training, the similar performance still indicates that the removed
production cycles do not benefit the training. The lesser amount of data is
sufficient to converge to a training loss minimum, which could be valuable
information since a lower amount of production cycles are necessary to reach
satisfying forecasting results.

Lastly, increasing pw greatly affects the final MAE. Of course, this is to be
expected considering that multi-step predictions are generally a harder task
than single-step predictions. However, changing pw can still have a notable
effect on the anomaly detection algorithm, which will be discussed in the next
section.
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6.1.2 Anomaly detection
Following research question 2, we wanted to investigate the distribution of
anomalies leading up to failures (F ) as compared to the anomaly distribution
of the normal working state (N ). To begin, we can see that an increase in
anomalies is seen in the eight production cycles leading up to failures for all
tool failures investigated. The number of anomalies never extended beyond
5 % for N , while for F , the number of anomalies belonging to the eight
production cycles before failure mostly varied between 19 and 29 % anomalies.
A even larger amount could also be seen for tool failure T151 that reached 58
% anomalies.

Following research question 4, we wanted to discuss how early anomalous
segments seem to appear that could be connected to failures. Following the t-
SNE visualizations and the result of section 5.1.2, we can once again conclude
that the result deviates dependent on the tool failures. For the tool failure of
T505 of production part 1, the anomalous segments seem to be present in all
eight production cycles leading up to failure, indicating a possible gradual
degradation of the machine tools.
For other tool failures, like T606, there seem to be only anomalous segments
in the production cycle of the failure, likely indicating that there is a sudden
error in the production process. Similarly, the tool failure of T199 also showed
several production cycles with normal working characteristics, followed by
sudden anomalous segments present in the three production cycles leading up
to failure. This, once again, could indicate a sudden error in the production
process.
In other cases, like T404 of production part 3, all pre-failure predictions have
similar characteristics as the normal production cycle predictions, since they
are placed nearby in the embedded space. It is therefore hard to conclude if
these anomalies are indications of failures or if they are simply normal working
conditions that the forecasting model fails to predict with high accuracy. To
conclude, how early anomalies connected to failures are visible fluctuates
greatly between different tool failures.

While the forecasting ability was not greatly affected by the investigated
parameters, the anomaly detection results differed significantly in terms of
recall for F . Especially considering the multi-step and single-step models.
As presented previously, multi-step prediction gives more reliable results
than single-step predictions in regards to capturing changes in amplitude,
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frequency, or other characteristics connected to collective anomalies.
Possibly, this indicates that the anomalies that do occur previous to failure are
collective anomalies. Furthermore, point anomalies can be greatly affected
by a pre-processing scheme like the one presented in this report. The initial
sensory channels were too volatile to perform a forecasting approach on and
the smoothing of the time series, including exponential moving average and
log-transformation, was done to uncover the underlying trend and relevant
patterns to make possible anomalies stand out. This can affect possible point
anomalies connected to failures.
Furthermore, for all investigated tool failures the number of anomalies
previous to failures was increased with a larger value of nw and finding an
optimal value with nw being set to 100. This contradicts the results from the
forecasting MAE. One possible reason for this result could be over-fitting
to the smaller amount of production cycles trained on. However, then we
would likely see noticeable decrease in training loss and a bigger difference in
validation and training loss.

Lastly, to compare to related work, Zhang et al. also showed the possibility
of detecting and visualizing anomalous segments of MTConnect data using
PCA and a separate feature extraction methodology previous to a tool failure
[74]. However, this research only focused on one specific tool failure and
only investigated one production cycle before the involved failure. Indeed,
following this research, there seems to exist possible anomalies even further
back than one production cycle for multiple tools. It is important to note
however that the embedded space of the t-SNE used for the DeepAnT
prediction errors seems to give less intuitive visualization of anomalies. This
could possibly be a result of inefficient parameter selection. While the
perplexity was increased to separate the densely-distributed prediction errors
better, the value might still be to small to visually separate the anomalies from
the non-anomalies in a comprehensive manner.

6.2 ROCKET OCSVM
Following research question 3, we wanted to investigate the distribution of
anomalies leading up to failures (F ) as compared to the anomaly distribution
of the normal working state (N ), for the ROCKET OCSVM. Firstly, this
anomaly detection technique also found an abundance of anomalies in the eight
production cycles leading up to failures compared to the normal working state
of the machine. For comparison, observing the final recall, we see that N
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contained only 1 % labeled anomalies for almost all investigated production
part processes. However, in the time windows of F , the number of anomalies
ranged between 17 % and 68 % for the investigated tool failures. Once again,
a clear increase in anomalies.

Next, for the time window removal, or the value of nw, following the initial
5-fold-cross validation the optimal value seems to be 100. For almost all
investigated tool failures, the combination of RBF-kernel and nw being set
to 100 gave the highest recall for F , the only exception being T1228 for
production part 2 which showed the highest performance with nw being 9.
However, we could also see that T1228 reached the lowest recall for N in the
testing phase. One possibility is that for the training, validation, and testing
data split, a large amount of the data belonging to the 100 production cycles
before failures was included in the testing data. The drop in recall during
testing would then indicate that there indeed are anomalous segments in these
production cycles. This would also explain why the 5-fold cross-validation
was not greatly affected by including these production cycles for T1228, but
the remaining tool failures were.

To answer research question 4, meaning how far back anomalies occur that
could be an indication of future failure, we turn to the t-SNE visualization of
Figure 5.6 and the results presented in Section 5.2.3. Similarly to DeepAnt
the characteristics of anomalies vary between tool failures. While certain tool
failures like T505 show clear deviations from the normal working condition
in all eight production cycles leading up to the failure, other failures like T161
only show an abundance of anomalies in the production cycle containing the
failure. Once again, we can conclude that the antecedency of anomalies vary
for involved tool failures.

Lastly, to compare the results to Zhang et al. [74]. The t-SNE plot for the
ROCKET features seems to not only give similar interoperability, possible
following from the less-dense distribution of the ROCKET features, but
once again finds time windows further back than one production cycle for
several tools that could give indications for future failures. Furthermore, the
occurrence of separate clusters for different parts of the production process
discussed in the results could enable enterprises to investigate the state of the
machine during the different time-windows.
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6.3 DeepAnT and ROCKET OCSVM compar-
ison

Regarding research question 5, we wanted to answer how the models compared
regarding the anomaly detection task and which one is the most reliable for
manufacturing enterprises. Firstly, we can see that both models indicate,
somewhat, similar amounts of anomalies pre-failures. For example, both
methods agreed on the higher anomaly distribution before the tool failure T505
compared to the other tool failures. They both also agreed on an increased
amount of anomalies mainly in the same production cycle as the failure
for T161. Interestingly, both models also agreed that for T151, anomalous
segments are only seen five production cycles or longer before failure and
that the time windows closer to the failure contain fewer anomalies. One
possibility is the usage of different tools in different production cycles. The
tools used in each production cycle can indeed change and the anomalies
that do occur may be only connected to the active regions of the tool that
later breaks. Possibly, T151 was not active in the four production cycles
up until failure which would explain the results of both models. In either
case, the similarity of the results from the different methods for several tool
failures gives credibility to the results of the separate models. Both models
also separated the normal working condition data and failure data optimally
with 100 production cycles excluded before failure for almost all tool failures
investigated. This indicates that the removed production cycles do contain
some sort of noise or anomalies that affects the anomaly detection task. This
also answers research question 6 where we can conclude that the optimal value
of excluded pre-failure production cycles is 100.
Furthermore, ROCKET OCSVM shows more success in differentiating
between the anomaly distribution of N and F , considering the higher recall
for both N , but also F when comparing the results. One possible reason
for this could be the nature of the anomalies. While DeepAnT looked at
smaller time-frames, predicting either one time step or ten-time steps ahead,
OCSVM investigates the presence of anomalies over a larger range of time
steps. This is further supported by the results and discussion of DeepAnt
in Section 6.1 where the multi-step prediction was superior in uncovering
anomalies connected to tool failure, indicating that the anomalies present are
collective.

To discuss the reliability of both models in a real manufacturing setup, while
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DeepAnT was trained entirely in the LUPE setup, the ROCKET OCSVM did
use a small portion of the failure time window for feature selection following
the ROCKET feature extraction process. In a real manufacturing setup,
enabling the usage of a model through a small amount of failure time steps
creates a dependency on available labeled failures. Conversely, the LUPE
setup does not need this, and might therefore be more practical. Another
argument in support of the DeepAnT model is the forecasting approach of
anomaly detection. While ROCKET OCSVM can only make predictions
on previously collected observations, DeepAnT can make predictions on
forthcoming values and label them in real-time. However, it is worth
stating that the normalized cycle-time feature used for DeepAnT would not
be available for making real-time predictions since it depends on the full
production cycle time. It would therefore be necessary to investigate its
performance excluding this feature.
Lastly, as described previously for predictive maintenance one of the most
important considerations when enabling the anomaly detection method for
usage in real manufacturing setups is the number of false positives generated
by the model. Any false alarm connected to a false anomaly prediction
might halt the production process and thereby reduce both the efficiency of
the production process and the reliability of the model. Considering that
ROCKET OCSVM showed a higher recall for N , meaning fewer anomalies
uncovered in the production cycles that do not lead to failure, while in many
cases finding a larger amount of anomalies pre-failure, ROCKET OCSVM
seems to be a more optimal choice in a real manufacturing setup.

6.4 Limitations
There are parts of the methodology that needs to be considered in the results.
To begin, while it is necessary to incorporate methods for handling missing
time stamps, the impact of linear interpolation is not investigated through the
results. The tool failures picked in the evaluation were chosen with this in mind
and only failures including low amounts of added time-stamps were considered
for the evaluation. However, since no investigation regarding the impact of
this pre-processing method was done, the results could be affected without
our knowledge.
Secondly, only two tools were investigated for each production part process.
Further investigation of the remaining tools could be needed to draw more
generalized conclusions regarding the presence of anomalies before failures.
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Especially considering the feature selection process of ROCKET features.
While ROCKET OCSVM shows promising results for separating the normal
working condition and pre-failure production cycles through anomalies, the
effect of the feature selection process is not investigated entirely. It could be
possible that the feature selection method proposed allows us to fit the anomaly
detection model very well to the specified failures while failing to generalize
to new tool failures not investigated in this research.

6.5 Sustainability
Following the results of this study, there indeed seem to exist indications
for future failure in the machine data based on the anomaly distribution
of pre-failure and normal working conditions of the machine. While a
full predictive maintenance strategy is not realized, this shows that it is
possible, and several of the sustainability impacts listed in Section 1.6, could
be achieved following the incorporation of predictive maintenance in the
system of the CNC machine. This includes the reduction of research usage,
reduced downtime of machines, and increased operator safety. However, to
further discuss the topic of sustainability from the results, we can begin with
discussing economic consequences. It is important to consider that the work
was tailored to the data of one CNC machine. Indeed, to test the generalized
performance and avoid possible bias, further research could be needed to
ensure that the results are fair. Aimlessly using the same methodology for
very different production processes might not yield the same results, and the
consequent financial investments needed to realize the system could be lost.
Indeed, since anomaly detection can be applied in a wide variety of areas,
this problem is not limited to the area of manufacturing. Anomaly detection
has seen increased interest in security, medical and financial applications in
recent years. While the methodology of this work could be extended to these
areas, possibly increasing efficiency and economic gain, it is important to
consider the data characteristics available to reach optimal performance and
avoid redundant financial investments.

Furthermore, in regards to an ecological perspective, while the training of
machine learning models can require computational power and thereby result
in large energy consumption, the chosen architectures show good parameter
efficiency and low training time compared to other architectures like recurrent
neural networks. This results in a lower computational cost and therefore lower
energy consumption as a result of model training. It is also worth stating
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that identifying pre-failure states could help identifying inefficient tool usage
since the methodology allowed us to investigate the state of different active
tools and different tool failures. Having efficient tool usage results in more
efficient production processes and allow manufacturing enterprises to reduce
the activity time of machines, resulting in lower energy consumption or carbon
emission of the involved machines.

From the social perspective, Section 1.6 already presented the problem of
automation of human working tasks, but further points can be made regarding
the effect on workplace personnel. There should exist support for the operators
in transitioning to a predictive maintenance strategy, for example using
explainability, to ensure that they have sufficient skills in dealing with the
transition. Once again, this problem is not limited to the area of manufacturing.
Creating a dependency on machine learning solutions in society should be
controlled since we want to use human domain knowledge and machine
learning systems together. To enable this, we need satisfactory human-
computer interaction strategies.

6.6 Conclusions
In this work, we have investigated the potential of using anomaly detection
as an indicator for future tool failures in an active CNC machine. We
proposed two different semi-supervised anomaly detection models for the
task, DeepAnT, and ROCKET OCSVM, and evaluated both models based on
different parameter setups. For DeepAnT, we concluded that the forecasting
performance was not highly dependable on the parameters nw and history
window but saw a high decrease in performance for a larger predictive
window. However, for the anomaly detection task, the result was highly
dependable on nw and the predictive window. Indeed, setting nw to 100
and a larger predictive window of 10 showed the most reliable results for
separating the normal and pre-failure data based on anomalies. This shows that
manufacturing enterprises need to differentiate between the anomaly detection
model’s regression abilities and the anomaly detection score. Indeed, for
forecasting anomaly detection models such as DeepAnT, the optimal anomaly
detection score does not seem to be reached with a lower regression loss.
For ROCKET OCSVM, using the RBF Kernel with nw being 100 showed
the most promising results for separating normal and pre-failure data. Both
models thereby agreed that for the majority of the tool failures, optimal
performance is reached with 100 production cycles excluded before failure.
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This indicates that possible degradation or further anomalies are present pre-
failure and could give reasons to explore degradation monitoring based on
MTConnect data further.
Both of the models also predict an abundance of anomalies previous to failures
for every tool failure investigated when compared to the normal working
condition data of the machine. The models also agreed on the characteristics
of the anomalies where certain tool failures showed anomalies as far back as
eight production cycles and other tool failures only show anomalies in the
production cycle containing the failure. Nonetheless, this shows the possibility
of using anomaly detection on MTConnect data as a foundation for predictive
maintenance. Alarm rules could be based on anomalies to indicate possible
future tool failures. If realized, the automatic detection of future failures could
reduce the need for preventive or reactive maintenance, machine downtime,
resources, and expenses resulting from machine failure.
Lastly, we observed that ROCKET OCSVM achieves a lower false positive
rate, meaning a lower number of anomalies uncovered in production cycles
that do not lead to failure, while the majority of the tools find an increased
amount of anomalies pre-failure. Following the importance of not delivering
false alarms to operators during production processes, ROCKET OCSVM
seems to be a more reliable alternative for real manufacturing enterprises.

6.7 Future work
Anomaly detection is a great initial step to realize other predictive maintenance
strategies in manufacturing. For example, considering that anomalies do seem
to be uncovered before failure, one interesting extension that could be of
interest to manufacturing companies is the estimation of the remaining useful
time (RUL) of machine tools. Previous research has shown how conventional
RUL estimators can achieve significant performance increases when being
coupled with anomaly detection methods [111]. Of course, while this research
investigates the occurrence of anomalies separately for each part production
process, this would require going even further in the data separation process
and investigating the status of each tool, for each production part, separately.
To enable this, the frequency of the data-gathering process might need to be
increased since the time-window of the separate tools being used is very low
compared to the production cycle length§.
Lastly, the results show promising results for using ROCKET as a feature
extraction method for anomaly detection in time series. However, observing
the t-SNE visualization of Figure 5.6, there seems to exist deviating time
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windows belonging to pre-failure production cycles that are not classified as
anomalies by the OCSVM. This could indicate that the performance of the
OCSVM is a bottleneck in the anomaly detection task and future research
could investigate the performance of other unsupervised anomaly detection
algorithms coupled with ROCKET, including LOF, DBSCAN, or Isolation
Forrest.
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