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Abstract 

Analyzing Voltage Sag Direction using Protective Relays and 

Deep-learning Methods 

Lekhaj Patha, M.S.E 

The University of Texas at Austin, 2023 

Supervisor:  Surya Santoso 

As the electricity demand continues to grow, power systems are becoming more 

complex and interconnected, making the need for reliable protection systems more 

important than ever. Protection systems are designed to detect and isolate faults and other 

abnormal conditions, preventing them from cascading through the power grid and 

causing widespread outages. The primary challenge in protection is to detect the fault, the 

type of fault, and the location of the fault. Traditional relays effectively locate, detect, and 

isolate faults. Circuit breakers, fuses, and relays, these devices work together to ensure 

the power system remains stable and reliable, under various conditions including system 

failures. Smart Intelligent relays (SIRs) are designed to perform a broader range of 

functions, such as fault location, and power quality monitoring.  Machine learning 

techniques are increasingly applied in power systems protection to enhance fault 

detection and classification accuracy and speed. ML algorithms can be used to analyze 

real-time data from sensors and other devices to detect and classify faults, including those 

that may be too small or subtle to be detected by traditional protection systems. 
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The thesis aims to study methods of identifying the direction of voltage sags in 

the distribution circuits. Voltage sags arise from the presence of short-circuit faults 

involving single, double, and three phase-to-ground conditions. The direction of the fault 

is based on the direction of power flow before the occurrence of the event. A fault can be 

classified as a downstream fault from a monitoring location if the direction of power flow 

is towards the fault location before the occurrence of the event. Similarly, a fault can be 

classified as an upstream fault if the direction of power flow is against the fault location 

before the occurrence of the fault. The terms upstream and downstream are relative to the 

monitor location. A downstream fault for one monitor can be an upstream fault for a 

different monitor. This thesis studies the applications of protective relaying and deep 

learning techniques in identifying the direction of voltage sags using the real-time 

waveforms of voltage and current to estimate whether the fault is upstream or 

downstream from the monitored location(s). The fault data was generated using a time-

domain power system modeling tool with variable fault impedances and multiple fault 

locations. Relay-based approaches have been studied, and a deep-learning technique has 

been developed with the data generated. The relay-based techniques were capable of 

identifying the fault direction in all the cases irrespective of the fault location and fault 

duration. ML algorithms can help analyze large amounts of data and detect patterns that 

may be difficult or impossible for traditional protection systems to identify.  
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Chapter 1:  Introduction 

Power system protection is a critical aspect of modern power systems, aimed at 

ensuring the safe and reliable operation of the power grid. It involves the use of various 

devices and technologies, such as relays, circuit breakers, fuses, and sensors, to detect 

and isolate faults, abnormal conditions, and other disturbances in power systems. Power 

system protection aims to prevent equipment damage, minimize outages, and maintain 

the quality of power delivered to customers. The protective relay market is estimated to 

be worth 14.7 billion by 2030, with a compound annual growth rate of 6.3% [1]. The 

continuous rise in energy consumption is being compensated with a continuous rise in 

electric power generation either by adding new conventional energy sources (coal, fuel, 

etc....) or by adding new renewable energy sources (Solar, wind, etc....). Similarly, the 

protection system must be improvised accordingly with an increase in demand.  

 

1.1 BACKGROUND 

Power system protection has become increasingly important due to the continuous 

increase in electricity demand, which has resulted in more complex and interconnected 

power systems. The protection system is designed to act quickly and decisively when an 

abnormal condition is detected, isolating the affected equipment, and preventing the 

spread of fault to other parts of the power system. This helps to minimize the impact of 

the faults and disturbances on the power grid and prevent cascading failures that can lead 

to widespread outages. 

 

In electrical power systems, faults can cause unbalanced currents and voltages in 

the system, which can be difficult to analyze using traditional techniques. The three-
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phase quantities in the power system (voltage and current) can be decoupled into 

sequence components (zero, positive, and negative). These sequence components are 

applied widely in power systems to estimate the stability of the system during an event. 

The event can be load disturbance, faults, overloading, and other outages. The positive 

sequence component represents the balanced component of the quantity that flows in 

phase with normal operating conditions of the system. The negative sequence component 

represents the balanced component of the quantity that flows in the opposite phase to the 

normal operating conditions of the system. The zero-sequence component represents the 

unbalanced component of the quantity that flows in a common mode through all phases 

of the system. 

 

Several types of faults can occur in modern power systems, including the 

following types: 

a) Open circuit faults 

b) Short Circuit faults 

 

The main reason behind the open conductor faults is a broken conductor and 

malfunctioning of the circuit breakers. The open circuit faults can further be classified 

into the following types: 

a) Open conductor fault 

b) Two conductors open fault 

c) Three conductors open fault 

 

The short-circuit fault occurs when a low-resistance path is created between two 

or more conductors in a power system. This results in a large current flow, which can 
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damage equipment and cause power outages. Short circuit faults can be further classified 

into the following types: 

 

Sl. No Type of faults Notation Symmetry 
Probability of 

occurrence 

1. Line to ground LG Unsymmetrical 70-80% 

2. Line to line LL Unsymmetrical 15-20% 

3. Double Line to ground LLG Unsymmetrical <10% 

4. Three-phase line to line LLL Symmetrical <1% 

5. 
The three-phase line to 

ground fault 
LLLG Symmetrical 2-3% 

Table 1.1: Types of short-circuit faults in power system. 

Table 1.1 [2] shows the type of short-circuit faults and their probability of 

occurrence in the power system. It can be observed that the line-to-ground (LG) faults are 

one of the most dominant faults in the system. In many cases, these faults are temporary 

faults that cause momentary voltage sags in the system. These temporary faults are 

handled by reclosers in the majority. The major effects of the faults in the power system 

are overcurrent flow, danger to the operators, loss of electrical equipment, electric fires, 

etc. The percentage of fault occurrence based on the elements of the power system is 

classified into the following types [3]: 
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Sl. No Element 
Probability of 

occurrence 

1. Transformers 10 

2. Overhead lines 50 

3. Underground cables 9 

4. Switchgear 12 

5. 
CT, PT relays, Control 

equipment, etc. 
12 

6. Generators 7 

Table 1.2: Probability of occurrence of power system faults based on the elements.  

1.2 MOTIVATION 

The main objectives of power system protection are to ensure the power systems' 

safety, reliability, and efficiency. With advances in technology, such as digital relays and 

intelligent protection systems, power system protection has become more accurate and 

faster in detecting and responding to faults and disturbances.  

 

Machine learning (ML) has become a popular tool in many applications due to its 

ability to handle large amounts of data and identify patterns that may be difficult for 

humans to detect. In power system protection, ML techniques have been proposed to 

improve fault detection and response accuracy and speed. However, there are several 

reasons why ML may not be appropriate for power system protection. Power systems are 

highly complex and nonlinear, making developing accurate and reliable ML models 
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difficult. Moreover, the lack of transparency in ML models can make understanding the 

reasoning behind protection decisions difficult. This is a critical issue in power system 

protection, where decisions must prioritize safety and reliability. ML models can be 

prone to errors and biases, which could lead to incorrect or unsafe decisions. Developing 

a robust and reliable ML model for power systems could be challenging, especially given 

the heavy regulation of power systems and the need for regulatory approval. 

 

While ML has potential in many areas, there are significant challenges to its use 

in power system protection. Further research and development will be needed to 

overcome these challenges and ensure that any ML models used for power system 

protection are safe, reliable, and effective. In the meantime, traditional protection 

methods, such as relay-based protection, will continue to play a crucial role in ensuring 

power systems' safe and reliable operation.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 



 17 

Chapter 2:  Literature Review 

The electric power system can briefly be divided into three sub-systems: 

generation, transmission, and distribution.  The electric power is generated in a power 

generation plant and transmitted using the transmission system which is then distributed 

using the distribution systems. A short-circuit fault may occur in any of the three sub-

systems and it is unavoidable due to natural scenarios. The fault causes the electric power 

to pass through a different path, which further causes damage to the equipment and 

power interruption. The continuous power supply can be maintained by identifying and 

isolating the faulty region. There are numerous techniques available to identify the 

location of the fault as follows: 

 

• Traveling wave methods [4] 

• Impedance methods [5] 

• Synchronize voltage and current measurements [6] 

• Sparse measurement methods [7] 

• Artificial Neural Network (ANN) methods [8] 

• Support Vector Machines (SVMs) [9] 

• Genetic algorithms [10] 

• Convolutional neural networks [11] 

• Integrated methods [12] 

 

The techniques mentioned above have multiple advantages and disadvantages 

[13]. Some methods are very practical and deployable in real-world scenarios, and some 

might be more accurate for a particular system. The above-mentioned methods use 
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various data depending on their operation in the phase domain or sequence domain. In 

this literature review, impedance methods are studied extensively to evaluate the 

accuracy in identifying the relative fault location of a short-circuit fault.  

 

A B C D E
IL

F1 F2

V1

Load

M M M M M

 

Figure 2.1: Single-line diagram of a five-node bus system 

 Fig. 1.1 shows a single-line diagram of a five-node system with a voltage source 

V1. The power flow is from the voltage source to the load as indicated by the direction of 

the current flow. The system consists of five power-quality monitors that monitor the 

three-phase voltages and currents. There are two faults F1 and F2 in the system. A fault 

can be classified as a downstream fault from a monitoring location if the power flow is 

towards the fault location before the occurrence of the fault. A downstream fault is also 

known as a forward fault. Similarly, an upstream fault can be classified from a 

monitoring location if the power flow is against the fault location before the occurrence 

of the fault. An upstream fault is also known as a reverse fault. The notation upstream 

and downstream is defined in Table 2.1 for the five-node system in Fig. 1.1.  
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Sl. No 
Monitor 

Location 

Fault location 

F1 F2 

1. A Downstream Downstream 

2. B Upstream Downstream 

3. C Upstream Downstream 

4. D Upstream Downstream 

5. E Upstream Upstream 

Table 2.1: Fault classification based on monitor location for five node system. 

The five-node system has been implemented in the EMTP software. The upstream 

data has been generated using fault F1. Fault F1 is an A-phase to C-phase type fault with 

an impedance of 1 ohm and fault F2 does not exist in the system for the generation of 

upstream fault data. Similarly, fault F2 is an A-phase to C-phase type fault with an 

impedance of 1 ohm, and fault F1 does not exist in the system for the generation of 

downstream fault data. The three-phase voltages and currents are measured at the power 

quality monitor at node C. These values are converted into the sequence components 

using (2.1).  The variables in (2.1) are the r.ms. values and α is 1∠120°. 

 

 

 

Table 2.2 provides values of the negative sequence quantities which can be 

calculated using (2.1) at node C for the upstream and downstream faults. The values are 

as follows: 
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Sl. No 
Measured 

quantity 

Value 

Upstream Downstream 

1. V2 2770.62 V 2189.26 V 

2. ∠V2 132.29° 132.38° 

3. I2 31.64 A 44.45 A 

4. ∠I2 87.52° -114.33° 

Table 2.2: Negative sequence values for an upstream and downstream fault in the five-

node system 

2.1 NEGATIVE SEQUENCE TORQUE  

The traditional electromechanical relays are improved into microprocessor-based 

relays [14]. These relays are deployed to identify the fault based on the torque produced 

by the relay. The torque measured by the relay is comparable to the torque measured by 

the electromechanical relays, but the quantities used are the negative sequence 

components of voltage and current. The unit of T32Q measured in (2.2) is VA but it is 

known as torque because of the similarities with the electromagnetic relays. The 

sequence components of the voltage and current can be obtained using (2.1). These relays 

use the transmission line's characteristic angle, also known as the maximum torque angle 

setting [14]. The maximum torque angle is the angle at which the torque produced by the 

relay is maximum. The torque can be calculated using the below equation: 

 

  

where: 

T32Q = Torque produced 

V2 = Negative sequence voltage 

I2 = Negative sequence current 
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MTA = Characteristic angle of transmission line / maximum torque angle setting 

 

A negative torque value indicates a reverse fault, also known as an upstream fault. 

Similarly, a positive value of the torque indicates a forward fault which is also known as 

a downstream fault. The terms forward/backward and upstream/downstream are defined 

based on the direction of power flow in the system. An upstream fault can also be a 

downstream fault if the location of the power quality monitor is changed, or the power 

flow direction is altered. The torque can be calculated using (2.2) and for the five-node 

system, the value of torque for the upstream fault is -66.92 kVA and the value of torque 

for a downstream fault is 92.4 kVA. 

 

The main disadvantage of the above-mentioned directional relay is the usage of 

negative sequence voltage and current. A strong power source can be defined as an 

electric source with a lower source impedance, while a weak power source can be defined 

as an electric source with a high source impedance [14]. These definitions are determined 

based on the short circuit ratio of the generator. A strong source produces less magnitude 

of negative sequence voltages. When a fault occurs near the strong source, the magnitude 

of the negative sequence voltage produced is low. Thus, this is a significant drawback 

while implementing the above-mentioned negative sequence torque relays.  

 

In this fault identification method, one of the major advantages is the polarity 

difference (positive or negative) in the torque calculated for upstream and downstream 

faults. Moreover, the other advantage is the high magnitude of difference in torque 

between upstream and downstream faults. One of the disadvantages of this type of fault 

identification method is implementing them during the three-phase faults. In a three-
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phase fault, the negative sequence voltage produced is very low because the fault is a 

balanced fault. In a balanced fault condition, the magnitude of the negative sequence 

voltage is dependent on the individual loads on the three phases. If the unbalance in the 

load between the three phases is high, this method can be implemented easily, but in the 

power system, almost all the loads on the three phases are approximately balanced. Thus, 

this method is not an efficient method to detect whether the balanced fault is upstream or 

downstream. But this method is an efficient method to detect whether the unbalanced 

fault in the system is an upstream fault or downstream fault. 

 

2.2 NEGATIVE SEQUENCE IMPEDANCE RATIO  

As mentioned above, when the source behind the relay is strong (low impedance), 

the negative sequence voltage produced is low, which can cause the relay to malfunction. 

This phenomenon is observed in most of the remote faults. This drawback has been 

partially resolved by changing the threshold values in calculating the negative sequence 

impedance as mentioned below [15]: 

                    

 

 

where: 

Z2measured = Impedance calculated 

V2 = Negative sequence voltage 

I2 = Negative sequence current 

/_Z1 = positive sequence line angle 
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In this approach, the ratio of negative sequence voltage and current has been used 

instead of the product of these quantities. The fault is declared when the measuring 

quantity is higher than the restrained quantity in an electromechanical relay. Similarly, 

the value of the impedance calculated can be compared to the -ZS2 (source impedance 

behind the relay) and ZL2 (sum of line impedance and remote source impedance). The 

impedance ZS2 is the equivalent Thevenin negative sequence impedance of the source 

behind the relay. The impedance ZL2 is the equivalent Thevenin negative sequence 

impedance of the transmission line and source ahead of the relay. Based on the 

comparison, the fault be identified as an upstream fault or downstream fault. The positive 

value indicates an upstream fault, while a negative value indicates a downstream fault. 

The impedance Z2measured can be calculated using (2.3) and for the five-node system, the 

value of impedance for the upstream fault is 66.85 ohms and the value of torque for a 

downstream fault is -44.76 ohms. 

 

Similar to the previous identification method, one of the major advantages is the 

polarity difference (positive and negative) for the impedance calculated for upstream and 

downstream faults. Similarly, one of the major disadvantages of this identification 

method is implementing the same for a three-phase fault. A three-phase fault is a 

balanced fault and the negative sequence voltage produced is based on the unbalance in 

the system as explained earlier. When the negative sequence voltage produced is low, the 

calculation of the impedance might give incorrect results. Thus, this method is not an 

efficient way to identify whether the balanced faults are upstream or downstream. But in 

case of an unbalanced fault, this method efficiently identifies whether the fault is 

upstream or downstream. 
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Chapter 3: Generation of short-circuit fault data and sensitivity analysis 

using the IEEE 34-Bus system 

The IEEE 34-bus system was originally developed in 1992 and approved during 

the PES Summer meeting in the year 2000 [16]. This is an actual feeder located in 

Arizona, and the nominal voltages in the circuit are 24.9 kV and 4.16 kV. Fig. 3.1 circuit 

diagram represents the nodes in the IEEE 34-Bus system. 

 

 

Figure 3.1: Single-line diagram of IEEE 34-Bus system. 

3.1 GENERATION OF SIMULATED FAULT DATA FROM IEEE 34-BUS SYSTEM 

The IEEE 34-Bus system mentioned above has been used to generate fault data in 

the software EMTP (Electromagnetic Transients Program). In the IEEE 34- Bus system, 

the wind power generator connected to node 848 and node 890 has been excluded. The 

original system is 24.9 kV, 12 MVA, 60 Hz with various types of fixed loads and 

distributed loads. The load type includes constant power, constant impedance, and 

constant current loads of both three-phase and single-phase). Moreover, the fault in the 
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system at node 890 has also been excluded for simplification of the model. The dynamic 

loads connected to node 888 have also been excluded from the system. The system has 

been initially solved using the power flow solution using the source connected to node 

800 as the slack bus.  

 

The fault data has been generated based on the power quality monitors located at 

nodes 800, 814, and 888. The raw voltage and current waveforms have been generated at 

the above-mentioned nodes for the faults at nodes 808, 824, 832, and 890. Based on the 

definition of upstream, downstream, and the monitor location and the fault location, the 

faults can be categorized as follows:  

 

Sl. 

No 

Monitor 

location 

Fault location 

808 824 832 890 

1. 800 Downstream Downstream Downstream Downstream 

2. 814 Upstream Downstream Downstream Downstream 

3. 888 Upstream Upstream Upstream Downstream 

Table 3.1: Fault classification based on monitor location. 

It can be observed that the generated data is dominated by downstream faults 

based on the monitor location. The fault data generated is for all the above-mentioned 

fault locations and monitor locations. The fault data consists of all the possible faults 

(AG, BG, CG, AB, BC, AC, ABC, ABCG) with impedances 0.1, 0.5, 1.0, 1.5, and 2 

ohms. The raw waveforms of voltages and currents have been extracted for the above-
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mentioned cases at each power quality monitor. The overall simulation was 0.2 seconds, 

and the fault occurs between 0.06 and 0.14 seconds for a duration of 0.08 seconds. These 

voltage and current waveforms are sampled at a rate of 128 samples/cycle, corresponding 

to a sampling time of 130.2 µsec.  

 

The fault data generated from the system was only restricted to a maximum fault 

impedance of 2 ohms because in most of the real-world scenarios, the faults are within 

the range of 0-2 ohms, and the faults with a fault impedance greater than 2 ohms can be 

categorized as high impedance faults [17]. These data samples are named according to 

the following convention: 

 

M800F808_ABG_20_down 

where, 

M800 = Monitor at node 800 

F808 = Fault at node 808 

ABG = A phase to B phase to ground fault 

20 = 2.0 ohms fault impedance on all the phases in the previous step 

Down = Downstream fault with M800 and F 808 

 

Consider the above-mentioned data sheet M800F808_ABG_20_down. The data is 

generated from EMTP, and the above three-phase waveforms are shown in Fig. 3.2. 
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Figure 3.2: Three phase voltages and currents for M800F808_ABG_20_down event. 

The data is generated using EMTP software and the output is through MPLOT in 

EMTP. MPLOT is a simulation waveform visualization function in EMTP [18]. The 

MPLOT function is entirely written using MATLAB and it is the compiled version of a 

set of m-files. The m-files contain MATLAB code, which can be either in the form of a 

script or a function. Using the MPLOT function available in EMTP mat-files can be 

generated. These mat-files consist of the MATLAB formatted data, and the data can be 

transformed accordingly. So, these mat-files are then converted into CSV files. Each 

CSV file consists of the time, instantaneous voltage, and current of three phases. As 

mentioned earlier, the time-step is 130.2083 µsec. A sample data sheet has been in Fig. 

3.3. 
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Figure 3.3: Data format in the CSV files generated. 

 

It can be observed in Fig. 3.3 that a base nominal voltage has been mentioned and 

this can be determined based on the monitor location. The first column represents the 

time step, and the next six columns represent the three-phase voltage and current data 

points. These data points can be plotted, and Fig. 3.2 can be obtained in the continuous 

time domain and Fig. 3.4 and Fig. 3.5 can be obtained in the discrete-time domain. For 

the monitor located at nodes 800 and 814, the nominal three-phase voltage is 24.9 kV; for 

single-phase, the nominal voltage is 14.376 kV as mentioned in Fig. 3.3. Similarly for the 

monitor located at node 888 the nominal three-phase voltage is 4.16 kV and for the single 

phase the nominal voltage is 2.401 kV.  
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The three-phase system of the IEEE 34-Bus system is slightly unbalanced initially 

due to the type of loads connected in the system. Moreover, this will ensure that there 

will always be a negative sequence component in the event of a balanced fault.  

 

 

Figure 3.4: Discrete domain three-phase voltages for M800F808_ABG_20_down 

 

Figure 3.5: Discrete domain three-phase currents for M800F808_ABG_20_down 

 

3.2 SENSITIVITY ANALYSIS 

Sensitivity analysis is an important part of mathematical modeling. In general, it 

can be defined as the study of the change in outputs when the inputs are altered [19]. In 



 30 

most cases in power systems, sensitivity analysis is carried out to understand the stability 

of the power systems or for state estimation of the system. In this application, the 

sensitivity analysis can be defined as the change in the characteristics of the faults in the 

system based on the change in the characteristics of the transmission line/relay setting 

angle/maximum torque angle setting. This is an example of one-way sensitivity analysis 

in which a single variable is altered, and the effect of this variable is studied on the 

outcome. 

 

In chapters 2.1 and 2.2, two techniques were discussed to estimate whether the 

fault is upstream or downstream. These both techniques can be implemented successfully 

by extracting the sequence components data from EMTP. But the characteristic angle in 

these both chapters can change the results of the fault direction beyond a certain limit. 

The sensitivity analysis tried to estimate the boundaries for the same by using the same 

fault data for different characteristics angle of the transmission line.  

 

The main advantage of the sensitivity analysis is estimating the outcome 

(upstream/downstream) based on the data available from the angle which might include 

some errors. There are many advantages of sensitivity analysis if there are multiple inputs 

and a single output. In this case, the only input for the sensitivity analysis is the 

characteristic angle of the transmission line and the only output is the torque or 

impedance. This sensitivity analysis helps us to make informed decisions to set the 

maximum torque angle. 
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3.3 TORQUE SENSITIVITY ANALYSIS 

In this section, the sensitivity analysis has been conducted for the torque 

calculated using (2.1). For convenience, the torque equation is re-written below: 

 

 

 

 It can be observed that the torque calculated can change polarity based on the 

cosine of the angle. The range of a cosine function is [-1,1] and the domain of the cosine 

function is [0, pi] or [0, 180] in degrees. For the example mentioned in Chapter 3.1, 

M800F808_ABG_20_down, the torque can be calculated as follows: 

 

 V2 = 3918.762 V 

 I2 = 195.947 A 

 = -101.178 degrees    →   = 78.822 degrees 

 = -4.046 degrees 

 

Using the above equation and the MTA angle as 85 degrees (tentatively), the 

torque can be calculated as 767.3 kVA. The positive value of the torque indicates a 

downstream fault. The downstream fault is also known as a forward fault or fault in front 

of the relay location. Similarly, for an upstream fault M814_F808_ABG_20_up, the 

torque can be calculated as follows: 

 

V2 = 4979.358 V 

 I2 = 13.59696 A 

 = -117.443 degrees    →   = 62.557 degrees 
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 = -125.688 degrees 

 

Using the above equation and the MTA angle as 85 degrees (tentatively), the 

torque can be calculated as -15.5 kVA. The negative value of the torque indicates an 

upstream fault. The upstream fault is also known as the reverse fault or fault at the back 

of the relay location. It can be observed that the change in magnitude of the torque is very 

high, and the values are not even close to zero. 

 

For the sensitivity analysis, the MTA angle is the input variable and the torque 

calculated is the output variable. The sensitivity analysis for the above-mentioned 

equation has been done in this section.  

 

 

Figure 3.6: Torque Sensitivity Analysis for the M800_F808 case 
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Fig. 3.6 shows the sensitivity analysis scatter plot for the M800_F808 case. In this 

case, all the possible LG, LL, and LLG faults have been simulated with variable fault 

impedances of 0.1, 0.5, 1.0, 1.5, and 2.0 ohms. So, this corresponds to 5 (fault 

impedances) * 9 (fault types: AG, BG, CG, AB, BC, CA, ABG, BCG, ACG) to a total of 

45 cases. In each case, the MTA angle in the torque has decreased by 10 degrees from 85 

degrees. The torque has been calculated at monitor M800 for a fault at F808 which is a 

downstream fault. It can be observed that for all the values of the angles, the torque 

calculated is positive. This shows that the calculation of torque is insensitive and 

independent of the MTA angle if the angle is between 45 and 85 degrees. The reason for 

choosing the MTA angles between 45 and 85 degrees is because the MTA angle is also 

known as the negative sequence line impedance angle. This MTA angle can represent the 

angle of the line impedance angle in the negative sequence. The angle has been varied by 

10 degrees for each step and the torque values for a downstream fault are plotted in Fig. 

3.6.  

 

Similarly, for the case, of M814_F808 (upstream) and M888_F808 (upstream) the 

torque plots have been plotted in Fig. 3.7 and Fig. 3.8. It can be observed that the torque 

values are negative which represents an upstream fault. 
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Figure 3.7: Torque Sensitivity Analysis for the M814_F808 case 

 

Figure 3.8: Torque Sensitivity Analysis for the M888_F808 case 

Based on Fig. 3.6, Fig. 3.7, and Fig. 3.8, it can be observed that the calculation of 

torque is insensitive and independent- of the MTA angle if the angle is between 45 and 

85 degrees. This is applicable both for the upstream and downstream faults in the system. 
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A similar kind of analysis has been done for the fault locations at nodes 824, 832, and 

890. The results are very similar to the results shown in Fig. 3.6, Fig. 3.7, and Fig. 3.8 for 

the case fault at node 808.  

 

3.4 NEGATIVE SEQUENCE IMPEDANCE SENSITIVITY ANALYSIS 

In this section, the sensitivity analysis has been conducted for the negative 

sequence impedance measured for determining whether the fault is upstream or 

downstream using (2.3). For convenience, the impedance equation is rewritten below: 

 

 

 

It can be observed that the impedance measured can change the sign based on the 

positive sequence line angle. For example, as mentioned in chapter 3.1, 

M800F808_ABG_20_down, the impedance can be calculated as follows: 

 

 V2 = 3918.762 V 

 I2 = 195.947 A 

 = -101.178 degrees 

 = -4.046 degrees 

 

Using the above equation and the positive sequence line angle as 85 degrees 

(tentatively), the impedance can be calculated as -19.985 ohms. The negative value 

indicated a downstream/forward fault location. Similarly, for an upstream fault 

M814_F808_ABG_20_up, the impedance can be calculated as follows: 
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V2 = 4979.358 V 

 I2 = 13.59696 A 

 = -117.443 degrees 

 = -125.688 degrees 

 

Using the above equation and the positive sequence line angle at 85 degrees 

(tentatively), the impedance can be calculated as 83.9 ohms. The positive value of the 

impedance indicates a fault in the reverse/upstream/back of the relay location.  

 

For the sensitivity analysis, the positive sequence line angle is the input variable 

and the torque calculated is the output variable. The sensitivity analysis for the above-

mentioned equation has been done in this section.  

 

 

Figure 3.9: Negative sequence impedance Sensitivity Analysis for the M800_F808 case 
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Fig. 3.9 shows the negative sequence impedance sensitivity analysis plot for the 

M800_F808 case. In this case, all the possible types of LG, LL, and LLG faults have 

been simulated with variable fault impedances of 0.1, 0.5, 1.0, 1.5, and 2.0 ohms. So, this 

corresponds to 5 (fault impedances) * 9 (fault types: AG, BG, CG, AB, BC, CA, ABG, 

BCG, ACG) to a total of 45 cases. In each case, the negative sequence impedance angle 

in the torque has decreased by 10 degrees from 85 degrees and the impedance has been 

calculated at the monitor M800 for a fault at F808 which is a downstream fault. It can be 

observed that for all the values of the angles, the impedance calculated is negative. This 

proves that the calculation of impedance is independent of the angle if the angle is 

between 45 and 85 degrees. This angle can represent the angle of the line impedance 

angle in the negative sequence. The angle has been varied by 10 degrees for each step 

and the torque values for a downstream fault are plotted in Fig. 3.9.  

 

Similarly, for the case, of M814_F808 (upstream) and M888_F808 (upstream) the 

impedance plots have been plotted in Fig. 3.10 and Fig. 3.11. It can be observed that the 

impedance values are positive which represents an upstream fault. 
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Figure 3.10: Negative sequence impedance Sensitivity Analysis for the M814_F808 case 

 

 

Figure 3.11: Negative sequence impedance Sensitivity Analysis for the M888_F808 case 
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Based on Fig. 3.9, Fig. 3.10, and Fig. 3.11, it can be observed that the calculation 

of impedance Z2measured is insensitive and independent- of the positive sequence line angle 

if the angle is between 45 and 85 degrees. This is applicable both for the upstream and 

downstream faults in the system. 

 

A similar kind of analysis has been done for the fault locations at nodes 824, 832, 

and 890. The results are very similar to the results shown in Fig. 3.9, Fig. 3.10, and Fig. 

3.11 for the case fault at node 808.  
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Chapter 4:  Introduction to Neural Networks using TensorFlow. 

In the previous chapter, the fault data was generated. This chapter introduces the 

basics of the neural network and TensorFlow basics. Before diving into TensorFlow [20], 

the basics of quantification and tensors are introduced.  

 

The mathematical quantities commonly used in physics and engineering are 

scalar, vector, and tensor. A scalar quantity is a quantity that has only magnitude and no 

direction. A vector is a quantity that has both magnitude and direction. These are the 

most used components in engineering. Examples of scalars are hydrostatic pressure and 

temperature. Similarly, the examples of vectors are position, force, and velocity. A tensor 

is a quantity with multiple components and can be used to describe physical phenomena 

involving both magnitude and direction. They can be thought of as generalizations of 

vectors and matrices and have multiple dimensions. Examples of tensors are stress and 

strain. Scalars and vectors are also considered tensors of lower dimensions. Scalars are 

tensors of rank zero, vectors are rank one, and matrices as rank two. There are three types 

of tensors, and they can be classified as follows [21]: 

 

1. Contravariant Tensors 

2. Covariant Tensors 

3. Mixed Tensors 

 

In general, the contravariant vector can be defined as one that can be transformed 

as in the following: 
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Similarly, covariant vectors are a linear form and not a vector. The linear form is 

a mapping of vectors into scalars which is additive and homogeneous under 

multiplication by scalars [21]. The gradient is a prototype for a covariant vector which is 

defined as  

 

      

 

4.1 INTRODUCTION TO TENSORFLOW 

Tensors are also an integral part of the data structure used by learning systems. 

The important properties of a tensor are shape and dType [22]. The shape of a tensor is 

determined by the number of dimensions along each axis. For example, a square matrix 

has dimensions (3,3) and a level 3 tensor can have (2,3,4) dimensions. The dType of the 

tensor refers to the type of data it contains. Some of the data types are float32, float64, 

unit8, int32, etc. The examples of the tensors in different dimensions are as follows [22]: 

 

1. 0th Dimension – Scalar 

2. 1st Dimension – Vector 

3. 2nd Dimension – Matrix 

4. Nth Dimension – Tensor 
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The higher-order tensors are used to store time series data, JPEG images, and 

video data. Each dimension may correspond to the sample properties like height, size, 

width, color depth, frames, etc.... of the image/video. Machine learning techniques are 

being applied increasingly in all fields including power systems. TensorFlow is an open-

source software library for dataflow and differentiable programming across a range of 

tasks [20]. It is a symbolic math library and is also used for machine learning applications 

such as neural networks. TensorFlow allows developers to create data flow graphics, 

which are structures that describe how data moves through a graph or a series of 

processing nodes. The nodes in the graph represent mathematical operations, while the 

edges represent the tensors that flow between them.  

 

The main advantages of using TensorFlow are the flexibility and scalability 

offered. TensorFlow is designed to work with huge datasets and distributed systems, 

which makes it easier to scale up models for training and inference. For example, the 

neural network that will be implemented in the next chapter for the fault classification on 

the IEEE 34-Bus system can be expanded into a larger system with more buses. 

TensorFlow offers flexibility and control with features such as Keras Function API for 

the creation of complex topologies.  

 

The main disadvantage of using TensorFlow is the steep learning curve and lack 

of transparency. The internal working of TensorFlow can be complex, which makes it 

difficult to understand the behavior of models. In the next chapter, the application of 

TensorFlow has been provided and it can be observed that the model can predict whether 

the fault is upstream or downstream in most cases, but the model fails to identify it in 
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certain cases. This might be attributed to the complexity of the model or several other 

factors which are discussed in Chapter 6.  

 

4.2 INTRODUCTION TO TYPES OF NEURAL NETWORKS AND LSTM 

This section explains the basic types of neural networks and the reasoning behind 

choosing LSTM for neural network training. There are mainly three types of neural 

networks namely: 

1. Artificial Neural Network (ANN) 

2. Convolution Neural Network (CNN) 

3. Recurrent Neural Network (RNN) 

 

ANNs are inspired by the functioning of the biological neural networks found in 

the brain. They consist of multiple hidden layers with multiple neurons. Each neuron 

receives an input signal which is processed by the activation function and the output is 

delivered to the next neuron with a specific weight. The learning methods in the ANN are 

classified into supervised learning, unsupervised learning, and reinforcement learning. In 

supervised learning the output is known and vice versa. In reinforcement learning the 

learning process is similar to supervised learning but the information available is less 

[23]. Tensors are also an integral part of the data structure used by learning systems. 

These are fully connected neural networks that can express very general functions [24].  

 

CNNs can approximate a function invariant to location. The main applications of 

CNN are in image and video analysis. The working of CNN is based on the mathematical 

property of convolution. The input data is mostly an image which is handled by multiple 
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convolutional layers. Each layer applied a filter which is also known as a kernel to the 

input data, which is convoluted with the input image to extract the features.  

 

RNNs can approximate functions related to time or related by sequence, such as 

dynamic systems [25]. One of the applications is the prediction of what’s next. It can be a 

sequence or character, text, or event based on the inputs. The typical number of inputs is 

two which consists of the previous state of the system and the current input sequence. 

Complex dynamical systems are hard to model due to a lack of physics-based 

understanding. The main advantage of using RNN is the ability to handle input sequences 

of variable length. Some of the disadvantages are computational complexity and 

difficulty in capturing long-term dependencies. Since the topic under consideration is 

predicting whether the fault is an upstream or downstream event that is dependent on the 

previous system voltages and a time series of data, RNN will be implemented.  

 

There are several variants of RNNs architectures. Some of them are as follows 

[25]: 

1. Simple RNN Networks 

2. Long Short-Term Memory (LSTM) Networks 

3. Gated Recurrent Unit (GRU) Networks 

 

LSTM Networks are designed to address the vanishing gradient problem which 

limits the ability to capture long-term dependencies in sequential data. They have 

complex update rules which allow the network to selectively remember or forget the 

information from previous time steps. By selectively updating and forgetting the 

information over a long duration, LSTM captures the long-term dependencies in 
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sequential data such as the waveforms of three-phase voltages and currents. As 

mentioned in Chapter 2, the sampling rate of the three-phase voltages and currents is 128 

sample/cycle, and the simulation time is 0.2 sec.  The number of time steps generated for 

a single event is 1537 values. The 1537 samples generated are for three-phase voltages 

and three-phase currents, including a time step. So, for a single event and a single 

monitor, the data produced is 1537*7 samples. But this is a single fault at a single 

monitor location. For a combination of 4 fault locations and 3 power quality monitor 

locations, the data set is 1537*7*4*3 data samples. But this data set is produced for all 

the fault types and 5 different fault impedances, which causes the final number of 

samples generated to be 1537*7*4*3*11*5. Since the data set used for training the neural 

network is very huge and it consists of sequential data, LSTM will be implemented. In 

the next chapter, neural network-based validation is discussed.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 46 

Chapter 5:  Neural Network-Based Validation of Upstream and 

Downstream Faults 

In the previous chapter, TensorFlow was introduced along with its advantages and 

disadvantages. In this chapter, neural network-based validation will be done to identify 

whether the fault is upstream or downstream. The development of the neural network 

model, training, and implementation of the neural network are discussed in this chapter. 

The comparison with the results in Chapter 3 is described in this chapter and the results 

and future work are discussed in the next chapter. 

5.1 TRAINING THE MODEL USING RAW VOLTAGE AND CURRENT WAVEFORMS. 

In this section, the data generation, training model, and parameters are explained. 

In Chapter 3, the data has been generated for various fault locations and fault types. But 

the initial data generated is sequential data for conducting sensitivity analysis, and the 

calculations of the torque and impedance. In modern power systems obtaining the 

sequential components data of the three-phase voltages and currents is difficult but 

obtaining the three-phase raw voltage and current phasors is easier from the recent 

developments in power quality measurement devices. The sampling rate initially was 128 

samples/cycle, and this has been maintained constant. In this case, the same fault 

scenarios and monitor locations are considered but the data generated is the three-phase 

voltage and current waveforms. The data generated is in the same format as Fig. 3.3. The 

generated data of the raw waveforms (three-phase voltages and three-phase currents) are 

used for training the model. This is a step closer to identifying the faults using the raw 

waveforms instead of using the sequential components.  
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The major advantage of using the techniques mentioned in Chapter 3 is the 

simplicity of the techniques and implementation in a real-world scenario. Since the data 

is sequential, a bi-directional LSTM [26] will be implemented. The training of the neural 

network model is completed using Google colaboratory. The algorithm is as follows: 

 

1. Defining a function to load all the data files. (The data generated is in the format 

of CSV as explained in Fig. 3.3) 

2. Classifying the loaded data into up_samples and down_samples (for training and 

testing the data generated) 

3. Normalizing the data using (5.1)  

4. The data has been divided into a ratio of 7:3 for training and testing (this includes 

both upstream and downstream data) 

5. Reshaping and shuffling the data for feeding the bi-directional LSTM model and 

the shape of the input variable is (1537,6) i.e., three-phase voltages and currents. 

6. Defining the model with the activation function as sigmoid and 1 hidden layer. 

7. Training the data and testing the data for accuracy 

 

      

where: 

  = Normalized vector of the variable (voltage or current) 

  = Actual data variable 

  = Mean of the variable 

  = Standard deviation of the variable 
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The Python code uses various available packages like TensorFlow, Numpy, and 

Keras for ease of coding. The corresponding Python code for the same can be found in 

Appendix A. Since the activation function is the sigmoid function, the model calculates 

the probability of the data sample. The model creates a label 1 for the upstream faults and 

0 for the downstream faults and calculates the probability of the fault event using the 

sigmoid function. The model then compares the probability with the labels. If the 

probability is greater than 0.5, the fault is classified as an upstream fault and vice versa. 

 

5.2 COMPARISON WITH THE TRADITIONAL TECHNIQUES (THREE MONITORS) 

In the previous section, the neural network implementation was discussed. In this 

section, the neural network is trained using the data from the three monitors at nodes 800, 

814, and 888. The results from the LSTM model have been discussed along with a 

comparison to the traditional techniques for the identification of the upstream or 

downstream fault. The LSTM model has been implemented and the accuracy of the test 

data is 100%. The accuracy is maximum and there might be several reasons for the same. 

The training data and the testing data are very similar to each other because the data 

generated is from the same fault event with varying impedances. Moreover, the data has 

been shuffled, but there are similarities between the waveforms. This can be observed in 

Fig. 5.1 and Fig. 5.2. 
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Figure 5.1: Three-phase voltages and currents for M800F808_ABG_05_down case. 

 

Figure 5.2: Three-phase voltages and currents for M800F808_ABG_10_down case. 

It can be observed that the two waveforms are very similar, and the only 

difference is the magnitude of the voltage and current. The difference is so small that the 

model can easily identify the type of fault, and this leads to higher accuracy. Moreover, to 
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avoid the situation, the data has been shuffled and then trained to develop the model. The 

total generated data consists of the sample classification as mentioned in Table 5.1. 

  

Sl. No Training data Testing data 

Upstream 

Samples 
154 66 

Downstream 

Samples 
308 132 

Table 5.1: Classification of the samples for training and testing for three monitor’s case 

 It can be observed that the training data is dominant with the downstream samples 

as mentioned in Table 5.1. To test the accuracy of the model, new data has been 

generated based on Fig. 5.3. The fault locations at nodes 808, 824, 832, and 890 are used 

for initial training and testing of the data. The new fault locations are at nodes 818, 840, 

844, and 856. Since the transmission lines connecting to nodes 818 and 856 are single-

phase, only single-phase fault data is produced and tested. Multiple data have been 

generated for varying fault durations and fault types with different fault impedances. The 

fault impedances vary from 0.1 to 3.7 ohms. A sample list of the fault data generated and 

tested has been provided in Table 5.2.  
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Figure 5.3: IEEE 34-Bus system with fault locations, PQ monitors, and new fault 

locations 

 

Sl. No 
Fault 

location 

Monitor 

location 

Fault 

Type 

Classification based on  

Torque 

Negative 

sequence 

impedance 

Neural 

Network 

1 818 814 AG_10 Downstream Downstream Downstream 

2 856 814 BG_01 Downstream Downstream Downstream 

3 840 814 BG_37 Downstream Downstream Downstream 

4 818 888 AG_01 Upstream Upstream Upstream 

5 860 888 ACG_08 Upstream Upstream Upstream 

6 840 888 AC_26 Upstream Upstream Downstream 

Table 5.2: Comparison of fault identification using three different techniques. 
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It can be observed that in most cases, the trained LSTM model works perfectly 

but, in some cases, the model misclassifies an upstream fault as a downstream fault. 

There might be multiple reasons for the failure and some of them are insufficient training 

data which might be insufficient monitor locations, fault locations, different fault 

durations, and insufficient number of layers and epochs. Moreover, as mentioned earlier, 

the training data is dominated by downstream data samples. To resolve this issue, a new 

LSTM model has been implemented using the same parameters, but it has been trained 

with the data generated from a single monitor location. These details are mentioned in the 

next section. 

 

5.3 COMPARISON WITH THE TRADITIONAL TECHNIQUES (SINGLE MONITOR) 

In the previous section, a neural network was trained to estimate whether the fault 

is upstream or downstream. The model can classify most of the events, but the accuracy 

is not 100% and one of the reasons might be the biased data. The data generated and 

trained is dominated by the downstream data and this might be one of the reasons for the 

failure of the model. To resolve this issue another neural network has been proposed but 

the data used for training the model is balanced (equal number of upstream faults and 

downstream faults). The monitor location is at node 814 and the fault data is generated at 

nodes 808 (upstream) and 824 (downstream) which includes all the types of faults (LG, 

LL, LLG, LLL, LLLG) with the fault resistances as 0.1, 0.5, 1.0, 1.5 and 2.0 ohms. The 

corresponding equivalent IEEE 34 bus system is shown in Fig. 5.4. 
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Figure 5.4: IEEE 34-Bus system for a single monitor location 

The fault locations at nodes 808, 824, 832, and 890 are used for initial training 

and testing of the data. The new fault locations are nodes 818, 840, 844, and 856. Since 

the transmission lines connecting to nodes 818 and 856 are single-phase, only single-

phase fault data is produced and tested. Multiple data have been generated for varying 

fault durations and fault types with different fault impedances. The fault impedances vary 

from 0.1 to 3.7 ohms. A sample list of the fault data generated and tested has been 

provided in Table 5.3. 

 

Sl. No 

Training data 

(Number of 

events) 

Testing data 

(Number of 

events) 

Upstream 

Samples 
38 17 

Downstream 

Samples 
38 17 

Table 5.3: Classification of the samples for training and testing for a single monitor. 
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The neural network has been trained as mentioned in section 5.1. The accuracy of 

the trained model is 94.74% but the test data which has been separated from the actual 

data has provided an accuracy of 100%. As mentioned earlier, the accuracy of the test 

data is high because of the similarities between the training data and testing data as 

shown in Fig. 5.1 and Fig. 5.2. The total generated data consists of the following sample 

classification as shown in Table 5.3. To test the actual performance of the model, new 

fault data has been generated. The new fault data consists of multiple fault types and fault 

impedances as some of them are at nodes 890, 856, 840, and 802. In most of these cases, 

the model has classified whether the fault is upstream or downstream. But in some of the 

cases for the faults at nodes 890, 840, and 818 the neural network fails and is unable to 

identify the downstream faults. For example, the M814F818_AG_10_down is a 

downstream fault from the monitor at node 814 and the neural network identifies it as an 

upstream fault. Similarly, for the case, M814F890_AB_15_down is a downstream fault, 

and the model identifies it as an upstream fault. These are some of the examples where 

the model is unable to identify the downstream faults.  
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Chapter 6: Conclusion and Future Work 

This chapter presents the summary of the work done, the conclusion, and the 

scope for future work. The whole work done for the thesis can be sectioned into three 

parts, conducting a literature review and sensitivity of the techniques, generation of the 

fault data, and training the neural network using TensorFlow. In conducting the literature 

review, the references [14] and [15] are analyzed extensively and the robustness of the 

techniques is verified by conducting the sensitivity analysis. The literature review is also 

continued for three other references, but the techniques are not robust in comparison with 

[14] and [15]. The data generated consists of all types of faults with variable fault 

impedances ranging from 0.1 to 2.0 ohms. This data has been used for training neural 

networks. For the three monitors case, all the above-mentioned data has been used but for 

the single monitor data, the data corresponding to only a single monitor is used for 

training the model. The LSTM model has been trained using the data generated in 

TensorFlow and the accuracy is tested.  

 

6.1 CONCLUSION  

The thesis identifies the background and motivation to include machine learning 

techniques in power system protection. It can be observed that the techniques mentioned 

in sections 2.1 and 2.2 can classify the fault as an upstream fault or downstream fault 

with higher accuracy than the proposed neural network. But it can also be noted that the 

trained neural network can classify the faults in most of the cases but was unable to 

classify them in some of the cases. Since the model generates the probability of the fault 

being an upstream fault, the probability of the downstream faults in most of the cases is 

less than 0.25, but in the cases where the model was unable to identify the downstream 
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faults, the probability was around 0.51. If the probability calculated was less than 0.5, 

they would have been classified as a downstream fault. Since the applications of these 

techniques will be on the power system protection, even a small percentage of error can 

result in accurate estimation and might cause a system failure.  

 

Thus, it can be summarized that neural networks have the potential to improve the 

accuracy and speed of fault detection and response in power systems. However, there are 

also challenges associated with the same. The challenge with the techniques is the lack of 

interpretability and explainability, huge data sets for training, and the challenge of 

ensuring the safety and reliability of the models. Further research development will be 

needed to address these challenges and fully realize the potential benefits of machine 

learning in power systems. 

 

6.2 FUTURE WORK  

There are several reasons why the trained neural network model was unable to 

classify the faults. Some of them are mentioned below along with the possible solutions 

for the same: 

 

• Insufficient training data: The model has been trained with data from different 

power quality monitors with variable fault impedances. The data used for the 

training has the same fault timings and duration. They can be varied, and the 

performance of the model might be improved. Another reason might be 

insufficient monitor locations. A greater number of monitor locations can be 

included, and more data can be provided to train the model for higher accuracy. 
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The model was unable to classify some of the faults at node 840 and this might be 

from insufficient training data, as the fault at node 840 can be considered a remote 

fault. But for nodes 890 and 818, sufficient training data was available, but the 

model was unable to classify some of the faults. The model was unable to classify 

the fault at node 818. The reason might be the transmission line corresponding to 

the nodes connected to 818 is a single-phase line. The fault data corresponding to 

the single phase is not available for the model. This can be improvised by 

generating the fault data and using the same to train the model.  

• Increase the size of the network: In the proposed model, only a single hidden layer 

has been proposed. Even with a single hidden layer in the neural network, the 

model was able to classify the direction of the faults in most cases. The 

performance of the model can be improved by introducing more hidden layers in 

the model. Increasing the number of hidden layers in the model makes the model 

complex but it can achieve the results with higher accuracy.  

• Different activation functions: The activation function used for the training of the 

model is the sigmoid activation function. This function estimates the output 

between 0 and 1 which can also be assumed to be the probability of the output as 

1. Instead of using the sigmoid, the tanh function can also be used to estimate the 

output. In this case, the output range is [-1,1]. The other functions that can be used 

are arctan, ReLU, etc....  

• Parameters of the mode (batch size, optimizer, loss): In the LSTM model that has 

been implemented, the model has been trained with a batch size of 128, optimizer 

as Adam, and loss function as mean square error. For increasing the accuracy of 

the model, the batch size can be reduced to 64 or 32. The optimizer Adam can 
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also be replaced by other optimizers such as Gradient Descent, Stochastic 

Gradient Descent, Adagrad, etc.... 

• Physics-informed ML: Since the fault data generated and power flow follow the 

laws of physics, a recent new technique which is known as physics-informed 

neural networks can be used to improve the performance of the model. In these 

physics-informed neural networks, the model can embed the knowledge of any 

physical laws (such as power flow, ohm’s law, etc....) that govern the data set in 

the learning process. This can increase the accuracy of the model. 

 

The other scope of improvement in the model is modeling the high impedance 

faults. In the training of the model, the fault impedances are only varied between 0.1 to 

2.0 ohms.  But while testing the model, the impedances varied to 5.0 ohms and the model 

was able to classify many of the faults but not all of the cases. The model can be trained 

using the high impedance faults and the accuracy can be increased. In the model that has 

been developed, it has been trained to classify a single fault, and in the future, the model 

can be trained to classify multiple instantaneous faults in the system. Although the 

probability of occurrence of multiple instantaneous faults in the system is very low.  
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