
Bachelor Degree Project

Code Correctness and Quality in the
Era of AI Code Generation
- Examining ChatGPT and GitHub Copilot

Authors: Emilia Hansson & Oliwer Ellréus
Supervisor:Welf Löwe
Semester: VT 2023
Subject: Computer Science



Abstract
The use of AI tools for code generation is increasing in popularity, and two of these tools are
ChatGPT and GitHub Copilot. These tools could potentially reduce development time and
costs for developers and companies, however, ensuring the correctness and quality of
AI-generated code is crucial for its adoption. This study conducted a quantitative controlled
experiment to evaluate the code generation capabilities of Copilot and ChatGPT in terms of
code correctness and quality. The experiment aimed to address research questions regarding
the performance of these AI tools. The results indicate that both ChatGPT and Copilot can
generate correct code from given instructions, though there is room for improvement.
ChatGPT achieved a correctness rate of 87.33%, while Copilot performed slightly better at
89%. Statistical analysis revealed no significant difference in code correctness between the
two tools. Regarding code quality, ChatGPT demonstrated impressive performance, with
98.52% of generated lines free from quality rule violations. Furthermore, 80.7% of
ChatGPT-generated algorithms had no quality rule violations. Copilot generated correct lines
for 94.07% of total lines but only achieved 64.7% of algorithms with no quality rule
violations. The statistical analysis showed a statistically significant difference in code quality
between ChatGPT and Copilot, indicating that ChatGPT generally produces higher quality
code. This research contributes to understanding the capabilities of AI code generation tools
and highlights their potential to produce correct and high-quality code.

Keywords: AI Code Generation, ChatGPT, Copilot, Code Correctness, Code Quality



Preface
We'd like to thank our supervisor, Welf Löwe, at Linnaeus University for guiding us through
this project. Your help and knowledge have been invaluable, and we appreciate you
answering our questions and concerns and reassuring us that we were on the right track. We
also want to thank Daniel Toll, who helped us figure out how to make the unit testing of the
generated algorithms automatic when we had generations by ChatGPT and Copilot that
caused build errors.



Contents
1 Introduction 5

1.1 Background 6
1.2 Related Work 7
1.3 Problem Formulation 8
1.4 Motivation 9
1.5 Results 9
1.6 Scope/Limitation 10
1.7 Target Group 10
1.8 Outline 10

2 Method 11
2.1 Controlled Experiment 11

2.1.1 AI Tools Selection 11
2.1.2 Algorithm Selection 11
2.1.3 Code Generation 12
2.1.4 Correctness Evaluation 13
2.1.5 Quality Evaluation 13
2.1.6 Statistical Analysis 14

2.2 Reliability and Validity 14
2.3 Ethical Considerations 16

3 Theoretical Background 18
3.1 Artificial Intelligence (AI) 18
3.2 Transformer Architecture 19
3.3 GitHub Copilot 20
3.4 ChatGPT 20
3.5 Unit Testing 21
3.6 Code Quality 22
3.7 Clean Code 24

4 Controlled Experiment – Implementation 27
4.1 Code Generation Process 27

4.1.1 ChatGPT 27
4.1.2 Copilot 29

4.2 Storing the generated code in the project 32
4.3 Testing code quality 32
4.4 Testing code correctness 33
4.5 Scripts 34

4.5.1 Checkstyle Standalone 35
4.5.2 Test Script 36



4.5.3 Line Counter 37
4.5.4 Copilot And ChatGPT Folders Script 38
4.5.5 Compile Code Script 39

4.6 Code analysis 40
4.8.1 Matlab 40
4.8.2 AI-Therapy Statistics 41

5 Results 42
5.1 Code Correctness 42
5.2 Code Quality 43

6 Analysis 44
6.1 Code Correctness 44

6.1.1 ChatGPT 44
6.1.2 Copilot 45
6.1.3 Hypothesis testing 46

6.2 Code Quality 46
6.2.1 ChatGPT 46
6.2.2 Copilot 49
6.2.3 Hypothesis testing 52

7 Discussion 54
8 Conclusions and Future Work 57
References 59
A Appendix 1 65
B Appendix 2 66
C Appendix 3 68
D Appendix 4 69



1 Introduction
Recently, the interest in AI has exploded, partly due to the public release of ChatGPT in
November 2022 [1]. AI tools have become popular helping hands when programming, and
there have even been claims that human developers will become obsolete within a few years
[2, 3]. At the same time, Stack Overflow, an online community for developers, has banned
content generated by ChatGPT due to the average rate of correct code being too low [4].

This is a 15 HEC bachelor thesis in computer science, comparing the code-generating
abilities of ChatGPT and GitHub Copilot. In this study, a controlled experiment was
conducted to assess the correctness and quality of the code generated by ChatGPT and
Copilot.

Although the code generated by Copilot has been researched in recent years, previous studies
have focused more on correctness, efficiency, and validity rather than the quality of the code
generated. As for ChatGPT, there have been few to no studies on its coding abilities.

1.1 Background

AI generated code has the potential to reduce time and costs associated with manual coding.
If the code generated proves to be correct and of high quality, an AI tool could be a good
complement to increase productivity and efficiency for both developers and companies.
However, as previous research is limited, code generated by AI tools need additional studies
in order to know if the code is correct and of an acceptable quality.

There are many different AI tools capable of generating code, and new and updated models
are released frequently. ChatGPT and Copilot are two AI tools that can generate code.

ChatGPT is an AI chatbot developed by OpenAI [5]. While a chatbot's primary role is to
imitate human conversation, ChatGPT is incredibly flexible. It has the capability to create
web applications, generate song lyrics, write fairy tales, poetry, and student essays, as well as
translate texts in multiple languages.

GitHub Copilot is a tool used by developers in integrated development environments [6]. The
tool is able to assist developers by suggesting parts of code, such as methods or the
completion of existing code. It can also suggest code based on code comments.



Code generation with tools like these have been researched before; however, those studies
have been more focused on validity and correctness [7, 9]. The research on code quality for
AI generated code has been limited, as well as research on code generation with ChatGPT.
Since code correctness and code quality is important in order for the code to be usable and
maintainable, both code correctness and code quality will be included in this study.

1.2 Related Work

In 2022, B. Yetistiren, I. Ozsoy, and E. Tuzun [7] analyzed GitHub Copilot's code generation
in terms of correctness, validity, and efficiency, and found that it generated 28.7% fully
correct code for problems in the HumanEval dataset. A significant portion (51.2%) of the
problems were partially correct, and the remaining 20.1% were generated incorrectly. The
study also evaluated the impact of input parameters on the code generation and the authors
found that the tool is promising, but states that future work is needed to increase accuracy and
assess code quality using maintainability and reliability metrics. We are going to assess both
the abilities of Copilot and ChatGPT in generating correct code and if any differences can be
observed between the two. We are also going to examine how the two tools perform in terms
of code quality.

In a recent empirical study, S. Imai [8] found that while programming with Copilot generated
more code than human pair-programming, the quality of the code generated was lower. The
study evaluated code quality indirectly by observing how many lines of code were removed
post-creation, indicating potential issues with the produced code. We intend to assess the code
quality of the generated code based on rules chosen from the book Clean Code by Robert C.
Martin.

In a study from 2021, M. Chen et al. [9] conducted an evaluation of the functional correctness
of code generated by various large language models. The study specifically analyzed the
performance of models, among them Codex, which powers GitHub Copilot. The authors
noted that Codex solved 28.8% of the given problems on the evaluation set. We aim to build
upon this evaluation by not only assessing the functional correctness but also considering the
quality of the generated code by Copilot. We will also assess the code correctness and quality
for code generated by ChatGPT. By examining both correctness and quality, our work aims to
provide additional assessment of the code generated by these tools.

In a study from 2022 [10], S. Sengamedu and H. Zhao presented a framework for identifying
code quality issues using large language models. They successfully developed a framework
that leveraged neural language models to detect code quality problems like repetitive code



and unnatural code. While the authors' focus was on code quality identification, they did not
specifically use code generated by large language models. Our objective is to assess the code
quality and correctness of ChatGPT and Copilot, specifically by manually generating code
from these tools. The study provides insights into code quality identification using language
models, and our work expands upon it by directly examining the quality of code generated by
large language models.

There is active research in the area since a lot of studies mentioned have been conducted in
the last few years. All of the related work articles mentioned have been published during
2021 and 2022.

1.3 Problem Formulation

The current state of research in code generation primarily focuses on the functionality of the
generated code, neglecting its quality. However, code quality is a crucial aspect in software
development as poorly written and difficult-to-maintain code can result in significant costs
and wasted time for development teams [11, 12]. In light of this, it is important to evaluate
the quality of code generated by AI tools, such as GitHub Copilot and ChatGPT. Previous
studies have explored the use of LLMs in identifying code quality issues [10], but there is a
lack of research to determine if these models consider code quality during the code
generation process.

Code correctness has been evaluated in previous research for code generation with Copilot,
but there is limited to no research on the code generation abilities of ChatGPT. By evaluating
the two AI tools on equal terms, they can both be assessed individually but also compared to
observe any differences between them.

These research gaps highlight the need for further investigation into the potential of AI tools
to generate both correct code and high-quality code. To this end, we have identified six
research questions:

RQ1: How well does ChatGPT provide correct code from specified instructions?
RQ2: How well does GitHub Copilot provide correct code from specified instructions?
RQ3: How good is ChatGPT at generating code of high quality?
RQ4: How good is GitHub Copilot at generating code of high quality?
RQ5: What differences can be observed between ChatGPT and GitHub Copilot in terms of
code correctness?
RQ6: What differences can be observed between ChatGPT and GitHub Copilot in terms of
code quality?



1.4 Motivation

The evaluation of AI code generation tools, such as ChatGPT and GitHub Copilot, has the
potential to bring significant benefits to developers by reducing time and resources spent on
manual coding. The quality and correctness of the generated code are crucial factors in
determining the effectiveness of these tools. In cases where the code is found to be of high
quality and correctness, companies that employ developers could potentially realize increased
productivity and efficiency in their code writing processes. Consequently, these tools have the
potential to offer substantial savings in terms of time and resources, provided that the code
they generate meets acceptable standards.

The field of code generation has received substantial attention from researchers in recent
years, with previous studies primarily focusing on the validity and correctness of the
generated code in Copilot [7, 9]. However, there has been limited research on the quality of
the code produced by Copilot, and as ChatGPT was released to the public in November 2022,
there has been little to no research on its code generation capabilities. With the rapid
advancements in AI technology, a growing number of developers are turning to automatic
code generation tools [13]. The research area aims to investigate the quality and correctness
of code generated by such tools to provide knowledge of how well large language models can
generate code from text.

The intended audience for the study is developers and organizations that have a developer
workforce and aim to optimize their time and resources while writing code without
neglecting code quality and correctness.

1.5 Results

The results of this study will provide insights into the code generation capabilities of GitHub
Copilot and ChatGPT in terms of code correctness and code quality. The results are divided
into two main categories: code correctness and code quality. Code correctness refers to the
ability of ChatGPT and Copilot to provide correct code from specified instructions, and code
quality refers to the ability of ChatGPT and Copilot to provide high-quality code. The
experiment aims to answer the research questions outlined in section 1.3, and the findings
will contribute to a deeper understanding of the capabilities and limitations of AI tools in
code generation. The results will also offer valuable insights for future research and
development in this field.



1.6 Scope/Limitation

This study was limited to examining two AI tools that have the ability to generate code, and
the tools chosen were ChatGPT (the GPT-3.5 model) and GitHub Copilot.

The AI tools were evaluated based on code correctness and code quality. To evaluate the
quality of the generated code, we utilized chosen principles from the book Clean Code by
Robert C. Martin. The principles chosen from the book were limited by the possibility of
implementing the rules in the Checkstyle tool. When evaluating the code quality, we decided
to assess the overall result of all the code quality rules, rather than examining how the AI
tools performed for each individual rule. This decision was made due to time constraints.

We chose to generate code exclusively in Java, which was selected because it is the
programming language used in the Clean Code book. We specifically chose to generate
algorithms selected from the book Beginning Java Data Structures and Algorithms by James
Cutajar. The algorithms we chose were based on an article listing 25 common algorithms
every programmer should know [14]. The selected algorithms were Binary Search Algorithm,
Binary To Decimal Algorithm, Breadth First Search Algorithm, Knapsack Algorithm, Merge
Sort Algorithm, and Quicksort Algorithm.

1.7 Target Group

This study is aimed at researchers, developers, and organizations interested in the quality and
correctness of code generated by AI. For instance, companies or developers seeking to
integrate ChatGPT or Copilot into their development process to reduce the time and resources
spent on manual coding may find this study useful.

1.8 Outline

This report is organized as follows: In Chapter 2, we discuss the research project, research
methods, reliability, validity, and ethical considerations. Chapter 3 provides the theoretical
background. In Chapter 4, the implementation of the controlled experiment is described.
Results are provided in Chapter 5, and the analysis of the results is in Chapter 6. Chapter 7
provides a discussion about the results related to the research questions, and lastly, Chapter 8
concludes the study and provides recommendations for future work.



2 Method
A quantitative controlled experiment was conducted to evaluate the code generation
capabilities of GitHub Copilot and ChatGPT in terms of code correctness and code quality, to
be able to answer the research questions. This chapter describes the activities carried out in
the experiment and discusses the reliability and validity, as well as the ethical considerations.

2.1 Controlled Experiment

In this section, the activities performed in the experiment will be described in detail including
the process of selecting algorithms, collecting data, performing unit testing, and checking
code quality. We will also explain the data extraction process and the statistical analysis that
was performed. The implementation of the experiment is described in further detail in
Chapter 4. The book Experimentation in Software Engineering [15], authored by Claes
Wohlin, Martin Höst, Björn Regnell, Per Runeson, Magnus C. Ohlsson, and Anders Wesslén,
served as a valuable resource for conducting the controlled experiment.

2.1.1 AI Tools Selection

GitHub Copilot and ChatGPT were selected as the AI tools to generate the algorithms from.
ChatGPT was chosen based on its increased popularity since its release and the potential for
code generation, which is an area that lacks extensive research. The GPT-3.5 model was used
when generating algorithms with ChatGPT. GitHub Copilot was chosen as it has been
previously researched. This approach combines both a popular but less researched tool and a
tool that has been studied before.

2.1.2 Algorithm Selection

Six algorithms were selected from the book Beginning Java Data Structures and Algorithms
by James Cutajar. These algorithms were:

● Binary Search Algorithm [16]
● Breadth First Search (BFS) Algorithm [17]
● Merge Sort Algorithm [18]
● Quicksort Algorithm [19]
● Knapsack Algorithm [20]
● Binary To Decimal Algorithm [21]

The selection of the algorithms was based on an article listing 25 common algorithms every
programmer should know [14]. The first five algorithms were originally selected from the



article. However, as we were unsuccessful in finding a deterministic test case for the Depth
First Search (DFS) algorithm where the outcome was independent of the internal
implementation, we chose to leave out the DFS algorithm and select another one. We
randomly selected the 0-1 Knapsack algorithm from the repository of the book’s code
example on GitHub [22]. However, the algorithm diversity was taken into account when
choosing the replacement algorithm for DFS. In order to further increase diversity, we opted
to also include the Binary To Decimal Algorithm.

The book implementation of these six algorithms was used to formulate the instructions given
to ChatGPT and Copilot. The unit tests used to evaluate the correctness of the algorithms
generated by ChatGPT and Copilot were also developed from the implementation of these
algorithms as described in the book.

2.1.3 Code Generation

The data was collected by generating the chosen algorithms with ChatGPT and Copilot. Each
of the algorithms was generated 50 times for the same set of instructions. The repetition of 50
generations per algorithm was imposed due to time constraints. Each algorithm had one
specific instruction that was used when generating the algorithms with ChatGPT and Copilot.
The instructions were the same for every generation to ensure that the result of the generated
algorithm was not affected by inconsistent formulations. The instructions used in the study to
generate the algorithms can be found in Appendix 1.

The code generation with Copilot and ChatGPT differs from each other (the AI tools are
described in Chapter 3). Copilot is integrated into an IDE of choice, while the code generated
from ChatGPT is made through a chat web interface. We did multiple tries with different
formulations for the instructions but ultimately decided to be quite specific to be able to test
every generation of a specific algorithm with a unit test that was based on the book
algorithms. As a result, we used instructions that specified the name of the class, method
names, input arguments and return types. The reason that we chose to use code comments for
both tools is that ChatGPT is more flexible, and therefore, we decided to create instructions
based on what works well for Copilot.

To make sure that the instructions were well-defined and that failing algorithm generations
were not due to a poor formulation, we made sure that both Copilot and ChatGPT could
generate at least one correct generation of each algorithm for the given instructions before the
data collection started.



2.1.4 Correctness Evaluation

Unit tests were created for each algorithm to evaluate the correctness of the generated code.
The unit tests were written in JUnit on the basis of the chosen algorithms as implemented in
the repository containing the book examples. Figure 2.1 shows the procedure of
implementing the unit tests.

Figure 2.1: The method of implementing the unit tests

The unit tests were used to ensure that the code generated by ChatGPT and Copilot produced
the expected output for a given input, and every algorithm had at least one test.

2.1.5 Quality Evaluation

Checkstyle was selected as the tool for evaluating the quality of the generated code based on
predefined rules. This tool was used to assess the generated code based on selected principles
from the book Clean Code by Robert C. Martin. The principles were chosen based on their
feasibility for implementation using Checkstyle. A motivation and reference to the rules
implemented can be found in Appendix 2. The principles implemented in Checkstyle were:

● The files should not be over 500 lines long.
● A line should not be more than 120 characters long.
● Magic numbers should be hidden behind constants.
● Functions should not be more than 20 lines long.
● Functions should not have more than three arguments.
● There should not be nested loops of a depth of more than one level.
● There should not be more than one statement per line.
● There should not be any inner assignments.



2.1.6 Statistical Analysis

To examine whether ChatGPT and Copilot can produce correct and high-quality code,
descriptive statistics will be used to analyze and present the data. The independent variables
are the AI tools, ChatGPT and Copilot, and the dependent variables are the code correctness
and the code quality.

The ability of each AI tool to generate correct code will be evaluated by comparing the
number of generated algorithms that passed all the unit tests to the total number of generated
algorithms.

To assess code quality, frequency tables and corresponding graphs will be generated for each
tool, displaying the number of generated algorithms that had a specific number of quality
errors. Additionally, the total number of correct lines was compared to the total number of
lines containing quality errors.

To investigate whether there are differences between ChatGPT and Copilot in terms of code
correctness and code quality, hypothesis testing will be conducted to determine whether there
is a statistically significant difference between the two tools. To ensure the validity of the
results, normality tests will be performed and data will be examined graphically before
conducting the hypothesis testing. A two-tailed non-parametric test, the Mann-Whitney U
test, will be performed on independent groups. The Mann-Whitney U test compares the
distribution of two independent groups of data. It tests the null hypothesis that the two groups
have the same distribution, and the alternative hypothesis that one group has a different
distribution than the other [23].

The null hypothesis for the research question on code correctness is that there is no difference
between ChatGPT and Copilot (or that differences are random), while the alternative
hypothesis is that there is a systematic and significant difference between the two tools.
Similarly, the null hypothesis for the research question on code quality is that there is no (or
random) difference between the two tools. The alternative hypothesis is that there is a
systematic and significant difference between them.

2.2 Reliability and Validity

In the controlled experiment, we will evaluate the ability of ChatGPT and Copilot to generate
correct and high-quality code. By using defined rules from the book Clean Code by Robert C.
Martin, we limited the study to define high code quality as code that fulfills these
requirements and therefore reduces any bias or construct validity issues regarding the



assessment of the quality. As we also used algorithms from Beginning Java Data Structures
and Algorithms by James Cutajar, we addressed construct validity concerns as what was
deemed to be correct code was defined by the book algorithms.

To increase reliability, the testing and checking of the generated algorithms were done
automatically using automated testing and checking tools such as JUnit and Checkstyle. To
complement the automation tools for special cases, automated scripts were written and used
in favor of manually checking these cases. Furthermore, in order to reduce the likelihood of
errors in our test cases, we consulted an algorithm expert who teaches at Linnaeus University.
Their expertise helped to improve our understanding of the output produced by specific
algorithms. As we also had defined specific instructions to give to Copilot and ChatGPT at
every generation of an algorithm, the reliability increased further by ensuring consistency of
how the code was generated.

As such, the results can be replicated in future research as we used automation tools like
JUnit and Checkstyle with defined quality rules and expected behavior to perform the testing
and quality checking of the generated algorithms, as well as having predefined instructions.
The entire code base, including scripts, tests, and configurations, is publicly available on
GitHub. See Appendix 4 for links to the GitHub repositories as well as hands on instructions
on how to repeat the research project. However, as updated models emerge, it is a possibility
that the GPT-3.5 model will not be available in the ChatGPT web interface when repeating
the project in the future.

An internal validity threat is that the instructions, to some extent, affect the results of the code
quality. In the instructions, we specified what parameters the class and the public methods
should be implemented with. One implemented quality rule is that a method should not have
more than three parameters. As we specified how many parameters should be used in the
instructions, we controlled the outcome for this specific rule and did not let the AI tool
decide. However, this specification was only limited to the requested class instantiation and
public methods in the instruction and did not affect any additional methods that the AI tool
decided to implement. The reason for specifying the number of parameters was to be able to
check code correctness using automated unit tests. As the same instruction was used for both
ChatGPT and Copilot when an algorithm was generated, it did not affect the result when
analyzing the differences between the tools as both of them were equally affected.

Tests can’t completely guarantee correct code as they may miss certain bugs or errors, which
could affect the results of the study. This limitation could lead to incorrect or incomplete



conclusions about the effectiveness of the tested code in achieving the research goals, and
therefore represents a threat to internal validity.

To minimize the potential internal validity threat of errors in the scripts used in the project,
the scripts were manually tested multiple times during and after implementation. A
documented test was conducted, and a link to the test documentation can be found in
Appendix 4. All the scripts used in the project can be inspected as they are publicly available
on GitHub, and links to these repositories can also be found in Appendix 4.

The limitation of generating only six Java algorithms raises concerns about the external
validity and generalizability of the findings. While our study focused on examining the code
correctness and quality of these specific Java algorithms, it is important to acknowledge that
generating different types of code, such as web components or code in other programming
languages, may yield different results. Furthermore, our approach involved using predefined
instructions and selecting the first solution provided by the AI tools, which may not align
with the common way of consulting these tools for producing accurate results. Nevertheless,
our study aimed to assess the ability of ChatGPT and Copilot to generate correct and
high-quality code based on given instructions within the scope of Java algorithms.

2.3 Ethical Considerations

When considering the use of code generation tools, it is important to address certain ethical
considerations. It should be noted that security issues in the generated code were not
specifically checked in this experiment. Therefore, it is important for readers to understand
that while the results indicate the potential of these tools for code generation, security
concerns have not been taken into account. It is recommended to undergo thorough security
testing and analysis to identify vulnerabilities. Consequently, the decision to use these tools
for code projects should consider multiple factors beyond code correctness and quality,
including robust security measures.

The contribution of automated code generation systems to the development process can be a
controversial topic. While these tools offer efficiency and productivity benefits, they may
raise concerns regarding accountability and the preservation of human creativity in software
development. Ongoing discussions and guidelines are necessary to strike a balance between
the advantages of automation and the preservation of human involvement in the development
process.



The adoption of code generation tools on a wide scale can have implications for software
developers and related job markets. The use of these tools can shift responsibility from
developers to AI systems for manual coding tasks. This raises ethical concerns regarding
potential job displacement for human developers. If machines replace developers in
significant numbers, there could be a reduction in job opportunities within the software
development field. It is important to consider strategies for managing potential job
displacement and establish ethical frameworks and policies that protect the interests of human
workers if transitioning to automated code generation systems.



3 Theoretical Background
This chapter presents the theoretical background of the study's concepts. It provides detailed
descriptions of important concepts, including AI, natural language processing, ChatGPT,
Copilot, unit testing, code quality, and clean code. Chapter 1.2 introduces related work, while
Chapter 1.3 identifies the research gap.

3.1 Artificial Intelligence (AI)

Intelligent computer systems have been created in order to make computers able to behave
like human minds [24]. These systems allow computers to interpret speech, play games, and
see patterns.

In order for an AI system to be usable for a specific task, it needs to be trained [24]. There are
two common ways to train AI. The first alternative is with human supervision, and the other
is without human supervision. Both training methods use large amounts of data that the AI
uses to see patterns that will later be used for decision-making. In the human supervision
method, the AI is encouraged to choose good decisions by humans.

There are two types of AI, strong and weak AI [24]. Strong AI is AI that can do tasks that it
has never been trained on. This type of AI has intelligence on the same level as humans.
However, researchers have not been able to achieve this kind of intelligence. Weak AI, on the
other hand, has been more successful. It is AI that has been trained to do a specific task. This
could, for example, be self-driving cars, voice assistants, or spam filters. This type of AI is
usually very good for the task it is built for. However, they are only a simulation of human
intelligence and are therefore weak AI.

Machine learning is a specific type of AI [25]. It is used to create algorithms that are able to
find patterns and create recommendations from them. They are both trained by the initial
training data and new data they get over time. Since machine learning is able to train and
improve algorithms over time, it becomes better at what it is supposed to do.

Deep learning is a more advanced type of machine learning [25]. Similar to machine learning
it uses human supervision in order to produce accurate results, however deep learning does
not need as much supervision as machine learning without deep learning. It uses neural
networks to process data. Neural networks work in a similar way as the neurons in human
brains. They are able to make decisions based on learned knowledge from previous data. For



example, deep learning can learn patterns in inputs over time, such as similar objects in
images.

Algorithms that are able to create new content, such as text, images, or videos, using artificial
intelligence are called Generative AI [26]. Generative AI uses machine learning and neural
networks to create new content based on training data and/or user input. Generative AI has
many use cases. For example, it can be used to generate text for companies, correct code, or
answer questions.

3.2 Transformer Architecture

Transformer architecture is an architecture used for natural language processing [27]. Both
GitHub Copilot and ChatGPT are using this architecture [27, 28]. Section 3.3 describes
GitHub Copilot, and section 3.4 describes ChatGPT. The architecture is divided into two
parts: an encoder and a decoder [27]. The encoder processes the input by creating vectors of
the input, and the decoder then processes the output .

Unlike other architectures, such as recurrent neural networks that are focusing on feedback
loops, the transformer architecture focuses on attention and self-attention [28]. In order to
find out the context of a text, self-attention is used. This is used to find out the meaning of
words that can have different meanings in different contexts. The architecture is able to do
this by paying attention to the other words in the text.

Query and key vectors are generated for each word [28]. This is used to find out if another
word has a relevant context. For example, if the query of a word matches the key of another
word, it means that the context is related. For related contexts, a value vector is created. This
vector is used to relate the words to each other.

The ability to find related contexts is one of the advantages of this architecture [28]. Another
advantage is its ability to use parallelization. Parallelization helps the architecture to process
more data faster. For example, during the same amount of time, it can be trained on more data
compared to other architectures.

OpenAI has developed transformer models using this architecture [28]. They are called
Generative Pre-trained Transformers or GPT. These models are used for language modeling
tasks. The first GPT model was originally used to guess the following word. Later models
have been created such as GPT-2 and GPT-3 which can be used for different language-based
tasks. For example, GPT-3 can be given input and then generate a response.



3.3 GitHub Copilot

GitHub Copilot is a tool focused on completing code [29]. It is used as a plugin in integrated
development environments (IDEs) such as Visual Studio Code. Copilot has specifically been
trained on data with computer code. This data has been collected from all over the internet
and on GitHub. Since the tool is accessible directly in the developer's IDE, it is easy and fast
to use in order to become more productive as a developer. The code completion suggestions
are generated directly in the IDE, and the developer can accept them if they are suitable.
Since this tool focuses on code completion, it is best suited for solving smaller parts of code
during development.

GitHub Copilot has many strengths [29]. It is good at generating code snippets and
suggestions based on the code that has already been written. It also makes developers more
efficient since they do not have to write all the code by themselves when using Copilot.
Lastly, the use of Copilot does not require any separate software since Copilot is built directly
into the IDE that the developer is already using.

It also has some weaknesses, such as being less good at generating more advanced code with
higher complexity [29]. There is a risk that Copilot generates code with faults. Sometimes
there might be better solutions than the one that Copilot suggests.

Copilot uses the Codex language model [30]. Codex is based on GPT-3, which is a model
created by OpenAI. The difference between Codex and GPT-3 is that Codex has been trained
only to generate code.

3.4 ChatGPT

ChatGPT is a chat-based AI tool that is capable of generating code [29]. It is developed by
OpenAI, and it was released to the public in November 2022. ChatGPT is not specifically
built in order to become a code-generation tool; instead, it is designed for general language
tasks. The language model used for ChatGPT is not only trained on computer code languages,
but it is mostly trained on human language text.

Since ChatGPT is trained in human language, it is very good at explaining computer code and
writing code based on human-written descriptions [29]. This makes ChatGPT better at larger
code tasks compared to Copilot.

ChatGPT has many strengths [29]. It is easy to use for humans without a lot of coding
experience due to its human language chat interface. It is also good at explaining solutions



and addressing follow-up questions. Another advantage is that ChatGPT is not only limited to
answering coding questions, which can be useful.

Some of ChatGPT's weaknesses are the ability to solve complex problems [29]. Then the
responses may become inaccurate. This can become a problem if the user does not
understand the suggested solution and believes that the solution is correct.

The underlying language model of ChatGPT used in this study is based on GPT-3.5 [31]. The
model is trained on many things, such as websites, articles, and books. This has made the
model able to generate text like humans.

3.5 Unit Testing

Unit testing is the lowest level of tests that are written in order to test code [32]. The
application is divided into small parts called units that can be tested. Each unit is usually a
single function that is tested separately from the rest of the code. Testing the code in small
units helps developers and testers to confirm that each part of the application is functionally
correct.

Unit tests do not only have to be a single function; they can also be a line of code or an entire
class [33]. Depending on what is tested, the unit test might look a little bit different. If a
single method is tested that divides two numbers, it is easily tested by calling the function
with two numbers. The expected return value from the function should then equal the value
of the two numbers divided by each other. Small unit tests, like this example, are considered
to be the best since they test the code on a very low level with a lot of detail. Another
advantage of small tests is that they can be executed fast compared to a few large tests that
take a lot of time.

There are some advantages of using unit tests [32]. First, the unit tests give developers and
testers a better understanding of their code base. This helps them to understand how to solve
upcoming problems faster. It also helps them to find issues faster since the unit tests are the
lowest level of testing that is done first. Lastly, since each unit test only tests a single part of
the code, they are easy to reuse if the parts are reused in other projects. Then the developers
and testers do not have to write new tests for the same code again.

Unit tests can be used for many things during code development [33]. They can be used for
the code design technique test-driven development (TDD). TDD means that the developer
must write a unit test for a unit before it is implemented into the code. After the unit test has
been written by the developer, the unit can be implemented. This is not the usual way of



writing code, but it makes it easier to refactor the code in the long term, since a test is already
written that should pass. If the code is refactored and the test fails, the developer will
immediately see the failed test and fix the issue.

Checking is another way of using unit tests [33]. Checking means that the developer writes a
test after the code has been implemented in order to confirm that it works as expected. Both
TDD and checking are equally useful since both test if the code is doing what it should do.
The only difference is when tests are written. It does not matter if the test is written before or
after the initial implementation if the code is refactored.

Since the unit tests are testing small parts of the code, they can also be used to describe what
the code does [31]. Therefore, unit tests become a part of the code documentation. When the
code is updated, the unit tests describe what the implementation does by themselves.

A framework used for automatic unit testing is JUnit [34]. The JUnit framework includes
many different features. Tests are written by writing test files that can be executed by JUnit
automatically. The results of the tests are written in reports in order to get an overview of the
results. Tests (also called test cases) can be grouped together in test suites. This is useful
when test cases are related to each other.

The test files are Java files [34]. In the test file, the JUnit framework is imported, as well as
the package of the file to be tested. A test class is created for the test case. In the class,
methods are added in order to verify that the source code works as expected. For example, a
method called test can be created in which the JUnit method assertEquals can be called.
This method has two parameters, one for the input data and one for the expected result.

3.6 Code Quality

Code quality is a way to measure how well-written code is [35]. When assessing code quality,
there are a few important factors to consider. First, the code has to be functionally correct
without bugs. It also needs to be understandable and consistent. The code must also be
well-documented, secure, and testable. The tests must pass without finding any errors or
bugs. Code written to be reusable is also a parameter that should be considered when
measuring code quality.

There are many reasons that make code quality important [35]. Readability is hugely affected
by the code quality level. Code of high quality is much easier to read compared to low code



quality. This simplifies the process of code comprehension for developers, whether it's their
own code or that of their colleagues.

Maintainability is another thing that is affected by the quality of code [35]. The quality can
affect how long the code can be used. High-quality code is easier to improve over time and
can therefore be used longer than low-quality code that has to be replaced every time
something has to be changed. Even if changes do not have to be made, the higher code
quality will require less change because of its already good quality.

The code quality also determines the transferability of the code [35]. This is the ability to
transfer code to other projects. Low code quality requires a lot more work compared to
high-quality code since it does not require as much work to get the code working after
transferring it.

Costs are highly affected by code quality [35]. Code that is of high quality lasts much longer.
Because of this, there is less need for rewriting old code since it is still working. If a lot of the
code needs to be rewritten regularly, the costs go up, and the developers must spend more
time on writing code doing the same thing again.

There are many ways to improve code quality [36]. Using a coding standard is one example.
A coding standard is a ruleset for writing code [37]. It includes guidelines and best practices
about how the code should be written. These rules can be used in order to make the code
quality consistent in the entire code base since all the developers are following the same code
standard.

Another way to improve code quality is by analyzing the code [36]. When the code has been
written, it should be analyzed before it is handed over to be code reviewed. The results from
the analyzer can then be used to improve the code before the review process. Automatic
analyzers such as Helix QAC or Klocwork can be used in order to automate this process.

Code quality can also be improved by code review [36]. A code review is manual and
therefore it must be done carefully in order to improve the code quality. By taking best
practices into consideration when reviewing, the code quality can be improved by the
feedback from the reviewer.

Refactoring is also an important process in order to improve code quality [36]. Refactoring is
the process of improving code and code quality by lowering the complexity of existing code.



The entire code base should not be refactored at the same time; instead, it should be a
continuous process over time.

Checkstyle is a tool used by developers to verify that code has been written according to a
coding standard [38]. The tool can be configured according to the developer's needs by
configuring it using configuration files. This gives Checkstyle the ability to be configured for
any coding standard. It can find layout, formatting, and design issues according to the
configuration file.

Standard checks are provided with Checkstyle [39]. These checks can be used to check the
source code for different types of issues. Customized checks can also be written in order to
create specific rules for Checkstyle [40]. This makes Checkstyle customizable for any coding
standard.

Checkstyle can be added to a coding project in multiple ways [41]. It can be integrated using
build tools such as Maven or using IDE plugins. When Checkstyle is executed, a report is
generated. In this report, all found issues according to the check's configuration are listed.

Both already existing Checkstyle configurations and custom configurations can be used [41].
For example, there are already two configurations included in Checkstyle: Google and Sun
configurations. When creating a custom configuration, an XML file is created. The
configuration is divided into different module XML elements. The root module element has
the name attribute "Checker." This module is responsible for defining properties that all the
other modules in the configuration use. TreeWalker is a child module of the Checker module.
It is responsible for checking each Java file by using the child modules of itself. The
TreeWalker's child elements are different types of check modules. Each module has a name
of a check, and property elements can be added as child elements. A property has two
parameters, the name of the property and a value that can be changed.

3.7 Clean Code

According to Cetin Ogut, the author of the article What does Clean Code mean, clean code is
code that has been written in a way that it is possible to read, change, expand, and maintain
easily [42]. If the code base is not kept clean, costs and development time will increase over
time as the project becomes more complex. The complexity makes the code hard to
understand, and therefore, the developers must spend more time understanding how the code
works. Some of the key points in clean code are readability, understandability, and
maintainability [43].



Readability refers to the ease with which code can be read by other developers, as well as by
oneself when reviewing it at a later stage [44]. One example of improving readability is to
use names that are easily understood by humans. Instead of naming a variable that stores the
name of a cat to x, the variable name catName would be preferred. Readability is important as
it simplifies comprehension and maintenance of the code. Additionally, when code is easy to
read, debugging becomes less challenging in case any problems arise.

Understandability, on the other hand, refers to the ease with which code can be understood by
other developers [45]. The code should be clear and well-organized, and not be too complex.
It is important to improve understandability as, when developers have an easier time
understanding the code, it will be easier to maintain, modify and extend.

Maintainable code refers to code that could easily be changed, modified or extended over
time, and allows developers to efficiently make changes to the codebase, fix bugs, and add
new features without the risk of causing any errors elsewhere in the code base if the code, for
example, has many dependent modules [46].

Clean Code is a book written by Robert C. Martin that emphasizes the importance of writing
clean and maintainable code. It offers practical advice and principles for improving code
quality by making the code more understandable and readable. According to R. C. Martin,
writing clean code is similar to art [47]. Like art, most people can see when code is of good
quality and when it is not. In order to write clean code the programmer needs to have
something he calls code-sense. It is the ability to find poorly written code and find a solution
to improve the code. The Clean Code book was chosen to be used as a base for assessing the
code quality of the generated algorithms in this study. However, as the study was limited to
using only a subset of rules from the book, only the rules used in the study will be highlighted
in the next paragraphs.

To write functions that are readable, understandable and maintainable, rules from the Clean
Code book can be applied. One of these rules is that functions should be small [48]. It is not
ideal for functions to span 100 lines. In fact, it is generally recommended to keep functions
significantly shorter, preferably no more than 20 lines in length. By keeping functions short,
the code becomes easier to comprehend. Therefore, nested blocks of statements should be
minimized, and the indent level should be kept low, typically no more than one or two levels.

Another rule to enhance code readability and understandability is to limit the number of
parameters a function accepts [49]. Ideally, a function should have no more than three



parameters. Having a shorter parameter list simplifies testing, as it reduces the number of test
cases required to cover all possible combinations of inputs.

To maintain clean code, it is crucial to consider the formatting of the code. One aspect to
consider is the vertical size and the ideal length of a source file [50]. While there is no
absolute rule, it is highly advantageous to aim for smaller files, with a maximum of around
500 lines. The reason is that smaller files tend to be more understandable than larger files.
Another aspect is the horizontal size which refers to the width of a line [51]. The width of a
line should generally not exceed 120 characters to avoid having to scroll to the right when
viewing the code on a screen.

Something common for all of these principles is that they do not focus on running the code
[42]. Instead, they focus on the readability, understandability, and maintainability of the code
base. These things are important for developers to become efficient during development .
However, it is not a good idea to only focus on clean code since it is not uncommon for clean
code to be inefficient and slow [52]. Therefore the developers must keep a balance between
performance and keeping the code clean.



4 Controlled Experiment – Implementation

This chapter describes the implementation of the controlled experiment and the process of
data collection by code generation, unit testing, and code quality checking. The process of
extracting the data to prepare for statistical analysis is also described, as well as all the scripts
implemented in the project. All the code used in this project is publicly available on GitHub,
and the links to the repositories can be found in Appendix 4. You can also find a link with
instructions on how to conduct the experiment. The results of the experiment are presented in
Chapter 5 and analyzed in Chapter 6.

4.1 Code Generation Process

The data was collected by manually generating code from ChatGPT and Copilot and each
algorithm was generated 50 times. The following sections describe the code generation
process.

4.1.1 ChatGPT

Generating code with ChatGPT was done through its web interface, and the model that was
used to generate algorithms was GPT-3.5. ChatGPT uses an input field in order to generate a
response. In the input field, code instructions were added in order to generate the algorithms.
The construction of the instructions is described in detail in Chapter 2.

For each new generation, a fresh chat window was created within ChatGPT's web interface.
Neglecting this action would have resulted in ChatGPT relying on earlier inputs or responses
when generating solutions for the current chat. Creating a new chat for each generation
ensured that ChatGPT generated an algorithm that was not influenced by previous
generations. Figure 4.1 shows a newly opened chat window in the ChatGPT interface.



Figure 4.1: New chat in ChatGPT with default model (GPT-3.5).

Once a new chat had been created, the instruction was copied and pasted into the "Send a
message" input field. Upon pressing the send button, ChatGPT started the algorithm
generation. In addition to the algorithm, ChatGPT often provided an explanation of the code.
Figure 4.2 shows the code generating process for the binary search algorithm using ChatGPT.



Figure 4.2: ChatGPT code generating process for the binary search algorithm.

These suggestions were then stored in the Java project in order to be tested for code quality
and correctness.

4.1.2 Copilot

As Copilot is not able to generate code from an input field in the same manners as ChatGPT,
there were some prerequisites. First, the Copilot extension was installed in Visual Studio
Code. Then, an empty Java project was created. Figure 4.3 shows the created Java project.



Figure 4.3: Empty Java project.

The App.java file was removed from the project, and a new Java file was created with the
name of the algorithm that was going to be generated. When the Java file was created, an
empty class file was automatically added. Figure 4.4 shows the preparation needed for
generating a binary search algorithm using Copilot.

Figure 4.4: Example Java file for binary search generation without user input.

The next step was to add the instruction as a code comment above the class definition.
Copilot uses the existing code in the project and the comment to generate suggestions. Figure
4.5 shows how the file looks when the instruction has been added.



Figure 4.5 Example Java file for binary search generation with user input.

There are several ways to get code suggestions from Copilot. The first alternative that we
considered was to start adding code inside the class by, for example, writing “public”. A
grayed-out code suggestion would then appear which can be accepted by pressing the tab key.

The other alternative we considered, which can be seen in Figure 4.6, was to press the control
and enter keys, which opens a new window showing multiple suggestions. This alternative is
faster since it suggests up to ten different alternatives simultaneously. As this option also
avoided the problem of having to create new projects for every generation to get independent
solutions, this was the approach used for code generation with Copilot.

Figure 4.6: Copilot suggestions for the Binary Search algorithm.

These suggestions were then stored in the Java project to be tested for code quality and
correctness.



4.2 Storing the generated code in the project

The generated code was stored in the main Java project used when the controlled experiment
was performed. The code generated by ChatGPT and Copilot was divided into separate
folders. In these folders, the algorithms were divided into separated subfolders. A folder was
then created for each generation where the generated algorithm was stored. These folders
were named Tx, where x is the generation number. Scripts to automate this process were
implemented and are described in section 4.5.4. In Figure 4.7, the folder structure can be seen
for ChatGPT and the binary search algorithm.

Figure 4.7: Folder structure for ChatGPT

4.3 Testing code quality

The code quality was tested by implementing principles from the book Clean Code by Robert
C. Martin in Checkstyle. A Checkstyle configuration file was written in order to implement
the selected code quality principles from the book. Figure 4.8 shows a rule implemented in
Checkstyle.

Figure 4.8: Module from Checkstyle configuration file used to check vertical formatting.

Checkstyle was executed directly from a Checkstyle JAR file, enabling the tool to be used
without automation tools such as Gradle or Maven. A script, described in further detail in
section 4.5.1, was created to automate the process of collecting Checkstyle data from each
Java file automatically. The Checkstyle data was then written to an XML file, which displays



all errors and includes information about the file and the line where each error occurred.
Figure 4.9 shows a part of the XML file. Finally, the report was manually imported into
Matlab for statistical analysis.

Figure 4.9: Part of a Checkstyle report

4.4 Testing code correctness

JUnit 4 was used to assess the code correctness. The JUnit tests were based on the algorithm
implementations in the GitHub repository from the author of the book Beginning Java Data
Structures and Algorithms by James Cutajar. Figure 4.10 shows a test class for the Quicksort
algorithm.

Figure 4.10: JUnit test class for the Quicksort algorithm

Each algorithm had one or multiple test cases. If all the tests passed, the generated
implementation was considered to be correct.



Before the testing was conducted, a shell script was used for compiling the code generated by
ChatGPT and Copilot and the corresponding unit tests. The purpose of the script was to solve
the problem with uncompilable test files when the AI tools generated algorithms with, for
example, a different number of method or class arguments than what was requested in the
instructions. The script is described in more detail in section 4.5.5.

After the code compilation script had finished, another shell script, described further in
section 4.5.2, was used to run the compiled source code with the compiled tests. The script
produced four different test result files. A Javascript script was then used to merge the four
scripts into one JSON file with the final test results.

The test results were saved in a JSON file where the AI tools were separated, and the test
results were stored in arrays for each algorithm. A passed test has the value 1, and a failed
test has the value 0. Figure 4.11 shows a part of the JUnit test results.

Figure 4.11: Part of the JUnit test results

4.5 Scripts

Different scripts were written in order to automate the process of collecting code quality and
correctness data from the generated algorithms. These scripts made it easier to perform tests
and checks and to extract the results.



4.5.1 Checkstyle Standalone

The checkstyle standalone script was responsible for creating the Checkstyle report. The
Checkstyle report contained the code quality errors that were found in the generated
algorithms.

The script was a shell script combined with a NodeJS script. In order to run the script, the
runChecks.sh script was executed in the root of the project.

When executed, a script named run.sh tried to build all Java files in the Tx folders that
existed in app/src/main. If the build succeeded, a .class file was created in the Tx folder.
Figure 4.12 shows the .class file.

Figure 4.12: Example of successful build in a Tx folder where a .class file exits

Checkstyle was then executed in the folder where a .class file was present. The generated
report was added to an already existing XML file. This file contained all the reports that had
been generated.

Since the content of multiple Checkstyle reports is merged into a single XML file, it becomes
an invalid file. Therefore, the report had to be formatted in order to become a valid XML file.
This was solved by a NodeJS script.

FixCheckstyleReport was a NodeJS script that took the CheckstyleReport.xml file from
the reports folder as input and then formatted the XML file in order for it to become valid.
The output was then written to FixedCheckstyleReport.xml in the reports folder. After the
output had been written successfully, the file was renamed to CheckstyleReport.xml by the



shell script. The resulting file was used in Matlab for statistical analysis. Figure 4.13 shows
the folder structure of the FixCheckstyleReport script.

Figure 4.13: Standalone checkstyle report

4.5.2 Test Script

The test script was responsible for testing and creating a testResults.json file with all the
test results. The runTests.sh shell script was used to run the JUnit tests for all the
algorithms and tests that had been compiled using another script that is described in section
4.5.5. Figure 4.14 shows the location of the file in the project root.

Figure 4.14: runTests.sh script in the root of the project

The runTests.sh script triggered four other test scripts: runChatGPTTests.sh and
runCopilotTests.sh, which were responsible for running the JUnit tests for ChatGPT and
Copilot, and countChatGPTErrors.sh and countCopilotErrors.sh, which counted all the
errors caused by a compilation error. Figure 4.15 shows the test scripts executed by
runTests.sh.

Figure 4.15: Test and error scripts



These scripts were needed because JUnit tests cannot be executed if the source code or tests
cause a build error. Instead, these errors were counted by subtracting the number of compiled
tests from the total amount of tests.

Lastly, the results from the tests and build errors were combined using a Javascript script to
merge the four test result files created by the test scripts into one. Figure 4.16 shows the
folder structure of this script.

Figure 4.16: Merge test results

The tests were combined into one JSON file, and this file was written to the root of the
project. Figure 4.17 shows a part of the final test results.

Figure 4.17: Part of the JUnit test results

4.5.3 Line Counter

Line counter is a NodeJS script that counts lines in the generated algorithm files. It
automatically creates a JSON file with the number of lines in each generated algorithm. The
counted lines are sorted into which algorithm it is and which ai tool that was used to generate
the content of the file. The number of lines is stored in an array without any reference to the
file that was counted since it is not needed for the analysis.



Figure 4.18: A shortened version of the line counter output

4.5.4 Copilot And ChatGPT Folders Script

copilotFolders.sh and chatGPTFolders.sh are two scripts used to create the Tx folder
structure in the source code folder and the test folder.

Depending on which tool was used for the code generation, either the copilotFolders.sh or
the chatGPTFolders.sh script was executed to create the Tx folder structure in both the
source code folder and the test folder. Figure 4.19 shows the folder structure created by the
chatGPTFolder.sh script. The functionality of the scripts is the same except for the
algorithm defined in each file. The reason two almost identical scripts were created was in
order to not accidentally create folders for the wrong AI tool.

Figure 4.19: Tx folder structure in the source code folder



The script created Tx folders within the chosen range. In Figure 4.20, the given range would
create folders from T21 up to T50. The supported algorithms were specified to avoid any
mistakes when adjusting the algorithm variable.

Figure 4.20: Algorithms and intervals to create folders from T21 to T50

When the script was executed, a Java file with an empty algorithm class was created in each
Tx folder in the project source code folder. A test file was also copied from folder T1 into
each Tx folder in the project test code folder. The test file in T1 was added manually when
implementing the test cases for the specific algorithm as described in section 4.2.

4.5.5 Compile Code Script

The compileCode.sh script was used to compile all the source code files and test files. Each
Java class file in main and test was compiled. The source code class files and test class files
are then moved to app/bin/main or app/bin/test, respectively.

In order to use the script, the variables junit_path and hamcrest_path had to be updated
with the correct path for the local JAR files. These had to be downloaded.



Figure 4.21: Compile code script

4.6 Code analysis

Two tools were used in order to analyze the data. The following section will briefly describe
the use of Matlab and AI-Therapy Statistics for the code analysis.

4.8.1 Matlab

Three scripts were created in Matlab in order to extract the data and visualize it in diagrams:
convertCheckstyleXMLToJson, correctnessResults, and qualityResults.

The script convertCheckstyleXMLToJson was used to extract necessary data from the XML
file and convert the code quality report to JSON format. The JSON file was divided into each
AI tool and algorithm. The number of errors in each algorithm is summarized and added into
the algorithm array as an integer.



The correctnessResults and qualityResults scripts were used to merge the data from
the provided JSON files, calculate frequencies in data sets, and create all the plots used in
Chapter 5 and Chapter 6.

4.8.2 AI-Therapy Statistics

AI-Therapy Statistics is a web-based tool that has been used for data analysis. AI-Therapy
Statistics consists of many statistical features for analyzing data.

Descriptive statistics, including mean, mode, median and dispersion, were performed using
AI-Therapy Statistics. Normality tests were also conducted, followed by hypothesis testing.
The different tests were done for both code quality and code correctness for Copilot and
ChatGPT. Appendix 3 provides links for all the tests performed with AI-Therapy Statistics.



5 Results
The following chapter presents the raw results of the controlled experiment. In order to
provide both statistical and visual clarity, the data is presented in the form of tables and
graphs.

5.1 Code Correctness

This section presents the raw results for the code correctness. For both ChatGPT and Copilot,
there were a total of 300 algorithm generations each, with 50 generations per algorithm.

Number of generations Correct generations Incorrect generations

ChatGPT 300 262 38

Copilot 300 267 33
Table 5.1: Frequency table for the code correctness results for ChatGPT and Copilot

As table 5.1 shows, ChatGPT generated 262 correct algorithms and 38 incorrect algorithms,
while Copilot generated 267 correct algorithms and 33 incorrect algorithms. The results are
presented graphically in Figure 5.1.

Figure 5.1: Code correctness results



5.2 Code Quality

This section presents the raw results for the code quality. Table 5.2 shows the code generation
results of ChatGPT and Copilot for the total number of lines generated.

Total number of lines Lines with errors Lines without errors

ChatGPT 7895 117 7778

Copilot 8006 475 7531
Table 5.2: Results of quality test on generated algorithms presented as lines

ChatGPT produced 7895 lines of code over 300 algorithm generations, whereas Copilot
generated 8006 lines of code for the same number of algorithms.

Of the total lines generated, ChatGPT produced 7778 lines of code without errors and 117
lines with errors. Copilot, on the other hand, generated 7531 lines without errors and 475
lines with errors. The graphical representation of these results is shown in Figure 5.2.

Figure 5.2: Representation of code quality results



6 Analysis
The following chapter presents the analysis of the results from the controlled experiment. In
order to provide both statistical and visual clarity, the analysis is presented in the form of
tables and graphs. Appendix 3 contains all the statistical analysis results mentioned in this
chapter.

6.1 Code Correctness

6.1.1 ChatGPT
Figure 6.1 shows the relative correctness results from code produced by ChatGPT, where
both the incorrect and correct generations are shown.

Figure 6.1: Code correctness for ChatGPT

As can be seen in the figure, ChatGPT's code generation was accurate in 87.33% of the cases,
with an error rate of 12.67%. The 95% confidence interval suggests that the true mean of
incorrect code generation in the population lies between 8.9% and 16.5%.



As such, ChatGPT demonstrated reasonable effectiveness in producing correct code based on
the provided instructions, achieving an accuracy of 87.3%. Nonetheless, there is still potential
for improvement since incorrect code was generated in 12.7% of the cases.

6.1.2 Copilot

Figure 6.2 shows the relative correctness results from code produced by Copilot.

Figure 6.2: Code correctness for Copilot

The analysis revealed that Copilot was able to generate accurate code in 89% of the cases,
while producing incorrect code in 11% of the cases. The 95% confidence interval suggests
that the true mean of incorrect code generation in the population lies between 7.4% and
14.6%.

The results indicate that Copilot is quite capable of providing correct code from specified
instructions. However, like ChatGPT, there is still some potential for improvement as Copilot
generated 11% incorrect algorithms.



6.1.3 Hypothesis testing

As the data is binary for both Copilot and ChatGPT, the Mann-Whitney U test was performed
in order to determine if there is a statistically significant difference between ChatGPT and
Copilot in terms of code correctness. As mentioned in Chapter 2, the Mann-Whitney U test is
a non-parametric test and does not assume normal distribution of the data [23]. The results of
this test at a significance level of 0.05 are presented in table 6.1.

Mann-Whitney U Test

U 44250.000

z-score -0.631

p 0.528

Effect size r -0.026
Table 6.1: Mann-Whitney U test results

Based on a significance level of 0.05, the Mann-Whitney U tests showed no significant
difference between ChatGPT and Copilot and the null hypothesis can, therefore, not be
rejected.

6.2 Code Quality

6.2.1 ChatGPT

Figure 6.3 shows the relative quality results from code produced by ChatGPT where the
percentages of both incorrect and correct lines are displayed.



Figure 6.3: Code quality for ChatGPT

As can be seen in Figure 6.3, the results state that ChatGPT was able to generate lines of code
of high quality in 98.52% of the cases while breaking the code quality rules in 1.48% of the
cases.

Table 6.2 shows the frequency table for the ChatGPT data. The number of quality rule
violations represents how many violations occurred in one generation. The frequency
represents how many generations contained a specific number of quality rule violations.

No. of quality rule violations 0 1 2 3 4

Frequency 242 19 20 18 1
Table 6.2: Frequency table for ChatGPT

As can be seen in table 6.2, the frequency of code generations with no quality rule violations
is 242 out of 300, representing 80.7% of the samples. This means that a majority of the code
produced by ChatGPT has no quality rule violations, suggesting high-quality code
generation.



Furthermore, the frequency of code generations with 1, 2, or 3 quality rule violations
represents a combined total of 19.3% of the samples. While these samples have a small
number of quality rule violations, they still indicate relatively good code quality.

The frequency of code generations with 4 quality rule violations represents only 0.33% of the
samples. This low frequency indicates that cases with a high number of quality rule violations
are rare, further supporting the idea that ChatGPT generally generates high-quality code.
Table 6.2 is visualized in Figure 6.4.

Figure 6.4: Frequency plot for ChatGPT

Table 6.3 shows the descriptive statistics of the ChatGPT code quality results.

Number of samples 300

Mean 0.390

Standard error of the mean 0.051

95% confidence interval for the mean [0.290, 0.490]

Median 0.00



Mode 0 (count = 242)

Range 4 - 0 = 4

Interquartile range (IQR) 0.000

Sample standard deviation 0.880
Table 6.3: Descriptive statistics for ChatGPT code quality results

The mean number of lines with errors is 0.390, indicating that on average, there are less than
half a quality rule violation per generation. The median and mode both suggest that in the
majority of cases, no quality rule violations are present in the generated code. The low mean
error rate implies that ChatGPT generally generates high-quality code.

The data in Table 6.3 exhibits low variability and suggests that the majority of the generated
code has consistent quality with minimal quality rule violations. The 95% confidence interval
estimates that the actual mean number of quality rule violations in the generated code for the
entire population lies between 0.290 and 0.490 errors per generation. This further supports
the idea that ChatGPT generally provides code with a low number of quality rule violations.

Moreover, the sample standard deviation of 0.880 is relatively small compared to the range of
the dataset. This indicates that most of the data points are close to the mean, suggesting that
the quality of the code generated by ChatGPT is consistent.

In summary, the provided statistical analysis indicates that ChatGPT can indeed provide
high-quality code, as demonstrated by the low mean error rate, low variability, and the
majority of the code having no quality rule violations. However, there are occasional
instances where quality rule violations are present.

6.2.2 Copilot

Figure 6.5 shows the relative quality results from code produced by Copilot, where the
percentages of both incorrect and correct lines are displayed.



Figure 6.5: Code quality for Copilot

For Copilot, the study results revealed that the tool produced correct lines 94.07% of the time,
with 5.93% of the cases resulting in lines of code that break the defined code quality rules.

Table 6.4 shows the frequency table for the Copilot data. Number of quality rule violations
represents how many quality rule violations occurred in one generation. The frequency
represents how many generations contained a specific number of quality rule violations.

Quality rule violations 0 1 2 3 4 5 6 7 8 9 10 11 12 13 20

Frequency 194 42 8 11 1 5 4 13 3 4 6 5 1 1 2
Table 6.4: Frequency table for Copilot

Out of 300 code generations, 64.67% were produced with 0 quality rule violations by
Copilot, indicating its ability to generate high-quality code.

A total of 61 code generations had 1-3 quality rule violations, representing 20.33% of the
samples. While the number of quality rule violations in these samples is relatively small, it's
worth noting that one-fifth of the generated code may require some level of correction or
adjustment to achieve high code quality.



Code generations with 4-9 quality rule violations were relatively infrequent at 8%. Although
these samples have a moderate number of quality rule violations, they may require more
significant adjustments to correct.

Instances with 10 or more quality rule violations were the least common, at only 7%. This
low frequency indicates that cases with a high number of quality rule violations are not very
common but should be carefully reviewed and corrected to achieve code of high quality.
Figure 6.6 shows the percentage of generations having a specific number of quality rule
violations.

Figure 6.6: Frequency plot for Copilot

Table 6.5 shows the descriptive statistics of the Copilot code quality results.

Number of samples 300

Mean 1.583

Standard error of the mean 0.188

95% confidence interval for the mean [1.213, 1.954]



Median 0.00

Mode 0 (count = 194)

Range 20 - 0 = 20

Interquartile range (IQR) 1.000

Sample standard deviation 3.260

Table 6.5: Descriptive statistics for Copilot code quality results

Based on the metrics in table 6.5, we can infer that Copilot tends to generate code with a low
number of quality rule violations. The median and mode both being 0 suggest that Copilot
often produces code without any quality rule violations. However, the sample standard
deviation of 3.260 indicates that there is some variation in the number of quality rule
violations generated, suggesting that the quality of the code generated by Copilot is not
entirely consistent.

On average, there are slightly over one and a half quality rule violations per generation, with
a mean number of quality rule violations of 1.583. The 95% confidence interval for the mean
is 1.213 to 1.954, which implies a 95% level of confidence that the actual population mean of
quality rule violations is contained within this range. This result further supports the notion
that Copilot typically produces code with a relatively low to moderate number of quality rule
violations.

While the results indicate that Copilot generally generates code with few quality rule
violations, there are some instances where the quality rule violation count is relatively high.
The presence of these outliers suggests that Copilot may occasionally produce code with a
significant number of code quality rule violations.

In conclusion, Copilot can provide high-quality code, as shown by the low mean, median, and
mode of the quality rule violation count. However, there is some variability in how many
code quality rules were broken, and a small number of samples exhibit a high number of
quality rule violations.

6.2.3 Hypothesis testing

Before the hypothesis testing was performed, normality tests were conducted for the resulting
code quality data of both ChatGPT and Copilot (the results are presented in section 5.2). of



both ChatGPT and Copilot. The results of the normality tests can be found in Appendix 3.
Neither the data from ChatGPT nor the data from Copilot was deemed to have a normal
distribution.

In order to determine if there is a statistically significant difference between the code quality
produced by ChatGPT and Copilot, a non-parametric test, the Mann-Whitney U test, was
performed. This test was chosen because it does not assume normal distribution of the data
[23]. The results of this test at a significance level of 0.01 are presented in Table 6.6.

Mann-Whitney U Test

U 37105.500

z-score -4.741

p < 0.001

Effect size r -0.194
Table 6.6: Mann-Whitney U Test results

Based on a significance level of 0.01, the Mann-Whitney U test showed a statistically
significant difference in code quality between ChatGPT and Copilot. While the effect sizes
are relatively small, the results provide strong evidence that the code quality generated by the
two tools is significantly different.



7 Discussion
In this study, the major challenge was to find a good way to generate the code from ChatGPT
and Copilot to compare them on equal terms and to be able to draw conclusions from the
results. As described in further detail in Chapter 2, we ultimately chose to generate the code
using code comments for both tools and to only give the AI tools one chance to make a
correct generation. Normally, a developer using these tools might ask the AI to fix the code if
it’s incorrectly generated. However, it’s still of interest to examine the ability of the AI to
generate correct code on the first try. For future work, it would be interesting to see if the
updated models, like ChatGPT-4, are able to generate code of higher accuracy and quality.
When the code is generated correctly the first time, it could save time for the developer.

Another challenge was to generate code from Copilot. Copilot sometimes writes just a small
part of the code, and the developer has to help the tool out by writing some code or even just
typing a space. Another problem with Copilot is that it’s affected by previous code
generations and existing code in a project, even if the previous generations have been deleted.
To generate algorithms independently of the previous generation, we decided to go for the
alternative of generating multiple suggestions at the same time. The process is described
more accurately in Chapter 4.

When generating code with Copilot, it often gave code suggestions containing “to do”
comments, unfinished implementations, or method definitions. This was especially apparent
for simpler algorithms. We first decided to include all of the suggestions we got when
generating multiple solutions. However, when we had collected the data, we observed that
Copilot generated invalid code more often for simpler algorithms. As an example, in the first
results we got, there were 20 generations with compilation errors out of 50 for the Binary
Search algorithm. As a comparison, only 3 out of 50 generations had compilation errors for
the BFS algorithm.

These results could be attributed to the fact that more complex algorithms offer a broader
range of potential solutions, thereby affording Copilot greater flexibility to suggest alternative
approaches. Conversely, shorter algorithms offer fewer possibilities, resulting in more limited
suggestions and possibly requiring solutions with only, for example, a method definition. As
such, we started to doubt the validity of the Copilot results and how we collected our data. In
their research, B. Yetistiren, I. Ozsoy, and E. Tuzun [7] distinguished between validation and
correctness. As our research questions aimed to examine the code quality and correctness and
not if the code validates, we ultimately decided not to include the invalid code suggestions
generated by Copilot and instead focus on analyzing the correctness of valid code only. The



discarded suggestions include method definitions, code with to-do comments, unfinished
implementations, and code with syntax errors. With ChatGPT, we didn't get any invalid
solutions during code generation.

The analysis of the correctness results for ChatGPT showed that it generated correct code in
87.33% of the cases, and therefore, the answer to RQ1: How well does ChatGPT provide
correct code from specified instructions? is that ChatGPT is generally good at providing
correct code from specified instructions. However, there’s still a fair bit of incorrect
generations at the complexity level of the chosen algorithms, but in general, ChatGPT seems
to be a good tool for generating simpler algorithms.

The analysis of the correctness results for Copilot was similar to that of ChatGPT. Copilot
performed marginally better and generated correct code in 89% of the cases. As such, the
research question RQ2: How well does GitHub Copilot provide correct code from specified
instructions? gives the same answer as for ChatGPT, that it, in general, is good at producing
correct code from given instructions. This is consistent with the results of previous studies
such as B. Yetistiren, I. Ozsoy, and E. Tuzun [7] who found that Copilot generated 28.7%
fully correct code for problems in the HumanEval dataset. However, our result is significantly
higher, which might be attributed to the improvements made in the model since the previous
studies were conducted. It can also be due to differences in the complexity level between the
problems in the HumanEval dataset and the algorithms we chose to include in this study. It
could also be attributed to the evaluation process being used. If the partially correct code of
51.2% is taken into account, the findings by B. Yetistiren, I. Ozsoy, and E. Tuzun would be
79.9% correct generations compared to the findings in our study of 89%.

The results of the Mann-Whitney U test showed no significant difference between ChatGPT
and Copilot in terms of code correctness. Therefore, it can be concluded that both tools are
similarly capable of generating correct code from given instructions, and that no differences
could be observed, which answers RQ5: What differences can be observed between ChatGPT
and GitHub Copilot in terms of code correctness?. The result suggests that the choice
between the two tools may depend on other factors, such as the specific needs of the user,
rather than their ability to generate correct code.

The analysis of the code quality results showed that, as much as 98.52% of the total lines
generated by ChatGPT, didn’t have any quality errors. The results also showed that a total of
80.7% of the generated algorithms contained 0 code quality errors. This is an impressive
result, indicating that not only can ChatGPT provide correct code, but it can also maintain a
high standard of quality in the process. The findings show the potential of ChatGPT to be



used as an automated code generation tool, not only for generating functionally correct code
but also for generating code that aligns with quality best practices. The answer to the research
question RQ3: How good is ChatGPT at generating code of high quality? is therefore that
ChatGPT seems to perform well when it comes to producing code of high quality.

For Copilot, the analysis showed that it generated correct lines for 94.07% of the total
generated lines. The result seems to indicate that Copilot can provide code of high quality
equally as well as ChatGPT. However, the findings also revealed that Copilot generated code
with no code quality errors 64.7% of the time, which means that more than one-third of the
generations contained code quality errors. This suggests that while Copilot is generally
capable of generating high-quality code, there may be room for improvement in terms of
ensuring consistent adherence to code quality standards. This finding aligns with the results
of S. Imai [8], who found that while Copilot generated more code than human
pair-programming, the quality of the code generated was lower. The answer to the research
question RQ4: How good is GitHub Copilot at generating code of high quality? is that
Copilot more often than not is good at generating code of high quality. However, in 36.3% of
the cases, Copilot generated algorithms with code quality errors. To ensure the highest quality
code, users should thoroughly review the output provided by Copilot.

The Mann-Whitney U test performed to answer RQ6. What differences can be observed
between ChatGPT and GitHub Copilot in terms of code quality? showed a statistically
significant difference in code quality between ChatGPT and Copilot. The analysis showed
that ChatGPT generally produces higher quality code than Copilot. This suggests that while
both tools are capable of generating correct code, ChatGPT may be more reliable for
generating high-quality code.



8 Conclusions and Future Work
The purpose of this study was to evaluate how ChatGPT and Copilot perform in terms of
generating correct code and code of high quality. The tools were both examined individually
and compared to each other to determine any differences between them. A controlled
experiment was conducted to address the research questions. Data was collected by
generating algorithms with ChatGPT and Copilot, and the generated algorithms were then
tested for code correctness and code quality. The research questions are as follows:

● RQ1: How well does ChatGPT provide correct code from specified instructions?
● RQ2: How well does GitHub Copilot provide correct code from specified

instructions?
● RQ3: How good is ChatGPT at generating code of high quality?
● RQ4: How good is GitHub Copilot at generating code of high quality?
● RQ5: What differences can be observed between ChatGPT and GitHub Copilot in

terms of code correctness?
● RQ6: What differences can be observed between ChatGPT and GitHub Copilot in

terms of code quality?

The results of this study suggest that both ChatGPT and Copilot are capable of generating
functionally correct code from specified instructions, with ChatGPT generating 87.33% of
correct algorithms and Copilot generating 89% of correct algorithms (RQ1, RQ2). Copilot
appears to have a slight advantage to ChatGPT, but the difference is minor and not
statistically significant (RQ5).

Both ChatGPT and Copilot more often than not generate code with no code quality errors
with ChatGPT generating 80.7% of algorithms without any quality rule violations, while
Copilot generating violation-free algorithms 64.7% of the time. Therefore, both ChatGPT and
Copilot seem to perform well in generating code of high quality (RQ3, RQ4). However, as
can be seen from the results, ChatGPT seems to perform better than Copilot and the analysis
showed a statistically significant difference between the two tools (RQ6). These findings
provide useful insights for developers and teams considering the use of AI-powered tools for
automated code generation. Further research may be needed to explore these tools.

The code quality results, however, are limited to the rules from the book Clean Code by
Robert C. Martin that was implementable in Checkstyle. To get a more extensive code quality
check, another tool than Checkstyle might have been preferred. Future work could use other
tools or approaches when examining code quality to be able to check for more complex



quality rules than what could be checked with Checkstyle, or to get results for a broader
spectrum of quality rules in the Clean Code book to increase generalizability. As we only
evaluated the overall result from all the quality rules, it could also be interesting to build upon
this research and evaluate the performance of generating high quality code in more detail by
looking at how the AI tools performed for each code quality rule.

For both code correctness and quality, the findings are limited by the number of algorithms
chosen to be generated. Future work could add to this study by selecting additional
algorithms to be generated to get a more general result. Other types of code could also be
generated to generalize it even further. One example could be to generate web components or
APIs.

Finally, other programming languages could also be studied to assess if the results differ
between languages.

As these models and tools are regularly updated, repeating this study for the updated models
could be of interest for future researchers to see if there have been any improvements. Only
during the course of this thesis project, ChatGPT-4 was released to the public, and a preview
of GitHub Copilot X built on GPT-4 was introduced.



References
[1] A. Boulton, “There's an explosion in AI interest but there's lots of life left in real human
intelligence | Adam Boulton” Sky News, 10 Feb.2023. Accessed: May 2, 2023. [Online].
Available:
https://news.sky.com/story/theres-an-explosion-in-ai-interest-but-theres-lots-of-life-left-in-rea
l-human-intelligence-adam-boulton-12807211.

[2] A. Moka and J. Zinkula, “ChatGPT may be coming for our jobs. Here are the 10 roles that
AI is most likely to replace.” Business Insider, April 9, 2023. Accessed: May 2, 2023.
[Online]. Available:
https://www.businessinsider.com/chatgpt-jobs-at-risk-replacement-artificial-intelligence-ai-la
bor-trends-2023-02?r=US&IR=T#tech-jobs-coders-computer-programmers-software-enginee
rs-data-analysts-1.

[3] A. Hughes, “ChatGPT Will Replace Programmers Within 10 Years”, GitConnected, Mars
1, 2023. Accessed: May 2, 2023. [Online]. Available:
https://levelup.gitconnected.com/chatgpt-will-replace-programmers-within-10-years-91e5b3b
d3676.

[4] Stack Overflow Meta, “Temporary Policy: ChatGPT is banned”, Stack Overflow,
December 5, 2022. Accessed: May 2, 2023. [Online]. Available:
https://meta.stackoverflow.com/questions/421831/temporary-policy-chatgpt-is-banned.

[5] Wikipedia contributors, “ChatGPT”, Wikipedia, The Free Encyclopedia, May 2, 2023.
Accessed: May 2, 2023. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=ChatGPT&oldid=1156516050.

[6] Wikipedia contributors, “GitHub Copilot”, Wikipedia, The Free Encyclopedia, May 2,
2023. Accessed: May 2, 2023. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=GitHub_Copilot&oldid=1154849983.

[7] B. Yetistiren, I. Oszoy and E. Tuzun, “Assessing the Quality of GitHub Copilot’s Code
Generation”, PROMISE 2022: Proceedings of the 18th International Conference on
Predictive Models and Data Analytics in Software Engineering, pp. 62-71, November 2022,
doi: 10.1145/3558489.

https://news.sky.com/story/theres-an-explosion-in-ai-interest-but-theres-lots-of-life-left-in-real-human-intelligence-adam-boulton-12807211
https://news.sky.com/story/theres-an-explosion-in-ai-interest-but-theres-lots-of-life-left-in-real-human-intelligence-adam-boulton-12807211
https://news.sky.com/story/theres-an-explosion-in-ai-interest-but-theres-lots-of-life-left-in-real-human-intelligence-adam-boulton-12807211
https://www.businessinsider.com/chatgpt-jobs-at-risk-replacement-artificial-intelligence-ai-labor-trends-2023-02?r=US&IR=T#tech-jobs-coders-computer-programmers-software-engineers-data-analysts-1
https://www.businessinsider.com/chatgpt-jobs-at-risk-replacement-artificial-intelligence-ai-labor-trends-2023-02?r=US&IR=T#tech-jobs-coders-computer-programmers-software-engineers-data-analysts-1
https://www.businessinsider.com/chatgpt-jobs-at-risk-replacement-artificial-intelligence-ai-labor-trends-2023-02?r=US&IR=T#tech-jobs-coders-computer-programmers-software-engineers-data-analysts-1
https://www.businessinsider.com/chatgpt-jobs-at-risk-replacement-artificial-intelligence-ai-labor-trends-2023-02?r=US&IR=T#tech-jobs-coders-computer-programmers-software-engineers-data-analysts-1
https://levelup.gitconnected.com/chatgpt-will-replace-programmers-within-10-years-91e5b3bd3676
https://levelup.gitconnected.com/chatgpt-will-replace-programmers-within-10-years-91e5b3bd3676
https://levelup.gitconnected.com/chatgpt-will-replace-programmers-within-10-years-91e5b3bd3676
https://meta.stackoverflow.com/questions/421831/temporary-policy-chatgpt-is-banned
https://meta.stackoverflow.com/questions/421831/temporary-policy-chatgpt-is-banned
https://en.wikipedia.org/w/index.php?title=ChatGPT&oldid=1156516050
https://en.wikipedia.org/wiki/GitHub_Copilot
https://en.wikipedia.org/w/index.php?title=GitHub_Copilot&oldid=1154849983


[8] S. Imai, “Is GitHub Copilot a Substitute for Human Pair-programming? An Empirical
Study”, ICSE '22: Proceedings of the ACM/IEEE 44th International Conference on Software
Engineering: Companion Proceedings, pp. 319-321, May 2022, doi:
10.1145/3510454.3522684.

[9] M.Chen, J. Tworek, H. Jun, Q. Yuan, H. Ponde de Oliveira Pinto, J. Kaplan, … W.
Zaremba, “Evaluating Large Language Models Trained on Code”, July 2021, doi:
10.48550/arXiv.2107.03374.

[10] S. Sengamedu and H. Zhao, “Neural Language Models for Code Quality Identification”,
MaLTeSQuE 2022: Proceedings of the 6th International Workshop on Machine Learning
Techniques for Software Quality Evaluation, pp. 5.10, November 2022, doi:
10.1145/3549034.3561175.

[11] H. Krasner, “The Cost of Poor Software Quality in the US: A 2022 Report”, Consortium
for Information and Software Quality, December 15, 2022. Accessed: 3 June, 2023. [Online].
Available:
https://www.it-cisq.org/wp-content/uploads/sites/6/2022/11/CPSQ-Report-Nov-22-2.pdf

[12] T. Armerding, “Poor software quality can cost time and money, straightforward solutions
are available”, IDG Communications, Inc, Mars 12, 2023. Accessed: 3 June, 2023. [Online].
Available:
https://www.csoonline.com/article/3690320/poor-software-quality-can-cost-time-and-money-
straightforward-solutions-are-available.html

[13] S. Glen, “ChatGPT writes code, but won’t replace developers”, TechTarget, December
14, 2022. Accessed: January 30, 2023. [Online]. Available:
https://www.techtarget.com/searchsoftwarequality/news/252528379/ChatGPT-writes-code-bu
t-wont-replace-developers.

[14] Coding Freak, “Top 25 Algorithms Every Programmer Should Know”, Medium, June
11, 2020. Accessed: Mars 15, 2023. [Online]. Available:
https://medium.com/techie-delight/top-25-algorithms-every-programmer-should-know-37324
6b4881b.

[15] C. Wohlin, M. Höst, B. Regnell, P. Runeson, M. C. Ohlsson, and A. Wesslén,
Experimentation in Software Engineering. Berlin: Springer Berlin Heidelberg, 2012, pp.
73-152, doi: 10.1007/978-3-642-29044-2.

https://www.it-cisq.org/wp-content/uploads/sites/6/2022/11/CPSQ-Report-Nov-22-2.pdf
https://www.techtarget.com/searchsoftwarequality/news/252528379/ChatGPT-writes-code-but-wont-replace-developers
https://www.techtarget.com/searchsoftwarequality/news/252528379/ChatGPT-writes-code-but-wont-replace-developers
https://medium.com/techie-delight/top-25-algorithms-every-programmer-should-know-373246b4881b
https://medium.com/techie-delight/top-25-algorithms-every-programmer-should-know-373246b4881b
https://medium.com/techie-delight/top-25-algorithms-every-programmer-should-know-373246b4881b


[16] TrainingByPackt, “BinarySearch.java”, GitHub, Mars 7, 2018. Accessed: Mars 23,
2023. [Online]. Available:
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/
main/java/com/packt/datastructuresandalg/lesson1/binarysearch/BinarySearch.java.

[17] TrainingByPackt, “Graph.java”, GitHub, April 15, 2018. Accessed: Mars 23, 2023.
[Online]. Available:
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/
main/java/com/packt/datastructuresandalg/lesson6/bfs/Graph.java.

[18] TrainingByPackt, “MergeSort.java”, GitHub, Mars 18, 2018. Accessed: Mars 23, 2023.
[Online]. Available:
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/
main/java/com/packt/datastructuresandalg/lesson2/activity/mergesort/solution/MergeSort.jav
a.

[19] TrainingByPackt, “QuickSort.java”, GitHub, Mars 18, 2018. Accessed: Mars 23, 2023.
[Online]. Available:
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/
main/java/com/packt/datastructuresandalg/lesson2/sorting/QuickSort.java.

[20] TrainingByPackt, “Knapsack.java”, GitHub, Mars 10, 2018. Accessed: Mars 23, 2023.
[Online]. Available:
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/
main/java/com/packt/datastructuresandalg/lesson4/knapsack/Knapsack.java.

[21] TrainingByPackt, “BinaryToDecimal.java”, GitHub, Mars 7, 2018. Accessed: Mars 23,
2023. [Online]. Available:
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/
main/java/com/packt/datastructuresandalg/lesson1/binarytodecimal/BinaryToDecimal.java.

[22] TrainingByPackt, “Data-Structures-and-Algorithms-in-Java”, GitHub, September 18,
2018. Accessed: Mars 23, 2023. Available:
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java.

[23] Wikipedia contributors, “Mann-Whitney U test”, Wikipedia, The Free Encyclopedia,
May 2, 2023. Accessed: May 2, 2023. [Online]. Available:

https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/main/java/com/packt/datastructuresandalg/lesson1/binarysearch/BinarySearch.java
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/main/java/com/packt/datastructuresandalg/lesson1/binarysearch/BinarySearch.java
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/main/java/com/packt/datastructuresandalg/lesson1/binarysearch/BinarySearch.java
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/main/java/com/packt/datastructuresandalg/lesson6/bfs/Graph.java
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/main/java/com/packt/datastructuresandalg/lesson6/bfs/Graph.java
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/main/java/com/packt/datastructuresandalg/lesson2/activity/mergesort/solution/MergeSort.java
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/main/java/com/packt/datastructuresandalg/lesson2/activity/mergesort/solution/MergeSort.java
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/main/java/com/packt/datastructuresandalg/lesson2/activity/mergesort/solution/MergeSort.java
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/main/java/com/packt/datastructuresandalg/lesson2/activity/mergesort/solution/MergeSort.java
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/main/java/com/packt/datastructuresandalg/lesson2/sorting/QuickSort.java
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/main/java/com/packt/datastructuresandalg/lesson2/sorting/QuickSort.java
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/main/java/com/packt/datastructuresandalg/lesson2/sorting/QuickSort.java
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/tree/master/src/main/java/com/packt/datastructuresandalg/lesson4/knapsack
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/main/java/com/packt/datastructuresandalg/lesson4/knapsack/Knapsack.java
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/main/java/com/packt/datastructuresandalg/lesson4/knapsack/Knapsack.java
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/tree/master/src/main/java/com/packt/datastructuresandalg/lesson4/knapsack
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/main/java/com/packt/datastructuresandalg/lesson1/binarytodecimal/BinaryToDecimal.java
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java/blob/master/src/main/java/com/packt/datastructuresandalg/lesson1/binarytodecimal/BinaryToDecimal.java
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java
https://github.com/TrainingByPackt/Data-Structures-and-Algorithms-in-Java
https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test


https://en.wikipedia.org/w/index.php?title=Mann%E2%80%93Whitney_U_test&oldid=1156
358886.

[24] A. Schroer, “What Is Artificial Intelligence?”, Built In. Accessed: April 29, 2023.
[Online]. Available: https://builtin.com/artificial-intelligence.

[25] “What is AI?”, McKinsey & Company, April 24, 2023. Accessed: April 29, 2023.
[Online]. Available:
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-ai.

[26] “What is generative AI?”, McKinsey & Company, January 19, 2023. Accessed: April 29,
2023. [Online]. Available:
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-generative-ai.

[27] G. D. Rocha, “AI - Design, architecture, and use of Github Copilot”, Medium, May 6,
2023. Accessed: June 5, 2023. [Online]. Available:
https://medium.com/@genedarocha/ai-design-architecture-and-use-of-github-copilot-21ca854
81e0e.

[28] A. Prakash, “What is transformer architecture and how does it power ChatGPT”,
ThoughtSpot, February 23, 2023. Accessed: June 5, 2023. [Online]. Available:
https://www.thoughtspot.com/data-trends/ai/what-is-transformer-architecture-chatgpt.

[29] G. Lawton, “GitHub Copilot vs. ChatGPT: How do they compare?”, TechTarget, April
10, 2023. Accessed: April 29, 2023. [Online]. Available:
https://www.techtarget.com/searchenterpriseai/tip/GitHub-Copilot-vs-ChatGPT-How-do-they
-compare.

[30] B. Dickson, “GitHub Copilot is the first real product based on large language models”,
The Next Web, July 10, 2022. Accessed: April 29, 2023. Available:
https://thenextweb.com/news/github-copilot-large-language-models

[31] R. Khandelwal, “A Basic Understanding of the ChatGPT Model”, Medium, December
28, 2022. Accessed: April 29, 2023. [Online]. Available:
https://arshren.medium.com/a-basic-understanding-of-the-chatgpt-model-92aba741eea1.

[32] “Unit Testing”, JavaTpoint. Accessed: April 30, 2023. [Online]. Available:
https://www.javatpoint.com/unit-testing.

https://builtin.com/artificial-intelligence
https://builtin.com/artificial-intelligence
https://en.wikipedia.org/wiki/GitHub_Copilot
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-ai
https://en.wikipedia.org/wiki/GitHub_Copilot
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-generative-ai
https://en.wikipedia.org/wiki/GitHub_Copilot
https://arshren.medium.com/a-basic-understanding-of-the-chatgpt-model-92aba741eea1
https://medium.com/@genedarocha/ai-design-architecture-and-use-of-github-copilot-21ca85481e0e
https://medium.com/@genedarocha/ai-design-architecture-and-use-of-github-copilot-21ca85481e0e
https://en.wikipedia.org/wiki/GitHub_Copilot
https://arshren.medium.com/a-basic-understanding-of-the-chatgpt-model-92aba741eea1
https://www.thoughtspot.com/data-trends/ai/what-is-transformer-architecture-chatgpt
https://en.wikipedia.org/wiki/GitHub_Copilot
https://www.techtarget.com/searchenterpriseai/tip/GitHub-Copilot-vs-ChatGPT-How-do-they-compare
https://www.techtarget.com/searchenterpriseai/tip/GitHub-Copilot-vs-ChatGPT-How-do-they-compare
https://en.wikipedia.org/wiki/GitHub_Copilot
https://thenextweb.com/news/github-copilot-large-language-models
https://thenextweb.com/news/github-copilot-large-language-models
https://en.wikipedia.org/wiki/GitHub_Copilot
https://arshren.medium.com/a-basic-understanding-of-the-chatgpt-model-92aba741eea1
https://arshren.medium.com/a-basic-understanding-of-the-chatgpt-model-92aba741eea1
https://en.wikipedia.org/wiki/GitHub_Copilot
https://www.javatpoint.com/unit-testing
https://www.javatpoint.com/unit-testing


[33] “What Is Unit Testing?”, SmartBear. Accessed: April 30, 2023. [Online]. Available:
https://smartbear.com/learn/automated-testing/what-is-unit-testing/.

[34] “JUnit Tutorial For Beginners – What Is JUnit Testing”, Software Testing Help.
Accessed: April 30, 2023. [Online]. Available:
https://www.softwaretestinghelp.com/junit-tutorial.

[35] Indeed Editorial Team, “Code Quality: What It Is and How To Measure It (With Tips)”,
Indeed, February 3, 2023. Accessed: April 30, 2023. [Online]. Available:
https://www.indeed.com/career-advice/career-development/what-is-code-quality.

[36] R. Bellairs, “What is Code Quality? Overview + How to Improve Code Quality”,
Perforce Software, July 11, 2019. Accessed: April 30, 2023. [Online]. Available:
https://www.perforce.com/blog/sca/what-code-quality-overview-how-improve-code-quality.

[37] “Coding Standards For Quality and Compliance”, Perforce Software. Accessed: April
30, 2023. [Online]. Available: https://www.perforce.com/resources/qac/coding-standards.

[38] ”Overview”, Checkstyle. Accessed: April 30, 2023. [Online]. Available:
https://checkstyle.sourceforge.io/.

[39] “Standard Checks”, Checkstyle. Accessed: April 30, 2023. [Online]. Available:
https://checkstyle.sourceforge.io/checks.html.

[40] “Writing Checks”, Checkstyle. Accessed: April 30, 2023. [Online]. Available:
https://checkstyle.sourceforge.io/writingchecks.html.

[41] Baeldung, “Introduction to CheckStyle”, Baeldung, June 4, 2022. Accessed: April 30,
2023. [Online]. Available: https://www.baeldung.com/checkstyle-java.

[42] CetinOgut, “What does Clean Code mean?”, Medium, July 5, 2021. Accessed: April 30,
2023. [Online]. Available:
https://cogut.medium.com/what-does-clean-code-mean-2190e4aed818.

[43] LLM Editor, “Top 5 Principles of Clean Code: Including Readability, Maintainability,
and Simplicity”, May 16, 2023. Accessed: May 22, 2023. [Online]. Available:

https://en.wikipedia.org/wiki/GitHub_Copilot
https://smartbear.com/learn/automated-testing/what-is-unit-testing/
https://smartbear.com/learn/automated-testing/what-is-unit-testing/
https://www.softwaretestinghelp.com/junit-tutorial
https://en.wikipedia.org/wiki/GitHub_Copilot
https://www.indeed.com/career-advice/career-development/what-is-code-quality
https://en.wikipedia.org/wiki/GitHub_Copilot
https://www.perforce.com/blog/sca/what-code-quality-overview-how-improve-code-quality
https://www.perforce.com/resources/qac/coding-standards
https://en.wikipedia.org/wiki/GitHub_Copilot
https://checkstyle.sourceforge.io/
https://checkstyle.sourceforge.io/
https://en.wikipedia.org/wiki/GitHub_Copilot
https://checkstyle.sourceforge.io/checks.html
https://en.wikipedia.org/wiki/GitHub_Copilot
https://checkstyle.sourceforge.io/writingchecks.html
https://checkstyle.sourceforge.io/writingchecks.html
https://www.baeldung.com/checkstyle-java
https://en.wikipedia.org/wiki/GitHub_Copilot
https://cogut.medium.com/what-does-clean-code-mean-2190e4aed818


https://londonlifestylemag.co.uk/top-principles-of-clean-code-including-readability-maintaina
bility-and-simplicity/.

[44] B. Cook, “The Complete Guide to Readable Code: 11 Principles”, December 9, 2022.
Accessed: May 22, 2023. [Online]. Available:
https://fellow.app/blog/engineering/the-complete-guide-to-readable-code/.

[45] L. Haimovitch, “Understandability: The Most Important Metric You’re Not Tracking”,
June 6, 2020. Accessed: May 22, 2023. [Online]. Available:
https://www.infoq.com/articles/understandability-metric-not-tracking/.

[46] T. Davis, “What is "maintainable code"?”, April 14, 2009. Accessed: May 22, 2023.
[Online]. Available: https://www.red-gate.com/simple-talk/blogs/what-is-maintainable-code/.

[47] R. C. Martin, “Clean Code” in Clean Code: A Handbook of Agile Software
Craftsmanship. USA: Pearson Education, Inc., 2008, pp. 6-7.

[48] R. C. Martin, “Functions” in Clean Code: A Handbook of Agile Software
Craftsmanship. USA: Pearson Education, Inc., 2008, pp. 34-35.

[49] R. C. Martin, “Functions” in Clean Code: A Handbook of Agile Software
Craftsmanship. USA: Pearson Education, Inc., 2008, pp. 40.

[50] R. C. Martin, “Formatting” in Clean Code: A Handbook of Agile Software
Craftsmanship. USA: Pearson Education, Inc., 2008, pp. 76-77.

[51] R. C. Martin, “Formatting” in Clean Code: A Handbook of Agile Software
Craftsmanship. USA: Pearson Education, Inc., 2008, pp. 85.

[52] B. R. P. Putra, “Clean Code is slow, but you still need it anyway…”, Medium, March 12,
2023. Accessed: June 6, 2023. [Online]. Available:
https://medium.com/@bawenang/clean-code-is-slow-but-you-still-need-it-anyway-ffcac6973
c93.

https://londonlifestylemag.co.uk/top-principles-of-clean-code-including-readability-maintainability-and-simplicity/
https://londonlifestylemag.co.uk/top-principles-of-clean-code-including-readability-maintainability-and-simplicity/
https://fellow.app/blog/engineering/the-complete-guide-to-readable-code/
https://www.infoq.com/articles/understandability-metric-not-tracking/
https://www.red-gate.com/simple-talk/blogs/what-is-maintainable-code/
https://en.wikipedia.org/wiki/GitHub_Copilot
https://arshren.medium.com/a-basic-understanding-of-the-chatgpt-model-92aba741eea1
https://medium.com/@bawenang/clean-code-is-slow-but-you-still-need-it-anyway-ffcac6973c93
https://medium.com/@bawenang/clean-code-is-slow-but-you-still-need-it-anyway-ffcac6973c93


A Appendix 1
This appendix presents the code generation instructions used in the study to generate
algorithms with Copilot and ChatGPT. The same instructions were used at every generation
of an algorithm, and the same set of instructions was used for both of the AI tools.

Binary Search Algorithm Instructions
// Implement a non-static class named BinarySearch.
// Implement the public binarySearch(int, int[]) method. The method should return a
boolean.

Breadth First Search (BFS) Algorithm Instructions
// Implement a non-static breadth search first class named Graph(int vertices).
// Implement the public bfs(int sourceVertex) method. The method should return an
integer array of parent nodes for each vertex in the graph. The array of parent
node values are all initialized to -1 in the bfs(int sourceVertex) method.
// Implement the public addEdge(int, int). The method should add an edge between
two vertices.

Merge Sort Algorithm Instructions
// Implement a non-static merge sort algorithm class named MergeSort with a public
void mergeSort(int[]) method.

Quicksort Algorithm Instructions
// Implement a non-static quick sort algorithm class named QuickSort with a public
void sort(int[]) method.

Knapsack Algorithm Instructions
// Implement a non-static 0-1 knapsack class named Knapsack.
// Implement the public int bottomUp(int capacity, int[] weights, int[] values)
method. The method should return an int with the maximum value.

Binary To Decimal Instructions
// Implement a non-static BinaryToDecimal class.
// Implement the public convertToDecimal(String binary) method. The method should
return an int with the decimal.



B Appendix 2
This appendix presents the code quality rules from the book Clean Code by Robert C. Martin,
which were used in the study to evaluate the code quality of the generated algorithms. The
table included in this appendix showcases the code quality rules along with corresponding
quotes from the book, providing a direct reference to the source material (including page
numbers).

Code Quality Rule Quote From the Book and Checkstyle docs Reference To the Quote

The files should not be
over 500 lines long.

“It appears to be possible to build significant
systems out of files that are typically 200 lines
long with an upper limit of 500. Although this
should not be a hard and fast rule, it should be
considered very desirable.”

R. C. Martin, “Formatting”
in Clean Code: A Handbook
of Agile Software
Craftsmanship. USA:
Pearson Education, Inc.,
2008, pp. 77.

A line should not be more
than 120 characters long.

“This suggests that we should strive to keep our
lines short. The old Hollerith limit of 80 is a bit
arbitrary, and I'm not opposed to lines edging
out to 100 or even 120. But beyond that is
probably just careless.”

R. C. Martin, “Formatting”
in Clean Code: A Handbook
of Agile Software
Craftsmanship. USA:
Pearson Education, Inc.,
2008, pp. 85.

Magic numbers should be
hidden behind constants.

“In general it is a bad idea to have raw numbers
in your code. You should hide them behind
well-named constants.”

R. C. Martin, “Smells and
Heuristics” in Clean Code:
A Handbook of Agile
Software Craftsmanship.
USA: Pearson Education,
Inc., 2008, pp. 300.

Functions should not be
more than 20 lines long.

“Functions should not be 100 lines long.
Functions should hardly ever be 20 lines long.”

R. C. Martin, “Functions”
in Clean Code: A Handbook
of Agile Software
Craftsmanship. USA:
Pearson Education, Inc.,
2008, pp. 34.

Functions should not have
more than three
arguments.

“More than three (polyadic) requires very
special justification - and then shouldn't be used
anyway.”

R. C. Martin, “Functions”
in Clean Code: A Handbook
of Agile Software
Craftsmanship. USA:
Pearson Education, Inc.,
2008, pp. 40.



There should not be
nested loops of a depth of
more than one level.

“This also implies that functions should not be
large enough to hold nested structures.
Therefore, the indent level of a function should
not be greater than one or two.”

R. C. Martin, “Functions”
in Clean Code: A Handbook
of Agile Software
Craftsmanship. USA:
Pearson Education, Inc.,
2008, pp. 35.

There should not be more
than one statement per
line.

“Clear and expressive code with few comments
is far superior to cluttered and complex code
with lots of comments. Rather than spend your
time writing the comments that explain the mess
you’ve made, spend it cleaning that mess.”

R. C. Martin, “Good
Comments” in Clean Code:
A Handbook of Agile
Software Craftsmanship.
USA: Pearson Education,
Inc., 2008, pp. 55.

“It's very difficult to read multiple statements on
one line.”

Checkstyle, “Standard
Checks”, v10.11.0, May
2023. Accessed: May 30,
2023. [Online]. Available:
https://checkstyle.org/config
_coding.html#OneStatemen
tPerLine

There should not be any
inner assignments.

“Clear and expressive code with few comments
is far superior to cluttered and complex code
with lots of comments. Rather than spend your
time writing the comments that explain the mess
you’ve made, spend it cleaning that mess.”

R. C. Martin, “Good
Comments” in Clean Code:
A Handbook of Agile
Software Craftsmanship.
USA: Pearson Education,
Inc., 2008, pp. 55.

“With inner assignments, it is difficult to see all
places where a variable is set.”

Checkstyle, “Standard
Checks”, v10.11.0, May
2023. Accessed: May 30,
2023. [Online]. Available:
https://checkstyle.org/config
_coding.html#InnerAssign
ment

https://en.wikipedia.org/wiki/GitHub_Copilot


C Appendix 3
This appendix presents all the links to the results from the statistical analysis performed using
AI-Therapy Statistics.

CODE CORRECTNESS

ChatGPT data Copilot data

Mean, mode & median https://www.ai-therapy.co
m/psychology-statistics/r
esults/20230416225520058

https://www.ai-therapy.co
m/psychology-statistics/r
esults/20230416225106252

Dispersion https://www.ai-therapy.co
m/psychology-statistics/r
esults/20230416225610040

https://www.ai-therapy.co
m/psychology-statistics/r
esults/20230416225215784

Normality test https://www.ai-therapy.co
m/psychology-statistics/r
esults/20230416225700927

https://www.ai-therapy.co
m/psychology-statistics/r
esults/20230416225342508

Hypothesis testing https://www.ai-therapy.com/psychology-statistics/resu
lts/20230416225902924

CODE QUALITY

ChatGPT data Copilot data

Mean, mode & median https://www.ai-therapy.co
m/psychology-statistics/r
esults/20230416224317426

https://www.ai-therapy.co
m/psychology-statistics/r
esults/20230416215022910

Dispersion https://www.ai-therapy.co
m/psychology-statistics/r
esults/20230416224413875

https://www.ai-therapy.co
m/psychology-statistics/r
esults/20230416215316314

Normality test https://www.ai-therapy.co
m/psychology-statistics/r
esults/20230416224645602

https://www.ai-therapy.co
m/psychology-statistics/r
esults/20230416215521826

Hypothesis testing https://www.ai-therapy.com/psychology-statistics/resu
lts/20230604163954461

https://www.ai-therapy.com/psychology-statistics/results/20230416225520058
https://www.ai-therapy.com/psychology-statistics/results/20230416225520058
https://www.ai-therapy.com/psychology-statistics/results/20230416225520058
https://www.ai-therapy.com/psychology-statistics/results/20230416225106252
https://www.ai-therapy.com/psychology-statistics/results/20230416225106252
https://www.ai-therapy.com/psychology-statistics/results/20230416225106252
https://www.ai-therapy.com/psychology-statistics/results/20230416225610040
https://www.ai-therapy.com/psychology-statistics/results/20230416225610040
https://www.ai-therapy.com/psychology-statistics/results/20230416225610040
https://www.ai-therapy.com/psychology-statistics/results/20230416225215784
https://www.ai-therapy.com/psychology-statistics/results/20230416225215784
https://www.ai-therapy.com/psychology-statistics/results/20230416225215784
https://www.ai-therapy.com/psychology-statistics/results/20230416225700927
https://www.ai-therapy.com/psychology-statistics/results/20230416225700927
https://www.ai-therapy.com/psychology-statistics/results/20230416225700927
https://www.ai-therapy.com/psychology-statistics/results/20230416225342508
https://www.ai-therapy.com/psychology-statistics/results/20230416225342508
https://www.ai-therapy.com/psychology-statistics/results/20230416225342508
https://www.ai-therapy.com/psychology-statistics/results/20230416225902924
https://www.ai-therapy.com/psychology-statistics/results/20230416225902924
https://www.ai-therapy.com/psychology-statistics/results/20230416224317426
https://www.ai-therapy.com/psychology-statistics/results/20230416224317426
https://www.ai-therapy.com/psychology-statistics/results/20230416224317426
https://www.ai-therapy.com/psychology-statistics/results/20230416215022910
https://www.ai-therapy.com/psychology-statistics/results/20230416215022910
https://www.ai-therapy.com/psychology-statistics/results/20230416215022910
https://www.ai-therapy.com/psychology-statistics/results/20230416215316314
https://www.ai-therapy.com/psychology-statistics/results/20230416215316314
https://www.ai-therapy.com/psychology-statistics/results/20230416215316314
https://www.ai-therapy.com/psychology-statistics/results/20230416224645602
https://www.ai-therapy.com/psychology-statistics/results/20230416224645602
https://www.ai-therapy.com/psychology-statistics/results/20230416224645602
https://www.ai-therapy.com/psychology-statistics/results/20230416215521826
https://www.ai-therapy.com/psychology-statistics/results/20230416215521826
https://www.ai-therapy.com/psychology-statistics/results/20230416215521826
https://www.ai-therapy.com/psychology-statistics/results/20230604163954461
https://www.ai-therapy.com/psychology-statistics/results/20230604163954461


D Appendix 4
This appendix presents the links to the code base of this project and instructions on how to
repeat the experiment. The main project repository was used for testing the generated
algorithms in terms of code correctness and code quality, while the statistical analysis
repository was used for converting the code quality results from XML to JSON and for
creating graphs to present the results. A link to the hands-on instructions for repeating the
project is also provided.

Main project repository https://github.com/emiliaajax/ai-generated-co
de

Statistical analysis repository https://github.com/emiliaajax/ai-tools-analys
is

Hands-on instructions for
repeating the controlled
experiment

https://github.com/emiliaajax/ai-generated-co
de/blob/main/docs/instructions.md

Test documentation https://github.com/emiliaajax/ai-generated-co
de/blob/main/docs/test-specification.md

https://github.com/emiliaajax/ai-generated-code
https://github.com/emiliaajax/ai-generated-code
https://github.com/emiliaajax/ai-tools-analysis
https://github.com/emiliaajax/ai-tools-analysis
https://github.com/emiliaajax/ai-generated-code/blob/main/docs/instructions.md
https://github.com/emiliaajax/ai-generated-code/blob/main/docs/instructions.md
https://github.com/emiliaajax/ai-generated-code/blob/main/docs/test-specification.md
https://github.com/emiliaajax/ai-generated-code/blob/main/docs/test-specification.md

