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A B S T R A C T   

In view of the risks and challenges of privacy data leakage and the communication burden in the traditional 
economic dispatch for active distribution network with multi-microgrids, this paper proposes a cloud edge 
computing method for economic dispatch of active distribution network with multi-microgrids. In this method, 
the cloud server is responsible for the calculation of active distribution network, and each edge server is in charge 
of the calculation of its own microgrid. The multi-agent deep reinforcement learning is employed to realize cloud 
edge collaborative computing, where each edge server and cloud server corresponds to an agent. Through case 
analysis, the reliability of the cloud edge computing method is confirmed. The simulation results show that the 
proposed method can provide a high-quality solution for economic dispatch of active distribution network with 
multi-microgrids on the premise of protecting data privacy and reducing the communication burden.   

1. Introduction 

Microgrids are connected to the active distribution network (ADN), 
which make full use of Distributed Generations (DGs) to reduce power 
generation costs [1–3]. Hence, more studies related with microgrid 
applications is proposed. A multi-objective control scheme [4] is pre-
sented that simultaneously ensures elimination of the collective active 
power oscillations / reactive power oscillations (APOs/RPOs) at point of 
common coupling (PCC), overcurrent protection and reactive power 
injection. An independently neutral current control approach [5] is 
proposed for the fourth leg of the vehicle to grid three phase four leg 
(V2G 3p4L) inverter to regulate the DC-link along with neutral current 
control capability. A new bi-level optimal scheduling model is proposed 
[6] for promoting the participation of battery swapping stations (BSSs) 
in regulating the isolated microgrid (IMG) economic operation. 

As the inheritance and deepening of the microgrid, multi-microgrids 
(MMGs) are of great significance to improve the economic and ensure 
the reliability of regional load power supply of ADN [7]. In the past 
decades, the economic dispatch (ED) of ADN with MMGs is always an 
important research topic. For the ED of ADN with MMGs, the centralized 
model usually need the collection of the DGs parameters and the internal 
information of the MMGs [8]. The centralized model may lead to data 
leakage. Meanwhile, the large-scale operation data of ADN and MMG 
will also increase the communication burden. 

To overcome the communication burden of centralized mode, 
distributed model for the ED of ADN with MMGs usually is adopted [9]. 
A lot of research has been done on the ED of ADN with MMGs based on 
distributed model. An autonomous optimization model of analytical 
target cascading theory (ATC) [10] is proposed to solve the ED of ADN 
with MMGs. The parallel solution of microgrid autonomy mode is ach-
ieved in this model. A dispatch model based on the bi-level optimal 
energy management (OEM) framework [11] is established, which re-
duces to the operation cost of both ADN and MMGs A distributed and 
fast ED method is provided to achieve the finite-time convergence to the 
optimal value [12], where the distribution network and microgrid are 
solved separately without considering the overall optimization. A 
decentralized robust model [13] is proposed to minimize the total 
operation cost through coordinated operation of ADN and MMGs. A 
multi-objective dispatch model [14] is proposed based on the decom-
position algorithm to reduce operating costs. At present, the existing 
literature mainly focuses on the solution of ED model for ADN with 
MMGs, but the literature ignores the privacy protection of ADN and 
Microgrid. 

However, as an independent stakeholder, ADN and microgrid do not 
hope to disclose the privacy of data to each other. Cloud edge computing 
can work out the problem of data privacy disclosure [15–17]. A cloud 
edge computing framework [18] is proposed to realize dynamic ED of 
microgrid, and its ED is conducted on a local digital signal processor 
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(DSP) chip and a remote cloud computing platform (CCP). A edge in-
telligence (EI) structure [19] is proposed to solve the ED in virtual power 
plant (VPP) of internet of energy. The cloud edge computing framework 
[15,16] is formulated to relieve the computation burden, while the data 
privacy protection is not considered. In [20], a first production-level 
cloud-based power system simulation platform is developed to 
compute the ED, and its model of the ED saves the significant cost based 
on the system security and quality of service. In a cloud edge computing 
environment, machine-learning decision-making framework [21] is 
proposed for the ED of an islanding microgrid. In this method, the cloud 
server solves the optimal dispatch decision sequences, and the edge 
computing adopts well-trained model based on keeping the long-term 
parameters unchanged for implement the real-time microgrid energy 
dispatch. A cloud-edge cooperative dispatching (CECD) method [22] is 
provided, which alleviate the huge pressure on the modeling and 
computing of ADN. The cloud edge computing [17–19] is used for 
microgrid and ADN. However, the collaborative relationship between 
ADN and MMGs is not considered and analyzed in these methods. Based 
on the cloud-edge computing architecture, a data-driven anomaly 
identification method is proposed [23] to serve as a widely applicable 
and efficient line of defense against either cyber or physical anomalies. 
Centralized computing is initiated only when any edge device detects an 
anomaly while uploading relative measurements. However, the data of 
cloud server does not feed back to the edge server. This method is not 
suitable for the ED of ADN and MMGs with collaborative relationship. A 
cloud-edge cooperative method [24] is designed to integrate the voltage 
regulation and economic operation. This method focuses on the voltage 
issues by integrating the second-level and third-level priorities in a 
cloud-edge collaboration based hierarchical control method. All the data 
of system measurements are collected and analyzed by the cloud sever of 
incremental distribution networks. The transmission of a large amount 
of data may lead to data leakage and increase the network communi-
cation burden. A three-layer day-ahead optimal schedule is proposed 
[25] taking account of multi-stakeholders in ADN. However, the Inter-
action of the three layers increase the communication burden. Mean-
while, the transmission of a large amount of system information 
between the cloud server and the edge server may also lead to data 
leakage. In order to solve the privacy leakage problem of ADN and 
microgrid, this paper proposes a cloud edge computing method for ED of 
ADN with MMGs. 

Since the multi-agent could corresponds to multiple edge servers and 
cloud server. It is appropriate that multi-agent deep reinforcement 
learning (MADRL) is employed to cloud edge computing. Furthermore, 
the MADRL is suitable for cooperation environment or competition 
environment. The MADRL is competent for the cloud edge computing. 
The multi-agent deep deterministic policy gradient (MADDPG) con-
siders its own behavior and other agent strategies [26]. Aiming at the 
problem of traditional MADRL, the MADDPG completes complex tasks 
through collaborative decision-making in the dynamic environment 
[27–30]. A trajectory control algorithm based on the MADDPG [31] is 
proposed to address unmanned aerial vehicle (UAV)-aided mobile edge 
computing. Based on the MADDPG, an intelligent and efficient resource 
allocation and task offloading algorithm [32] is proposed to solve the 
energy-efficient task offloading and resource allocation for augmented 
reality (AR) in multi-mobile-edge computing systems. Based on the edge 
computing of MADDPG, a deep reinforcement learning algorithm [33] is 
proposed to address the problem that failure information cannot be 
promptly delivered. 

At present, MADDPG has been successfully applied in different in-
dustries. However, cloud computing based on MADDPG has not been 
found to be applied to the ED of ADN with MMGs. In view of the limi-
tation of existing research on the ED of ADN with MMGs, this paper 
proposes a cloud computing based on MADDPG for the ED of ADN with 
MMGs. The contributions of this paper can be summarized into the 
following three aspects:  

a) To protect data privacy and reduce communication burdens, a 
method of cloud edge computing is proposed to solve the ED of ADN 
with MMGs, where the data is not transmitted between ADN and 
MMGs. In the method, the ED models of ADN and microgrid are 
established in the cloud server and edge server, respectively.  

b) The MADDPG algorithm is adopted to realize cloud edge computing, 
where the cloud server and each edge server respond to each agent 
for handling the continuous and dynamic situation space in ADN 
with MMGs.  

c) The proposed method can protect data privacy of ADN and MMGs, 
while the cost of ED is close to the global optimal value. 

The remaining part of this paper is structured as follows: Section 2 
presents model of cloud edge for the ED of the ADN with MMGs. In 
Section 3, the MADDPG algorithm is adopted to realize the cloud edge 
computing. Furthermore, case results are presented in Section 4. Finally, 
we get the conclusions in Section 5. 

2. Cloud edge model for economic dispatch 

2.1. Economic dispatch model 

The model of the ADN with MMGs is briefly described to facilitate 
the subsequent analysis. 

The model of the ADN with MMGs is shown in Fig. 1, where MMGs 
are composed of two microgrids MG1 and MG2. Each microgrid contain 
wind turbine (WT), photovoltaic (PV), diesel engine (DE), micro turbine 
(MT), and energy storage system (ESS) composed of batteries and loads 
[34]. 

This section establishes the mathematical model for ED of ADN with 
MMGs as follows. 

2.1.1. Objective function for ADN 
The dispatch goal of ADN is to minimize the sum of the total gen-

eration cost of units and the interaction cost with the MMGs. This 
objective function for ADN can be written as follows: 

fADN = fG + fPL (1)  

fG =
∑N

i=1

(
aiP2

G,i + biPG,i + ci +

⃒
⃒
⃒λisin

(
ρi

(
Pmin

G,i − PG,i

))⃒
⃒
⃒

)
(2)  

fPL =
∑T

j=1
cPLPMG,j (3)  

where fADN is the total production cost of the ADN; fG is the generation 
cost of units in the ADN as formulated in (2); and fPL represents the 
revenue that the ADN gains from supplying power flow to MMGs; a,b,c 
are the fuel-cost coefficients; λ and ρ are the extra fuel-cost coefficients 
because of valve point effect [35]; and PG,i is the generated output of 

Fig. 1. Model of active distribution network with multi-microgrids.  
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unit i; N is the total number of units; PMG,j is the power transmitted from 
the distribution network to the microgrid; Trepresents the number of 
microgrids connected to the ADN; cPL is the purchase price of electricity. 

2.1.2. Constraint for ADN 

PG =
∑T

j=1
PMG,j + PD (4)  

PG,min ≤ PG ≤ PG,max (5)  

where PD represents the system loads; PG,min and PG,max are the lower and 
upper limits of the unit outputs. 

If 
∑T

j=1PMG,j > 0, it means the MMGs generation is excessive and sold 
to ADN to make revenue; if not, the MMGs generation is insufficient and 
should buy power from ADN. 

2.1.3. Objective function for microgrid 

fMG =
∑NMG

j=1
(f1 + f2 + f3)

f1 =
∑NPV

w=1
cPVPPV,w +

∑NWT

v=1
cWTPWT,v +

⃒
⃒
⃒
⃒
⃒

∑NESS

d=1
cESSPESS,d

⃒
⃒
⃒
⃒
⃒

f2 =
∑NDE

x=1

(
axP2

DE,x + bxPDE,x + cx

)
+
∑NMT

y=1
cMTPMT,y

f3 = cPLPMG,j

(6)  

where ax, bx, cx are the cost coefficients of diesel power generation, 
PMT,y,PPV,w,PWT,v,PDE,x are the output power of MT, PV, WT and DE; cPV,

cWT, cESS, cMTare the operation and maintenance cost coefficients of PV, 
WT, ESS, MT. 

2.1.4. Constraint for microgrid 

PESS,d,j + PMG,j + PPV,w,j + PWT,v,j + PMT,y,j +
∑NMT

x=1
PDE,x,j = PMGD,j (7)  

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pmin
PV,w,j ≤ PPV,w,j ≤ Pmax

PV,w,j

Pmin
WT,v,j

/
≤ PWT,v,j ≤ Pmax

WT,v,j

Pmin
MT,y,j ≤ PMT,y,j ≤ Pmax

MT,y,j

Pmin
DE,x,j ≤ PDE,x,j ≤ Pmax

DE,x,j

Pmin
ESS,d,j ≤ PESS,d,j ≤ Pmax

ESS,d,j

(8)  

where PMGD,j represents the system load of the microgrid; Pmin
PV,w,j /Pmax

PV,w,j,

Pmin
WT,v,j/Pmax

WT,v,j, Pmin
ESS,d,j/Pmax

ESS,d,j, Pmin
DE,x,j/Pmax

DE,x,j, Pmin
MT,y,j/Pmax

MT,y,jare the mini-
mum/maximum generated output of PV, WT, ESS, DE and MT. 

2.1.5. Constraint for branch flow 
The branch flow model (BFM) is introduced in [36]. The following 

formula is used to calculate the constraint for branch flow segment: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

k∈δ(j)

Pjk,t −
∑

i∈π(j)

(
Pjk,t − Ĩij,trij

)
= PG −

∑T

j=1
PMG,j − PD

∑

k∈δ(j)

Qjk,t −
∑

i∈π(j)

(
Qjk,t − Ĩij,txij

)
+ bjṼj,t = QG

j,t − QL
j,t

Ṽj,t = Ṽi,t − 2
(
Pij,trij + Qij,txij

)
+ Ĩij,t

(
r2

ij + x2
ij

)

‖

2Pij,t

2Qij,t

Ĩij,t − Ṽi,t

‖2 ≤ Ĩij,t + Ṽi,t

(9) 

Where branch ij denotes that the positive direction of power flow is 
from bus i to bus j; Pij,t/Qij,t are the active/reactive power flow from bus i 
to bus j at time period t; Ĩij,t/Ṽi,t represents the current quadratic of 
branch ij and voltage quadratic of bus j at time period t; rij/xij are the 
resistance/reactance of branch ij; bj the shunt susceptance from bus j to 
ground; δ(j)/π(j)are the set of buses whose parent/child is bus j; QG

j,t 

represents the reactive power for unit bus j at time period t; QL
j,t is the 

reactive load for bus j at time period t. 

QG
i,min ≤ QG

i,t ≤ QG
i,max (10) 

Where QG
i,min/QG

i,max are the lower and upper limits for reactive power 
of the unit. 
⎧
⎨

⎩

V2
i,min ≤ Ṽi,t ≤ V2

i,max

0 ≤ Ĩij,t ≤ I2
ij,max

(11) 

Where Vi,min/Vi,max are the lower/upper bound of voltage magnitude 
at bus i; Iij,max is the current capacity limit of branch ij. 

2.2. Cloud edge model 

The communication data between the microgrid and ADN may be 
leaked or attacked in the traditional centralized or distributed dispatch. 
To solve this problem, the cloud edge computing is used to ED of ADN 
with MMGs. The specific modeling process is shown in Fig. 2. 

In the framework, cloud server calculates the ED of ADN, while each 
edge server calculates the ED of microgrid. Due to the power exchange 
between ADN and MMG, the ED models of ADN and MMG are coupled 
with each other, so ADN and MMG cannot be solved independently. To 
enable the cloud server and the edge servers to use multi-agent algo-
rithms for independent optimization, the ADN and MMGs need to be 
decoupled. Hence, the power of the connection point between the ADN 
and MMGs is equivalent to a virtual load pADN,MG in the ADN and is 
equivalent to a virtual generator pMG,ADN in the microgrid. The cloud 
server calculates fG, pADN,MG, and sends the parameters and virtual load 
to the edge server. Meanwhile, each edge server calculates fMG, pMG,ADN 

and uploads parameters to cloud server. The above process iterates 
repeatedly until the error is satisfied. Finally, the global optimal cost is 
obtained. 

3. Cloud edge computing method 

3.1. Basic framework 

MADDPG algorithm is a promising solution to realize cloud edge 
computing. Since each microgrid as an agent does not need to get the 

Fig. 2. Basic framework of cloud edge computing for Economic dispatch of 
active distribution network with multi-microgrids. 
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action information of other microgrids, the privacy is effectively pro-
tected. Moreover, the communication burden of ADN is reduced. 

Based on the MADDPG, a cloud edge computing method for ADN 
with MMGs is proposed, as indicated in Fig. 3. In the MADDPG algo-
rithm, the edge server acts as an e-agent, and the cloud server acts as a c- 
agent. 

In the training stage, each agent trains its own model using local 
historical data. There is no need for information interaction between 
agents, which not only protects data privacy, but also reduces the 
burden of communication. In the cloud side execution stage, each e- 
agent exchanges only a small amount of information with c-agent (sta-
tus: power of connection point and the total cost), but does not interact 
with other agents. 

3.2. Multi agent strategy 

The MADDPG algorithm has been complemented based on the 
traditional Actor-Critic (A-C) algorithm, allowing the critic network to 
collect the strategies of other agents to learn. Each e-agent and c-agent 
distributed computes the current state s, action value a, reward r, and 
next state s′ , which constitute the sequence (s, a, r, s′ ) and are deposited 
in the experience replay buffer D. When the number of caches in D is 
greater than a threshold, the network starts learning. The cumulative 
reward expectation of each agent is expressed as follows: 

J(θi) = Es∼ρπ
,ai∼πθi

[
∑∞

t=0
γtri, t

]

(12)  

where pπ is the state assignment; t is the instant time; θi is the probability 
assignment operation of action and is implicit in policy πi; and the 
function E is the expectation function; θ= {θ1, θ2, ..., θN} represents the 
parameters of N agents strategy networks; π = {π1, π2, ..., πN} is denoted 
as the policy for N agents. The gradient strategy of MADDPG algorithm is 
updated as follows: 

∇θi J(μi) = Ex,a∼D
[
∇θiμi (ai|oi)u

]

u = ∇ai Q
μ
i (x, a1, a2, ..., an)

⃒
⃒ai=μi(oi)

(13)  

where D denotes experience buffer, whose elements are (x,x′

,a1, ...,an,ri,

..., rn); Ex,a∼D is expected return; (ai|oi)u is continuous policy parameter; 
Qμ

i (x, a1, a2, ..., an) is centralized action value function. The update 
strategy of Q-value function of MADDPG algorithm is as follows: 

L(θi) = Ex,a,r,x′
[
(Qμ

i (x, a1, a2, ..., aN) − y)2
]

wherey =
(
ri + γQμ′

i
(
x′

, a′

1, a
′

2, ..., a′

N

)⃒
⃒ai=μi(oi)

) (14) 

The update strategy of key target network and actor target network 
adopts soft update according to the following principles: 

θQ′

i ←τθQ
I + (1 − τ)θQ′

i (15)  

θπ′
i ←τθπ

i + (1 − τ)θπ′
i (16)  

where τ is the soft renewal coefficient. 

3.3. Design of state, action, reward 

To make the optimal ED decision with the system, each e-agent ad-
justs the output of its own DGs, and c-agent adjusts the output of its own 
units. In the period t, the environment provides the observed system 
state st ∈ S to the agent, and the agent generates dynamic action al based 
on strategy π (strategy π is a function of Mapping state s to action a, i.e. 
π : S→A⇒a = π(s)). 

3.3.1. State space 
E-agent state space: The state space is the part of environmental in-

formation perceived by the agent. The state space of each microgrid 
agent includes power of DGs, load power and power of virtual genera-
tors in the region, as shown in (14). 

se =
{

PPV,w,PWT,v,PESS,d,PDE,x,PMT,y,PMG,ADN, Ie,PMGD,j
}

Ie =
{

cPV, cWT, cESS, ax, bx, cx, cMT, cPL,ϕj, ε2
} (17) 

C-agent state space: The state space of c-agent includes the power of 
thermal generators and the power of virtual loads in the region, as 
shown in (15). 

sc =
{

PG,i,PADN,MG, Ie,PD
}

Ie =
{

ai, bi, ci, λi, ρi, cPL,ϕj
} (18) 

To judge whether the error of the pMG,ADN and the pADN,MG is within 
range, c-agent sends the power of virtual load to e-agent, and e-agent 
uploads the power of virtual generator, as shown in (16). 
⃒
⃒pMG,ADN − pADN,MG

⃒
⃒ ≤ ε2 (19) 

It can be seen that the pMG,ADN and the pADN,MG should be close enough 
to meet the requirement of the error range. 

3.3.2. Action space 
E-agent action space: Relevant decision variables as action space. 

The action space of each regional e-agent is the output change of the 
controllable equipment in its control region, as shown in (17). 

ae =
{

ΔPPV,w,ΔPWT,v,ΔPESS,d,ΔPDE,x,ΔPMT,y,ΔpMG,ADN
}

(20) 

C-agent action: The action space is the change in the power of the 
thermal generator and the power change of the virtual load in its control 
region, as shown in (18). 

ac =
{

ΔPG,i,ΔPADN,MG
}

(21)  

3.3.3. Reward 
Reward space: While optimizing objective cost of the ADN and 

microgrid, the pMG,ADN and the pADN,MG must is coordinated. Thus, the 
penalty function is proposed to add to the objective function of the 
microgrid to describe the deviation of the pMG,ADN and the pADN,MG, as 
shown in (19). 

minfMG + ϕMG

⃒
⃒pMG,ADN − pADN,MG

⃒
⃒ (22)  

where ϕj is the multiplier of penalty function. 

Fig. 3. Multi agent scheme for distribution network with multi-microgrids.  
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Similarly, if T microgrids are connected to the ADN, then the penalty 
functions can be added to the objective function of the ADN to describe 
the deviation of pMG,ADN and pADN,MG, as shown in (20). 

minfG +
∑T

j=1
ϕADN

⃒
⃒pMG,ADN − pADN,MG

⃒
⃒ (23) 

The reward value of each agent is the negative value of its own cost, 
as shown in (21). 

rt(st, at) = − f (st, at) (24)  

where, the c-agent is fG and the e-agent is fMG. 
The overall dispatch is optimal when the reward values of all agents 

is converged. 

4. Case study 

In this section, there are two case studies to verify the reliability of 
the proposed cloud edge computing method. The first case studies the 
effectiveness of the method with data privacy protection. The second 
case takes a larger ADN as an example to further verify the effectiveness 
of the method, in addition to reduces the communication burden. The 
proposed MADDPG is compared with the DDPG, which has been the 
most popular RL-based methods over the last five years. Python is 
selected as the programming language. 

4.1. IEEE33 node system 

The active distribution network structure adopts IEEE 33 node sys-
tem in Fig. 4, in which MG1 and MG2 are connected to the ADN at 20th 
node and 25th node respectively. The load demand of distribution 
network is 4.1MW, the load demand of MG1 is 3.6MW and the load 
demand of MG2 is 3.4MW. The parameters of each unit in the ADN are 
listed in Table 1, the diesel engine parameters are listed in Table 2, and 
the operation and maintenance cost of each distributed power are listed 
in Table 3. 

4.1.1. Convergence analysis 
The implementation details of the proposed MADDPG algorithm are 

as follows. In the training stage, there are 100 episodes, each of which 
contains ten days, and each day contains 24-time slots. This paper 

collects off-line data sets to train the optimal ED strategy of local agent. 
In each actor network, we exploit four fully connected layers, where 
there are 1024, 2048, 512, and 128 nodes in each layer. Each critic 
network includes five fully connected layers, having 512, 1024, 2048, 
512, and 128 neurons, respectively. The learning results are updated to 
the global network regularly. There are many random choices at the 
beginning of learning. However, the ED chooses the action of optimi-
zation goal through multiple iterations. The sum of the rewards for the 
MADDPG algorithm methods are given in Fig. 5. The output result and 
the cost of the equipment are presented in Fig. 6. 

The rewards value in Fig. 5 is the system’s total rewards after 
convergence of the training model, including the sum of the rewards of 
all e-agents and c-agent. Since the exploration direction has randomness 
at the initial stage of training, the reward value of the system is relatively 
low and has no obvious upward or downward trend. However, the 
reward value has an obvious upward trend with the increase of episode. 
After 50 episodes of learning, the reward value reaches the maximum 
and tends to be stable. This result reflects that the MADDPG algorithm 
has accumulated some experience in the learning process, which is 

Fig. 4. IEEE33 node system.  

Table 1 
Parameters of each unit of ADN.  

Unit a ($/kW2h) b($/kWh) c($/h) λ($/h) ρ($/kWh) Pmin(kW) Pmax(kW) 

G1 0.0004 0.25 40 300 0.035 200 2000 
G2 0.0006 0.2 40 200 0.042 100 1500 
G3 0.0008 0.15 30 200 0.042 0 1500  

Table 2 
Parameters of diesel engine unit.  

Region Unit a ($/kW2h) b($/kWh) c($/h) Pmin(kW) Pmax(kW) 

MG1 DE1 0.0003 0.30 40 0 1500 
DE2 0.0005 0.21 30 100 1500 

MG2 DE1 0.0004 0.27 70 100 1500 
DE2 0.0006 0.18 32 0 1500  

Table 3 
Capacity configuration and running cost coefficient of each distributed power.  

Region Equipment Pmin(kW) Pmax(kW) Operation and maintenance cost 
($/kW) 

MG1 PV1 0 155 0.025 
WT1 0 135 0.024 
ESS1 − 35 35 0.065 
MT1 0 300 0.058 

MG2 PV2 0 170 0.03 
WT2 0 120 0.032 
ESS2 − 35 35 0.065 
MT2 0 345 0.056  

Fig. 5. Change curve of reward value in MADDPG learning process.  
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enough to make reasonable decisions in ADN with MMGs. The specific 
data of equipment output results and costs are listed in Table 4. This 
result reflects that the interaction between ADN and Microgrids can be 

completed without leaking data privacy based on cloud edge computing. 

4.1.2. Result analysis 
As the comparison scheme, the conventional single-agent DDPG al-

gorithm dispatch strategy is set to verify the advantages of the MADDPG 
algorithm proposed in this paper. Optimal energy management of multi- 
microgrids connected to distribution system based on DDPG is intro-
duced in [10]. The DDPG algorithm has only one agent, which gathers 
the power of all equipment. The reward value of DDPG algorithm is 
given in Fig. 7. 

DDPG algorithm sampled the same data as the MADDPG algorithm. 
After 30,000 episodes, the model can generate the best action. 
Comparing the two schemes, the time of DDPG takes longer than the 
time of MADDPG. In DDPG algorithm, all computations are performed in 
the same agent, which leads to a longer time to explore the environment. 
From Table 5, the average generation operation cost of the ADN with 

Fig. 6. The output result and the cost of the equipment.  

Table 4 
Equipment output and cost.  

Region Equipment Output (kW) Cost ($) 

ADN G1 1815.677816 1812.597 
G2 1247.198247 1222.744 
G3 997.5986976 975.8036 

MG1 DE1 1500 1165 
DE2 1483.381483 1441.718 
WTX1 1500 1375 
PVX1 1261.151261 1213.307 
ESSX1 135 3.24 
MTX1 120 3.84 

MG2 DE3 155 3.875 
DE4 170 5.1 
WTX2 35 2.275 
PVX2 35 2.275 
ESSX2 300 17.4 
MTX2 345 19.32  

Fig. 7. Reward value change curve of DDPG during learning.  

Table 5 
Equipment output and cost.  

Method Minimum cost($/h) Average cost($/h) Maximum cost($/h) 

DDPG 9270.75 9270.975 9271.2 
MADDPG 9263.4946 9263.6423 9263.79  

Fig. 8. IEEE69 node system.  
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MMGs is 9263.6423$/h by the MADDPG algorithm, and 9270.975 $/h 
by the DDPG algorithm. The evaluation results illustrate the one-agent 
DDPG algorithm are not suitable for the ADN containing multiple 
microgrids. 

4.2. IEEE69 node system 

In Fig. 8, IEEE 69 node distribution system is selected as a supple-
mentary example to further verify the reliability of the method. The total 
load demand is 18 mW. The parameters of each unit at the ADN are 
listed in Table 1. The relevant parameters of MG1 and MG2 are listed in 
Table 2 and Table 3. The relevant parameters of MG3 and MG4 are listed 

in Table 6 and Table 7. 

4.2.1. Convergence analysis 
This case aims to verify that the communication burden of the 

method is reduced based on protecting the data privacy. The simulation 
results of DDPG algorithm and the simulation results of MADDPG al-
gorithm are compared inFig. 9. 

The ADN becomes larger in Figs. 9 and 10. The change curve of 
reward for MADDPG algorithm is not affected. In contrast, the curve of 
reward for DDPG algorithm fluctuated continuously during the training 
process. This result reflects that the change of power grid increases the 
communication burden with the conventional algorithm. 

4.2.2. Comparison of result 
In order to further illustrate that the method proposed in this paper is 

effective in the ADN with MMGs, in addition to comparing with the 
DDPG algorithm, it is also compared with Lingo tool. The comparison 
results of output are listed in Table 8. The total cost and time are listed in 
Table 9. 

As shown in Table 8 and Table 9, the output cost of DDPG algorithm 
is 13,616.31$, the output cost of MADDPG algorithm is 13,584.45162$. 
the output cost of DDPG algorithm is higher than the output cost of 
MADDPG algorithm based on the same load and parameters. The cost of 
MADDPG algorithm is basically consistent with the optimal cost of 
LINGO. This result reflects that the MADDPG algorithm performs much 
better than the traditional algorithm. Due to the microgrid’s data of 
DDPG algorithm is calculated in the cloud server, but the microgrid’s 
data of MADDPG algorithm is calculated at its own edge server, the 
dispatch decision of DDPG algorithm takes a longer time than the 
dispatch decision of MADDPG algorithm. The evaluation results 

Table 6 
Parameters of diesel engine unit.  

Region Unit a ($/kW2h) b($/kWh) c($/h) Pmin(kW) Pmax(kW) 

MG3 DE1 0.0003 0.28 39 100 1500 
DE2 0.0004 0.23 31 100 1500 

MG4 DE1 0.0005 0.26 72 100 1500 
DE2 0.0007 0.19 33 90 1500  

Table 7 
Capacity configuration and operation cost coefficient of each distributed power.  

Region Equipment Pmin(kW) Pmax(kW) Operation and maintenance cost 
($) 

MG3 PV3 0 200 0.089 
WT3 0 300 0.102 
ESS3 -60 60 0.032 
MT3 0 350 0.057 

MG4 PV4 0 300 0.035 
WT4 0 200 0.098 
ESS4 -60 60 0.034 
MT4 0 360 0.059  

Fig. 9. Reward value change curve of MADDPG during learning.  

Fig. 10. Reward value change curve of DDPG during learning.  

Table 8 
Output of different methods.  

Region Output Power of DDPG 
(kW) 

Power of LINGO 
(kW) 

Power of MADDPG 
(kW) 

ADN G1 1726.779 1725.916 1725.917 
G2 1172.984 1172.398 1172.399 
G3 923.2593 922.7979 922.7984 

MG1 DE1 1507.5 1500 1500.001 
DE2 1434.821 1427.683 1427.684 
WT 135 135 135 
PV 155 155 155 
ESS 35 35 35 
MT 300 300 300 

MG2 DE1 1500 1500 1500 
DE2 1221.426 1215.349 1215.35 
WT 120 120 120 
PV 170 170 170 
ESS 35 35 35 
MT 345 345 345 

MG3 DE1 1500 1500 1500 
DE2 1500 1500 1500 
WT 300 300 300 
PV 200 200 200 
ESS 60 60 60 
MT 350 350 350 

MG4 DE1 1385.337 1378.445 1378.446 
DE2 1037.573 1032.411 1032.412 
WT 200 200 200 
PV 300 300 300 
ESS 60 60 60 
MT 360 360 360  

Table 9 
Cost and time of different methods.   

DDPG LINGO MADDPG 

Total cost($) 13,616.31 13,584.4674 13,584.47162 
Time(s) 30.54 15.24 15.34  
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illustrate the MADDPG algorithm effectively prevents the privacy 
problem of data transmission, in addition to reduces the communication 
burden. 

5. Conclusion 

Aiming at the problem that the risks and challenges of privacy data 
leakage and the communication burdens in the traditional economic 
dispatch, a cloud edge computing method for ED of ADN with MMGs is 
proposed. Cloud server computes ED of ADN. Each edge server computes 
ED of each microgrid. The MADRL is employed to realize cloud edge 
computing. The training stage in MADRL is improved. each agent trains 
its own model using local historical data. There is no need for infor-
mation interaction between agents, which not only protects data pri-
vacy, but also reduces the burden of communication. As an agent, each 
edge server and cloud server make decisions quickly. Then the overall 
optimal cost is computed. In the case study, based on optimized quality 
unchanged, the data privacy of the microgrids and the ADN is protected 
in the whole process. While the overall objective optimization is meet, 
the communication burdens is reduced. 
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