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A B S T R A C T   

As the penetration rate of photovoltaic (PV) in the grid increases, enormous challenges have been brought into 
power grid dispatcher’s operation. Efficient and accurate PV power prediction is the key to solve this problem. 
Considering multi-period error distribution (MPED), a novel probabilistic prediction approach via ensemble 
empirical mode decomposition based on long short-term memory and backpropagation neural network (EEMD- 
LSTM-BP) is proposed. EEMD is utilized to study the characteristic of wave behaviors in different frequency 
domains. LSTM and BP are used to determine intrinsic mode functions (IMFs) and remaining components, 
respectively. Afterward, based on the prediction errors, PV power output fluctuation in different periods is 
analysed. The segment points are determined by Nadaraya-Watson (N-W) kernel regression. The bounds of 
prediction intervals (PIs) are quantified based on the error probability distribution. Based on the dataset of PV 
stations in Ningxia Province, the case studies verify the method’s feasibility.   

1. Introduction 

Due to the depletion of fossil energy, renewable energy is becoming 
progressively critical. Therefore, the installed capacity of renewable 
energy in the world keeps increasing, especially photovoltaic (PV). 
However, the output of PV power generation has strongly unstable and 
random. At the same time, distributed generation is another feature of 
PV power generation. As the penetration rate of PV in the grid increases, 
it brings enormous challenges to power grid dispatchers’ operation [1]. 
Therefore, high-precision PV power prediction technology can 
encourage scheduling optimization and optimize energy consumption. It 
is worth noting that probabilistic prediction can better reflect PV pre-
diction uncertainty and improve more reliable information support for 
power system operation, optimization, and protection. 

In recent years, advanced prediction methods including auto- 
regressive and moving average (ARMA), support vector machines 
(SVM), extreme learning machine (ELM), convolutional neural network 
(CNN), deep belief network (DBN) were studied in [2–4]. A CNN is a 
form of artificial neural network that is especially built to analyze pixel 
input in pattern recognition systems. A CNN employs a technology 
similar to a deep network that has been optimized for limited compu-
tational needs. Support-vector machines (SVMs, also known as 
support-vector networks) are convolutional networks learning 

techniques that examine information for machine learning assessment in 
computer vision. In complement to normal categorization, SVMs can do 
non-linear categorization quickly by employing the kernels technique, 
which involves indirectly translating their signals into high-dimensional 
subspaces. In [5], a long short-term memory (LSTM) network was used 
to forecast Santiago’s solar irradiance. It took into account the correla-
tion between consecutive hours. Compared with the conventional 
backpropagation neural network (BPNN), the prediction accuracy was 
verified. In [6], a novel two-way LSTM constituted by backpropagation 
through time (BPTT) was proposed. The numerical studies revealed that 
the prediction accuracy was improved on rainy days and sunny days. In 
[7], a novel method of PV power prediction based on ship micro-grid is 
proposed. Combine multiple machine learning algorithms to form a 
hybrid prediction method model. 

Since deterministic prediction results inevitably bring errors and 
cannot reflect PV’s uncertainty, probabilistic prediction has become a 
hot topic in recent years. In [8], a PV probabilistic prediction model 
based on a robust self-attention mechanism was proposed. In order to 
analyze data, quantile regression is a sort of logistic regression. When-
ever the requirements of predictor variables are not satisfied, it is 
employed as an augmentation. Based on the certainty prediction results, 
quantile regression (QR) was used to analyze the model’s robustness. In 
[9], after determining deterministic prediction errors, a t-position scale 
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distribution that significantly improved the prediction accuracy was 
proposed. In [10], a probabilistic approach based on bootstrap and QR 
for PV generation was studied. For a PV power station, the conditions, 
including weather, irradiance, and cloud layer in the same period and 
season, have a highly similar characteristic [11–13]. Thus, it is signifi-
cant to analyze the prediction error in a comparable period within each 
day [14]. Statistical analysis for the PV time series of high volatility 
requires a broader range of coverage. For PV time series of low volatility, 
the deterministic prediction has better performance. According to the 
PV generation, high prediction errors usually occur at noon [10]. 
Generalized cross validation (GCV) is a popular method for estimating 
variables in the framework of nonlinear systems and regularization 
methods. The calculation of the smoothing factor in curvatures is an 
ideal illustration. The prediction errors can be processed for data smooth 
based on generalized cross-validation (GCV) [15]. Meanwhile, consid-
ering the error characteristics in different periods, the uncertainty 
analysis can be further enhanced. Thus, the uncertainty analysis for the 
multi-period proposed in this paper is meaningful. 

For the problem that high-frequency data cannot be efficiently pre-
dicted, ensemble empirical mode decomposition (EEMD) was used to 
decompose the original sequence [16]. Based on the above analysis, to 
enhance the quality of prediction intervals (PIs), a combination of 
EEMD, LSTM, and BPNN considering multi-period error distribution 
(MPED) is proposed. Firstly, EEMD is carried out for the data processing. 
Secondly, the intrinsic mode functions (IMFs), which LSTM trains 
represent fluctuation characteristic. And the remainder is predicted by 
BPNN. The uncertainty analysis then quantifies the multi-period 
segment points, and different prediction error probability distributions 
are selected. Finally, PIs can be quantified given the effect of deter-
ministic prediction and uncertainty analysis. 

This paper remains organized as follows: The deterministic predic-
tion model based on EEMD and LSTM for PV power is described in 
Section II. In Section III, the proposed very short-term probability pre-
diction method considering the MPED is analysed. Case studies are given 
for the verification of the raise method in Section Ⅳ. Section V concludes 
this paper. 

2. Theoretical background 

2.1. Ensemble empirical mode decomposition 

PV power has apparent periodicity, so the frequency domain 
decomposition method is significant. EEMD is a special algorithm that 
improves its own algorithm steps for modal aliasing as a new type of 
signal decomposition method. The EEMD is a noise-assisted approach 
frequently used for detecting roller bearing degradation. It is demon-
strated that the suggested technique (performance enhanced EEMD) 
obtains a greater achievement in damage identification and generates a 
wider lead as compared to the existing version. It is primarily utilised 
decompose the underlying time series analysis into a limited and small 
number of oscillating phases based on regional distinctive timeframe. 
The technique adds Gaussian white noise to the empirical mode 
decomposition (EMD) [17]. Gaussian white noise (GWN) is a stable and 
harmonic chaotic system with normally distributed that is described by 
the following leadership asset: every two points of GWN are uncorre-
lated, regardless of their temporal proximity. This characteristic has the 
clear conclusion that the oscillation functions of a GWN. White relates to 
the notion that the enterprise has constant performance throughout the 
radio spectrum. It is analogous to the color white, that emits uniformly 
across all wavelengths in the spectral region. Gaussian since it has a 
temporal dimension data is normally distributed with an expected time 
realm mean of 0. The Gaussian distribution is a statistical distribution 
function in analytics since it accurately describes numerous physical 
events such as age, length, standardized tests, Intellectual capacity, total 
of two rolling dice, etc. 

After multiple steps, the average is taken as the ultimate 

experimental outcome. Gaussian white noise itself has a uniform fre-
quency distribution, and the function is to make the signals at different 
scales have continuity and no longer alias signals [18,21]. There are 
three primary processes of EEMD detailed as follow:  

1) The amplitude coefficient h of the white noise signal, e denotes the 
number of decompositions, and the maximum number of iterations 
of decomposition is E.  

2) Run the EMD e times. 

Firstly, a randomly generated white noise sequence nm(t) is added to 
change the original time series to a new sequence. 

pm(t) = p(t) + hnm(t) (1) 

Secondly, the decomposition is performed to decompose the new 
sequence into IMF components, namely ci,e(t), and a residual component 
rn,e(t). 

Finally, different white noise sequences are selected for each itera-
tion, but still the same square root is required, then the previous steps 
are repeated, and finally different IMF components and residual com-
ponents are combined.  

1) The IMF components and the remaining components are uniformly 
processed, and the average value is calculated. The average value of 
each combination is the result of the final decomposition of EEMD. 
The intrinsic mode component is the oscillating component of a 
transmission that is acquired after the signal has been Hilbert-Huang 
transformed. This fundamental functionality must be retrieved 
correctly from the message in attempt to preserve the transmitter 
qualities and physiological significance. 

ci(t) =

∑E

e=1
ci,e(t)

E
(2)  

rn(t) =

∑E

e=1
rn,e(t)

E
(3)   

2.2. Long short-term memory 

LSTM, due to the creative input gate, forgotten gate, output gate 
structure, and time-series processing, has a strong predictive ability 
[19–20,22–24]. Its structure is shown in Fig. 1. The cell contains the 
information of long-term memory. In training algorithm, LSTM princi-
pally handles the overfitting problem. The memorizing operation is 
governed by a restriction in LSTMs. LSTMs use gateways that enter and 
shut to record, write, and access data. Training is a program that leads to 
skilful behavior by teaching people the fundamental skills required to 

Fig. 1. LSTM structure.  
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execute their professions. It is a minimal learning method that entails 
attaining enlightenment, honing skills, ideas, norms, or altering 
behavioural patterns in order to achieve organizational objectives. In 
the training process, the forgetting gate is the output of the above layer. 
And the sequence data to be input by this layer as input, through an 
activation function sigmoid, the output is ft. The output value is in the 
interval [0,1], indicating the probability that the upper layer of the cell 
state is forgotten, 1 means complete reservation, and 0 means to aban-
don completely. 

ft = σ
(
Wh

f ht− 1 +Wx
f xt + bi

f ) (4)  

where ft is the output of the forgetting gate, controlling the state of the 
upper layers in the cell. W∗

∗ represents the weight. b∗∗ represents the 
bias. 

In reality, tanh refers to a wide range of sigmoid values, particularly 
nonlinear activation features. Tanh and sigmoid are both S-shaped arcs; 
the biggest distinction is that sigmoid has a range from 0 and 1. Tanh, on 
the other hand, is around 1 and − 1. However, as contrasted to sigmoid, 
the average of the tanh function is indeed near to 0. The tanh and sigmoid 
function are used as activation functions in each part of input gate. 

it = σ
(
Wi

hht− 1 +Wi
xxt + bi

i

)
(5)  

C̃t = tanh(Wh
cht− 1 +Wx

cxt + bi
c) (6)  

where it and C̃t are used as outputs in each part. 

Ct = ft ⊗ Ct− 1 + it ⊗ C̃t (7) 

The output gate is used to control the number of filtered layers. The 
sigmoid function is used primarily since it occurs among (0 to 1). As a 
result, it is particularly useful for methods that allow us to anticipate the 
likelihood as an outcome. Because the likelihood of everything occurs 
only about 0 & 1, the sigmoid is the best option. The sigmoid function is 
used to get a value of [0,1] to calculate Ot. After processing with the tanh 
function multiply, output of this layer is obtained. 

Ot = σ
(
Wh

oht− 1 +Wx
hxt + bi

o) (8)  

ht = Ot ⊗ tanh(Ct) (9) 

The LSTM here is used for deterministic prediction of IMFs. EMD is 
used to derive intrinsic mode functions (IMFs), and different sensitivity 
metrics also including Shannon’s averaged entropy, approximation, 
sampling, phases, and Renyi are computed. Firstly, the IMFs are repre-
sented as F = {f1, f2,⋯, fn}, the training dataset and testing dataset are 
represented as F’ = {f1, f2,⋯, fm} and F’’ = {fm+1, fm+2, ⋯, fn}, respec-
tively. After generating the training dataset, zero averaging of the ele-
ments fi can be expressed as: 

F’ = {f ’
1, f

’
2,⋯, f ’

m} (10)  

f ′

o =

⎛

⎜
⎜
⎝fo −

∑m

o=1
fo

m

⎞

⎟
⎟
⎠

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑m

o=1

(

fo −
∑m

o=1
fo

/

m
)2

m

√
√
√
√
√

(11)  

where F is processed by data segmentation. 
The serial port segmentation length is L. Then the input of the 

segmented model can be expressed as: 

D = {D1,D2,⋯,DL} (12)  

Dp =
{

f ′

p, f
′

p+1,⋯, f ′

m− L+p− 1
}

(13) 

The last row of the theoretical output Y can be expressed as: 

Gf =
{

f
′

m− L+1, f
′

m− L+2,⋯, f
′

m

}
(14)  

Yf = LSTM∗
net

(
Gf

)
= {ym− L+2, ym− L+3,⋯, ym+1} (15)  

where Gf is the input of LSTM∗
net. 

The predicted value is ym+1 when the time is m + 1. Combine the L-1 
data segments in Gf with pm+1 to form the following formula: 

Gf+1 =
{

f ′

m− L+2, fm− L+3,⋯, ym+1
}

(16) 

The predicted data segment is finally formed as: 

Yo = {ym+1, ym+2,⋯, yn} (17)  

where Fte is the final predicted value. 

Yte = de− zscore(Yo) =
{

y∗m+1, y
∗
m+2,⋯, y∗n

}
(18)  

y∗k = yk

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑m

o=1

(

fo −
∑m

o=1
fo

/

n
)2

m

√
√
√
√
√

+

∑m

o=1
fo

m
(19) 

The loss function is calculated as follows: 

L =
∑L(m− L)

i=1
(yi − gi)

2

/

[L(m − L)] (20) 

In the process of model training, the minimum loss is utilized as the 
optimization objective. The parameters including training steps step 
length, learning rate, sample number and feature dimension are 
initialized before model training. 

3. Probabilistic prediction model considering multi-period error 
distribution 

3.1. Deterministic prediction and error analysis 

A deterministic prediction model combining EEMD, LSTM, and 
BPNN is utilized [23,24]. The PV time series is decomposed by EEMD 
firstly. The component of IMFs represents the fluctuation characteristic. 
LSTM is used to train and predict components of IMFs, and BPNN is used 
for the residual component. 

Backpropagation in neural networks is an abbreviation for backward 
error propagation. It is a common technique for developing artificial 
neural networks. This approach aids in computing the distance of a 
losses system with regard to some of the channel’s parameters. The 
backpropagation technique computes the derivative to reference for 
every value using the chain rule, each piece at a time, processing data 
downstream since the last protective layer unnecessary computations of 
intervening components in the chain rule. There are 4 main steps for the 
deterministic prediction as follows: 

Step 1: The insufficient data are eliminated and corrected based on 
the average power values at the preceding and the following 
observations. 

Step 2: The data were decomposed using EEMD to obtain multiple 
IMFs and the residual component. The components are classified based 
on high or low frequency. 

Step 3: LSTM is utilized for deterministic prediction of high- 
frequency components, while select BPNN prediction for low- 
frequency components, considering the prediction performance and 
computational efficiency. 

Step 4: According to the results of deterministic prediction, the pre-
diction error can be carried out as the basis of uncertainty analysis. 

The conventional methods for PIs are based on the prediction error, 
which approximately satisfies Gaussian distribution in the morning or 
all-day [25–27]. The distribution function of prediction error is as 
follows: 
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f (x) =
exp

(
−

(x− μ)2

2σ2

)

̅̅̅̅̅
2π

√
σ

(21) 

Nonparametric estimate is a quantitative approach for obtaining the 
linear model of a match to information in the presence of any proper 
instructions or limitations. Therefore, as consequence, the stochastic 
evaluation approaches have no significant related variables. Kernel 
regression is a non-parametric approach used in statistical to evaluate 
the parameter estimates of a stochastic process. The goal is to discover a 
non-linear relationship among different unknown parameters, X and Y. 
In order to improve the accuracy of uncertainty analysis, a nonpara-
metric estimation technique can be used for error distribution. Here, 
Nadarava-Watson (N-W) kernel regression is used to estimate the error. 
The N-W kernel extrapolation estimation is a popular and versatile un-
biased estimation of a linear regression that is frequently constructed by 
employing a predetermined frequency. The weight function is defined as 
[28,29]: 

ℵi(x) =
H
( x− xi

w

)

∑n

j=1
H
( x− xj

w

) (22)  

where H(⋅) denotes the kernel function, and w is bandwidth which is 
positive. A kernel function is a way for taking information as input and 
transforming it into the needed format for execution. The term Kernel is 
chosen because the collection of arithmetic operations employed in SVM 
affords a window through which information may be manipulated. The 
n-th N-W kernel regression is: 

r̂n(x) =
∑n

i=1
ℵi(x)Yi (23)  

3.2. Multi-period error distribution 

To accurately quantify the cut-off points for periods, N-W kernel 
regression and the analysis of multi-period error are required, and the 
searching process of cut-off points is shown in Fig. 2. The attribution 
range verification is utilized based on the intraday error distribution 
scatter characteristic. According to the characteristic of prediction er-
rors, the maximum point in each day which lies in the ownership scope, 
is set as the center point. Then, each side’s cut-off point is quantified 
based on the existence validation, which is designed for typical days 
where the error distribution is relatively flat. The curve roughly con-
forms to the normal distribution or the bell type monotonic distribution; 
the algorithm takes the boundary value instead of the minimum value 
point. This category will lead to the phenomenon that the number of 
errors in the high error part is too large, which can be fitted through 
weights optimization. The threshold verification is designed to deal with 
the multi-peak phenomenon in the high error period. When the set 
threshold is less than the first minimum point’s error frequency, the next 
extremum point is stored. The bimodal and multi-peak distributions 
reflect the error aggregation in the high stage, which should belong to 
the same kind of analysis. 

3.3. Construction of probabilistic prediction 

The model considering multi-period error distribution mainly based 
on the EEMD-LSTM-BP is demonstrated in Fig. 3. Firstly, the deter-
ministic prediction model is utilized. Then, the optimization method is 
used to determine the segment points. The error distribution fitting is 
carried out separately at different time periods. Finally, the parameter 
estimation is calculated, and the corresponding analysis of probabilistic 
prediction is carried out. Mainly can be divided into three key steps: 

Step 1: The error distribution of multiple data points is counted in the 
time segment, and the intraday error is analysed separately. The error 

Fig. 2. Error distribution over different time periods.  

Fig. 3. Probability prediction model flowchart considering MPED.  
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curve is fitted with N-W kernel regression, and smooth parameters are 
determined by generalized cross-validation. Then, the samples are 
weighted to determine the cut-off points. 

Step 2: Fitting the error distribution function by time interval, based 
on N-W kernel regression. The confidence interval is set to calculate the 
distribution function and corresponding quantile of different periods, 
and the interval width is calculated. 

Step 3: The PIs can be quantified based on the deterministic predic-
tion and uncertainty analysis. 

4. Case studies 

4.1. Introduction of dataset 

The dataset of PV stations in Ningxia Province is used for the nu-
merical comparison in this paper. The prediction time scale is 4 h, and 
the resolution of the time series is 15 min. The datasets from March and 
May in 2018 are respectively utilized as the testing samples, while 
nearly 3000 PV power observations for training. And the prediction time 
is 8:00 to 18:00. 

4.2. Evaluation criteria 

For the numerical comparison, the accuracy of prediction interval 
coverage probability (PICP) according to PI nominal confidence (PINC), 
prediction interval nominal average width (PINAW), and interval score 
are utilized as the criteria [30–33].  

1) Prediction interval coverage probability 

In commercial processes, predictions intervals are extensively uti-
lized to forecast the dispersion of data sets. In the research, the precise 
comprehensive insurance likelihood as well as mean covering likelihood 
of the traditional specified range for a discrete probability distribution 
have not been correctly calculated. 

PICP =
1
n
∑n

i=1
λi (24)  

where n represents the number of samples. If the i th actual observation 
lies in the PI, the value of λi is 1, otherwise the value of λi is 0.  

2) Prediction interval nominal average width 

PINAW =
1

nR
∑n

i=1

[
Uα

t (xi) − Lα
t (xi)

]
(25)  

R = Ppre
max − Ppre

min (26)   

where Ppre represents the value of PV power prediction. It is also the 
deterministic predictive output. α is the significant level. Lα

t (xi) and 

Uα
t (xi) are the lower bounds and upper bounds are calculated by the 

method in this paper, respectively.  

3) Prediction Interval score 

δα
t (i) = Ut(xi) − Lt(xi) (27)  

S(i) =

⎧
⎪⎪⎨

⎪⎪⎩

− 2αδα
t (i) − 4[Lt(xi) − ti], ti < Lt(xi)

− 2αδα
t (i), ti ∈ [Lt(xi),Ut(xi)]

− 2αδα
t (i) − 4[ti − Ut(xi)], ti > Ut(xi)

(28)  

score =
1
n
∑n

i=1
S(i) (29)   

where δα
t (i) represents the i th interval width, and S(i) represents the i th 

score. 

4.3. Deterministic prediction 

The PV power time series from March 22 to March 31 is used as 
testing samples. The EEMD algorithm decomposes the PV time series 
with undulating characteristics, and the result of decomposition is 
shown in Fig. 4. IMF1 to IMF7 mirror the fluctuation feature of the 
sequence in different frequencies, and the remainder represents the 
trend. As shown in Fig. 4, although the original signal is very noisy, the 
components have apparent periodicity and smoothness after the fre-
quency domain decomposition, which lays a foundation for the predic-
tion of the stationary components. Then, the deterministic prediction 
can be quantified. 

Concerning the testing samples, the IMFs are respectively predicted 
based on the deterministic predictions. The actual observations and the 
prediction values are represented by green curves and red curves, 

Fig. 4. The EEMD waveform for PV series in the training.  

Fig. 5. Prediction of IMFs.  
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respectively. The curve is reconstructed as IMFs with different fre-
quencies. The prediction results are shown in Fig. 5. 

Figs. 6 and 7 show the prediction results. Fig. 6 gives the prediction 
results of the IMFs and the residual reconstruction curve, respectively. 
Fig. 7 shows the overall prediction result according to the deterministic 
prediction. 

4.4. Uncertainty analysis for multi-period 

By analysing the regional historical output and the samples of pre-
diction errors on May 5 and 6, the central trend of power fluctuation in a 
certain period can be quantified. Thus, a time period error probability 

Fig. 6. The result of deterministic prediction.  

Fig. 7. The combination of deterministic prediction.  

Fig. 8. Error distribution over different time periods.  

Fig. 9. Multi-period point division for typical days.  

Fig. 10. Segment point partition diagram of error set.  

Fig. 11. The fitting curve of error distributions.  
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prediction model can be established. 
Fig. 8 shows the distribution of error range identification for daily 

values from 8:00 to 18:00. According to the magnitude, prediction errors 
are equally classified into high, medium, and low values. The first 33% 
of the red high-error values exist broadly at noon. The maximum point of 
the trend spreads in the middle to both sides. Considering the size of 
daily PV observations, the daily values are divided into three time pe-
riods. The division of time periods for some typical days based on MPED 
approach is shown in Fig. 9. 

For the optimal segment points of error periods, the kernel regression 
is utilized. The error periods are shown in Fig. 10, which are 8:00–11:45, 
11:45–14:45, and 14:45–18:00, respectively, through the training 
dataset. For the testing days, the curve of error distributions fitted by N- 
W kernel regression and Gaussian distribution are shown in Fig. 11. 
From the result, the curve based on N-W kernel regression has better 
accuracy. 

After fitting probability distribution, probability prediction is carried 
out from May 8 to May 9 on different confidences, including 90%, 95%, 
and 99%. In this paper, the proposed PIs are quantified based on EEMD- 
LSTM-BP, which is the key to enhancing probabilistic prediction per-
formance. The accuracy of deterministic prediction affects the PIs 
coverage performance and sharpness. The PIs based on EEMD-DBN-BP is 
utilized as a benchmark for numerical comparison to reveal the pro-
posed approach’s effectiveness. According to the results given in Fig. 12, 
the prediction capability of EEMD-LSTM-BP at the abrupt fluctuation 
point in the noontime is better, and the PIs of EEMD-LSTM-BP have 
better sharpness, which reveals the necessity of LSTM in the prediction 
model. 

To compare the PIs performances, Tables 1 and 2 show the numerical 
results. Obviously, the LSTM-based PIs have better reliability, sharpness, 
and overall performance compared to the DBN-based PIs. 

The high volatility of PV may result in the low coverage of PIs, which 

reduces uncertainty analysis reliability, particularly under high PINC 
circumstances. To test the feasibility of MPED in this research paper, PIs 
based on multi-period analysis and PIs with uniform error algorithms 
instead of multi-period analysis are used for the numerical analysis. The 
EEMD-LSTM-BP and N-W kernel regression are utilized for both the PIs 
methods. The outputs from 12:00 to 14:45 on May 7 utilized as pre-
diction target and the local PIs on PINC 95% are shown in Fig. 13. From 
the figure, the curve of output has high fluctuation. Thus, the width of 
PIs in this period is more comprehensive so that the PIs have high reli-
ability. The numerical comparison is shown in Table 3, to reveal upper, 
lower bounds and whether PIs cover each actual value. From the 

Fig. 12. EEMD-LSTM-BP and EEMD-DBN-BP probability prediction.  

Table 1 
EEMD-LSTM-BP typical daily prediction error.  

Confidence PINAW/MW PICP Score 

90% 2.5267 91.46% -0.6296 
95% 3.0108 95.12% -0.3518 
99% 3.9568 97.56% -0.0791  

Table 2 
EEMD-DBN-BP typical daily prediction error.  

Confidence PINAW/MW PICP Score 

90% 4.1847 96.34% -0.8801 
95% 4.9863 97.56% -0.5171 
99% 6.5531 98.78% -0.1311  

Fig. 13. PIs between 12:00–14:45 on May 7.  

Table 3 
The upper and lower bounds of PIs on PINC 95%.  

Actual 
value 
(MW) 

Multi- 
period 
analysis 
based 
upper 
bound 
(MW) 

Multi- 
period 
analysis 
based lower 
bound 
(MW) 

Uniform 
error based 
upper 
bound 
(MW) 

Uniform 
error based 
lower 
bound 
(MW) 

Covered? 

6.82 8.5875 5.0543 8.3263 5.3155 Y/Y 
6.73 8.7544 5.2212 8.4932 5.4824 Y/Y 
7.00 8.8489 5.3156 8.5877 5.5769 Y/Y 
6.71 8.8655 5.3323 8.6043 5.5935 Y/Y 
6.72 8.8699 5.3367 8.6087 5.5979 Y/Y 
6.76 8.6027 5.0694 8.3414 5.3307 Y/Y 
6.77 8.6808 5.1475 8.4195 5.4087 Y/Y 
4.64 8.1603 4.6271 7.8991 4.8883 Y/N 
5.49 8.8849 5.3516 8.6236 5.6128 Y/N 
6.27 8.2308 4.6975 7.9696 4.9588 Y/Y 
6.02 8.1162 4.5830 7.8550 4.8442 Y/Y 
5.87 7.6997 4.1665 7.4385 4.4277 Y/Y  
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numerical result, in this period, the proposed PIs have better sharpness 
and reliability. 

To further reveal the effectiveness of the PIs, the local PIs from 13:00 
to 16:00 on May 8 are utilized for the comparison of probability pre-
diction approaches. Fig. 14 shows the prediction results under PINC 
99%. It is clearly demonstrated that the proposed PIs have better per-
formance of coverage on PINC 99%, based on the advanced multi-time 
analysis. 

5. Conclusion 

A novel very short-term probability prediction approach has been 
proposed for PV based on MPED. By analysing the characteristic of PV 
output, the proposed method has reduced the width of local PIs and 
obtained good reliability, which has been analysed based on the nu-
merical results. Besides, the numerical result has also revealed the high 
accuracy of deterministic prediction based on the methods proposed in 
this paper, which can provide a reasonable baseline for the PIs, which 
the numerical comparison has verified. Thus, on the high PINCs, it is 
valuable to make full use of reliable coverage characteristics of the 
proposed model. 

Future research could pay close attention to the following two as-
pects. On the one hand, the effective screening of data input factors. On 
the other hand, the consideration of advanced clustering approaches. 
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