
 Bachelor’s Degree Project

 Estimating the energy consumption of
 Java Programs .
 Collections & Sorting algorithms

 Authors: Mustafa Alsaid & Dalya
 AbuHemeida
 Supervisor: Mauro Caporuscio
 Semester: VT 2023
 Subject: Computer Science

 Abstract

 Java applications consume energy, which has become a controversial topic since it
 limits the number of machines and increases the cost of data centers. This paper
 investigates the potential relationship between energy consumption and some
 quality attributes for Java Collections and Sorting algorithms in order to raise
 awareness about using energy-efficient programs. In addition, introduce to the
 developers the most and least efficient Java Collection and Sorting algorithm in
 terms of energy consumption, memory, and CPU usage. This was achieved by
 conducting a controlled experiment to measure these terms. The data obtained for
 the results was used to acquire Statistical and Efficiency Analysis to answer the
 research questions.

 Keywords: Java Collections, Sorting algorithms, Energy consumption, Quality
 attributes.

 2

 Preface
 We would like to express our sincere gratitude to our supervisor, Mauro
 Caporuscio, at Linnaeus University. Throughout the entire duration of this project,
 Mauro has consistently provided invaluable and constructive feedback, greatly
 contributing to its improvement. We are also indebted to Daniel Toll, at Linnaeus
 University, for organizing insightful workshops throughout the course of this
 project. His suggestions and inspiration have played a significant role in shaping
 the outcome.

 Additionally, we extend a special thanks to Mustafa’s dear friend, Dr. Zaid
 Hattab, in the field of Statistics at the University of Galway in Ireland. Zaid's
 expertise and assistance in statistical concepts and utilizing R have been
 instrumental in enhancing the statistical analysis in this thesis.

 We are grateful to all of them for their unwavering support, guidance, and
 dedication, which have been crucial to the successful completion of this research
 study.

 3

 Contents

 1 Introduction 6
 1.1 Background 6
 1.2 Related work 7
 1.3 Problem formulation 8
 1.4 Motivation 9
 1.5 Results 9
 1.6 Scope/Limitation 10
 1.7 Target group 10
 1.8 Outline 11

 2 Method 12
 2.1 Research Project 12
 2.2 Research Methods 12
 2.3 Reliability and Validity 15
 2.4 Ethical Considerations 15

 3 Theoretical Background 16
 3.1 Time and Space Complexity 16
 3.2 Consumption Metrics 17
 3.3 Java Collection Interface 17
 3.4 Sortings Algorithms 19
 3.5 Statistical Terms 21

 4 Research project – Implementation 23
 4.1 Tools and Techniques 23
 4.2 Data Overview 24

 4.2.1 Data Collection 24
 4.2.2 Data Analysis 25

 5 Results 26
 6 Analysis 32

 6.1 Statistical Analysis 32
 6.1.1 Collections’ Linear Regression Analysis 33
 6.1.2 Sortings’ Linear Regression Analysis 34

 6.2 Efficiency Analysis 36
 6.2.1 Collections Experiment Analysis 37
 6.2.2 Sortings Experiments Analysis 41

 7 Discussion and Conclusions 43

 4

 7.1 Future Work 45
 References 47
 Appendix 1 51
 Appendix 2 51

 5

 1 Introduction
 Software engineering (SE) is concerned with designing, developing, testing, and
 maintaining software. Earlier, non-object-oriented programming (procedural) languages
 were used in software development, such as C, but after that, Object-Oriented
 Programming (OOP) was invented in the software engineering field, and several
 languages were created that support OOP. Java is one of the most famous languages and
 is widely used in OOP [1].

 As software engineering gains popularity, and new areas like mobile devices and
 cloud computing experience significant growth, the need to minimize software energy
 consumption has become a crucial non-functional requirement for modern software
 systems [2]. Candy Pang highlights that rising energy costs and increased expenses for
 cooling data centers have imposed restrictions on the number of machines that can be
 operated [2].

 This research paper is a 15 HEC bachelor thesis in Computer Science at Linnaeus
 University, studying the estimated energy consumption for Java Collections and Sorting
 algorithms, which are common and widely used by Java software developers. By
 conducting practical experiments to measure the energy consumption of these programs
 and finding relationships between the energy usage and some dynamic quality
 attributes. This thesis will provide a knowledge base that aims to be a unique resource
 for discovering the best Collections and Sortings to be selected based on energy
 consumption, memory, and CPU usage.

 1.1 Background
 Although energy consumption has received more attention in software development
 recently, there is still insufficient support for creating energy-efficient programs due to
 multiple reasons, such as the absence of abstractions and tools that allow for the
 examination of relevant properties affecting energy usage [3]. Moreover, programmers
 have limited software energy efficiency awareness and lack knowledge about reducing
 the energy consumption of software [2].

 Java applications consume energy during execution, ranking 5 th out of 27
 programming languages that have been analyzed in terms of energy consumption
 efficiency by Pereira et al in 2017 [4]. In particular, the Java Collections framework
 provides a wide variety of data structures and interfaces. The Collection interface is the
 parent of all other interfaces within the Collections framework, and Java provides an
 implementation for its sub-interfaces such as List, Queue, Deque, and more, which are
 widely used by software engineers throughout the development phase. These
 Collections provide the same functionalities, such as Add, Remove, and Contains but
 with different time complexity depending on the specific collection [5]. Time
 complexity measures the amount of runtime the device needs for an algorithm. It
 represents the period required, which increases depending on the data input size, and

 6

 uses a common expression known as big O notation [6]. In relation to Sorting
 algorithms, the time complexity is a significant factor in analyzing the performance and
 determining the efficiency of handling an extensive amount of data. Sorting algorithms
 are widely used in databases, data analysis, and search algorithms. It provides the best
 way to sort data in a certain order with a given list of elements [6].

 In Java, two known built-in Sorting algorithms can be applied, a sort method of the
 Array class or a sort method of the Collections class; however, Sorting also can be done
 using Java loops [7]. Merge sort, Heap sort, Selection sort, and Quick sort are among
 the most commonly used Sorting algorithms in Java. They are often referred to as
 classic Sorting algorithms due to their popularity and historical significance in computer
 science [8].

 Sorting algorithms, in addition to Java Collections, consume energy. This energy
 consumption of an application varies depending on several factors such as CPU,
 memory usage, and more dynamic quality attributes [9]. Dynamic attributes are the
 attributes that reflect the behavior of the program during its execution, such as memory
 usage [10]. However, finding an accurate relationship between energy consumption and
 quality aspects of algorithms is a challenge, and achieving the most precise performance
 depends on the application’s requirements.

 1.2 Related work
 This section provides a description of the related works for this research area, which is
 focused on two groups of work: previous studies involving energy consumption of
 Collections and Sorting algorithms and other studies focusing on how to analyze energy
 consumption.

 As recently as 2016, Hasan et al. [11] compared the energy consumption of
 Collections in Java. The authors analyzed various Collections and then built a profile of
 energy consumption for all Collections, which were analyzed earlier. The purpose of
 their work is to find which implementation of each collection (Lists, Sets, and Maps)
 consumes less energy and to use the outcome to manually improve the efficiency of a
 set of selected applications. Pinto et al. [12] examined the thread-safe Java Collections
 on two distinctive desktop machines. They realized that the energy consumption for an
 operation shifts broadly among different implementations of the same collection. For
 instance, using a newer version of hash-table can save 17% of consumed energy in
 real-world-benchmarks. Another study done by Saborido et al. [13] compared two
 Android-specific collection implementations of Maps, SparseArray, and ArrayMap. The
 research found out that HashMap is more efficient regarding the energy efficiency of
 apps than ArrayMap, while SparseArray is preferable over HashMap and ArrayMap
 when keys are primitive. Oliveira et al. discovered the impact of software construction
 on energy consumption and offered a recommendation tool that can assist developers in
 reducing energy usage [14].

 7

 Further work done by Alves et al. [3] discusses the lack of support and focus for
 creating energy-efficient software programs, and performs experiments that consist of
 gathering, modeling, and analyzing energy data, and presenting their findings. The
 experiments compare the energy consumption of Java implementations of specific
 Sorting algorithms "Insertion Sort, Bubble Sort, and Selection Sort" using various data
 sets, presenting how to combine energy measurement and analysis tools for this
 purpose. The implementation focused on sorting values stored in a Vector, ArrayList,
 and LinkedList. As a result, the total consumption using ArrayList for Bubble and
 Selection Sortings was at its least compared to the other data structure, nevertheless,
 Selection Sort consumed the least amount of energy when applying the three structures.
 However, this study utilizes only the classics of Sorting algorithms in Java, not
 considering the dynamic quality attributes in relation to energy consumption.

 1.3 Problem formulation
 As discussed earlier, several research studies have been conducted to explore the energy
 consumption in software development pertaining to Collections and Sorting algorithms
 [3][11][12][13][14]. However, a noticeable research gap exists in terms of investigating
 the relationship between energy consumption and dynamic quality attributes,
 specifically CPU and memory, when utilizing Java Collections with operations such as
 Add, Contains, and Remove, as well as Sorting algorithms. This gap indicates that Java
 developers often rely on a singular performance metric without considering other
 closely associated factors. Thus, this thesis aims to address this challenge and provide a
 coherent answer to the following research questions:

 ● RQ1 . What is the relationship between energy consumption and quality attributes
 (CPU/Memory) usage in Java Collections in the case of Add, Contains, and Remove
 operations?
 The purpose of RQ1 is to investigate the relationship between energy consumption
 and CPU/Memory usage in Java Collections. Specifically, this research question
 seeks to determine whether there is a positive or inverse correlation between energy
 consumption and these dynamic quality attributes.

 ● RQ2. What is the relationship between energy consumption and the quality attributes
 (CPU / Memory) usage when implementing Sorting algorithms in Java?
 This question aims to investigate the relationship between energy consumption and
 CPU/Memory usage in Java Sorting algorithms. The relationship in question refers to
 various factors, such as the algorithm used to implement the Sorting and its time
 complexity. This research question seeks to determine whether there is a positive or

 8

 inverse correlation between energy consumption and these dynamic quality
 attributes.

 ● RQ3 . Regarding the results of RQ1 & RQ2, how strong are these relationships?
 The purpose of this question is to determine the strength of the relationship if it
 exists.

 ● RQ4. What is the most efficient Java Collection/s among the three operations in
 terms of energy consumption considering the performance?
 This question aims to provide insight into the most efficient ways to use Java
 Collections in terms of the operations Add, Contains, and Remove.

 ● RQ5. What is the most efficient Java Sorting algorithm in terms of energy
 consumption considering the performance?
 This question aims to provide insight into the most efficient ways to use Sorting
 algorithms in Java. The result can be valuable for developers, as it can help optimize
 the application's performance, making it more efficient and effective.

 Through the systematic exploration of the aforementioned research questions,
 complemented by the execution of multiple experiments that generate quantitative data,
 and subsequent analysis of the obtained results, this study endeavors to establish
 accurate and generalized findings pertaining to Collections and Sorting algorithms.
 Additionally, identifying the optimal approaches for employing Collection(s) and
 Sorting algorithm(s) in terms of energy consumption, while concurrently considering
 performance aspects.

 1.4 Motivation
 This thesis aims to advance the field of computer science. The results will address two
 areas, software developments using Java and software performance. From an industrial
 perspective, the results will assist Java software engineers to develop systems that
 consider energy consumption as a part of that system's performance. Thus, building
 systems that consume less energy. Since a high-performance application with low
 energy consumption, memory, and CPU usage is the outcome of this research, lower
 energy costs and less pollution will be achieved, which is a societal motivation.
 Moreover, providing a well-performed application attracts more users, which benefits
 the company economically.

 1.5 Results
 As the purpose of this project is to experimentally measure the overall energy
 consumption of Collections and Sorting algorithms used in Java applications, the

 9

 specifics of what makes one algorithm perform better than another can be determined.
 The performance is evaluated according to different quality attributes and their
 consumption, following the guidelines by previous works [3][11], three metrics are
 identified as essential for evaluating any examined method:

 1. Memory: The total storage of an operation during the execution in Megabytes.
 2. CPU: The percentage of used processors during the execution.
 3. Energy: The capacity used during the execution in Joule.

 Energy consumption will be measured using the tool JoularJx. While the chosen
 dynamic quality attributes (Memory - CPU) will be measured using built-in classes in
 Java. Analyzing these data statistically using R to investigate the relationship between
 variables is facilitated with the help of the RStudio tool. This analysis aims to identify
 the most energy-efficient Collections and Sorting algorithms. Moreover, 3D scatter plots
 will be generated using R for energy consumption, CPU, and memory usage. The
 objective of these 3D scatter plots is to provide a better vision and clearer understanding
 of which Collection/s and Sorting algorithm/s are more efficient.

 1.6 Scope/Limitation
 This thesis focuses on the energy consumption efficiency of Java Collections and
 Sorting algorithms, hence the energy consumption efficiency for other algorithms is not
 included. Different limitations constrain this project. One of these limitations is the
 number of elements that are used in the operations of the algorithms' implementations.
 Each operation is limited to 400,000 elements as an input, and the number of elements
 is decided as a reasonable number due to the time constraints required to conduct each
 experiment. In addition, the number of experiments is limited to 100 experiments for
 each Sorting algorithm, Collections, and the operations of collection: Add, Contains,
 and Remove. Resulting in 3 700 experiments in total.

 Generally, a broad range of Sorting algorithms in computer science exists, yet, the
 study is focused on ten known algorithms, and the operations used on Collections are
 limited to three operations. Lastly, resource constraints limit the ability to conduct the
 experiments on multiple PCs and across different operating systems.

 1.7 Target group
 This paper primarily studies the energy consumption of Java Collections and Sorting
 algorithms, as the main goal is to increase Java software performance regarding energy
 consumption, and it is assumed that the target group has at most casual knowledge of
 Java applications. Hoping this paper provides a solid analysis to be used by professional
 Java developers and architects.

 10

 1.8 Outline
 This paper has been divided into several chapters. Chapter 1 provides the background,
 related work, scope/limitation, motivation, and results. Chapter 2 discusses the
 methodological framework and research methods . In Chapter 3, the relevant theoretical
 background concepts are described, and the knowledge gap and relevant challenges are
 provided. Chapter 4 discusses the implementation details of the conducted experiments and
 other activities needed to realize the controlled experiment. Chapter 5 provides the results of
 those experiments. Chapter 6 provides an analysis of the results. Chapter 7 discusses the
 results and analysis made in previous chapters. Additionally, It explores this study's
 conclusion and provides several potential future works.

 11

 2 Method
 This chapter describes the research methodology approach used to answer the research
 questions presented in the previous section. The implemented method is discussed in
 detail, highlighting its strengths, limitations, and relevance to the research objectives.
 Moreover, the section addresses the tools required to conduct the methodology, as well
 as its reliability, validity, and ethical considerations.

 2.1 Research Project
 To effectively address the research questions RQ1 & RQ2, it is crucial to carefully
 consider the appropriate implementation approach, data needed to be collected, and the
 type of analysis to be conducted which enables a comprehensive exploration and
 understanding of the intended relationship. Thus, after conducting a thorough review of
 available methodological approaches, the controlled experiments methodology emerges
 as the most suitable choice for achieving the purpose of these two research questions.
 Compared to alternative methods, controlled experiments offer a rigorous and controlled
 environment for evaluating the interplay between variables and determining the
 potential impact of a specific set of variables on a targeted outcome. Moreover,
 meticulous attention is given to ensuring the reliability and validity of the obtained
 results, minimizing the influence of random factors, and promoting a robust and
 credible analysis [15].

 2.2 Research Methods
 The controlled experiment is a technique used in scientific research to minimize the
 effects of extraneous variables. It also strengthens the ability of the independent variable
 to change the dependent variable [15]. A controlled experiment allows us to eliminate
 various confounding variables or uncertainty in the project. It allows us to control the
 specific variables that may influence the result. In addition, it provides a standard to
 which the result is compared, and it allows the researcher to correct errors [16]. This
 methodology (controlled experiments) aims to determine the response to the formulated
 problem by testing the performance of Java Collections and Sorting algorithms in terms
 of CPU and memory, as well as their energy efficiency, in a controlled environment.
 The process comprises a series of steps aimed at collecting reliable quantitative data
 about the performance and energy consumption efficiency of Java Collections and
 Sorting algorithms using a scientific approach:

 1. Identify the device and work environment.
 2. Identify the Collections and their methods.
 3. Identify the Sorting algorithms.
 4. Determine which elements are used and how they are generated.
 5. Calculate the amount of energy consumed.
 6. Calculate the usage of CPU and memory.

 12

 7. Determine how many experiments should be conducted.

 In the first step, the device on which all experiments will be conducted and the utilized
 software tools are determined. The tools that have been utilized are IntelliJ IDEA
 Ultimate, JoularJX, and Rstudio. IntelliJ IDEA is a highly advanced and customizable
 integrated development environment aimed at assisting developers in writing efficient
 code and being able to maintain it. Code highlighting, refactoring tools, debugging,
 code analysis, profiling, and support for a broad range of programming languages and
 frameworks are among its primary features. These features help in writing efficient,
 clean code and easily identify and fix errors. Therefore, it has been selected to be used
 for implementing the experiment [17].

 Investigating different tools or approaches for energy measurement is not reported,
 since it is not the objective to compare different tools for measuring energy or propose a
 new way. Rather, it is assumed that energy consumption will be collected using one of
 the available tools and concentrate on investigating the relationship between energy
 consumption and some quality attributes. Therefore, the second tool, JoularJX is an
 advanced Java-based agent for monitoring energy consumption at the source code level.
 It seamlessly integrates with the JVM during program startup. JoularJX uses a custom
 PowerMonitor program on Windows and Intel RAPL (via powercap) on GNU/Linux to
 obtain accurate energy readings. It enables real-time monitoring of energy consumption
 for individual methods, analysis of energy trends, and tracking of energy consumption
 in method-call trees and branches. JoularJX requires no source code modification and
 provides user-friendly and precise energy monitoring for optimizing Java program
 energy usage. Utilizing JoularJX can be simply done by integrating it with the Java
 Virtual Machine by adding the command “ java -javaagent:joularjx-$version.jar
 JavaProgram” when lunching a Java program through a device terminal. Lastly,
 JoularJX provides a configuration option in the form of a “ filter-method-names ”
 variable, which can be specified in the config.properties file. This feature allows
 developers to selectively designate the names of specific methods for energy
 consumption measurement. By separating the method names with commas, JoularJX
 focuses on monitoring and quantifying the energy consumption of each method
 individually. On the other hand, in the absence of method name specifications, JoularJX
 considers the entire program as a unified entity when measuring energy consumption.
 This flexible configuration capability empowers developers to conduct fine-grained
 analysis of energy usage by isolating and monitoring specific methods of interest[18].
 The third tool is Rstudio, which is an IDE for R, provides better functionality, and
 includes a source code editor, build automation tools, and a debugger. R is a
 programming language for statistical analysis and graphics. It is widely used for data
 analysis among statisticians [19].

 After determining the work environment, the Java Collections and Sorting
 algorithms on which all experiments are conducted are determined. As a part of the Java
 programming language, Collections include ArrayList, LinkedList, Vector, Stack,
 ArrayDeque, PriorityQueue, HashSet, LinkedHashSet, and TreeSet with different time

 13

 complexity for each one of them. Java Collections are used to store data -to apply
 specific operations on the data such as search, insertion, and deletion which is widely
 commonly used among developers [20]. Therefore, Java Collections has been selected
 to conduct the experiments. Notably, Collections are implementations of various data
 structures, their primary purpose is to organize, process, retrieve, and store data [21].
 This study selects inserting, deleting, and searching operations as these operations are
 commonly and widely used. In Java Collections, these three operations are represented
 by the methods Add, Contain, and Remove. Sorting algorithms in Java, on the other
 hand, provide the best ways to sort data in a specific order with a given list of elements,
 and the number of available algorithms is enormous[6]. As a result, the experiment will
 be done using the most well-known algorithms; Insertion sort, Merge sort, Bubble sort,
 Selection sort, Quick sort, Counting sort, Heap sort, Bucket sort, Shell sort, and Radix
 sort, while taking into concern the time complexity of each algorithm. The Sorting
 algorithms are implemented using external resources from existing implementations; the
 full source code can be found in Appendix 1 . This decision is made to have greater
 control over the implementations and align them with the specific requirements of this
 study. Implementing Sorting algorithms instead of using the Java Library for built-in
 Sorting has lots of advantages. It helps to have a deeper understanding of the algorithm's
 nature, allowing the researchers to tailor it specifically for the measurement and analysis
 of energy consumption. This approach also provides the opportunity to detect and
 address any potential errors while experimenting, which enhances the reliability and
 validity of the study's findings.

 As a part of this process, 400,000 randomly generated integer elements are to be
 created using the Random class in Java, with a specific seed to ensure that all operations
 for all identified Collections and Sorting algorithms are performed using the same
 elements exactly. To clearly examine the differences between the performance of each
 Collection and Sorting algorithm in terms of CPU, memory usage, and energy
 consumption, it is necessary to select that number of random distinct integers. In
 addition, if the number of elements is less than 400,000, JoularJX may not be capable of
 measuring the energy consumption for all methods. Moreover, that number of elements
 is quite enough to get reasonably distinguished data on energy, CPU, and memory
 which are used later for statistical analysis to find such a relationship.

 The energy consumption for Sorting algorithms as well as inserting, searching, and
 removing all elements for each Collection, is calculated using the JoularJX tool [18]. In
 addition, CPU and memory consumption will be measured using the
 OperatingSystemMXBean interface and Runtime class, respectively. This model will be
 repeated 100 times for each Sorting algorithm and Collection, including the operations
 Add, Contain, and Remove, to determine the energy consumption, CPU, and memory
 usage as part of the final step of the data collection process. The number of experiments
 is decided to be 100 to increase the accuracy of the measurements, which leads to
 increased reliability. Additionally, that number of experiments is feasible to be
 conducted. Once the data has been gathered, a statistical analysis will be conducted
 using R (a programming language for statistical analysis and statistical graphs)
 following the linear regression analysis, to determine the relationship between energy

 14

 consumption and the dynamic quality attributes (CPU and memory) — if it exists — and
 how strong it is. Moreover, according to the gathered data, the best Collection and
 Sorting algorithm will be found based on energy consumption while considering
 performance in terms of memory and CPU usage.

 As one of the most commonly used statistical models, linear regression simulates a
 mathematical relationship between two variables, either independent or explanatory
 variables, or dependent variables, providing a rational basis for identifying and
 predicting results that are based on scientific calculations [22]. This model offers an
 easy-to-understand interpretation of the result and is relatively simple [23].

 2.3 Reliability and Validity
 The terms reliability and validity are significant when conducting a research paper, as
 they contribute to the credibility of the study's results. Reliability refers to the
 repeatability of the study results using the same methodology approach. If the same
 procedure is repeated under similar conditions, the same results will be obtained.
 Moreover, validity encompasses the entire process of a research, it can refer to the
 accuracy of the method, how it is supported, and how a valid conclusion is drawn based
 on the collected data. In this paper, all measurements performed in the controlled
 experiment are done programmatically and in an automated fashion to increase
 reliability. A significant quantity of measurement iterations also provides further
 reliability. The validity issues are greatly minimized by controlling the variable (the
 elements) and generating identical random integer elements by quantity and order, to
 perform the experiment for all methods and all Collections. In addition, an improved
 measurement technique is used, which increases validity, and generating random
 elements reduces sample bias. Lastly, the related work should align with this research
 results, this alignment helps to strengthen the validity of the study's conclusions. The
 discussion regarding the alignment of the research findings with the related work will be
 presented in Section 7.

 2.4 Ethical Considerations
 The measurement of estimated energy consumption, CPU, and memory usage for Java
 Collections and Sorting algorithms provides no negative ethical effects on any scale
 abstractly. However, it is important to consider ethical considerations in the research
 design and execution process. For instance, it is essential to ensure that the
 measurement process is conducted in an objective and transparent manner without any
 manipulation of data or results.

 15

 3 Theoretical Background
 This chapter contains information about important theoretical concepts included in this
 study, such as time and space complexity, energy, CPU, and memory consumption.
 Moreover, this chapter provides a brief explanation of the Java Collection interface, its
 classes, and the Sorting algorithms used in the experiments.

 3.1 Time and Space Complexity
 Time complexity refers to the duration or elapsed time required for the execution of an
 algorithm. Simply, the time complexity is a metric that quantifies the number of
 operations carried out by an algorithm and provides an estimation of the time needed to
 execute these operations [24].

 Typically, when it comes to time complexity, it is referred to as 'Big O Notation',
 whereas Big O Notation is a notation that is used to describe the time complexity of an
 algorithm or a piece of code in the worst-case scenario [25]. Moreover, the "order of
 growth" of time complexity may vary from algorithm to algorithm based on the running
 time when the input size increases [25]. As shown in the table below, the ‘order of
 growth’ is ordered from the best to the worst, where n is the input size [25].

 Time Complexity Time Description

 O(1) Constant The computation time is constant. No
 dependence on input size

 O(log n) Logarithmic The computation time is proportional to log(n)

 O(n) Linear The computation time is proportional to n

 O(n log n) n*log n The computation time is proportional to n times
 log n

 O(n^2) Quadratic The computation time is proportional to n^2

 O(n^3) Cubic The computation time is proportional to n^3

 O(2^n) Exponential The computation time is proportional to 2^n

 O(n!) Factorial The computation time is proportional to n!
 Table 3.1 Time Complexity

 On the other hand, space complexity refers to the amount of memory space required by
 an algorithm or program during its entire execution. It is a measure of how many
 variables are created to store the values, including the inputs as well as the outputs [24].

 16

 3.2 Consumption Metrics
 ● Energy consumption

 The energy consumed by a method or a program is measured in a Joules. This is a
 metric that can be used to evaluate how much energy is required to run a particular
 method or program.

 ● CPU and Memory consumption
 CPU consumption refers to how much load an individual processor core can handle.. It
 measures the percentage of time when the CPU is processing instructions . CPU
 consumption percentage equals TotalUsedCPUTime divided by TotalAvailCPUTime
 [26] . On the other hand, memory consumption in this study refers to JVM heap memory
 consumed by Java Collections operations (Add, Contains, and Remove) as well as
 Sorting algorithms [27]. Generally, high CPU and memory usage can negatively affect a
 device, resulting in low performance and efficiency.

 3.3 Java Collection Interface
 The collection interface contains three subinterfaces: List, Set, and Queue, where
 several classes implement each subinterface [28]. The classes HashSet and
 LinkedHashSet implement the Set interface, while the class TreeSet, implements the
 SortedSet interface, which extends the Set interface. The classes ArrayList, Vector, and
 LinkedList implement the List interface, while the Stack class extends the Vector class.
 Moreover, the class PriorityQueue implements the Queue interface, while ArrayDeque
 and LinkedList implement the Deque interface, which extends the Queue interface. See
 Figure 3.1.

 These classes represent Java Collections which are widely used by software
 engineers throughout the development phase. Java Collections are used to store data and
 apply specific operations to it later such as searching and deletion [20]. Moreover, since
 Collections are implementations of various data structures, their primary purpose is to
 organize, process, retrieve, and store data [21].

 17

 Figure 3.1 Collection interface hierarchy.

 ● Array List: It is a sequential collection where each stored element has a position. It is
 implemented using a resizable array, which grows as new elements are added and
 shrinks as they are removed. Each element is retrieved by its index [29].

 ● Linked List: It is a sequential collection representing a sequence of linked nodes
 where each node consists of a value and a reference to the next node. Moreover, a
 Linked list provides flexible size, and adding or removing elements from the
 beginning or end of the Linked list is efficient. Therefore, it is useful and
 recommended when managing dynamic collections of data. On the other hand, it is
 less efficient in the case of accessing an element at a specific index compared to an
 array [29].

 ● Vector: It is a sequential collection very similar to an Array list; it grows and shrinks
 when a new element is added or removed, and each element is retrieved by its index.
 The main difference between a Vector and an Array list is that each operation is
 synchronized, which means that if a thread is performing an operation on a Vector,
 no other threads can access that Vector. Therefore, Vector is recommended over the
 Array list in case of multithreading [30].

 ● Stack: Stack is a class that implements the Collection interface and represents a
 last-in-first-out (LIFO) data structure [29]. It is a subclass of Vector and provides all
 the methods of Vector in addition to its own methods for pushing and popping
 elements.

 ● ArrayDeque: It is flexible in size and represents a double-ended queue (deque). A
 deque is a data structure that supports element insertion and removal from both sides.
 ArrayDeque is implemented as a circular array and provides constant-time
 performance for the basic operations (Add, Remove, and Get) at both ends of the
 deque. Moreover, It is not recommended in the case of multithreading since it is not
 thre ad-safe [31].

 18

 ● PriorityQueue: PriorityQueue is a class that implements the Collection interface and
 represents a first-in-first-out (FIFO) data structure (Queue). The Difference between
 PriorityQueue and normal Queue is that a priority queue is a data structure that stores
 elements in a particular order based on their priority. The elements with the highest
 priority are placed at the front of the queue. In contrast, elements with equal priority
 are ordered according to their natural order or based on other criteria. PriorityQueue
 implements Queue interface [29].

 ● HashSet: It is a class that implements the Set interface. It is an unordered collection
 of unique elements, meaning no element is duplicated. HashSet uses a hash table to
 store elements, which provides fast access in the case of Add, Remove, and Contains
 operations. The hash table uses a hashing function to determine the index of each
 element in the table. Moreover, HashSet is useful in case the user needs to store
 unique and ordered data and perform operations such as Add, Remove, and Contains
 in the data since HashSet has no guarantee on data order and data cannot be
 duplicated. Lastly, it is worth mentioning that HashSet is implemented using
 HashMap [32].

 ● LinkedHashSet: is a class that implements the Set interface. It is very similar to
 HashSet, but the dif ference is that LinkedHashSet implements additionally to
 HashSet a LinkedList as well just to keep the order of the elements. LinkedHashSet
 is useful when the end-user needs to maintain the order of the unique elements that
 were inserted into the set. However, keeping the order of the elements that were
 inserted comes at a cost. Therefore, LinkedHashSet is slightly slower than Hashset in
 Add, Contains, and Remove operations [33].

 ● TreeSet: It is a class that implements the SortedSet interface. It uses a balanced
 search tree to implement the sorted set, where the elements are stored and sorted in
 an ascending order based on their natural ordering [29].

 3.4 Sortings Algorithms
 The process of arranging a list, a sequence of provided elements, or data collection into
 a specific order, is called sorting. In other words, organizing a list of items in a
 particular order or way [8]. Consider arranging a messy room - clothes can be
 categorized by color, size, or type to make it simpler when searching. Similarly, Sorting
 algorithms help to organize and simplify complex sets of data so that they can be
 searched, analyzed, or displayed more effectively. There are several Sorting algorithms
 available, varying from simple algorithms such as Bubble sort to more complex ones
 like Quick sort or Heap sort. The algorithm chosen is determined by several factors,
 including the size of the data set, the type of data being sorted, and the desired
 efficiency of the sorting process [6] [8].

 In the controlled experiment, ten Sorting algorithms will be considered. Starting
 with the simplest Sorting algorithms. Bubble sort compares two adjacent elements to
 search for the smallest; if the first index is larger than the second, it will be swapped,

 19

 and the process is repeated from the beginning to the end of the list. Even though it is a
 popular algorithm, it is inefficient [6]. While in the Selection sort , finding the minimum
 element in a list is the first step, which is then swapped to the beginning of the list. This
 will be repeated until the entire list is sorted [8]. In Insertion sort , the element is
 repeatedly swapped until it is inserted in the proper index, by swapping it to the left of
 the unsorted list. In Insertion sort elements are moved ahead by one position only, so the
 average time complexity needed improvement; therefore, Shell sort existed. Shell sort
 allows the swapping and movement of far-away elements, not just the adjacent ones.
 This can be achieved by determining a gap number, which is called an Interval. The
 Interval is reduced after each process of sorting until it reaches 1 and then switches to
 using Insertion sort to complete the sorting process. Once the Interval number is chosen,
 the first index of the list will be compared to the index of the Interval number, and if the
 first index is larger, swapping the elements will happen. This is also done for the second
 index element with its Interval number, and so on [6] [8].

 Efficient algorithms are also considered in this experiment. Heap sort, as an
 example, uses comparisons and is based on the Binary tree structure [6]. First, it
 discovers the minimum or maximum element and then places it as the root. If the
 maximum element is chosen as the max heap (root), it means the parent node must be
 greater than its children nodes, and the largest element is at the root position. The
 opposite is true for the minimum heap. Heapify is an important method to understand
 how the Heap algorithm sorts the elements. Heapify starts from the parent of the last
 element in the unsorted list and recursively moves down the binary tree, it compares
 each node with its children and swaps them if necessary. This process is repeated for
 each parent node until the root of the heap is reached, which results in a complete binary
 tree that satisfies the heap property [6]. Merge sort is also an efficient algorithm, it
 works by recursively dividing the unsorted list into two halves, sorting those halves, and
 then merging them back together. The algorithm divides the list into two equal halves,
 then sorts each half recursively. Finally, merges the two sorted halves into a single
 sorted list. This is repeated until the entire list is sorted. The merging process compares
 the first element of each sublist and selects the smaller element to insert into the output
 list, and this will continue until all elements have been merged into a single sorted list.
 On the other hand, the Quick sort algorithm works by selecting a pivot element from the
 unsorted list. Then divide the remaining elements into two sub-lists based on whether
 they are greater than or less than the chosen pivot. Pivot is an important factor in the
 performance of the algorithm, and the typical scenario for choosing a pivot element is
 usually to be the middle element of the list [6]. The Bucket sort algorithm divides the
 elements of the unsorted list into several groups called buckets, and each bucket holds
 inside it a certain range of numbers. After distributing the elements inside their

 20

https://wenfeng-gao.github.io/post/8-classical-sorting-algorithms/#efficient-sorts

 corresponding bucket, each bucket is sorted individually using any Sorting algorithm,
 and the most commonly used is Insertion Sort. The process behind Bucket sorting can
 be understood as a “scatter-sort-gather” approach. Elements are first scattered into
 buckets then the elements in each bucket are sorted and finally the elements are
 gathered in order. Because of the uniform distribution of this method, the number of
 comparisons is reduced, and it is asymptotically fast [6]. Moreover, Counting sort does
 not perform comparisons, it instead counts the occurrences of each element in the
 unsorted list and then creates a list of counters, with one counter for each possible
 element in the input range. The counters are initialized to zero, and each input element
 is counted by incrementing the corresponding counter. Next, a cumulative sum of the
 counters is computed. Finally, the input elements are placed in their sorted positions by
 iterating through the original list, using the counters and cumulative sum to determine
 their index in the sorted list. However, when the number of elements stored in the list is
 very large, this algorithm might not turn out to be as efficient as it should be. To solve
 this issue, Radix sort was born. The Radix sort algorithm implements the same logic as
 the Counting sort but, uses only one digit of the element as the index. In this way, it can
 guarantee that the occurrences list will at maximum consist of 10 slots [6].

 3.5 Statistical Terms

 Relevant terms belonging to the statistics field as Linear Regression Model, Correlation
 Coefficient, Estimates, and P-Value are used.

 ● Linear Regression Model: One of the most used statistical models, available to simulate
 a mathematical relationship between two variables, either independent or explanatory
 variables, or dependent variables, which provides a rational basis for identifying and
 predicting results that are based on scientific calculations [22]. This model offers a
 relatively simple, easy-to-understand interpretation of the result [23]. This model is used
 in the statistical analysis of the raw data, to find the relationship between the quality
 attributes(CPU, memory) and energy consumption.

 ● Correlation Coefficient: parameter by which the existence and the strength of a linear
 relationship between two variables is tested and its value ranges from 1 to -1 [34]. In
 this paper, the Correlation Coefficient is used to find out the strength of the
 relationship between different variables.

 ● P-Value: Probability value which is used to decide whether the estimated quantities
 are statistically significant [35]. The P-Value measures the reliability of the obtained
 results, as it will show if the relationship is statistically significant.

 ● Estimates: Values are generated through the ordinary least squares method, which
 finds the line that fits the points in such a way that it minimizes the distance between
 each point and the line [36]. The ‘Estimates’ value shows how much the dependent

 21

 variable’s value increases or decreases when the independent variable’s value
 increases by one unit.

 ● Standard Deviation: The dispersion or variation of set values. In other words, it is the
 difference between these values and the mean of the same set of values [36]. The
 standard deviation is not used directly but its value shows the variations in the
 analyzed data.

 22

 4 Research project – Implementation
 This study relies on a controlled experiment methodology to base all its findings and
 results. This methodology assists in showing and identifying the necessary steps for
 implementation. This chapter covers the implementation approach and decisions taken
 throughout the process. Introducing and explaining the experiment and providing a
 step-by-step walkthrough of the technique for each experiment. This part also presents
 the tools used, the steps of data collection and summary, and how they are further
 handled.

 4.1 Tools and Techniques
 All experiments were conducted on an Asus laptop with a system model X411UA, 8GB
 of RAM, an Intel(R) coreTM i5-8250U CPU, and Windows 10 Home 64/bit. IntelliJ
 IDEA-2022.3 and Java JDK-18.0.2.1 were installed to implement and design the code.
 JoularJX 1.1 was also installed to monitor the energy consumption of each method [18].
 The element chosen as an input for each Collection operation and Sorting algorithm is
 random integers. Using the Random class in Java, 400 000 random integers were
 created and stored, with a specific seed value of 200.

 Measuring the CPU and memory usage in the implementation for each method was
 done using built-in Java classes. The CPU usage was calculated using the function
 ‘calcCPU’ which was called after each operation for each Collection and Sorting
 algorithm. ‘calcCPU’ function takes three parameters: cpuStartTime, elapsedStartTime,
 and cpuCoun t, as shown below.

 Figure 4.1 Pseudocode of CPU function

 cpuStartTime was obtained using the method
 “ ManagementFactory.getThreadMXBean() .getCurrentThreadCpuTime()”, this method
 calculates and returns the overall CPU time consumed by the current thread, measured
 in nanoseconds [37]. On the other hand, “ elapsedStartTime” was calculated using the
 method “ System.nanoTime()” which returns the current time in nanoseconds [38].
 Lastly, cpuCount was calculated using the method
 “ ManagementFactory.getOperatingSystemMXBean().getAvailableProcessors()” which
 returns the number of processors available to the Java virtual machine [39]. This

 23

 function calculates the CPU usage percentage by dividing the totalUsedCPUTime by
 totalAvailCPUTime . The totalAvailCPUTime was calculated by multiplying cpuCoun t
 with the difference between end-time and elapsedStartTime which is the difference in
 time in nanoseconds before and after calling each operation of such a Collection or s
 Sorting algorithm. While totalUsedCPUTime is the difference between the current total
 CPU time for the current thread in nanoseconds after calling each operation and
 cpuStartTime before calling each operation of such a Collection or Sorting algorithm.
 Memory consumption was calculated using the Runtime class. The Runtime class
 allows the application to interface with the environment in which the application is
 running [40]. Computing the memory usage of Collection operations and Sorting
 algorithms involves calculating the memory consumption before and after running the
 implementation. Memory consumption was computed by subtracting the free memory
 from the total memory after calling these methods respectively.

 Monitoring and measuring the energy consumption of each operation or algorithm
 was easily done by modifying the filter in the Joular config file, starting with the
 “ package.class.method ” name. For example, to measure the energy of a specific Sorting
 algorithm, the filter would be modified to
 “ filter-method-names=insertionsort.InsertionSortAlgorithm.sort ”. Finally, executing the
 program to get the desired results was done using a bash script with the JoularJX Java
 agent enabled. An example of a script used is “ $for i in {1..20}; do java
 -javaagent:joularjx-1.1.jar selectionsort/Main 400000; done ”. This command runs the
 Java program 20 times, each time with a different randomly generated array of 400 000
 integers, and measures the power consumption of the Java program using JoularJX.

 Regarding Java Collections it is worth mentioning that each collection’s object
 such as ArrayList, LinkedList, etc was instantiated in the Main method using the
 Collection interface which is implemented by Collections’ classes.

 4.2 Data Overview
 As a result of the experiments, raw data was generated. Therefore, this section provides
 a comprehensive understanding of the data collection process and how it is analyzed.

 4.2.1 Data Collection

 Regarding memory and CPU usage, data was gathered and stored in a file using the
 ‘writeTofile’ method. This method takes two arguments, the name of the file and the
 result of the experiment to be written to the file, then creates three separate CSV files
 for each result. Moreover, the energy data was generated automatically using JoularJX.
 JoularJX creates a CSV file for each experiment independently. Thus, if the
 implementation runs 100 times, Joular will generate 100 CSV files containing the

 24

 energy consumption value. Then, the energy values of the 100 files were manually
 gathered into one CSV file. Finally, all generated data (Energy/Memory/CPU) was
 stored in one Excel file, with different spreadsheets for each Collection and Sortings, to
 apply the analysis later.

 4.2.2 Data Analysis

 In order to conduct the analysis, the final Excel file was converted to a CSV format, and
 subsequently imported into RStudio. As mentioned earlier in the Methodology Section,
 RStudio is a software that reads and examines the data before applying statistical
 analysis techniques using R language to derive insights and draw conclusions from the
 data. RStudio uses commands, as an example, to read a CSV file, this command is used:
 “ mydata=read.csv("fileName.csv",header = TRUE) ”, and to get the summary of the
 data, “summary(mydata) ” command is used, which generates summary statistics for the
 data frame. The summary includes different statistically related values, some of these
 values are interesting, such as the minimum, maximum, and mean values.

 To find the correlation coefficient between energy and memory, for instance, simply
 use the “cor(mydata$VariableX, mydata$VariableY) ” command. The “cor()” function
 calculates the Pearson correlation coefficient between the two variables. The correlation
 coefficient ranges from -1 to 1, which indicates how weak or strong the relationship is
 between two variables. This process was repeated for all other variables. Finally, a
 linear regression model was conducted for any two desired variables using the
 command “ model = lm(mydata$VariableX~mydata$VariableY) ” command. VariableX is
 the dependent variable, while VariableY is the independent variable. This command
 helps to understand the relationship between these variables and make predictions about
 future values.

 25

 5 Results

 This chapter offers an overview of the gathered data from the controlled experiments
 performed on the Java Collections and Sorting algorithms. It provides a summary of the
 values for each Sorting algorithm and Collections operation, which helps later in
 comparisons to be made between different variables while making analysis easier. The
 complete raw data can be found in Appendix 1 .

 The following tables present a summary of the data, encompassing the minimum,
 maximum, and mean values for each of the variables Energy, CPU, and Memory. Also
 the time complexity of each algorithm and operation.

 Collections Energy (Joule) CPU
 Usage

 Memory (MB)

 ArrayList

 Add
 O(1)

 Min 0.000567 0.07 14.45995331

 Mean 0.001974369 0.081 14.45996635

 Max 0.006732762 0.1 14.45999908

 Contains
 O(n)

 Min 466.6086355 0 9.086959839

 Mean 491.9261308 0.1188 9.891752014

 Max 515.679196 0.12 17.27084351

 Remove
 O(n)

 Min 46.900643 0.12 7.399879456

 Mean 62.00662112 0.12 7.516352921

 Max 70.71309534 0.12 8.001930237

 ArrayDeque

 Add
 O(1)

 Min 0.000687 0.06 14.45995331

 Mean 0.002953216 0.0739 14.4599704

 Max 0.014700036 0.13 14.45999908

 Contains
 O(n)

 Min 472.8739621 0.12 7.84828949

 Mean 490.794287 0.12 8.734794006

 26

 Max 504.286983 0.12 11.90093231

 Remove
 O(n)

 Min 0.001116075 0.09 5.95791626

 Mean 0.008450762 0.134 6.094021988

 Max 0.042407282 0.24 6.35068512

 LinkedList

 Add
 O(1)

 Min 0.000488 0 15.45904541

 Mean 0.001780715 0.0818 15.45996564

 Max 0.008296656 0.13 15.46000671

 Contains
 O(n)

 Min 1449.880256 0.07 2.3462677

 Mean 1499.166092 0.1192 3.400434647

 Max 1537.974074 0.12 6.588676453

 Remove
 O(n)

 Min 0.002567978 0.09 5.824249268

 Mean 0.013630518 0.1366 5.827473984

 Max 0.050296586 0.24 6.001930237

 Stack

 Add
 O(1)

 Min 0.001580613 0.03 12.99993896

 Mean 0.004702815 0.0974 12.9999517

 Max 0.012583005 0.13 12.99998474

 Contains
 O(n)

 Min 436.7424848 0.12 7.897949219

 Mean 489.6172627 0.12 8.882812805

 Max 518.8516553 0.12 14.23099518

 Remove
 O(n)

 Min 34.87031117 0.11 7.399154663

 Mean 57.72997228 0.1199 7.511531067

 Max 66.05255707 0.12 8.001930237

 27

 Vector

 Add
 O(1)

 Min 0.001390911 0.03 12.99993896

 Mean 0.004055882 0.0995 12.99995056

 Max 0.013321473 0.13 12.99998474

 Contains
 O(n)

 Min 418.9313185 0.12 7.729530334

 Mean 482.597081 0.12 8.513253479

 Max 507.1413135 0.12 15.41547394

 Remove
 O(n)

 Min 38.18918344 0.12 7.398963928

 Mean 58.44471894 0.12 7.487701416

 Max 67.71201172 0.12 7.769287109

 PriorityQueue

 Add
 O(log n)

 Min 0.002186143 0.06 13.45995331

 Mean 0.008133778 0.1072 13.45996658

 Max 0.020972939 0.12 13.45999908

 Contains
 O(n)

 Min 557.3652651 0 0.125434875

 Mean 626.1236434 0.1176 2.450000763

 Max 678.308702 0.12 9.447479248

 Remove
 O(n)

 Min 352.7094224 0.12 4.065910339

 Mean 403.8143728 0.12 5.802430878

 Max 479.8554691 0.12 9.34853363

 Add
 O(1)

 Min 0.025050086 0.09 29.99992371

 Mean 0.049346392 0.1122 29.99994865

 Max 0.081101626 0.12 29.99998474

 Min 0.00432408 0.09 2.354904175

 28

 HashSet

 Contains
 O(1)

 Mean 0.018042638 0.1124 5.404334793

 Max 0.04702791 0.16 6.001930237

 Remove
 O(1)

 Min 0.00544792 0.08 2.2056427

 Mean 0.020921409 0.1154 5.271509247

 Max 0.065847316 0.17 5.761940002

 Linked
 HashSet

 Add
 O(1)

 Min 0.042830875 0.07 30.41864777

 Mean 0.070685211 0.0914 30.46009758

 Max 0.160779235 0.12 30.48896027

 Contains
 O(1)

 Min 0.007027301 0.04 1.270233154

 Mean 0.015740149 0.1092 2.257113419

 Max 0.03793517 0.15 2.419761658

 Remove
 O(1)

 Min 0.00553079 0.08 1.164207458

 Mean 0.019623584 0.1239 2.172135239

 Max 0.046522515 0.17 2.229278564

 TreeSet

 Add
 O(log n)

 Min 0.089415472 0.09 18.89191437

 Mean 0.141886684 0.1022 19.13297615

 Max 0.309176967 0.11 19.19422913

 Contains
 O(log n)

 Min 0.043751044 0.11 6.048225403

 Mean 0.093472037 0.114 6.07582695

 Max 0.197342535 0.13 6.243865967

 Remove
 O(log n)

 Min 0.056256182 0.11 5.922714233

 Mean 0.148259318 0.1169 5.995325775

 29

 Max 0.429610314 0.13 6.221954346

 Sorting Algorithms Energy (Joule) CPU Usage Memory (MB)

 Bubble Sort
 O(n^2)

 Min 1241 0.000 26.42

 Mean 1553 0.114 27.85

 Max 1621 0.120 31.40

 Bucket Sort
 O(n+k)

 Min 1557 0.0100 66.63

 Mean 1953 0.1117 80.23

 Max 2038 0.1200 89.98

 Counting Sort
 O(n+k)

 Min 0.3436 0.0700 10.00

 Mean 1.4559 0.0994 10.01

 Max 3.0048 0.1200 10.06

 Heap Sort
 O(nlogn)

 Min 0.2293 0.0900 0

 Mean 0.6555 0.1100 0

 Max 2.2523 0.1200 0

 Insertion Sort
 O(n^2)

 Min 261.1 0.0400 14.98

 Mean 291.1 0.1192 15.03

 Max 300.9 0.1200 15.92

 Merge Sort
 O(nlogn)

 Min 0.3160 0.0700 22.14

 Mean 0.8153 0.1003 22.33

 Max 3.5041 0.1200 22.62

 Min 0.2312 0.0600 0

 30

 Quick Sort
 O(nlogn)

 Mean 0.7036 0.1043 0

 Max 1.8024 0.1200 0

 Radix Sort
 O(nk)

 Min 0.3307 0.0900 27.46

 Mean 1.0818 0.1106 27.58

 Max 2.5685 0.1200 27.98

 Selection Sort
 O(n^2)

 Min 659.3 0.020 19.08

 Mean 775.0 0.119 28.59

 Max 830.8 0.120 30.20

 Shell Sort
 O(n(logn)^2)

 Min 0.1851 0.0900 0

 Mean 0.6374 0.1121 0

 Max 1.6549 0.1200 0

 31

 6 Analysis
 The following chapter analyzes the results that were obtained by the conducted
 controlled experiments. The goal of this analysis is to answer the research questions that
 were introduced earlier in the Problem formulation section. All possible methods for
 analyzing the results have been explored to provide accurate answers to the research
 questions. Therefore, two analysis sections have been included, one applying a linear
 regression model and the other a 3D scatter plot.

 6.1 Statistical Analysis
 In this section, statistical analysis using a linear regression model is conducted for
 Sorting algorithms and Collections in Java to investigate the relationship between
 variables. This analysis will answer the research questions RQ1, RQ2, and RQ3 only
 from Section 1.3, Problem Formulation.

 In order to present a linear regression model, the Correlation Coefficient is computed to
 determine whether the relationship is inverse or positive, as well as if the relationship is
 weak or strong. Moreover, the P-Value is calculated to determine if the relationship is
 statistically significant. Appendix 2 shows the values of the correlation coefficient and
 P-Value for each Sorting algorithm and Collection including their three operations,
 which will be used in the analysis.

 It is pertinent to note that in order to comprehend the information presented in the
 below Tables 6.1 & 6.2, it is essential to know that energy consumption is the dependent
 variable while memory and CPU usage are the independent variables. If the correlation
 coefficient value is negative, it indicates an inverse relationship between the two
 variables, and if the value is positive, it indicates a positive relationship. Moreover,
 when the absolute value of the correlation coefficient is less than 0.5, the relationship is
 considered weak, and the opposite is true if it is equal to or greater than 0.5. The
 estimated value presents the approximate amount of energy consumption when the
 independent variable increases by 1 unit. Finally, to know if the relationship is
 statistically significant, the P-Value must be less than or equal to 0.05. In the below
 tables, a correlation written in Bold indicates a statistically significant relationship and
 is to be discussed later in the conclusion section.

 Worth mentioning, the relationship is also considered strong if the linear regression
 model shows that the relationship is statistically significant with a P-Values less than or
 equal to 0.05, even though the correlation coefficient is less than 0.5 since the P-Value is
 more important.

 32

 6.1.1 Collections’ Linear Regression Analysis

 Table 6.1, provides an analysis of the raw data for Collections including Add, Contains,
 and Remove operations, as an outcome of applying a linear regression model using R.
 Taking into concern their relationship with energy-memory usage and energy - CPU
 usage.

 Energy - Memory usage Energy - CPU usage

 Collections Operation Relationship Estimate Relationship Estimate

 ArrrayList

 Add Weak Positive 6.002 Weak Inverse -0.028008

 Contains Strong Positive 3.7321 Weak Inverse -53.261

 Remove Weak Positive 0.4489 - -

 ArrayDeque

 Add Weak Inverse -2.240 Strong Positive 0.092071

 Contains Weak Positive 0.4627 - -

 Remove Strong Inverse -0.014974 Strong Positive 0.057140

 LinkedList

 Add Strong Positive 0.1859 Strong Positive 0.0199417

 Contains Weak Positive 2.057 Weak Inverse -253.74

 Remove Weak Positive 0.01710 Strong Positive 0.082093

 Stack

 Add Weak Inverse -6.909 Weak Positive 0.0113430

 Contains Weak Inverse -0.4485 - -

 Remove Strong Inverse -10.636 Strong Positive 2309.06

 Vector

 Add Weak Positive 4.952 Weak Positive 0.011879

 Contains Weak Inverse -1.764 - -

 Remove Weak Positive 0.7895 - -

 PriorityQueue

 Add Weak Positive 13.65 Weak Inverse -0.032627

 Contains Weak Inverse -1.591 Weak Inverse -195.43

 Remove Strong Positive 17.160 - -

 33

 Energy - Memory usage Energy - CPU usage

 HashSet

 Add Weak Inverse -2.877 Weak Positive 0.02009

 Contains Strong Inverse -0.0013681 Strong Positive 0.083060

 Remove Strong Inverse -0.0041078 Weak Positive 0.002688

 LinkedHashSet

 Add Weak Inverse -0.2662 Weak Inverse -0.01061

 Contains Weak Inverse -0.006344 Strong Positive 0.042383

 Remove Weak Positive 0.006922 Strong Positive 0.080187

 TreeSet
 Add Weak Inverse -0.02231 Weak Positive 0.58851

 Contains Weak Inverse -0.08832 Weak Positive 0.28658

 Remove Weak Inverse -0.06375 Weak Positive 0.10425
 Table 6.1 Collections’ Relationships Analysis

 The table above addresses RQ1 by demonstrating the relationship between energy
 consumption and memory usage and the relationship between energy consumption and
 CPU usage. Moreover, it also addresses RQ3 by demonstrating how strong these
 relationships are, based on the correlation coefficient and P-Value, values as explained
 earlier. For example, the table shows that in the case of HashSet Collection for ‘Add’
 operations, the relationship between energy consumption and memory is weak and
 inverse. Therefore, when memory usage increases by one megabyte, energy decreases by
 2.877 Joules, as the "Estimate" value shows.

 Notably, the table above shows no significant relationship between energy
 consumption and CPU usage for some Collections. The reason behind this result is that
 the standard deviation is zero since the CPU usage is constant and fixed. In other words,
 based on the collected data, it is noticed that CPU usage is fixed regardless of whether
 energy consumption increases or decreases.

 6.1.2 Sortings’ Linear Regression Analysis

 Table 6.2, provides an analysis of the raw data for Sorting algorithms, as an outcome of
 applying a linear regression model using R. Taking into concern their relationship with
 energy-memory usage and energy - CPU usage.

 Energy - Memory usage Energy - CPU usage

 Sorting Algorithms Relationship Estimate Relationship Estimate

 34

 Bubble Sort Weak inverse -13.635 Weak inverse -75.26

 Bucket Sort Weak positive 1.1014 Weak positive 193.80

 Counting Sort Weak inverse -1.146 Weak inverse -4.3836

 Heap Sort - - Strong positive 7.8139

 Insertion Sort Strong inverse -26.386 Weak positive 137.313

 Merge Sort Weak inverse -0.4435 Weak positive 0.9381

 Quick Sort - - Weak inverse -0.5146

 Radix Sort Weak inverse -0.2801 Weak positive 2.8106

 Selection Sort Strong positive 11.7746 Weak inverse -117.32

 Shell Sort - - Strong inverse -5.0116

 Table 6.2 Sortings’ Relationships Analysis

 The table analyzes the data and addresses RQ2 by first answering if a relationship
 exists. The ones with defined relationships have been categorized into positive or
 inverse relationships. Taking Selection sort as an example, there is a positive
 relationship between energy consumption and memory usage, and this means when
 memory increases by one megabyte, energy consumption increases by 11.7746 joules
 (estimated value). However, the relationship between energy consumption and CPU is
 inverse for the same Sorting algorithm; this means when CPU increases by one unit,
 energy consumption decreases by 117.32 joules (estimated value). On the other hand,
 RQ3 is answered by showing if the relationship between two variables is weak or
 strong. For example, in the Insertion sort, the two variables, memory, and energy,
 indicate a strong relationship, meaning if memory (the independent variable) increases,
 energy consumption (the dependent variable) decreases significantly. In the same
 Sorting algorithm, the two variables, CPU and energy, indicate a weak relationship,
 meaning if CPU (the independent variable) increases, energy consumption (the
 dependent variable) increases slightly.

 Table 6.2 exhibits no significant correlation between energy consumption and
 memory usage for some Sorting algorithms. This lack of correlation is attributed to
 differences in the implementation of these algorithms. For instance, the Heap sort
 method operates directly on the input array and rearranges the elements in place,
 without creating any additional arrays or data structures to store intermediate results.
 The only memory usage in the Heap sort method is the storage of a temporary variable
 ‘temp’ that is used to swap the values of two elements. However, this temporary
 variable is a constant-size integer and does not depend on the size of the input array, so

 35

 it does not contribute significantly to the memory usage of the algorithm. Similarly,
 Quick sort implementation does not use any additional memory also, since it sorts the
 input array in place, meaning that it modifies the input array rather than creating a new
 array to hold the sorted elements. Furthermore, Shell sort implementation performs
 in-place comparison sorting, which means it does not require any additional memory to
 be allocated for temporary storage during the sorting process. In summary, the lack of
 significant correlation between energy consumption and memory usage in these Sorting
 algorithms is attributed to their respective in-place sorting implementations, where they
 do not require additional memory allocation or data structures for temporary storage
 during the sorting process.

 6.2 Efficiency Analysis
 This section provides an efficiency analysis for Java Collections and Sorting algorithms.
 It presents a rigorous evaluation of their performance, in terms of energy consumption
 considering quality attributes (Memory, CPU) based on appropriate measurements and
 analyses.
 The focus of this section is to answer the final two research questions:

 RQ4. What is the most efficient Java Collection/s among the three operations in
 terms of energy consumption considering the performance?
 RQ5. What is the most efficient Java Sorting algorithm in terms of energy
 consumption considering the performance?

 A proper analysis of the results is necessary to address the research questions. Each
 Collection and Sorting algorithm was evaluated based on three principal objectives,
 energy consumption, memory, and CPU usage. The goal is to present these objectives in
 an understandable graphical form, to show, and determine the most efficient method
 with the best performance in terms of energy consumption considering CPU and
 memory usage.

 Therefore, a 3D scatter plot is generated using R Studio, which is a suitable
 technique to assess the three objectives and gives the reader a visualized model to
 compare the data points. The data points represent the mean value of memory, CPU,
 and energy consumption respectively in a three-dimensional coordinate system, with
 one variable plotted on the x-axis and the other variable plotted on the y-axis and z-axis.

 36

 6.2.1 Collections Experiment Analysis

 The efficiency analysis of Java Collections involves evaluating each Collection
 individually to determine the most efficient Collection(s) in terms of energy
 consumption, CPU, and memory usage. If it is not possible to find a Collection that
 excels in all three aspects, alternative approaches prioritize two aspects to identify the
 most efficient Collection(s).

 The efficiency analysis of Java Collections does not rely on determining the most
 efficient Collection(s) as List, Queue, and Set. This approach is not aligned with the
 research objectives and methodology of the study. A Collection classified as a List, for
 example, might be the most efficient among other collections classified as a List.
 However, this does not necessarily imply that it is the most efficient of all Collections
 classified as Queues or Sets. Attempting to find the most efficient Collection(s) based
 on their classification would not yield the desired results. It would undermine the study's
 strength and coherence, as it deviates from the core objective of this study and does not
 align with other related works.

 Instead, the efficiency analysis should focus on evaluating the performance of
 individual Collections based on specific criteria, such as energy consumption, CPU
 utilization, and memory usage. This approach ensures a comprehensive and accurate
 assessment of each Collection's efficiency without being restricted by its classification.

 Figure 6.1: Collections 3D scatter plot for Add

 Figure 6.1 shows a 3D scatter plot of all Collections in the case of the Add operation.
 The graph shows the mean value of memory, CPU, and energy consumption for each
 Collection on the x-axis, y-axis, and z-axis respectively. From the plot, the most
 efficient Collections in terms of energy consumption can be derived, taking into account
 the quality attributes. For example, it is clearly shown that ArrayList (A), ArrayDeque

 37

 (B), and LinkedList (C) are the best choices in terms of the three values of memory,
 CPU, and energy consumption combined. LinkedList is the best choice when only
 energy consumption is considered because it has the lowest energy consumption (See
 Appendix 1). On the other hand, ArrayDeque is the best choice when considering CPU
 consumption, as it has the lowest CPU consumption. Vector, on the other hand, is the
 best solution in terms of memory consumption. When it comes to the least efficient
 Collections in terms of memory, CPU, and energy consumption, HashSet (G),
 LinkedHashSet (H), and TreeSet (I) are collectively the most problematic. TreeSet is the
 worst in terms of energy consumption. On the other hand, HashSet is the worst in terms
 of CPU consumption and LinkedHashSet is the worst in terms of memory consumption.

 Notably, Based on the gathered data and the conducted efficiency analysis, the time
 complexity of Collections does not reflect their efficiency in terms of energy
 consumption, CPU, and memory usage in Add operation. TreeSet(I) is less efficient in
 terms of energy consumption than PriorityQueue(F), even though both have time
 complexity O(log n). Additionally, some Collections have time complexity O(1) but
 they are less efficient than PriorityQueue in terms of one variable or two variables or all
 of them. For instance, LinkedHashSet is less efficient in terms of energy consumption
 and memory usage than PriorityQueue. Furthermore, HashSet(G) is less efficient than
 priorityQueue in terms of all aspects of energy consumption, CPU, and memory usage.

 Figure 6.2: Collections 3D scatter plot for Contains

 Figure 6.2 shows the memory, CPU, and energy consumptions of Collections for
 Contains operations on the x, y, and z axes respectively. Based on the obtained result,
 the scatter plot shows that LinkedHashSet(H) is the absolute most efficient Collection
 among the others in terms of memory, CPU, and energy consumption combined,
 Therefore, it can be recommended as the best choice for Java developers who are
 interested in the efficiency in terms of these three objectives in case of Contains
 operation.

 38

 Collection HashSet(G) has the second lowest CPU usage and energy consumption.
 Additionally, it has the lowest memory usage after LinkedHashSet (H) and
 PriorityQueue (F) respectively. Collection PriorityQueue (F) has roughly high CPU
 usage and energy consumption. On the other hand, the collections Stack (D),
 ArrayDeque(B), and Vectorn (E) are the least efficient Collections in terms of memory,
 CPU, and energy consumption since they have roughly high memory, CPU and energy
 consumption even though LinkedList (C) has the highest energy consumption among
 other Collections but it has less memory and CPU usage than the Collections D, B, and
 E.

 According to an efficiency analysis of Java Collections, the time complexity of a
 collection indicates its efficiency in terms of energy consumption and CPU usage. It has
 been found that LinkedHashSet (H), HashSet (G), and TreeSet (I) are the most efficient
 in terms of energy consumption, CPU usage, and memory usage, respectively. The
 efficiencies of these collections align with their respective time complexity. These are
 the fastest among all collections analyzed for the 'contains' operation. For this operation,
 LinkedHashSet, HashSet, and TreeSet have time complexity of O(1), O(1), and O(log
 n), respectively. Conversely, the "Contains" operation for other collections has a time
 complexity of O(n), making it less efficient. It is important to note that when selecting a
 collection for a given task, numerous factors should be taken into consideration. These
 factors include trade-offs between time complexity, energy consumption, and other
 relevant considerations such as CPU and memory usage.

 Figure 6.3: Collections 3D scatter plot for Remove

 Based on the obtained results for Remove operation, LinkedHashset (H) can be
 recommended to be the most efficient Collection in terms of three variables, memory,
 CPU, and energy consumptions combined, even though HashSet (G) has less CPU
 consumption. LinkedHashSet consumes 6% less energy than HashSet, at the same time,
 HashSet consumes 7% less CPU than LinkedHashSet but HashSet consumes 243%

 39

 more memory than LinkedHashSet, therefore LinkedHashSet is recommended to Java
 developers if these three factors (memory, CPU, and energy) are considered at once.See
 Appendix 1 .

 Moreover, if a developer is interested in Collections' efficiency in terms of energy
 consumption only, ArrayDeque (B) is the best choice, because it is the most efficient
 Collection among others in terms of energy consumption. In addition, if a developer is
 interested in CPU consumption efficiency, HashSet is the best choice since it has the
 lowest CPU consumption among other Collections. On the other hand, PriorityQueue
 (F) is the least efficient Collection among others in terms of memory, CPU, and energy
 consumption combined, since it has a very high energy consumption compared with
 other Collections in the case of Remove operation. Moreover, it has roughly high CPU
 and memory consumption.

 According to an efficiency analysis of Java Collections, the ArrayDeque collection
 exhibits the highest level of efficiency in terms of energy consumption. Despite its time
 complexity being O(n), which is less efficient than that of HashSet and LinkedHashSet,
 both of which have a time complexity of O(1). Among other Collections,
 LinkedHashSet and HashSet demonstrate the greatest efficiency in terms of memory
 usage and time complexity. In contrast, TreeSet exhibits inferior memory efficiency
 compared to both PriorityQueue and LinkedList, despite having a time complexity of
 O(log n), which is better than PriorityQueue and LinkedList, both of which have a time
 complexity of O(n). Furthermore, the HashSet collection boasts the most efficient CPU
 usage with a time complexity of O(1). However, LinkedHashSet's time complexity is
 O(1), which is generally regarded as superior to O(n). However, there are several
 Collections that exhibit better CPU efficiency than LinkedHashSet in terms of CPU
 usage, including the ArrayList, Stack, and PriorityQueue, which have a time complexity
 of O(n).

 40

 6.2.2 Sortings Experiments Analysis

 Figure 6.4 Sortings 3D scatter plot

 In Figure 6.4, each axis displays one of the measured objectives in each Sorting
 algorithm. Each data point represents one of the Sorting algorithms based on the
 gathered data from the experiment. From the scatter plot, it can be inferred that Quick
 sort (G), Heap sort (D), and Shell sort (J) are the most efficient choices for developers
 who prioritize high performance in both memory and CPU usage while maintaining low
 energy consumption; since they consume no additional memory, very low energy, and a
 low CPU. However, Figure 6.4 provides a variety of options for the developer to select
 and consider. For instance, if the aim is to have a Sorting algorithm with the lowest
 energy consumption and the highest performance in CPU usage, regardless of memory
 usage, Counting sort (C) and Merge sort (F) respectively are the optimal choices. On the
 other hand, if the aim is to achieve the lowest energy consumption and memory usage,
 regardless of CPU usage, then Quick sort (G), Heap sort (D), and Shell sort (J) are all
 the best options and most efficient. These three algorithms consume no additional
 memory and the lowest energy among the others. Finally, the Bucket sort (B) may not
 be the most efficient choice due to its high energy consumption and memory usage, as
 well as its relatively high CPU usage when compared to other Sorting algorithms. Based
 on the efficiency analyses of Sorting algorithms, it can be inferred whether time
 complexity is related to the algorithm's efficiency and performance or not.

 The Sorting algorithms winners of consuming the least energy, CPU, and memory,
 have the time complexity, as follows: Quick sort O(nlogn), Heap sort O(nlogn), and

 41

 Shell sort O(n(logn)^2), all of which exhibit faster performance compared to the least
 efficient Sorting algorithm, Bucket sort, which has a time complexity of O(n+k),
 particularly when processing large datasets.

 42

 7 Discussion and Conclusions
 The goal of this study is to determine the potential relationship, if any, between energy
 consumption and commonly performed operations on Java Collections - including
 addition, search, and removal of elements, as well as widely used Sorting algorithms in
 Java programming. Additionally, the study aims to identify the most efficient Java
 Collections and Sorting algorithms based on their energy consumption, CPU, and
 memory usage. The study employs controlled experiments that involve measuring the
 energy consumption, CPU, and memory usage of each Java Collection during the
 specified operations and Sorting algorithms. The conducted analysis for the outcomes of
 the controlled experiments provides direct answers to the research questions. These
 answers are anticipated to offer significant insights into the energy efficiency of Java
 Collections and Sorting algorithms, which could inform future software development
 strategies and contribute to the reduction of energy consumption and environmental
 impact in software development.

 The present research project is similar to the studies conducted by Hasan et al [11] and
 Pinto et al [12] in that both studies aim at scrutinizing and quantifying the energy
 consumption of Java Collections. According to Hasan et al, energy consumption for
 Java Lists, Maps, and Sets has been examined with regard to various operations, such as
 insertion, iteration, and random access, highlighting significant variations based on the
 type of operation. This research project shares similarities and differences with Hasan et
 al. Both studies involve examining and quantifying the energy consumption of Java
 Collections and investigating the energy consumption of varied operations. However,
 the differences between the two studies lie in the fact that Hasan et al explore the energy
 consumption of diverse operations with different scenarios, such as insertion at the
 beginning, middle, and end, whereas this project focuses on analyzing the energy
 consumption, CPU usage, and memory usage of various operations, specifically,
 insertion, searching, and deletion. Additionally, this project attempts to identify a
 statistical correlation between each Collection and quality attributes, such as CPU and
 memory usage. It is noteworthy that the findings of Hasan et al demonstrate that
 LinkedList has lower energy consumption than ArrayList when inserting elements at the
 start of a list, which aligns with the efficiency analysis results of the current research
 project in terms of energy consumption for the insertion operation. This concurrence
 suggests that LinkedList is a preferable option over ArrayList in terms of energy
 efficiency for inserting elements at the beginning of a list.

 The study conducted by Pinto et al investigates the energy efficiency of 16
 commonly used Java Collections, categorized into lists, sets, and mappings, in different
 operations such as insertion, removal, and traversal on the Tomcat and Xalan systems.
 The study reveals that newer hash-table implementations can yield significant energy
 savings. It also finds that non-thread-safe implementations of data collections consume
 less energy than thread-safe ones and that energy consumption is influenced by different
 operations. Additionally, the study examines the impact of thread counts, initial
 capacities, and load factors on the energy consumption of map implementations in Java.

 43

 The current research project shares similarities with Pinto et al's study in terms of
 examining energy consumption in Java collections. In contrast to the investigation by
 Pinto et al, this study scrutinizes the energy consumption of Java Collections on a
 singular device and concentrates on Collections that are embedded in the Java
 Collection framework, intended for performing insertion, search, and removal
 operations. Moreover, this study assesses the energy consumption associated with
 Collections in terms of their quality attributes and explores the statistical relationship
 between these attributes, and does not confine its focus solely to Java thread-safe
 Collections and does not extend its experiments to multiple systems, which
 distinguishes it from the study conducted by Pinto et al.

 Additionally, this research project is also similar to the study conducted by Alves et
 al. [3], which examined and analyzed the energy consumption of some Sorting
 algorithms. Alves's main investigation revealed that the Selection sort algorithm
 consumes the least energy, while the Bubble sort algorithm consumes the most energy.
 It is noteworthy that the findings of this research, as presented in Section 6.2.2, align
 with the observation that the Selection sort algorithm consumes a significant amount of
 energy when compared to the Bubble sort. However, Alves’s area of investigation
 focuses on three classic Sorting algorithms only and does not take into account any
 quality attributes while measuring energy consumption. In contrast, this study analyzed
 additional Sorting algorithms and their energy consumption in relation to some quality
 attributes, such as memory and CPU usage. Consequently, the findings suggest that the
 Bucket sort algorithm is the least efficient and worst Sorting algorithm.

 In conclusion, this paper has provided answers to the research questions presented in
 Section 1.3 and focuses on estimating the energy consumption, memory, and CPU usage
 of several Java Collections and Sorting algorithms. The study conducted controlled
 experiments and employed tools such as JoularJX to measure energy consumption, and
 RStudio to implement a statistical analysis using R to find out the relationship between
 energy consumption and quality attributes. Moreover, an efficiency analysis is
 conducted, and its findings are then represented using a 3D scatter plot to compare the
 mean values of energy consumption, CPU, and memory usage for each operation and
 algorithm.

 Regarding Java Collections, the examination reveals a complex landscape in terms
 of efficiency across various operations, such as Add, Contains, and Remove. It becomes
 evident that singling out a universally superior Collection(s) is an unattainable goal.
 Notably, LinkedList stands out for its exceptional energy efficiency during Add
 operations, but its performance falters significantly when it comes to Contains
 operations. Therefore, a comprehensive evaluation considering the specific
 requirements and trade-offs of each operation is essential to determine the most suitable
 Collection(s) for a given context.

 Moreover, in addition operation, ArrayLists, ArrayDeque, and LinkedLists are
 recommended when memory, CPU, and energy consumption are all considered together.
 Notably, LinkedList is the optimal choice when only energy consumption is considered
 during addition. In terms of memory, CPU, and energy consumption, LinkedHashSet

 44

 has the highest efficiency level when used for searching operations. If memory, CPU,
 and energy consumption are considered as a single unit, LinkedHashSet is the most
 efficient collection when used for removing. ArrayDeque, however, is the most
 energy-efficient choice for Java developers when it comes to the removal of data.
 Concerning Sorting algorithms, Quick sort, Heap sort, and Shell sort were identified as
 the most efficient in terms of energy consumption, CPU, and memory usage. Bucket
 sort was found to be less efficient due to its higher consumption and usage in all terms.

 This study has been conducted as the outcome of all those experiments' results and
 analyses covering effectively the research gap on which it is based. Additionally, the
 study highlights the need for developers to consider multiple factors when selecting a
 Collection or Sorting algorithm, emphasizing that there may be a lack of correlation
 between energy consumption and quality attributes (CPU and memory usage) in certain
 algorithms and Collections. The study also points out that time complexity does not
 always reflect efficiency in terms of energy consumption, CPU, and memory usage.
 Thus, the study underscores the importance of optimizing software for energy
 consumption, particularly in resource-constrained environments, and recommends using
 controlled experiments and appropriate methodologies to guide programmers in
 developing energy-efficient software programs which leads the software engineering
 field to be improved.

 Lastly, based on the findings of the conducted statistical analysis, it appears that
 there is a limited possibility of generalizing the correlation and relationship between
 energy consumption and CPU and memory usage across various Collection and Sorting
 algorithms in most cases. Specifically, the observed P-value is greater than 0.05,
 indicating that the results are not statistically significant. Therefore, further investigation
 is warranted as a part of future research endeavors to better understand this relationship.

 7.1 Future Work
 This section provides suggestions for future research to advance the current study. Time
 and resources are factors that limit this bachelor's project. Hence, some aspects of this
 study may benefit from additional time and resources to be executed optimally. This
 section outlines what was discovered during the project’s work, areas that can be
 improved, and recommendations for future work.

 As mentioned earlier, when statistical analysis has been conducted, it has been
 determined that the ability to generalize the correlation and relationship between energy
 consumption, CPU, and memory usage for Collection and Sorting algorithms is limited
 in most cases. It is assumed and suggested that further examination of the P-value is
 necessary. It could be investigated by increasing the input size and the number of
 experiments significantly, for each operation and algorithm.

 Moreover, future work considering different tools for measuring energy
 consumption and conducting experiments on different operating systems can help
 increase the generalizability of the statistical analysis results. Different operating
 systems have different features and characteristics; therefore, experimenting on multiple

 45

 operating systems can help evaluate how generalizable the findings are while ensuring
 that the findings are robust and not specific to a particular operating system. Worth
 mentioning is that this study raised the hypothesis that there might not be significant
 differences in the results when comparing the implementation of Sorting algorithms to
 Java library built-in algorithms in terms of the most efficient algorithm regarding energy
 consumption; however, to validate this hypothesis, further investigation comparing the
 implementation results with the Java library results is recommended.

 A possible approach to advance this research could be done using machine
 learning. Using machine learning can help in developing predictive models that can
 forecast energy consumption based on different quality attribute metrics. Additionally,
 assist in discovering patterns and trends in the data that may be difficult to detect using
 typical statistical methods. Machine learning can provide powerful tools for
 understanding and analyzing the relationships between energy consumption and quality
 attributes for Java Collections and Sorting algorithms. Applying these tools makes it
 possible to gain deeper insights into the performance characteristics of different
 operations and algorithms to discover the most optimal energy consumption in software
 development.

 46

 References

 [1] Mykhailo Spirich, “Is Java still relevant in 2023,” Axon , 15-Jan-2023. [Online].
 Available: https://www.axon.dev/blog/is-java-still-relevant-in-2022.

 [2] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do programmers know
 about software energy consumption?” IEEE Software, vol. 33, no. 3, pp. 83–89, 2016.

 [3] D. S. Alves, O. A. Ferreira, L. M. Duarte, D. Silva, and P. H. Maia, “Experiments on
 model-based software energy consumption analysis involving Sorting algorithms,”
 Revista de Informática Teórica e Aplicada , vol. 27, no. 3, pp. 72–83, 2020.

 [4] R. Pereira et al. , “Energy efficiency across programming languages: How do energy,
 time, and memory relate?,” Proceedings of the 10th ACM SIGPLAN International
 Conference on Software Language Engineering , 2017. doi:10.1145/3136014.3136031

 [5] “Java Collections framework,” Programiz. [Online]. Available:
 https://www.programiz.com/java-programming/Collections .

 [6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
 algorithms. Cambridge (Inglaterra): Mit Press, 2009.

 [7] “Java development kit version 17 API specification,” Arrays (Java SE 17 & JDK
 17) , 12-Dec-2022. [Online]. Available:
 https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Arrays.html .

 [8] R. Sedgewick and K. Wayne, “Algorithms, 4th Edition,” Princeton University .
 [Online]. Available: https://algs4.cs.princeton.edu/home/.

 [9] S. Ergasheva, Z. Kholmatova, A. Kruglov, G. Succi, X. Vasquez, and E. Zuev,
 “Analysis of energy consumption of software development process entities,”
 Electronics, vol. 9, no. 10, p. 1678, 2020.

 [10] H. Makabee, “Conference talk – Hayim Makabee on software quality attributes,”
 Effective Software Design , 24-Nov-2014. [Online]. Available:
 https://effectivesoftwaredesign.com/2014/11/20/conference-talk-hayim-makabee-on-sof
 tware-quality-attributes/.

 [11] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle, “Energy
 Profiles of java Collections classes,” Proceedings of the 38th International Conference
 on Software Engineering, 2016.

 [12] G. Pinto, K. Liu, F. Castor, and Y. D. Liu, “A comprehensive study on the energy
 efficiency of Java’s thread-safe Collections,” 2016 IEEE International Conference on
 Software Maintenance and Evolution (ICSME), 2016.

 47

https://www.programiz.com/java-programming/Collections
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Arrays.html

 [13] Saborido, R., Morales, R., Khomh, F., Guéhéneuc, Y.-G., & Antoniol, G.
 (2018). Getting the most from map data structures in Android. Empirical Software
 Engineering, 23(5), 2829–2864. https://doi.org/10.1007/s10664-018-9607-8 .

 [14] Oliveira, W., Oliveira, R., Castor, F., Fernandes, B., & Pinto, G. (2019).
 Recommending energy-efficient Java Collections. 2019 IEEE/ACM 16th International
 Conference on Mining Software Repositories (MSR).
 https://doi.org/10.1109/msr.2019.00033 .

 [15] P. D. Anne Marie Helmenstine, “What is a controlled experiment?,” ThoughtCo,
 11-Dec-2019. [Online]. Available:
 https://www.thoughtco.com/controlled-experiment-609091 .

 [16] Wohlin, C., Runeson, P., Höst Martin, Ohlsson, M. C., Regnell Björn, &
 Wesslén Anders. (2012). Experimentation in software engineering: An introduction.
 Springer-Verlag New York.

 [17] “IntelliJ IDEA – the leading Java and Kotlin Ide,” JetBrains. [Online]. Available:
 https://www.jetbrains.com/idea/.

 [18] Joularjx. (n.d.). Retrieved October 27, 2022, from
 https://www.noureddine.org/research/joular/joularjx .

 [19] “R & R studio,” Statistics . [Online]. Available: https://statistics.byu.edu/r-r-studio.

 [20] S, R. A. (2023, February 13). Collections in Java and how to implement them?
 [updated] . Simplilearn.com. Retrieved March 22, 2023, from
 https://www.simplilearn.com/tutorials/java-tutorial/java-collection.

 [21] D. Loshin and S. Lewis, “What are data structures? - definition from whatis.com,”
 SearchDataManagement, 09-Mar-2021. [Online]. Available:
 https://www.techtarget.com/searchdatamanagement/definition/data-structure .

 [22] “What is linear regression?” Statistics Solutions, 10-Aug-2021. [Online].
 Available:
 https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/what
 -is-linear-regression/

 [23] About linear regression. IBM. (n.d.). Retrieved November 13, 2022, from
 https://www.ibm.com/se-en/topics/linear-regression

 [24] Hexanovate, “What is Time & Space Complexity in data structure? Tap Academy,”
 Tap Academy , 18-Feb-2023. [Online]. Available:
 https://thetapacademy.com/time-and-space-complexity-in-data-structure/

 48

https://doi.org/10.1007/s10664-018-9607-8
https://doi.org/10.1109/msr.2019.00033
https://www.thoughtco.com/controlled-experiment-609091
https://www.noureddine.org/research/joular/joularjx
https://www.techtarget.com/searchdatamanagement/definition/data-structure
https://www.ibm.com/se-en/topics/linear-regression
https://thetapacademy.com/time-and-space-complexity-in-data-structure/

 [25]“Big O notation cheat sheet: Data structures and algorithms,” Flexiple,
 https://flexiple.com/algorithms/big-o-notation-cheat-sheet/

 [26] What is CPU usage? - it glossary . SolarWinds. (n.d.). Retrieved March 22, 2023,
 from https://www.solarwinds.com/resources/it-glossary/what-is-cpu

 [27] baeldung, W. by: (2020, June 27). Java heap space memory with the runtime API .
 Baeldung. Retrieved March 22, 2023, from
 https://www.baeldung.com/java-heap-memory-api

 [28] Java collection interface . Programiz. (n.d.). Retrieved March 22, 2023, from
 https://www.programiz.com/java-programming/collection-interface

 [29] M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Data Structures and
 algorithms in Java . Hoboken, NJ: Wiley, 2014.

 [30] “What is a vector in Java?,” Educative . [Online]. Available:
 https://www.educative.io/answers/what-is-a-vector-in-java.

 [31] S. Woltmann, “Java arraydeque (with example),” HappyCoders.eu, 07-Jun-2022.
 [Online]. Available: https://www.happycoders.eu/algorithms/arraydeque-java/.

 [32] Mansi, “What is Hashset in Java?,” Scaler Topics , 13-Sep-2022. [Online].
 Available: https://www.scaler.com/topics/hashset-in-java/.

 [33] W. by: baeldung, “A guide to linkedhashset in Java,” Baeldung , 13-Dec-2022.
 [Online]. Available: https://www.baeldung.com/java-linkedhashset.

 [34] “PH717 module 9 - correlation and regression,” The Correlation Coefficient (r) .
 [Online]. Available:
 https://sphweb.bumc.bu.edu/otlt/MPH-Modules/PH717-QuantCore/PH717-Module9-Co
 rrelation-Regression/PH717-Module9-Correlation-Regression4.html.

 [35] C. Thieme, “Understanding linear regression output in R,” Medium , 16-Jun-2021.
 [Online]. Available:
 https://towardsdatascience.com/understanding-linear-regression-output-in-r-7a9cbda948
 b3.

 [36] “Standard deviation in R: Methods to calculate standard deviation in R,” EDUCBA ,
 27-Mar-2023. [Online]. Available: https://www.educba.com/standard-deviation-in-r/ .

 [37] ThreadMXBean (Java Platform SE 8) , 05-Apr-2023. [Online]. Available:
 https://docs.oracle.com/javase/8/docs/api/java/lang/management/ThreadMXBean.html#
 getCurrentThreadCpuTime--.

 [38] System (java platform SE 8) , 05-Apr-2023. [Online]. Available:
 https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#nanoTime--.

 49

https://www.educba.com/standard-deviation-in-r/

 [39] OperatingSystemMXBean (java platform SE 8) , 05-Apr-2023. [Online]. Available:
 https://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXB
 ean.html#getAvailableProcessors--.

 [40] Runtime (Java Platform SE 7). (2020, June 24). Retrieved November 24, 2022,
 from https://docs.oracle.com/javase/7/docs/api/java/lang/Runtime.html.

 50

 Appendix 1
 https://github.com/MustafaAlsaid2022/EstimateEnergyConsumptionOfJavaPrograms

 Appendix 2

 Energy - Memory Energy - CPU

 Sorting
 Algorithm

 Correlation -
 coefficient

 P-Value Correlation -
 coefficient

 P-Value

 Bubble Sort -0.1521349 0.131 -0.03776931 0.709

 Bucket Sort 0.1879717 0.0611 0.09919184 0.326

 Counting Sort -0.06486479 0.521 -0.09513352 0.346

 Heap Sort - - 0.3741691 0.000126

 Insertion Sort -0.4640469 1.157e-06 0.1799327 0.0732

 Merge Sort -0.1041293 0.303 0.0201857 0.842

 Quick Sort - - -0.02678887 0.7913

 Radix Sort -0.1803464 0.0726 0.05118075 0.613

 Selection Sort 0.9122504 2.2e-16 -0.02620743 0.7958

 Shell Sort - - -0.2078286 0.038

 Energy - Memory Energy - CPU

 Collections Correlation -
 coefficient

 P-Value Correlation -
 coefficient

 P-Value

 ArrayList

 Add 0.1055173 0.296 -0.1214094 0.229

 Contains 0.4525864 2.27e-06 -0.08360846 0.408

 Remove 0.01856971 0.85450 - -

 Add -0.02557409 0.801 0.4576277 1.69e-06

 51

https://github.com/MustafaAlsaid2022/EstimateEnergyConsumptionOfJavaPrograms

 ArrayDeque
 Contains 0.06172995 0.542 - -

 Remove -0.2785587 0.00501 0.3767748 0.000112

 LinkedList

 Add 0.01275436 0.9 0.2144147 0.0322

 Contains 0.08315959 0.411 -0.07822042 0.439

 Remove 0.03188009 0.753 0.4313321 7.46e-06

 Stack

 Add -0.07347836 0.468 0.1342463 0.183

 Contains -0.04464102 0.659 - -

 Remove -0.3809132 9.24e-05 0.5528358 2.46e-09

 Vector

 Add 0.04854247 0.632 0.120845 0.23105

 Contains -0.1306377 0.195 - -

 Remove 0.0253143 0.8026 - -

 PriorityQueue

 Add 0.06130691 0.545 -0.09562125 0.34396

 Contains -0.1024608 0.31 -0.1601259 0.112

 Remove 0.7191587 <2e-16 - -

 HashSet

 Add -0.004342602 0.966 0.01278713 0.89952

 Contains -0.24648 0.0134 0.2793574 0.00488

 Remove -0.5002826 1.16e-07 0.007478494 0.941

 LinkedHashset

 Add -0.1484179 0.141 -0.005122781 0.959657

 Contains -0.1693141 0.09217 0.241253 0.0156

 Remove 0.1476215 0.143 0.2810776 0.00461

 TreeSet

 Add -0.05807084 0.566 0.09112543 0.367

 Contains -0.1108526 0.272 0.06880524 0.496

 52

 Remove -0.1657397 0.0994 0.0134883 0.894

 53

