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A B S T R A C T   

The conventional transportation system uses fossil fuels and it emits greenhouse gases which affect the envi-
ronment. A new kind of transportation must be created immediately because of the growing population. Electric 
Vehicles (EVs) have less impact on environmental pollution and they will become the base for future transport 
systems. The battery’s specific energy is very low and it needs frequent charging. The long-distance trans-
portation using EVs needs charging stations and it leads to placing Electric Vehicle Charging Station (EVCS) in 
the power grid. The placement of EVCS in the grid increases network losses which have an adverse impact on the 
grid. In this research work, network loss minimization by the optimum placement of EVCS along with Distributed 
Generation (DG) is considered. The proposed approach has been validated on the IEEE 33 bus system. The 
analysis was carried out using the Loss Sensitivity Factor (LSF) approach considering the variable network pa-
rameters in the Radial Distribution Network (RDN). The EVCS optimal placement was resolved by Arithmetic 
Optimization Algorithm (AOA). The results are compared with Particle Swarm Optimization (PSO) and Harris 
Hawks Optimization (HHO) approaches. The findings show that the optimal placement of EVCS along with DGs 
reduces network losses considerably.   

1. Introduction 

The excessive use of conventional vehicles has an adverse impact on 
the environment since it causes a significant rise in temperature and 
emits CO2. It leads to global warming and affects the ecological system. 
The majority of people in the world commute using gasoline-powered 
vehicles [1]. An alternative mode of transportation is encouraged by a 
number of issues, including rising oil prices and environmental pollu-
tion. The usage of EVs will save fossil fuels and reduces the problems 
associated with the conventional transportation system [2]. To reduce 
pollution, a lot of nations throughout the world are switching to 
battery-powered transportation. For the purpose of battery charging, 
EVs are in need to connect to the power network. The rapid growth of 
EVs is posing considerable challenges in grid operations. Additionally, as 
more EVs are produced, more dependable electric vehicle charging 
station (EVCS) systems are needed. The connection of EVs to the grid 
increases the system load and affects the generation-demand balance. 
The inappropriate placement of charging stations leads to voltage fluc-
tuations, greater power loss, and harmonics, which might all severely 
affect the power grid’s capacity to operate smoothly [3]. 

The perfect location for connecting EVCS and its load demand on the 
grid have both grown in importance as research topics during the past 
decade [4]. Taking into account the accessibility of charging stations 
and the comfort of drivers, the EVCS placement problem was formu-
lated. The advantages of EVCS distribution on various buses are dis-
cussed. The arrangement of different types of EVCS and optimizing the 
size of industrial and residential entities, offices, and houses within the 
grid were discussed in [5]. The authors employed the Particle swarm 
optimization (PSO) algorithm. Additionally, parking restrictions due to 
geography were taken into account while modelling the ambiguous 
behaviour of the vehicle owner using probability distributions fitted on 
actual data. Various EV scenarios and charge management techniques 
are used to study the impact of EVs on electricity distribution systems 
[6]. Three sorts of EV charge management techniques are presented. The 
importance of centralized EV charge control, which calls for a strong 
communications network, is emphasized. The subject of decentralized 
charge control, which requires less communication, is then covered. 
Also investigated is communication-free, autonomous EV charge con-
trol. An analysis of the effects of placing the EVCS was reported in [7]. 
The IEEE 33 bus system was considered a test system. To maintain 
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constant voltage, the authors suggest using a distributed generation 
(DG) system with E-bus charging. The Newton-Raphson method was 
used to compute the power flow, and the voltage deviation index was 
used to determine the size and placement of the DG. A comprehensive 
study on several techniques utilized to address the placement and sizing 
issues with EVCS was provided in [8]. The application of Genetic Al-
gorithm (GA), PSO, and Integer Programming (IP) methods to solve the 
optimization problem was elaborated. The quick and effective method 
for the location of EVCS was reported in [9]. The optimization problem 
is formed as combinatorial optimization with the objective of mini-
mizing the location for EVCS placement. The optimization based on 
integer linear programming is considered. A method for placement and 
sizing an EVCS based on grid partition was discussed in [10]. Traffic 
density and charging station capacity restrictions are the key consider-
ations. The optimization mechanism used is the genetic algorithm (GA). 
For finding the suitable placement for EVCS, minimization of real power 
loss was chosen as an objective function and the PSO method was used to 
solve it [11]. The allocation of Distributed Generations (DG) was opti-
mized using the PSO method in [12]. The DG optimal placement, sizing, 
and contract pricing may all be determined simultaneously and the 
problem formulated as a multi-objective optimization problem. 

From the literature review, it is found that the integration of a DG 
along with EVCS into the optimal node has not been discussed. Con-
necting the DG-powered EVCS in the same location of a distribution 
network provides better reliability in operation and autonomous oper-
ation is also possible and no need to depend on other distributed power 
producers in some other location as well as power Grid. 

This research demonstrates a unique method for placing integrated 
EVCS-DG. For the validation of the results, the IEEE 33 bus system is 
considered. In order to determine the best location for EVCS placement 
with regard to equality and inequality constraints on the buses, the AOA 
approach is employed for finding suitable buses for integrated EVCS-DG. 
The results are compared with other approaches reported in the 
literature. 

2. Problem formulation 

For any power system network, line loss minimization is the main 
objective function. The primary goals of this research work are to reduce 
the real power loss, first by optimal placement of EVCS and integrating 
EVCS with DG. The fitness function is taken into account to minimize 
overall active power losses given by 

Min PLoss =
∑NB

i=1
I2
i Ri (1)  

where, 

NB- Number of buses in the system 

2.1. Equality constraints 

Power flow equations serve as equality constraints, which look for a 
set of voltages that satisfy the system requirements. 

0 = Pi − Vi
∑

j∈Ni

Vj
(
Gijcosθij+Bijsinθij

)
, i ∈ NB− 1 (2)  

0 = Qi − Vi
∑

j∈Ni

Vj
(
Gijcosθij − Bijsinθij

)
, i ∈ NPQ (3)  

where, 

NPQ- Number of load buses in the system 

The grid-supplied electric energy, as well as that from connected DGs 
and EVs, should be sufficient to meet system losses and load demands. 

PGrid +
∑N

i=1
PDGi = Ploss +

∑N

i=1
(PLoad i +PEVCS i) (4)  

2.2. Inequality constraints 

2.2.1. Voltage limit 
Bus voltage constraints are intended to keep buses running within 

specified per unit voltage limits. 

Vmini ≤ Vi ≤ Vmaxi , i ∈ NB (5)  

2.2.2. DG power limit 
The DGs are designed to operate within the power limits. 

PminDGi ≤ PDGi ≤ PmaxDGi (6)  

2.2.3. Battery SoC limit 
To prevent battery deterioration, EV batteries’ State-of-Charge (SoC) 

are to be kept within the bounded limits. 

EVminSoC ≤ EVSoC ≤ EVmaxSoC (7)  

2.3. Loss sensitivity factor approach 

In this research work, candidate buses for the installation of EVs are 
identified using LSF procedure. By adopting LSF, the search area is 
significantly reduced, as is the amount of time needed for optimization 
[13]. The power network line “l” connected to the buses “i” and ‘j” and 
the equivalent circuit of distribution system is represented in Fig. 1. 

The system line losses is given by 

Ploss =

(
P2
j + Q2

j

)
Rij

V2
j

(8)  

Qloss =

(
P2
j + Q2

j

)
Xij

V2
j

(9) 

The LSF can be determined from 

∂Ploss
∂Qj

=
2Qj* Rij
V2
j

(10)  

∂Qloss
∂Qj

=
2Qj* Xij
V2
j

(11) 

The LSF values are obtained by running power flow and which are 
rearranged for all transmission lines in descending order. The base case 
voltages are then divided by 0.95 to get normalised voltages. These 
voltages can be considered potential candidate buses for placing EVs if 
their values are less than 1.01 [14]. 

3. Arithmetic optimization algorithm 

The initial search points of population-based algorithms are 

Fig 1. Equivalent circuit.  
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generated randomly. The core of optimization methods is the gradual 
improvement of this created set of solutions by a set of optimization 
rules and iterative evaluation by a particular objective function. Due to 
its stochastic nature, the population-based algorithms will not provide 
the solution in a single run [15]. The population-based optimization 
process involves two basic stages: exploration and exploitation. In the 

first stage, local solutions are avoided by deploying search agents that 
cover a large portion of the search field. The latter is an enhancement in 
the precision of the answers discovered during the first stage. 

The AOA is a method that is based on the concepts of contemporary 
mathematics, geometry, and algebra and is inspired by the distribution 
behaviour of the primary math operators. The four basic math opera-
tions such as, addition, subtraction, multiplication, and division are used 
in arithmetic to explore numerical techniques used in mathematical 
optimization to solve any problem. The exploration vs exploitation 
mechanism using the basic arithmetic operators: Addition (A, “+”), 
Subtraction (S, “-”), Multiplication (M, “ × ”) and Division (D, “÷”) [16] 
are shown in Fig. 2. 

3.1. Initial population generation 

The initial population, Xi,j is created using the Eq. (12) 

Xi,j = ((ub − lb)× rand) + lb (12)  

where, 

Fig 2. Arithmetic operators hierarchical order.  

Fig. 3. Flowchart of AOA.  
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X – population 
i - ith individual in the initial population 
j – dimension of the problem. 

The Eq. (11) determines the values of individuals i in dimension j. To 
cover more ground in the search space, the first population is created 
using random numbers (rand) in the [0 1] range. The distribution of 
individuals throughout the search space is made possible by multiplying 
them by the difference between the bounds [16]. 

The AOA should choose the search stage before it begins to work. A 
coefficient calculated using Math Optimizer Accelerated (MOA) func-
tion is used in the search i.e. exploration and exploitation stages. 

MOA (Iter) = Min+ CurIter ×

(
Max − Min
MaxIter

)

(13)  

where, 

CurIter- Current iteration starting with a value of 1 and going up to 
MaxIter 
MaxIter- Maximum number of iterations 
Min, Max- Represents operating limits. 

3.2. Exploration stage 

Here, two primary search methods (Division (D) search strategy and 
Multiplication search strategy), which are modelled in Eq. (14), are used 
by the exploration operators of AOA to randomly explore the number of 
regions as well as attempt to find an improved solution [16]. However, 
due to their high dispersion, operators D & M cannot easily reach the 
target. The MOA function in Eq. (14) conditions this stage of the search i. 
e. executing D or M on the fact that r1 > MOA (r1 is a random number). 

Xi,j(Iter+ 1) =
{
best

(
xj
)
÷ (MOP+ ∈) ×

( (
ubj − lbj

)
× μ+ lbj

)
, r2 < 0.5

best
(
xj
)
×MOP×

( (
ubj − lbj

)
× μ+ lbj

)
, r2 > 0.5

(14)  

where, 

Xi,j (iter+1)- ith solution in the next iteration 
best(xj)- jth position of the improved solution 
∈ and μ- integer number and control parameter 

In this stage, the primary operator “D” is conditioned by r2 < 0.5, 
and the secondary operator “M” will be disregarded until the first 
operator completes its present task. Here, Math Optimizer Probability 
(MOP) is a coefficient and is defined in eq, (15) 

MOP (Iter) = 1 −
CurIter1

∝

MaxIter1
∝

(15)  

where, 

∝- sensitivity parameter 

Table 1 
Parameters of IEEE 33 radial distribution bus network.  

Parameters Value 

Base MVA 100 
Base voltage in kV 12.66 
Real power load in kW 3715 
Reactive power load in kVAR 2300 
Initial power loss in kW 255  

Fig. 4. One-line diagram of IEEE 33 bus system.  

Table 2 
Load ratings of various cases of IEEE 33 bus system.  

Case 
No 

Detail Active Power 
(kW) 

Reactive Power 
(kVAR) 

1 Case 1 - Base Load 3715 2300 
2 Case 2 – Increase in load 3900 2430 
3 Case 3 – Increase in load 4105 2580 
4 Case 4 – Increase in load 4230 2680 
5 Case 5 – EVCS as load 4735 2295 
6 Case 6 - EVCS along with 

DG 
4735 2295  

Table 3 
Voltage and DG power limits.  

Parameter Minimum Limit Maximum Limit 

Voltage in p.u 0.95 1.1 
DG 1 Power in kW 240 528 
DG 2 Power in kW 150 330 
DG 3 Power in kW 220 484 
DG 4 Power in kW 250 550  

Table 4 
Parameters for AOA.  

Parameter Value 

Control Parameter (μ) 0.5 
Sensitive Parameter (α) 5 
Maximum Iteration 200  
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Fig 5. LSF values for IEEE 33 radial distribution bus network.  

Fig 6. Nominal voltage levels of all buses except slack bus.  

Fig. 7. System voltage levels of all buses except slack bus.  
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3.3. Exploitation stage 

The mathematical calculations utilising either addition “A” or sub-
traction “S” produced highly dense results during the exploitation pro-
cess. Due to their low dispersion values, the subtraction “S” and addition 
“A” operators can quickly reach the target. When searching for a better 
solution, the exploitation operators “S & A” thoroughly examine a 
number of dense locations in the search area [16]. The exploitation 

search process is conditioned by the fact the r1 value is not higher than 
the curIter value of MOA. The exploitation strategy is given in Eq. (16) 

Xi,j(Iter+ 1) =
{
best

(
xj
)
− MOP×

( (
ubj − lbj

)
× μ+ lbj

)
, r3 < 0.5

best
(
xj
)
+MOP×

( (
ubj − lbj

)
× μ+ lbj

)
, r3 > 0.5

(16) 

The operator (A) will not be considered until the first operator (S) in 
this stage completes its present task, which is conditioned by r3 < 0.5. 
The process of AOA is given in Fig. 3. 

4. Experimental results 

This suggested approach is evaluated for the appropriate EVCS 
placement on the IEEE 33 bus radial distribution system. The LSF for all 
buses are calculated with six different load levels, system voltage and the 
nominal voltages are obtained. The simulation was performed in 
MATLAB-R2021a software. 

4.1. IEEE 33 radial distribution bus network 

It consists of 33 buses including slack bus and 32 transmission lines 
and the system’s bus data, line data, and load flow solution are obtained 
from [17]. The details of various parameters are given in Table 1. The 
one-line diagram is given in Fig. 4. 

The load ratings for different cases are given in Table 2 and the 
voltage and DG power limits are given in Table 3. The instantaneous 
EVCS load values are 300 kW, 150 kW, 250 kW, and 320 kW. The SoC 
minimum and maximum limits are 0.2 and 0.9 p.u respectively. 

4.2. Parameters for AOA 

The chosen values of various parameters in AOA algorithm [17] are 
given in Table 4. 

4.3. Result analysis 

The LSF values for all the buses of IEEE 33 bus system are calculated 
and given in Fig. 5. 

The nominal voltages and system voltages for all buses except slack 
bus are shown in Fig 6 and Fig. 7. It is clearly seen that, both system 

Table 5 
Values of Bus Voltages for Different Cases.  

Bus No Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
2 1.00045 1.00029 1.00009 0.99998 0.99978 1.00089 
3 0.98638 0.98558 0.98437 0.98376 0.98214 0.98919 
4 0.97891 0.97770 0.97585 0.97489 0.97203 0.98346 
5 0.97152 0.96990 0.96747 0.96613 0.96189 0.97790 
6 0.95314 0.95044 0.94655 0.94425 0.93754 0.96348 
7 0.94963 0.94671 0.94249 0.93980 0.93376 0.96021 
8 0.93603 0.93221 0.92660 0.92292 0.91813 0.94849 
9 0.92972 0.92537 0.91894 0.91485 0.91170 0.94227 
10 0.92387 0.91899 0.91199 0.90749 0.90573 0.93650 
11 0.92301 0.91804 0.91096 0.90642 0.90484 0.93565 
12 0.92150 0.91646 0.90922 0.90459 0.90330 0.93416 
13 0.91535 0.90995 0.90190 0.89687 0.89703 0.92809 
14 0.91307 0.90751 0.89926 0.89403 0.89470 0.92585 
15 0.91165 0.90594 0.89752 0.89213 0.89325 0.92445 
16 0.91027 0.90440 0.89578 0.89038 0.89185 0.92309 
17 0.90823 0.90234 0.89329 0.88787 0.88976 0.92108 
18 0.90762 0.90173 0.89249 0.88706 0.88914 0.92048 
19 0.99992 0.99974 0.99955 0.99938 0.99925 1.00037 
20 0.99636 0.99599 0.99580 0.99518 0.99568 0.99680 
21 0.99566 0.99529 0.99510 0.99434 0.99498 0.99610 
22 0.99502 0.99466 0.99446 0.99360 0.99435 0.99547 
23 0.98281 0.98190 0.98054 0.97993 0.97855 0.98563 
24 0.97616 0.97504 0.97335 0.97275 0.97187 0.97900 
25 0.97285 0.97173 0.96972 0.96911 0.96855 0.97570 
26 0.95122 0.94843 0.94438 0.94205 0.93481 0.96208 
27 0.94867 0.94576 0.94149 0.93915 0.93160 0.95989 
28 0.93728 0.93377 0.92853 0.92616 0.91998 0.94864 
29 0.92909 0.92524 0.91927 0.91687 0.91164 0.94055 
30 0.92555 0.92152 0.91518 0.91276 0.90803 0.93705 
31 0.92140 0.91696 0.91038 0.90796 0.90380 0.93296 
32 0.92049 0.91591 0.90925 0.90683 0.90287 0.93206 
33 0.92021 0.91562 0.90888 0.90645 0.90258 0.93178  

Fig 8. Probability of EVCS location.  
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voltage and nominal voltage profiles are increased in AOA approach 
than the conventional approach. 

The bus voltage values for different cases are given in Table 5. It is 
clearly seen that, whenever EVs are placed along with DGs, the system 
voltage profile has been increasing considerably. 

Based on LSF values, the location for where to place the EVCS is 
identified. By employing the AOA approach, more buses were identified 
for placing EVCS (6, 7, 8, 9, 10, 12, 26, 27, 31 & 33) and are given in 
Fig. 8. The probability analysis was performed and, it is evident that 
buses 6, 8, 26, and 27 were selected to place the EVCS, and it is shown in 

Fig 9. EVCS placement on IEEE 33 bus system.  

Fig. 10. Comparison of active power losses of all buses for different load cases.  

Fig 11. Comparison of active power losses of different cases.  
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Fig. 9. 
For analysis, different cases of loads are considered and the line 

losses of all the buses are calculated and shown in Fig. 10. 
The active power losses for all cases are determined and shown in 

Fig. 11. Case 1 is considered a base case load and cases 2, 3, and 4 are 
increasing in percentage of loads. In case 5, the EVCS is placed at the 
optimal bus and is considered as an additional load, so the losses are 
increased by 30% more than in case 1. In case 6, the EVCS are placed at 
suitable buses along with DGs. From Fig. 11, it is implied that, whenever 
the EVs are placed along with DGs, the system active power losses are 
considerably minimized. The placement of DGs along with EVCS reduces 
the real power losses by 51% more than in case 5 and 30% more than in 

case 1. 
The DGs are placed along with EVCS at buses 6,8, 26 & 27 deter-

mined by the AOA approach and given in Fig. 12. 

4.4. Comparison of results 

The placement of EVCS using meta-heuristic techniques is reported 
in [18]. The authors proposed the PSO approach and Harris Hawks 
Optimization (HHO) for finding the buses for placing EVCS in IEEE 33 
bus system. Buses 7, 12, 17, and 31 were selected for placing the EVCS 
[18]. The PSO and HHO methods were implemented. For comparing the 
results of the proposed AOA approach, the DGs are placed on buses 7, 
12, 17, and 31 and the loss values for all the buses are calculated and 
given in Fig. 13. 

The total real power losses of the IEEE 33 bus system are calculated 
using PSO, HHO, and AOA methods and represented in Fig. 14. Obvi-
ously, the AOA method reduces the line losses by approximately 2% 
more than PSO and HHO methods. The AOA method took 0.46 s to find 
the optimal solution, whereas PSO took 0.55 s and HHO took 0.58 s. The 
AOA method finds the optimal solution with less computation time than 
the PSO and HHO methods. 

5. Conclusion 

Electric vehicles are the only option to reduce the pollution caused 
due to transportation. The inappropriate connection of EVCS creates the 
effect on network losses as well as voltage profile. This research work 
proposed a new technique to identify the location for placing the inte-
grated EVCS-DG. The LSF approach is employed. The AOA approach was 
chosen for the optimal placement of EVCS. For analysis, six different 
load profiles were taken into consideration. The AOA approach iden-
tifies a greater number of buses for placing the EVCS than the conven-
tional Approach. The probability analysis gives the best possible 
location of the buses (bus 6, 8, 26, and 27) for the optimal placement of 
EVCS. From the experimental results, it is found that, whenever the 
EVCS is added to the system as a load, it will increase the system losses. 
To minimize the losses, EVCS is integrated with DGs. If the EVCS is in-
tegrated along with DGs, the line losses are reduced considerably and it 
enhances the voltage profile of the system also. It is evident that the 
placement of DGs reduces the line losses almost by 1/3rd of system 
initial losses and reduces 51% of loss when the EVCS alone are placed on 
the system. The results are compared with the PSO and HHO methods 
and it is concluded that the AOA approach reduces the line losses 
considerably when EVCS is placed along with DGs. This research work is 
further extended with power management along with EV patterns for 24 
h horizons such as Grid to Vehicle and Vehicle to Grid by integrating 
renewable energy sources like solar, wind, etc. along with EVCS in the 

Fig 12. Placement of DGs along with EVCS of IEEE 33 bus system.  

Fig 13. Comparison of Individual buses loss using PSO, HHO and 
AOA methods. 

Fig. 14. Comparison of real power loss by PSO, HHO and AOA methods.  
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same node. 

Authorship statement 

All persons who meet authorship criteria are listed as authors, and all 
authors certify that they have participated sufficiently in the work to 
take public responsibility for the content, including participation in the 
concept, design, analysis, writing, or revision of the manuscript. 
Furthermore, each author certifies that this material or similar material 
has not been and will not be submitted to or published in any other 
publication before its appearance in the Electric Power System Research. 

CRediT authorship contribution statement 

Conception and design of study: K Kathiravan; acquisition of data: 
P.N Rajnarayanan; analysis and/or interpretation of data: K. Kathir-
avan & P.N. Rajnarayanan. 

Drafting the manuscript: P.N. Rajnarayanan; revising the manu-
script critically for important intellectual content: K. Kathiravan 

Declaration of Competing Interest 

We have no conflicts of interest to disclose. 

Data availability 

Data will be made available on request. 

Acknowledgements 

All persons who have made substantial contributions to the work 
reported in the manuscript (e.g., technical help, writing and editing 
assistance, general support), but who do not meet the criteria for 
authorship, are named in the Acknowledgements and have given us their 
written permission to be named. If we have not included an Acknowl-
edgements, then that indicates that we have not received substantial 
contributions from non-authors. 

References 

[1] S. Deb, K. Tammi, K. Kalita, P. Mahanta, Impact of electric vehicle charging station 
load on distribution network, Energies Multidisciplinary Digital Publishing 
Institute 11 (1) (2018) 01–25, no, 178. 

[2] Z. Liu, F. Wen, G. Ledwich, Optimal planning of electric-vehicle charging stations 
in distribution systems, IEEE Trans. Power Delivery 28 (1) (2013) 102–110. 

[3] S. Deb, K. Kalita, P. Mahanta, Review of impact of electric vehicle charging station 
on the power grid, Int. Conf. Advance. Power Energy (2017) 01–06. 

[4] A.Y. Lam, Y.W. Leung, X. Chu, Electric vehicle charging station placement: 
formulation, complexity, and solutions, IEEE Trans. Smart Grid 05 (06) (2014) 
2846–2856. 

[5] M.Z. Zeb, K. Imran, A. Khattak, A.K. Janjua, A. Pal, M. Nadeem, S. Khan, Optimal 
placement of electric vehicle charging stations in the active distribution network, 
IEEE Access 8 (2020) 68124–68134. 

[6] S. Faddel, A. Al-Awami, O. Mohammed, Charge control and operation of electric 
vehicles in power grids: a review, MDPI (Energies) 11 (4) (2018) 701–714. 

[7] T. Boonraksa, A. Paudel, P. Dawan, B. Marungsri, Impact of electric bus charging 
on the power distribution system-a case study IEEE 33 bus test system, in: IEEE PES 
GICEA, GTD Asia, 2019, pp. 819–823. 

[8] M.M. Islam, H. Shareef, A. Mohamed, A review of techniques for optimal 
placement and sizing of electric vehicle charging stations, Przegl. Elektrotech. 91 
(8) (2015) 122–126. 

[9] M. Zoran, R. Vladan, L. Budimir, Efficient placement of electric vehicles charging 
stations using integer linear programming, AECE 18 (2) (2018) 11–16. 

[10] S. Ge, L. Feng, H. Liu, The planning of electric vehicle charging station based on 
Grid partition method, in: International Conference on Electrical and Control 
Engineering, Yichang, China 6057636, 2011, pp. 2726–2730, https://doi.org/ 
10.1109/ICECENG.2011. 

[11] M.S.K. Reddy, K. Selvajyothi, Optimal placement of electric vehicle charging 
station for unbalanced radial distribution systems, Taylor Francis-Energy Sources 
(Part A: R,U,and E effect (2020) 1–15. 

[12] A. Ameli, S. Bahrami, F. Khazaeli, S. Haghifam, A multi-objective particle swarm 
optimization for sizing and placement of DGs from DG owner’s and distribution 
company’s viewpoints, IEEE Trans. Power Deliv. 29 (4) (2014) 1831–1840. 

[13] A.Y. Abdelaziz, E.S. Ali, S.M. Abdul Elazim, Flower Pollination Algorithm and Loss 
Sensitivity Factors for optimal sizing and placement of capacitors in radial 
distribution systems, Int. J. Electr. Power Energy Syst. 78 (2016) 207–214. 

[14] P. Das, S. Banerjee, Optimal sizing and placement of capacitor in a radial 
distribution system using loss sensitivity factor and firefly algorithm, IJECS 3 (4) 
(2014) 5346–5352. 

[15] S. Mirjali, SCA-A sine cosine algorithm for solving optimization problems, 
Knowledge based System 96 (2016) 120–133. 

[16] Abualigaha L., Diabat A., Mirjali S., Elazizf M.D., and Amir HG, “The arithmetic 
optimization algorithm, computer methods in applied mechanics and engineering”, 
No. 376, 2021. 

[17] M.E. Baran, F.F. Wu, Network reconfiguration in distribution systems for loss 
reduction and load balancing, IEEE Trans. Power Deliv. 4 (1989) 1401–1407. 

[18] G. Naresh Kumar, S. Suresh Kumar, V. Suresh, Optimal Placement of Electrical 
vehicle charging station in distribution system using meta-heuristic techniques, 
Mathem. Modell. Eng. Problems 9 (1) (2022) 60–66.  

K. Kathiravan has obtained his Bachelor degree in Electrical 
and Electronics Engineering from Anna University, India in 
2006 and Master degree in Power Systems Engineering from 
Anna University Trichy, India in 2011 and Ph.D in Faculty of 
Electrical Engineering from Anna University, Chennai, India in 
2020. He has 15 years of teaching and Research Experience. 
His research topics includes Artificial Intelligence adoption in 
Power System problems, Renewable energy System and Power 
system Planning and reliability.  

P.N. Rajnarayanan has obtained his Bachelor degree in 
Electrical and Electronics Engineering from Madurai Kamaraj 
University, India in 2002 and Master degree in Power Systems 
Engineering and Ph.D in Power System Operation and Control 
from Anna University, Chennai, India in 2005 and 2010 
respectively. He has 17 years of teaching and research experi-
ence. He is currently working as Professor in Electrical and 
Electronics Engineering at Theni Kammavar Sangam College of 
Technology, Theni, Tamilnadu India. His research topics in-
cludes evolutionary computation, soft computing, renewable 
energy system and power system operation and control. 

K. Kathiravan and P.N. Rajnarayanan                                                                                                                                                                                                    

http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0001
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0001
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0001
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0002
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0002
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0003
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0003
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0004
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0004
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0004
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0005
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0005
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0005
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0006
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0006
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0007
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0007
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0007
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0008
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0008
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0008
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0009
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0009
https://doi.org/10.1109/ICECENG.2011
https://doi.org/10.1109/ICECENG.2011
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0011
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0011
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0011
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0012
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0012
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0012
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0013
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0013
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0013
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0014
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0014
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0014
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0015
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0015
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0017
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0017
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0018
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0018
http://refhub.elsevier.com/S0378-7796(22)00921-X/sbref0018

	Application of AOA algorithm for optimal placement of electric vehicle charging station to minimize line losses
	1 Introduction
	2 Problem formulation
	2.1 Equality constraints
	2.2 Inequality constraints
	2.2.1 Voltage limit
	2.2.2 DG power limit
	2.2.3 Battery SoC limit

	2.3 Loss sensitivity factor approach

	3 Arithmetic optimization algorithm
	3.1 Initial population generation
	3.2 Exploration stage
	3.3 Exploitation stage

	4 Experimental results
	4.1 IEEE 33 radial distribution bus network
	4.2 Parameters for AOA
	4.3 Result analysis
	4.4 Comparison of results

	5 Conclusion
	Authorship statement
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


