

Bachelor Degree Project

Survey on the state of cross-
platform mobile development
frameworks

Author: Linus Hvenfelt
Supervisor: Alisa Lincke
Examiner: Arianit Kurti
Semester: HT 2022
Subject: Computer Science

Abstract

Mobile application development has grown in the past few years, and instead
of native development, some developers have moved to a new strategy; cross-
platform mobile development using frameworks. There are many frameworks
that all have their use case, but whether or not these frameworks are ready to
be used in production applications is hard to decide on. This research aims to
find the strengths and weaknesses of cross-platform mobile development
frameworks, and how they can be improved to better suit the needs of
developers. To gather data in this topic a survey was created to analyze
developer experiences on frameworks in key areas such as front-end design,
platform maturity and more. The results reveal that there are many areas that
can be improved, but frameworks are a great tool for smaller teams and are
being used extensively already to create applications for multiple platforms.

Keywords: cross-platform mobile application development, development
frameworks, software development

Preface

I’d like to thank my supervisor, Alisa Lincke for guiding me and helping me
along the way through the process of writing this thesis. I would also like to
thank Jads, Anton and Andrey Breslav for their feedback on the survey
questionnaire, as well as the interview participants:

 Federico Curzel - https://curzel.it/
 Brian R Clow - https://brianrclow.com/
 Alexander May - https://de.linkedin.com/in/may-dev
 Anonymous

And finally, this whole ordeal could not have been done without the immense
help and support of my family.

Contents

1 Introduction __ 6
1.1 Background ___ 6
1.2 Related work __ 6
1.3 Perceived issues with frameworks __________________________ 7
1.4 Problem formulation ____________________________________ 8
1.5 Research questions ______________________________________ 9
1.6 Motivation ___ 10
1.7 Scope/Limitation ______________________________________ 10
1.8 Target group __ 11
1.9 Outline __ 11

2 Research Method __ 12
2.1 Data Collection Methods ________________________________ 12

2.1.1 Reasoning for data collection methods _________________ 12

2.1.2 Survey tool _______________________________________ 13

2.1.3 Interviews __ 13

2.2 Pilot test ___ 14
2.3 Recruiting Survey and Interview Participants ________________ 14
2.4 Reliability, Validity and Ethical Considerations ______________ 14

3 Theoretical Background _____________________________________ 16
3.1 Mobile Application Development ____________________________ 16

3.1.1 Native development on Android _________________________ 16

3.1.2 Native development on iOS _____________________________ 17

3.1.3 Cross-platform mobile development ______________________ 17

3.2 Cross-platform mobile development frameworks _______________ 17
3.2.1 Web-based frameworks (hybrid approach) _________________ 18

3.2.2 Cross-compiled frameworks ____________________________ 20

4 Research project – Implementation ____________________________ 22
4.1 Survey questions and measures ___________________________ 22
4.2 Interviews __ 23

5 Results ___ 24
5.1 Survey ___ 24

5.1.1 Survey summary _____________________________________ 24

5.1.2 Framework improvements ______________________________ 25

5.2 Interviews __ 27

6 Analysis and discussion _____________________________________ 29
6.1 Usage of frameworks _____________________________________ 29
6.2 Positive areas of frameworks _______________________________ 30

6.2.1 Performance ___ 30

6.2.2 Frontend design ______________________________________ 30

6.2.3 Shared codebase ______________________________________ 31

6.3 Framework criticisms and solutions __________________________ 31
6.3.1 Platform quirks _______________________________________ 32

6.3.2 Framework maturity ___________________________________ 33

6.3.3 Other issues ___ 34

7 Conclusions and Future Work ________________________________ 36
7.1 Answers to research questions ______________________________ 36
7.2 Future work ___ 37

8 References ___ 39

A Appendix __ 42
A1 – Survey questions _______________________________________ 42
A2 – Image of survey __ 45

B Appendix __ 46
B1 – Survey results __ 46
B2 – All likert scale questions _________________________________ 47
B3 – All questions averages ___________________________________ 48

1 Introduction
This is a 15 HEC bachelor thesis in computer science that is focused on cross-
platform mobile development frameworks. Applications on our smartphones
and desktop devices are used generously in our day-to-day life, providing us
with all sorts of services and experiences. Nowadays, cross-platform mobile
development frameworks serve as a way of allowing application developers to
develop applications more efficiently for multiple platforms at once. As these
tools grow, some growing pains are expected. Android and iOS change at a
rapid pace, and it’s a constant game of catch up for the software developers
behind frameworks to implement the latest features but also keep the
frameworks bug free.

1.1 Background
Two dominant platforms exist on the mobile market, one being Android and
the other iOS. Besides these platforms, we also have computers running
Windows, Mac, and Linux but also the web being represented by different
platforms both on desktop and mobile.

Most of these platforms have their own unique way of implementing
applications, or programming languages to create them for. This is how the
idea of a cross-platform development framework arose, to allow a developer
to deploy an application written in a single codebase to multiple platforms.
More frameworks have started to be developed and released during the last 5
years, and the usage of them is only growing. But a lot of companies still have
their doubts about using a framework, and instead have separate teams creating
separate applications for each platform. The question then arises; why? Aren’t
the frameworks mature or viable enough yet? What parts of the frameworks
are good enough, and which ones are not?

This thesis surveys developers on their experiences and opinions about a
framework they used in a project, and what they believe to be its strengths and
weaknesses.

1.2 Related work
In 2019 an article [1] researchers reported on the industry’s perspective on
cross-platform mobile development frameworks. They surveyed 101
developers online and found the most common issues and problems that the
participants had with frameworks. The most common issues according to
developers at the time were the following:

 Overall loss in performance compared to native apps

 Suboptimal User Experience (UX)
 Immature frameworks (too cutting edge, too much risk, etc.)
 Suboptimal options for creating good User Interfaces (UI)
 Immature communities (too new/low activity, etc.)

The survey was received in May of 2018 and published in 2019, which is as of
writing about 3+ years ago. 3 years in Computer Science is a long time as React
Native was launched in 2015 and Flutter in 2017. This work is based on some
of the findings (framework's disadvantages) of that survey [1] and further
explores whether there have been any changes in the frameworks to overcome
the issues/problems they presented, or if they have stayed the same.

In another study from 2017 [2] 8 different apps were created for Android, iOS,
and Windows Phone. Some were made natively, and some used Ionic,
PhoneGap and NativeScript frameworks. They researched the advantages and
disadvantages of programming the applications natively and with the
frameworks and came to conclusions at the time about which alternative gave
the best product. A similar study was done in 2022 [3] where an app was made
in different frameworks and together with a company was put through certain
criteria, to research what frameworks would suit the company’s needs the best.

In summary, recent surveys [1] [2] [3] have explored how well frameworks
were performing at the time, for what purposes they exist, which one to choose
for a specific project in a company, what common issues were perceived and
more.

1.3 Perceived issues with frameworks
From the results found in the related work, relevant issues according to
previous research have been found, which will now be presented. There are
also other not-before-mentioned challenges in using a cross-platform mobile
development framework.

Platform specific bugs might occur, forcing the usage of platform specific code
outside of the shared codebase. Other problems include loss in performance
compared to native applications [4] and suboptimal user experience, causing
cross-platform development to feel too immature as a concept and therefore
too risky to use at large.

Another type of platform specific bug is where the application has different
results on two different platforms, often referred to as platform quirks. These
problems could for example be how the UI is handled, or something else
related to the native APIs such as camera, permissions, and location. Usually

this leads to the developer having to write extra code detecting the platform
and handling the functionality differently, but in the worst-case scenario they
might have to go and write platform specific native code instead to handle the
issue. Being forced to do this completely disregards the point of the framework
in the first place, only having to use a single codebase.

When it comes to creating an application for iOS devices, writing some code
in Xcode is often obligatory. For iOS devices, when the time comes around to
launch a beta or alpha version on Testflight or launching your application to
the iOS App Store, problems often arise. Regardless of whether it is using a
cross-platform framework or not, if you want to launch an application to the
iOS app store- you need to own a Mac computer. Sending compiled builds into
Testflight (the beta testing program for iOS apps) or the app store, you need to
send the build directly from Xcode using the built in functionality.
Furthermore, the problem lies within the fact that Xcode can only be run on a
Mac computer, thus you must own a Mac to be able to launch your application
into the iOS ecosystem.

Android on the other hand, is fully buildable on a Mac, Windows, or Linux
system. You can send your Android project to the Google Play Store the same
way on all platforms. This leads to the subjectively best platform to develop
these applications being a Mac, as you have access to both sides.

1.4 Problem formulation
The field of cross-platform mobile development frameworks is rapidly
changing with the development of the mobile platforms themselves, and the
frameworks. Previous studies on cross-platform mobile development
frameworks have found the common issues [1] [5], the advantages and
disadvantages of frameworks [2] [6]. However, these studies may not reflect
the current state of frameworks due to the rapid change of the technology.
Moreover, this information is outdated because new frameworks appear every
year while others are disappearing or stopped from being supported. But the
results serve as good data that can and will be compared to my own survey
results later in this thesis.

As a reference, iOS 11 was relevant in 2017, and currently iOS 16.4 is relevant.
On the Android side, Android 8 Oreo was launched in 2017 and now we are
up to Android 13. More relevant and new research can benefit this field of
development. New work and analysis are therefore always needed to make sure
the frameworks are up to par with the application developers’ standards.

Therefore, the purpose of this thesis is to provide a more up to date
understanding of the current state of cross-platform mobile development
frameworks. Their positive and negative aspects as well as the common issues
from an application developer’s perspective.

1.5 Research questions
Based on this information, the following research questions have been
defined:

RQ1: What are the common use cases for a cross-platform mobile framework
currently and how can frameworks be improved to better suit them?
RQ2: Compared to previous research, how have the negative and positive
aspects changed?

With RQ1, the thesis aims to provide a general overview of the framework’s
usability by application developers. More precisely, the usability aspect refers
to what type of mobile application the framework has been used to create, the
developer’s experience level, the company type, and size, etc. The output of
this research question is relevant information on currently developed
frameworks.

The second part of the first research question is concerned with a more
detailed investigation of the common positive and negative aspects of each
framework and identifying the possible improvements of the found common
issues to better suit the developer’s needs. Identifying these issues were based
on both the survey results and the issues presented by interviewees. The
findings of RQ1 provide the recommendation for cross-platform framework
developers to improve the current frameworks or consider the
recommendation in developing new cross-platform mobile frameworks.

The second research question is concerned with comparing this thesis’ results
with previous research [1]. The found aspects are compared to the previous
studies to report which are already fixed and which are new or remain an
issue. Therefore, to be able to compare the previous study [1] outcomes with
RQ2.2 outcome, some of the survey questions from previous survey [1] were
included in the survey in this work. These questions have focus on issues and
problems surrounding cross-platform frameworks and are used to compare
the possible changes in the current frameworks’ version (such as
improvements, new issues, old issues).

These research questions aim to provide a current overview of the most used
cross-platform mobile frameworks and their positive and negative aspects
from an application developer's view. The research questions identified are

focused on providing information on the usability of the frameworks,
comparing the common positive and negative aspects to previous studies, and
identifying improvements to better suit the developer's needs. The data
gathered around these research questions can help further develop the field of
cross-platform mobile development frameworks by providing relevant
information on currently developed applications, highlighting common
positive and negative aspects, and recommending improvements for the
frameworks.

1.6 Motivation
This thesis will help to further advance the field of cross-platform mobile
development frameworks. The result will show the current state of frameworks
as of the last couple of years, and present concrete evidence on what key areas
developers using frameworks believe to be good and bad. The results will also
show how the negatives and positives have shifted, what old problems have
been less of an issue and what potentially new issues are. By presenting
feedback from developers in the field, we can find areas of improvement for
the frameworks. This result can be used to then solidify the quality of a
framework further by the developers or open-source community.

The results of the research questions will provide a good basis for software
developers to further improve the quality and experience for application
developers using frameworks for their future applications. The focus lies in
what issues frameworks individually and generally have, and how these issues
should be addressed.

Frameworks are built on the idea of using a single codebase, which is supposed
to increase efficiency by for example not having to use two separate teams or
developing an app twice. The efficiency of this approach has the potential to
be immensely powerful, as more and more pressure is put on application
developers to achieve better results, faster.

1.7 Scope/Limitation
This thesis is not about comparing native development (Java/Kotlin for android
or Swift for iOS) to frameworks. It will only be focusing on cross-platform
mobile development frameworks. Some frameworks allow the deployment to
web as well as desktop environments, and whilst the survey does contain the
question asking if the users’ project was deployed to web and desktop, I will
not be going deeper into detail in this area.

Profiling question data were used for providing descriptive information about
the dataset for RQ1. The only part in which these results are presented are in
the results for the first part of RQ1, seen later in the thesis at 5.1.1.

My research does not aim to solve the question about “what is best,” but instead
to simply present what the frameworks have been used for by the survey
participants, and to what result. The outcome of the survey is used to find key
areas of improvement for some of the frameworks.

The data I gathered is from many different time periods, and whilst this thesis’s
main goal is to find current issues, answers from projects made from all years
are used in the graphs and data analysis. Approximately 23,6% of the data in
this thesis are from before 2019, which means that the findings are quire recent.

1.8 Target group
Framework developers and researchers in this area are the focus group in this
thesis, because the research outcome of the survey is based on the experience
and opinion of the end-users (application developers) of frameworks. The
application developers (end-users) themselves could also be interested in the
identified pros and cons of the frameworks when selecting a framework for
application development, to find one that suits their specific needs.

1.9 Outline
Chapter 2 is about describing the research methods and how they were used,
as well the recruitment for the survey, reliability, validity, and ethical
considerations. Chapter 3 includes the necessary theoretical background to
gain an understanding of cross-platform mobile development. Chapter 4
explains the research project implementation, and chapter 5 presents the results
from the different research methods and relates them to the research questions.
Chapter 6 is further analysis surrounding the research questions and the results.
In chapter 7 conclusions for every research question will be presented, and
what future work can be done.

2 Research Method
The research methods used in this thesis are a survey and an interview with a
focus group. Many studies on cross-platform mobile frameworks have utilized
a survey method to collect a large amount of quantitative data to analyze it and
find common areas, aspects, and issues of the frameworks. The advantages of
this method are that they can be analyzed using statistical techniques to draw
meaningful conclusions, allow to collect data from a large and diverse sample,
which can increase the generalizability of the findings, and usually it uses a
standardized questions and response options, which can reduce measurement
error and increase the reliability of the data. Therefore, a survey method was
chosen to find the common areas, issues, problems, potential improvements of
frameworks.

Many studies on cross-platform mobile frameworks have utilized a survey
method to collect a large amount of quantitative data to analyze it and find
common areas, aspects, and issues of the frameworks. The advantages of this
method are that they can be analyzed using statistical techniques to draw
meaningful conclusions, allow to collect data from a large and diverse sample,
which can increase the generalizability of the findings, and usually it uses a
standardized questions and response options, which can reduce measurement
error and increase the reliability of the data. Therefore, a survey method was
chosen to find the common areas, issues, problems, potential improvements of
frameworks. The interview method was chosen due to its ability to give more
in-depth information and provide qualitative data, which can’t be provided in
a survey focused on shorter but more concise answers. Using two different
methods also helps by confirming each other, trends and responses from the
survey data can be presented to the interviewee and see if they agree or not.

At first a literature review was conducted on IEEXplore and Google Scholar,
to find and analyze the latest trends and topics in research surrounding cross
platform mobile applications and frameworks. By reading abstracts and results
I gathered a sizable number of articles surrounding the topic that I found
interesting and could be useful for my thesis and finding a research gap.
Previous positive and negative aspects were also collected from these articles
and compared to the data gathered in the survey, to compare and solve RQ2.

2.1 Data Collection Methods

2.1.1 Reasoning for data collection methods

To gather information on the usage and perspectives of developers regarding
cross-platform mobile development frameworks, this study utilized two
primary data collection methods: surveys and interviews. Surveys were chosen

as a method of data collection due to their ability to gather a large amount of
data in a short period of time and their ease of distribution through various
online platforms. The use of surveys is also supported by previous studies in
the field of software engineering [7] [8] [9]

Surveys were deemed appropriate for this study as they allowed for the
collection of quantitative data on the types of frameworks used, the frequency
of usage, and the perceived advantages and disadvantages of each framework.
Additionally, survey responses allowed for the identification of trends and
patterns in framework usage and provided a broad understanding of the current
state of cross-platform mobile development frameworks.

Interviews were chosen as a complementary method of data collection to
provide a more in-depth understanding of developers' experiences and
perspectives on cross-platform mobile development frameworks. Interviews
allowed for the collection of qualitative data on the challenges faced by
developers when using cross-platform frameworks, as well as the identification
of potential areas for improvement. The use of interviews is also supported by
previous studies in the field of software engineering. [10] [11]

By utilizing both surveys and interviews, this study aimed to provide a
comprehensive understanding of the current state of cross-platform mobile
development frameworks, their positive and negative aspects, and potential
areas for improvement.

2.1.2 Survey tool

The surveying tool used for this research was Google Forms, a free online
survey platform by Google. The survey consisted of a variety of different
questions, the majority using a Likert scale with response options ranging from
1 (strongly disagree) to 5 (strongly agree), as well as some scales ranging from
1 to 7. The possible responses were based on a Likert scale response sheet [12].
For each question written a suitable response range was chosen. A scale from
left to right was used for 1-5 answers whilst radio buttons were used for more
complicated questions where every option was written out.

The survey data was analyzed using Google Sheets, which is a spreadsheet
program by Google. Google Sheets allowed for visualizing and creating
diagrams of the survey data, creating averages, and analyzing the data.

2.1.3 Interviews

The interviews were conducted using Zoom, an online video conferencing
platform. The purpose of the interviews was to gather in-depth information
about the participants’ experiences related to their answers in the survey.

Each interview lasted 30-45 minutes and the participants were asked to
elaborate on their survey responses as a start and were then presented with
broader questions to get their general view on all frameworks.

2.2 Pilot test
To make sure the survey was formed in an effective way to prevent bias and
reach a certain standard, a pilot test was done on a couple of colleagues.
Participants were asked to go through the survey and reach out with feedback
related to any confusion in question formulation, how easy it was to
understand, and general feedback. From the pilot test a lot of questions were
rephrased to make the questions more standardized and use the same type of
Likert-scale answers to prevent confusion, as before there were a lot of
different answers instead of simply strongly disagree to strongly agree.

2.3 Recruiting Survey and Interview Participants
The survey was released into the wild, posted to multiple online forums such
as LinkedIn groups and the LNU Slack. Most of the answers came from
different subreddits (a forum dedicated to a specific topic) of the online
discussion website Reddit.com, such as r/xamarindevelopers, r/FlutterDev,
r/androiddev and more. It was also shared in public programming communities
on the online VoIP and text platform Discord. Due to the survey simply being
shared as a link and that no personal information was collected by me or
Google Forms, it’s not possible to identify where the answers came from, and
if they were shared along via other means.

Survey participants were asked if they were interested in participating in a short
interview about their answers, and these people were contacted later by email
where they could book a time slot for an interview.

2.4 Reliability, Validity and Ethical Considerations
The survey was spread out over a lot of different platforms to gain insight from
various types of developers. The topic of bias was brought up as a concern
from early on, as people tend to have a love or hate relationship with
framework that they use. This is one of the reasons we decided to ask the
questions out of the perspective of a project they’ve worked on. This makes
the participants think of experiences they had instead of relying on their more
subjective based opinion that they have developed over time, hopefully helping
in preventing bias. The questions were also asked in a way to prevent bias [13],
as well as how we present the answers, in this case from negative (left) to
positive (right).

The pilot test served as a great way to help preserve content and face validity.
A lot of feedback was gathered on the way questions were asked and the
predefined options. These were altered a lot according to the feedback, to make
sure the participant had a good understanding of the questions. It is important
to note however that this data only provides a handful of peoples’ opinions,
and their opinions does not represent the whole population of developers. As
this survey was released “into the wild” and shared on many different
platforms, identifying the type of developer who answered the survey may be
difficult, but the profiling questions gave good insight into this.

Cronbach’s Alpha was calculated based on all the Likert scale questions, and
the result is an alpha of 0,89. An alpha above 0.9 is often defined as an internal
consistency of “excellent” quality, whilst 0.8 to 0.9 is considered “good”. Due
to this, the validity of this survey can be considered quite high. The profiling
questions also allows us to get perspective on what type of user is answering
the questions, such as experience in the field and job experience. Although it
is important to keep in mind that this survey is only a sample of people and
does not represent the whole population. The best conclusion can be made on
all frameworks, but going into specific frameworks the answers become less
in quantity as they are spread out across multiple different frameworks.

As this thesis is using both a quantitative and qualitative method, this increases
the validity further. Comparisons can be made between the data gathered from
the survey and the interviewees’ qualitative answers, to see if the results line
up or not.

On the topic of ethical considerations, a small amount of personal information
based on the project the participant worked on was collected in the first survey
questions. The user was asked if they agreed to their answer being used in this
thesis, and then were asked about their highest level of education, how long
they have been developing and previous native development experience. After
that came more project-based questions, such as how big the team was, what
platforms it was released to, how long it took to work on and etcetera.

Based on this, there was not much personal information gathered. We saw no
reason to ask for things such as age or gender, as these aren’t relevant to the
research questions. The data is stored by me locally and only in my GitHub
project for analyzing the data. Google Forms gathers some personal
information, but the user accepts these when using any Google product and
accepting the cookies.

3 Theoretical Background
In this chapter, fundamental theoretical background is presented in the field of
mobile application development and cross-platform mobile frameworks as
well as the challenges in using a framework.

3.1 Mobile Application Development
Mobile application development stems from the need for applications for
different platforms, starting with the first generation of smartphones. The first
iPhone released in 2007 started a revolution in the industry that would only
grow and grow the following years, to the point of 86% [14] of the world’s
population today owning a smartphone. Today, iOS applications are developed
in the language Swift and Android applications are built on Kotlin or Java. The
respective platforms have their own application stores, the Apple App Store
and Google Play Store where developers can upload their applications to for
the masses to download and use.

When developing natively, the developer must pick a side to develop on. If
they wish to release their application to both mobile platforms or any other
platform, they must remake the same application in two separate programming
languages, for example one in Kotlin for Android and one in Swift for iOS.
This causes a lot of extra work, having to do the same thing twice. Large
companies even tend to have two separate development teams, working on
delivering the best possible application to each platform.

3.1.1 Native development on Android

The Android SDK (Software Development Kit) is a collection of tools,
libraries, and resources used to develop Android applications [15]. It includes
the Android Studio IDE (Integrated Development Environment), which
provides a graphical interface for designing, coding, and testing Android
applications. Android Studio is based on the IDE IntelliJ IDEA and is the
official IDE for Android development. It offers features such as code
completion, debugging, and performance analysis tools, and includes an
emulator for testing apps on virtual Android devices. The Android SDK also
provides a set of APIs that allow developers to access device features such as
camera, GPS, and sensors, as well as access to Google Play services for
integrating with Google services such as Maps, Firebase, and Google Sign-In.
The Android SDK is constantly evolving, with new versions released
frequently to provide updates, bug fixes, and new features.

3.1.2 Native development on iOS

Xcode is the Integrated Development Environment (IDE) for iOS
development, and is the primary tool used to create iOS apps [16]. It provides
a graphical interface for designing, coding, and testing apps, as well as for
submitting them to the App Store. Xcode includes features such as code
completion, debugging, and performance analysis tools, and offers an iOS
Simulator for testing apps on virtual iOS devices. Xcode also includes an
Interface Builder tool, which provides a visual interface for creating user
interfaces using a drag-and-drop system. In addition to the tools, Xcode also
provides a set of APIs and frameworks that allow developers to access device
features such as camera, GPS, and sensors, as well as Apple services such as
Apple Pay, iCloud, and Push Notifications. Xcode is constantly evolving, with
new versions released frequently to provide updates, bug fixes, and new
features.

3.1.3 Cross-platform mobile development

Cross-platform development has become an increasingly popular approach in
mobile application development due to the need for developers to create apps
for multiple platforms [17]. By using a cross-platform mobile development
framework, it allows developers to use a single codebase to create apps for
different platforms, rather than having to develop separate codebases for each
platform. Furthermore, this allows developers to write their code once and then
compile it or deploy it for each platform, reducing the time and effort required
to develop and maintain multiple codebases. This can lead to faster
development cycles and lower development costs, as well as an easy approach
to maintain consistency across platforms [17].

3.2 Cross-platform mobile development frameworks
A cross-platform mobile development framework is a framework developed
under the previously mentioned circumstances. A developer usually codes in a
single programming language and the code is then able to be compiled and
seamlessly deployed to multiple platforms. As an example, the Google
developed framework Flutter uses the Dart programming language for the
shared codebase, and the framework Xamarin uses C# for it’s codebase.

There are numerous amounts of frameworks using this fundamental concept.
These frameworks vary widely in popularity and functionality, but the core
difference being the different approach that they use, that will be explained in
the next sections.

The most popular frameworks as of 2019-2022 are Flutter, React Native,
Cordova, Ionic and Xamarin [18] that can be seen in figure X below. Although
some new smaller frameworks are on the rise, the approach to the they use is
like that of their predecessors.

Figure 3.1 Illustrating popularity of cross-platform mobile frameworks from
2019 to 2021 [18]

3.2.1 Web-based frameworks (hybrid approach)

Web-based frameworks also referred to as the hybrid approach [19] use web
technologies, such as HTML, CSS, and JavaScript, to create cross-platform
mobile applications. In the hybrid approach, these web-based applications are
packaged in a native wrapper, typically a WebView component. The
WebView provides a container for the application to run within, allowing it
to access native device features whilst also sharing the WebView component
across multiple platforms. This is also very powerful, as this lets the
application in theory to be launched to any device that has support for a
browser. This can range from not only mobile devices, but also bridges the
gap to browser-based applications or desktop applications for Windows,
MacOS and Linux.

This approach allows web developers to leverage their existing web
development skills and tools to create cross platform applications. Whilst

some platform specific code will most likely have to be written, the amount
of the codebase that can be shared is still the primary positive factor to this
approach.

Ionic
Ionic is a popular web-based framework that allows developers to build cross-
platform mobile applications using web technologies like HTML, CSS, and
JavaScript [20]. It uses Angular, a popular front-end web framework, as its
main technology stack, and is built on top of Capacitor, which provides access
to native device features. As previously described, Ionic uses a hybrid
approach where a WebView is used to render the frontend on the platform it’s
deployed on.

Ionic is known for its ease of use, as it provides a vast library of pre-built UI
components, making it easier for developers to create visually appealing and
consistent mobile applications [20]. Additionally, Ionic provides an extensive
set of plugins and integrations with popular tools such as Firebase, Stripe, and
Google Maps, making it easier to add functionality to applications [20]. With
its focus on web technologies and its wide range of features, Ionic has become
a popular choice for developers who want to build cross-platform mobile
applications quickly and efficiently and that come from a web-development
background.

React Native
React Native is a JavaScript framework that allows developers to create native
mobile applications for both iOS and Android platforms. It uses a similar
approach to hybrid development, but instead of using a WebView to render UI
components, it uses actual native components that are assembled with
JavaScript [21]. This allows the application to have a more native feel and
better performance compared to traditional hybrid applications. React native
can therefore be defined as a middle ground between hybrid and cross-
compiled approach, as it has access to native components alongside the
WebView.

React Native has gained a lot of popularity due to its ability to create
applications with near-native performance while still allowing developers to
write code in JavaScript, a language that is familiar to many web developers.
The framework is supported by a large and active community, providing access
to many third-party libraries and resources that can help speed up development.
React is also backed and developed by Meta and used for their various
applications including the Facebook app [21].

3.2.2 Cross-compiled frameworks

Cross-compiled frameworks utilize a single codebase written in a specific
programming language, which is then compiled to native code for each
platform. This approach allows developers to use their knowledge of a specific
programming language and its associated ecosystem to build cross-platform
apps without relying on web technologies. Cross-compiled frameworks often
provide a set of APIs that abstract away platform-specific details and allow
developers to write code that works on multiple platforms.

Examples of cross-compiled frameworks include Xamarin, Flutter and Kotlin
Multiplatform. One of the primary advantages of cross-compiled frameworks
is that they generally offer better performance compared to hybrid frameworks,
as the resulting apps are compiled to native code. Additionally, cross-compiled
frameworks can provide a more native look and feel compared to hybrid
frameworks. However, there may still be some platform-specific code that
needs to be written, and the development workflow may be different compared
to traditional web development.

Xamarin
Xamarin is a cross-platform development framework created by Microsoft that
enables developers to build native mobile applications for Android, iOS, and
Windows using C#. Xamarin allows developers to create a single codebase that
can be shared across multiple platforms, and it provides full access to the
underlying native APIs and UI components of each platform.

One of the key differences between Xamarin and other cross-platform
development frameworks is that it uses C# as its primary programming
language. This allows developers to leverage their existing .NET skills and
experience and provides access to the vast library of .NET libraries and tools.
Additionally, Xamarin provides a fully integrated development environment
within Visual Studio, which streamlines the development process and allows
for seamless testing and debugging.

Another important feature of Xamarin is its use of platform-specific UI
components. Unlike other frameworks that rely on HTML and CSS for UI
development, Xamarin enables developers to create platform-specific UI
components using the same programming language as the rest of their code.
This allows for a more native look and feel across each platform.

Flutter
Flutter is an open-source mobile application development framework created
by Google that uses the Dart programming language, which is largely based on
JavaScript. Unlike hybrid web-based frameworks, Flutter utilizes a unique

approach called "Ahead-of-Time" (AOT) compilation, which compiles the
code directly to native machine code for the target platform, rather than relying
on a WebView component. This allows Flutter apps to run with better
performance, faster startup times, and access to platform-specific features.
Flutter also comes with a rich set of pre-built widgets, making it easy for
developers to create beautiful and responsive user interfaces.

Kotlin
Kotlin is a programming language that has become the new standard in
Android native development, which was formerly written in Java. Kotlin has
an extension of the language called Kotlin Multiplatform, which is the
framework for providing cross-platform development in Kotlin. Just like the
other cross-compiled frameworks it allows developers to write platform-
specific code while still having access to the shared codebase, making it a
powerful tool for cross-platform development. The platform also provides
interoperability with native code, making it easy to integrate Kotlin code with
existing applications. Kotlin Multiplatform is a relatively new platform, but it
has gained a lot of attention from developers due to its flexibility and ease of
use.

4 Research project – Implementation
For this thesis, three different methods of data collection were used. First and
foremost, there was a literature review to explore the current research
surrounding the main topic of cross platform mobile application frameworks.
This was followed up by a survey to gather quantitative data and could be
considered explorative. This explorative quantitative data was then used to
sharpen the research questions and served as a base for qualitative interviews
held with some survey participants.

4.1 Survey questions and measures

In a previous study [1] the following issues could be picked on the
questionnaire for the question “If any, which of the following issues do you
relate to cross-platform development?”:

 overall loss in performance compared to native apps
 Suboptimal User Experience (UX)
 immature frameworks (too cutting edge, too much risk, etc.),
 suboptimal options for creating good user interfaces (UI)
 immature communities (too new/low activity, etc.)
 hard to integrate with device APIs
 hard to test/debug
 security issues
 other

Based on these identified issues, specific categories were created, forming the
basis for the survey questions. The categories for the survey questions in this
study were defined as follows:

 Profiling (personal information) Q1-Q10
 Framework maturity (external sources, documentation, help) Q11-

Q16
 Frontend design (prebuilt, custom) Q16-Q19
 Platform capabilities (APIs, sensors, hardware) Q20-Q24
 Coding Q25-Q26
 Personal opinions and future potential Q27-Q28

A total of twenty-six questions were formulated to gather data from the
participants. Most of these questions were designed as single-choice
questions, allowing participants to select an option on a Likert scale ranging
from 1-5 or 1-7. The profiling questions, which collected demographic or
background information, used pre-defined options related to the question,
such as years of development experience or highest level of education.

The complete set of survey questions can be found in Appendix A1 along
with a picture of the survey in appendix A2.

Note that no "other" option was provided to the participants for most
questions, as the survey primarily aimed to gather quantitative data. The
interviews, on the other hand, provided an opportunity for more in-depth
discussions and qualitative data collection.

4.2 Interviews

The participants were asked to first explain further about their experiences with
a framework they had used, based on their answers to the survey. This allowed
me as an interviewer to gather more in-depth information on what the
interviewees’ experiences had been.

Further, the discussion was based around the following questions:

 What problems did you have with the framework?
 What can be improved in the framework?
 What do you think about cross-platform mobile development

frameworks being used at large? Are they ready and a viable option?

These interview questions provide qualitative data to further strengthen the
survey data on what needs to be improved in frameworks. The interview
answers are more qualitative as I can go into further depth when asking about
these frameworks, and the feedback for the frameworks becomes broader.

The survey was created using Google Forms. In the survey, mostly Likert-scale
type questions were used and there was a total of 26 questions directly related
to answering the research questions. More about this can be read in chapter
2.1.2 and 2.1.3.

Interviews were conducted with willing survey-participants, the final number
of participants being four. These interviews were held on Zoom during
November to December of 2022. Each interview lasted approximately 30-40
minutes, with a variety of people using different types of frameworks.

5 Results
In this section, the results of the literature review, survey and interviews will
be summarized and presented.

5.1 Survey
After three weeks of sharing the survey on a variety of different online
platforms, a total of 77 responses were gathered. The goal was to gather at least
50 responses based on similar studies of this nature that gathered data ranging
from 30 to 100 responses . As the goal was reached, the survey was locked,
and the data extracted to be analyzed.

5.1.1 Survey summary

The common use cases for cross-platform mobile frameworks can be
answered with the survey questions 1 through 10.

According to the survey results, cross platform mobile application
frameworks are being used at a large scale for a multitude of different
projects, both at hobby scale but also at larger company scale. The most used
frameworks of the survey participants were in order Flutter, Xamarin, Ionic,
React Native and Kotlin Multiplatform.

Figure 5.1 Illustrating a circle diagram of different used frameworks by
survey participants.

The survey participants are generally well educated, 55,1% of them having a
bachelor's degree, 16,7% a master's degree, and 1,3% a PhD. Most people

have been developing applications for more than 10+ years 35,9%, 5-10 years
29,5%, 2-5 years 25,6% and lastly 9% of people being rather new at 0-2 years
of experience. 66,2% of people had previously worked with native
development, and the other 33,8% had not done so.

The type of applications is very varied, with 24+ different categories being
chosen. The majority were business applications coming in at 15,4% and
tools at 10,3% of apps.

Around 50% of the participants started working on the application project
during the years 2020 to 2022, giving a lot of recent data. The rest consisted
of projects from 2019, 2018 and 2017 with only a handful 13,4% being even
older than that.

The development teams of these apps were rather small, with 1 person
representing 35,9% of apps, 2-3 people 39,7%, 3-10 people at 17,9% and 10-
50 the remaining 6,4%. Therefore, the data only represents what could be
defined as smaller teams.

5.1.2 Framework improvements

In appendix B1, averages for all the Likert-scale questions are presented
across the different frameworks used. Based on this, we can conclude that
Flutter was the best performing framework amongst the survey participants
and the most popular one. Followed by Flutter is Kotlin Multiplatform with a
score of 4.08, although only 5 projects used Kotlin and therefore the results
may not be very accurate. NativeScript and React Native had 8 projects each
and performed about the same with NativeScript in the lead. After these
frameworks comes Ionic, but in dead last is Xamarin. Xamarin had 14
projects and was the second most popular framework but performed the worst
by far on almost all questions.

Kotlin and NativeScript are rather new frameworks on the market, and this
can be seen by the lack of access to educational material, documentation and
framework maturity asked about in Q13 to Q18. But on Q18 asking if the
participant believes the framework to be a mature framework, React Native
falls behind almost as far back as Xamarin, and NativeScript is the winner
even though they lack the elements of a mature framework asked about in
previous questions. This indicates that there are other parts of a framework
that people believe makes a framework mature.

The results of all questions can be found in appendix B2, to show what
questions performed the best to worst. By also calculating the average answer

for each question answers, we can generate a list of the biggest perceived issues
across all different frameworks. All these averages can be seen in appendix B3,
and presented here are the worst performers:

Question Average Placing
Did you come across any platform quirks? 3,132 1st
Did you consider the used framework to be a mature
framework?

3,565 2nd

Online resources (stackoverflow, YouTube) 3,639 3rd
The framework debugging tools allowed me to debug
with ease

3,703 4th

How easy was it to work with the framework? 3,709 5th
Figure 5.1 Table of averages of the worst performing questions, showing which
questions had the lowest average score.

Platform quirks are by far the worst problem according to the survey
participants, all the frameworks performing quite poorly on this question and
is an area that needs great improvement in the future for each framework to
become more viable to the developer.

The second biggest issue is that the developer considered the framework to not
be mature enough, which can also be seen in the bad performance of the first
5 questions, online resources is the third biggest issue and is directly related to
framework maturity.
Following this is a lack of good experience with the framework debugging
tools, which can be based on lack of experience or simply the debugging tools
not being easy enough to use for the developer. But beware that the experience
with this question can also be based on IDE, development platform and many
more variables.

On place number 5 is simply an indication that the framework was perceived
as hard to work with in general. This was asked as one of the last questions to
get a general overview of the developers view on the framework, and this being
negative is an indication that the framework is hard to work with. But this can
also be an indication that cross-platform mobile development frameworks are
quite hard to use. Flutter performed better than the rest on this question, with
an average of 4,2 whilst the next runner up is NativeScript at 3,8.

5.2 Interviews
A total of 4 interviews were conducted, following up the survey results. The
four participants were each user of the following frameworks:

 Interviewee 1 – Kotlin Multiplatform
 Interviewee 2 – NativeScript
 Interviewee 3 – Xamarin
 Interviewee 4 – Ionic

Although these are the frameworks the participants used, all of them have
experience with multiple different frameworks, and therefore gave very varied
responses and could respond in many perspectives. The interviews gave
qualitative data to further in-depth answer research question 1, more
specifically on how frameworks can be improved to better suit the common
use cases of frameworks.

All interviewees proved the fact that cross-platform frameworks are being used
to build a variety of different types of applications that are being used by up to
thousands of people. Everyone seemed to quite enjoy using a framework and
saw the upsides of using a shared codebase to unite projects that are cross-
platform.

They all unanimously agreed on the fact that frameworks are a great way to
build applications quicker as opposed to a shared codebase. And for smaller
teams lacking development teams for both platforms, cross-platform
frameworks are a great way of bridging the gap between multiple platforms.
Although, multiple interviewees showed concern in using a framework for
applications of a larger scale, or for a larger development team.

Another main problem that all the interviewees mentioned in one way or
another, has to do with setup time for a framework and preparing the
environment. Developing natively comes with a setup time on its own-
preparing emulators for both platforms, on Android downloading the Android
SDK, and for iOS it involves downloading the IDE Xcode. Installing a
framework causes further time spent on preparation, having to download the
SDK for the framework as well as setting it up for the IDE you want to use.
And some frameworks allow for greater support in some IDEs than others,
therefore even though you’re used to a specific IDE, you might generally have
a better time learning and using a new IDE that is more compatible with the
framework.

One example that stood out was from the Xamarin developer, who comes from
an iOS development background using Swift. To be able to use Xamarin, one

must use Microsoft Visual Studio. But it appears that Visual Studio is a subpar
experience on Mac, and therefore it almost forced this interviewee to use the
Windows version to be able to use all the functionality that he wished for.

All developers interviewed agreed that forcing the use of Xcode to launch an
application the iOS app store was a huge hassle, as this involved having to use
a Mac. This is a problem that occurs if you develop natively as well, and such
can’t be considered an issue really related to cross-platform development. But
due to the shared codebase between the platforms, there’s a certain expectation
that it should be easier to compile to iOS, but that is not the case. All developers
wished there were some sort of compromise- where the developer does not
need to use Xcode to launch an application built with a cross platform mobile
development to the app store.

Platform quirks were generally a large issue, especially when it comes to
design. Depending on the platform you expect a certain behavior, and
sometimes this behavior was as expected, or it simply defaulted to the behavior
of one of the platforms. As an example, Ionic tended to default to explorative
iOS behaviors.

To summarize the general opinions of the interviewees, all developers agreed
that cross-platform mobile frameworks have their use cases. Frameworks serve
its purpose as another tool in the developer’s arsenal, but all frameworks have
their weaknesses and strengths. As there’s multiple frameworks, one might fit
better for the type of application a developer is building. One of the best use
cases in general though is for a small developer team having to develop for
multiple platforms, as it saves a lot of time and is generally stable and mature
enough for an application of not too large of a scale.

The answer to the question if frameworks are the future of cross-platform
mobile development, the answer was always “it depends,” with reference to
the previous paragraph as everything has its own use case. Although
frameworks are popular, other technologies such as PWA are becoming more
mature and ready to use, which sometimes leads to some websites not having
to use an app at all, but instead relying on PWA.

6 Analysis and discussion
In this chapter analysis surrounding the research questions will be presented.

6.1 Usage of frameworks
The usage of frameworks is prevalent. From the results of the survey, we can
see that a large number of different applications are being built, of different
scales and teams. Using a framework does not seem like a new and catchy
thing, but rather simply being used as a tool where needed in the application
development industry.

One question that comes to mind from the survey results is why aren’t
frameworks being used by larger companies for projects of bigger scale? A
survey by JetBrains from 2022 [22] had a similar result, where this question
was asked: “How many developers work on your mobile application on both
iOS and Android simultaneously (including yourself). The answer was 32%
just me, 42% saying 2-4 and then decreasing dramatically with 5-7 people as
low as 8%, and the rest even less. If we compare this to the results of this
thesis’ survey, we get comparable results that are the following: 35,9% of
teams were only one person, 39,7% 2-3 people, 17,9% 3-10 people, and lastly
6,4% 10-50 people. Although the questions are not asked in the same way, it
still proves a small team size is common.

All the interviewees agreed that they saw using a framework in a larger
company as bringing potential hassle, because most of them believed that the
framework wasn’t built to scale up in the way that is needed for a large team,
where many people are working on the same project at the same time. But the
truth is that there are many big companies out there using frameworks,
although we don’t know to what extent and how well it’s functioning.
Examples of these are Google Classroom, Google Pay, Reflectly and Alibaba
using Flutter [23], Facebook, Microsoft Teams and other Microsoft products,
Shopify, Wix and Tesla using React Native [24]. This rather proves the point
that frameworks are being used, and very ready to be used at larger
companies if these companies even considered using them.

But the interviewees agreed that using a framework is the perfect fit for a
small team having to produce a cross-platform application. In the long run it
will probably be worth it even though platform quirks and other issues might
occur along the way.

6.2 Positive areas of frameworks

6.2.1 Performance

Loss in performance is an issue that was raised in a 2019 study [1], but
according to this thesis’ survey, does not seem to be a truly relevant problem
anymore. The survey question “The framework allows me to build an app with
high performance” gave the following responses that can be seen in figure 6.x.

Figure 6.2 Illustrates a bar diagram of survey result performance question,
divided into different frameworks.

This indicates a very high trust in the framework, being able to build an app
with high performance. On average this is an average score of 3,95, and a 4
would be considered “agree” in this question.

6.2.2 Frontend design

The same kind of results can be seen in the questions surrounding user
experience, with the 2019 study [1] presenting suboptimal UX and suboptimal
options for creating good UI, whilst this thesis’ survey participants indicate a
rather good experience with frontend design:

Figure 6.3 Illustrates a bar diagram of UI/UX questions overall.

Although, in interviews most participants mentioned having some kind of
problem in the front-end design part of the framework they used. The Ionic
participant especially had this problem, saying that the UI of their application
could break completely very easily sometimes, and that the Ionic abstraction
layers caused problems. The same goes for the Kotlin user, who said that he
wouldn’t even try to create a UI in Kotlin as it stands. And whilst Jetpack
Compose is being introduced to Kotlin, they believed that it wasn’t ready
enough yet to be used in a production application. The Xamarin user also had
concern with UI implementation- stating that an option for other Xamarin users
is to use paid, very highly priced third party addons that bring a better UI
experience.

6.2.3 Shared codebase

Finally, an honorable mention to the main function of them all, the shared
codebase. It’s by far the best feature according to the interviewees, as it really
does help create applications more efficiently compared to having to write two
separate applications. The time spent debugging and solving platform quirks is
for most interviewees worth it in the long run.

6.3 Framework criticisms and solutions
This section further discusses the results in 5.1 and 5.2, combining the
quantitative data from the survey with the qualitative from the interviews,

along with my personal analysis to create a broader perspective on framework
issues.

6.3.1 Platform quirks

More than 50% of users came across a platform quirk occasionally or even
more frequently. Platform quirks lead to further development having to be
done, and sometimes these issues must be resolved by going into the native
development platform that the platform quirk is appearing on. This can
become a big issue, but 66,2% of survey participants said they have
previously worked with native development, indicating some sort of
capability of solving such an issue.

But let’s not disregard the fact that this is the biggest issue perceived by the
survey participants. Platform quirks are by far one of the biggest gripes with
cross platform mobile development according to the developers I interviewed
and is by far one of the hardest issues to fix. The platforms, mostly iOS and
Android, are everchanging. They continue to push out updates constantly.
Both platforms, but especially Android, run on a giant number of devices of
different sizes and types, and therefore bringing a platform quirk free
framework is a very difficult task. Yet, some frameworks have an easier time
decreasing the platform quirks than others.

Figure 6.4 Illustrates a bar diagram of the platform quirks question, divided
into different frameworks. In this case, more is bad and less is good.

In the front-end side of development frameworks that are using the web-
based approach have an upper hand, as they don’t have to rely on the type of

device as much. The same also goes for Flutter, which uses its own rendering
engine. Flutter was the best performing framework in the survey, and had the
least amount of platform quirks according to survey data. Although the truth
is rarely that black and white, it is nonetheless a pattern that needed to be
mentioned.

6.3.2 Framework maturity

Figure 6.5 Illustrates a bar diagram of the framework maturity question,
divided into different frameworks.

Based on the averages, this question was second in placement for the most
negative answers, but looking at the available options, this doesn’t appear to
be a very badly performing metric. Most participants believed their
framework was “moderately” mature, following “very” and “extremely”
mature.

But let us put this statistic into perspective. Xamarin got a score of 2,3 out of
5 on maturity, the worst average of them all, over all questions. Xamarin was
released in 2011, and yet it still has the worst results of all frameworks in this
survey. It seems that Xamarin really has lost its way and is one of the clear
losers that is in big need of an update, seemingly on all fronts.

But to summarize, in figure 6.x, most of the data lies from moderate to
extremely mature. Only an exceedingly small number of participants chose
“not at all” or “slightly.” Therefore, the participants of this survey believed
that the framework they used was quite mature, even though they generally
seemed more doubtful when not asked as directly as this question was.

A framework doesn’t mature just because it’s old. Xamarin is a fitting
example of this. What keeps a framework relevant and mature is it working
for the newest technologies, and it continuously being worked on and
maintained. One interviewee talked about how he saw new functionality
released for a platform and got excited to use it but couldn’t because it wasn’t
yet implemented in the framework he used. It does take longer for a new
feature to land in a framework (in most cases) than native, as it must be
implemented by the framework first. And if it isn’t a priority, it can take a
very long time.

Another part of the framework maturity lands in the hands of the users. Users
can help by providing code for the open-source projects and providing
bugs/feedback. This then also needs to be considered by the developers of the
framework, and not just ignored. If there exists a large community, there will
be community members that ask questions on StackOverflow, create
YouTube tutorials, and talk about the framework on different forums. This all
helps with the maturity of a framework.

6.3.3 Other issues

Figure 6.6 Illustrates a bar diagram of how easy it was to work with the
framework according to survey participants.

Usability has a great impact on the general performance of a framework. If
the developer doesn’t enjoy using the technology, it will be a much bigger
pain having to build in it. Although the average of this question is quite low,

the graph shows that most developers tend to think that the framework they
worked with was either “easy” or “very easy” to work with.

Something that came up in interviews is the setup time of frameworks, which
was previously talked about under interview results. All interviewees would
see the framework as much easier to use if it weren’t for the large setup time
often involved. It usually wasn’t as straight forward as hoped to be, and they
all had very different experiences on getting started depending on what
platform they used. Mac is the logical choice for development because of the
access to both Android and iOS, whereas on Windows you only have access
to Android. But the Mac experience is usually subpar compared to Windows.
If more time and effort were put on improving the coding experience for both
platforms, the ease of use for the framework would surely rise.

Debugging is also a crucial part of software development, and cross-platform
mobile development is no exception. However, according to the survey
results and interviewees, the current ones are subpar. One of the main issues
with debugging cross-platform mobile applications is the lack of proper
integration with native debugging tools. For example, Xamarin provides
integration with Visual Studio's debugging tools, but the debugging
experience can be inconsistent across different platforms. This relates to the
Windows/Mac inconsistencies talked about in the last paragraph.

Kotlin Multiplatform has relatively limited debugging tools, as it’s a very
new framework not much work has been put into the field of creating a
robust debugging tool yet. Despite these limitations, there are still some
debugging tools available for frameworks. For example, React Native has
integration with the mobile app debugger Flipper, which provides deeper
analysis tools further helping the application developer [25].

To summarize, more focus needs to be put on the basic functionality expected
by developers, such as testing suites, debugging tools and being able to
develop on the operating system you prefer. A framework is only a good tool
if it’s a tool worth using over doing it the native way, and if the hassle of
even using it is too big- it isn’t worth it.

7 Conclusions and Future Work

This thesis sets out to find the main problem areas in cross-platform mobile
development frameworks, to help software developers further develop
frameworks for application developers. The results of the survey and
interviews have shown that the issues have changed over time, and that the
focus should be on (in order) platform quirks, framework maturity and online
resources, debugging tools and ease of use of the framework. Whilst the
positivity of the survey participants on frameworks was high overall- issues
still exist both on the fundamental levels of it being harder to develop for both
platforms on Windows, and on the more general side where frameworks have
specific issues that need to be solved. Although problems were identified,
finding specific solutions for these issues is hard without further research into
the fundamentals of a framework. All that this thesis can do is point to the
issues.

7.1 Answers to research questions

RQ1: What are the common use cases for a cross-platform mobile framework
currently and how can frameworks be improved to better suit them?

According to the survey results presented, cross-platform mobile frameworks
are being used by developers to build a wide variety of applications across
multiple platforms. The frameworks help build applications of small and
larger scale, although smaller scale applications and smaller team sizes are
preferred by developers using frameworks.

To answer the second part of the question, a summary is needed of what the
participants thought. Positive aspects include a shared codebase, good
availability of frontend design, performance somewhat on par with native
applications, consistency across platforms and the entire developing cycle
being more streamlined only having to build an application once instead of
multiple times for different platforms. The negatives are platform quirks such
as applications not behaving the same on two platforms, frameworks being
too immature with too little online resources, debug tools and testing suites.
Other problems include frameworks being hard to work with, problems such
as bad documentation, subpar educational material available and framework
setup.

Therefore, the negatives presented are the biggest underlying problems that
need to be addressed to better improve the frameworks. Platform quirks is a
game of constant trying to catch up as platforms are constantly changing with
new updates. The best way forward is making sure to have an active

development group that works on fixing issues, but also a community that
can provide fixes and bug reports. Platform quirks are fundamental issues
that plague frameworks that will not go away for good, but more action needs
to be taken to resolve them.

On the topic of framework maturity, frameworks will mature over time with
more users using them and the communities growing. That leads to more
educational material being made surrounding them, questions being asked
online and more people contributing to the open-source aspects of the
frameworks. The setup time for the Android and iOS environment for both
platforms as well as frameworks could be dramatically improved, but a lot of
problems lie on Apple for locking iOS development to only Mac and Xcode.

RQ2: Compared to previous research, how have the negative and positive
aspects changed?
The problems have shifted, most notably with frontend design not at all
perceived as a problem compared to previous research [1]. Platform quirks
remain a problem but are now seen as a bigger issue than before. With the
growth of many smaller frameworks, the issues are also more spread across
different frameworks than they were before. Framework maturity is also a
persisting problem, although time has passed since the previous study it does
not seem to have affected people’s opinion on frameworks maturity in general.
Issues with testing and debugging also remain.

7.2 Future work

A lot more work can be done in the field of identifying concrete issues for
specific frameworks that need to be improved on. There are a few major
questions that can be asked:

 What are the major overhauls needing to be done to Xamarin to get it
up to par with the other frameworks?

 In what ways does Kotlin Multiplatform need to grow and mature as a
framework to challenge the other big frameworks?

 Does NativeScript have the potential to be the big next framework?
 In what ways can frameworks improve to better suit the need of large

development teams building larger and more complex applications?
There’s also a discussion to be had about what type of approach is currently
performing the best, whether the web-based hybrid approach or cross-
compiled approach is the way going forward.

8 References

[1] A. Biørn-Hansen, T.-M. Grønli, G. Ghinea and S. Alouneh, "An
Empirical Study of Cross-Platform Mobile Development in Industry,"
Wireless Communications and Mobile Computing, vol. 51, no. 5, pp. 1-
12, 2019.

[2] T. Vilček and T. Jakopec, “Comparative analysis of tools for
development of native and hybrid mobile applications,” in 2017 40th
International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), 2017.

[3] V. Ionzon and S. Jägstrand, “A Company Case Study: Examining
criteria in cross-platform evaluation frameworks,” 2022.

[4] D. You and M. Hu, “A Comparative Study of Cross-platform Mobile
Application Development,” in CITRENZ 2021, Wellington, 2021.

[5] A. Ahmad, K. Li, C. Feng, S. M. Asim, A. Yousif och S. Ge, ”An
Empirical Study of Investigating Mobile Applications Development
Challenges,” IEEE Access, vol. 6, pp. 17711-17728, 2018.

[6] T. A. Majchrzak, A. Biørn-Hansen och T.-M. Grønli, ”Comprehensive
Analysis of Innovative Cross-Platform App Development
Frameworks,” i Hawaii International Conference on System Sciences,
Mānoa, 2017.

[7] B. Kitchenham and S. M. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” Keele
University, vol. 2, no. 3, pp. 1-26, 2007.

[8] T. Dybå and T. Dingsøyr, “Empirical studies of agile software
development: A systematic review.,” Information and Software
Technology, vol. 50, no. 9-10, pp. 833-859, 2008.

[9] M. Mader and G. Schermann, “Survey-based research in software
engineering: An empirical analysis.,” Information and Software
Technology, vol. 53, no. 7, pp. 753-764, 2011.

[10] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering.,” Empirical Software
Engineering, vol. 14, no. 2, pp. 131-164, 2009.

[11] C. Seaman and A. Powell, “Interviewing techniques for software
engineering research.,” Springer, Boston, 2008.

[12] S. Brown, “Likert Scale Examples for Surveys,” Iowa State University
Extension, 2010.

[13] F. J. Fowler, Survey Research Methods, Thousand Oaks: SAGE
Publications, 2013.

[14] J. Degenhard, “Forecast of the number of smartphone users in the
World from 2013 to 2028,” Statista, 2023. [Online]. Available:
https://www-statista-com.proxy.lnu.se/forecasts/1143723/smartphone-
users-in-the-world. [Accessed 26 02 2023].

[15] “Meet Android Studio,” Android Developers, [Online]. Available:
https://developer.android.com/studio/intro. [Accessed 26 02 2023].

[16] “Xcode 14 Overview,” Apple Developer, [Online]. Available:
https://developer.apple.com/xcode/. [Accessed 26 02 2023].

[17] “The Six Most Popular Cross-Platform App Development
Frameworks,” Kotlin Help, [Online]. Available:
https://kotlinlang.org/docs/cross-platform-frameworks.html. [Accessed
26 02 2023].

[18] Statista, “Cross-platform mobile frameworks used by software
developers worldwide from 2019 to 2021,” [Online]. Available:
https://www-statista-com.proxy.lnu.se/statistics/869224/worldwide-
software-developer-working-hours/?locale=en. [Accessed 28 March
2023].

[19] A. Biørn-Hansen, T.-M. Grønli and G. Ghinea, “A Survey and
Taxonomy of Core Concepts and Research Challenges in Cross-
Platform Mobile Development,” ACM Computing Surveys, vol. 51, no.
5, pp. 1-34, 2018.

[20] “Introduction to Ionic,” Ionic Framework, [Online]. Available:
https://ionicframework.com/docs. [Accessed 26 02 2023].

[21] “React Native · Learn once, write anywhere,” Meta Platforms Inc,
[Online]. Available: https://reactnative.dev/. [Accessed 26 02 2023].

[22] JetBrains, “Miscellaneous Tech - The State of Developer Ecosystem in
2022,” [Online]. Available:
https://www.jetbrains.com/lp/devecosystem-2022/miscellaneous/#how-
many-developers-work-on-your-mobile-application-on-both-ios-and-
android-simultaneously-including-yourself-two-years. [Accessed 3
April 2023].

[23] Flutter, “Showcase - Flutter apps in production,” Google, [Online].
Available: https://flutter.dev/showcase. [Accessed 3 April 2023].

[24] Meta, “Showcase - React Native,” [Online]. Available:
https://reactnative.dev/showcase. [Accessed 3 April 2023].

[25] Kotlin, “The Six Most Popular Cross-Platform App Development
Frameworks,” [Online]. Available: https://kotlinlang.org/docs/cross-
platform-frameworks.html#kotlin-multiplatform-mobile. [Accessed 6
April 2023].

A Appendix

A1 – Survey questions

N Question Associa

ted RQ
Type Predefined options

Q1 What is your highest level
of education?

RQ1 Single
Choic
e

1) No higher
schooling completed
(2) High school
diploma (3) Higher
Vocational
Education (4)
Bachelor (5) Master
(6) PhD

Q2 How long have you been
developing applications
for?

RQ1 Single
choice

(1) 0-2 years (2) 2-5
years (3) 5-10 years
(4) 10+ years

Q3 Have you previously
worked with native
development?

RQ1 Single
choice

(1) No (2) Yes

Q4 In your project, what cross
platform mobile
development framework
did you use?

RQ1 Single
choice

(1) React Native (2)
Flutter (3) Kotlin
Multiplatform (4)
Ionic (5) Xamarin
(6) NativeScript (7)
PhoneGap (8) Unity
Xcode (9) Other

Q5 What type of application
was created?

RQ1 Single
choice

33 different
categories from
Google Play Store,
and other

Q6 What year did you start
working on this project?

RQ1 Single
choice

(1) 2022 (2) 2021
(3) 2020 (4) 2019
(5) 2018 (6) 2017
(7) 2016 (8) 2015
(9) 2014 (10) 2013

Q7 At the time of this project,
how much previous
experience did you have
working with the
framework?

RQ1 Single
choice

(1) No prior
experience (2) less
than 6 months (3) 6
months to a year (4)
1-2 years (5) 2-3

years (6) 3-5 years
(7) 5+ years

Q8 For how long was the
project in development
before release?

RQ1 Single
choice

(1) less than 6
months (2) 6 months
to a year (3) 1-2
years (4) 2-3 years
(5) 3-5 years (6) 5+
years

Q9 How big was the
development team?

RQ1 Single
choice

(1) 1 person (2) 2-3
people (3) 3-10
people (4) 10-50
people (5) 50-100
people (6) more

Q10 What platforms was the
application launched to?

RQ1 Multip
le
choice

(1) iOS (2) Android
(3) Windows (4)
Mac (5) Web (6)
Other

Q11 How did you perceive
these different aspects of
the framework to be?
Stability (not prone to
crashing)

RQ2 Single
choice

(1) Very poor (2)
Poor (3) Acceptable
(4) Good (5) Very
good

Q12 … Documentation RQ2 Likert
scale

1-5 scale, strongly
disagree to strongly

Q13 … Educational material RQ2 Likert
scale

1-5 scale, strongly
disagree to strongly

Q14 … Online resources
(stackoverflow, YouTube)

RQ2 Likert
scale

1-5 scale, strongly
disagree to strongly

Q15 …
Libraries/packages/addons

RQ2 Likert
scale

1-5 scale, strongly
disagree to strongly

Q16 Did you consider the used
framework to be a mature
framework?

RQ2 Single
choice

(1) Not at all (2)
Slightly (3)
Moderately (4) Very
(5) Extremely

Q16 The framework allowed
me to create a good user
experience

RQ2 Likert
scale

1-5 scale, strongly
disagree to strongly
agree

Q17 The framework allowed
me to create good UI
elements with ease

RQ2 Likert
scale

1-5 scale, strongly
disagree to strongly

Q18 The framework allowed
me to create custom UI
elements with ease

RQ2 Likert
scale

1-5 scale, strongly
disagree to strongly

Q19 The framework had good
premade UI elements to
use

RQ2 Likert
scale

1-5 scale, strongly
disagree to strongly

Q20 My application stayed
consistent across the
multiple platforms

RQ2 Likert
scale

1-5 scale, strongly
disagree to strongly

Q21 Did you come across any
platform quirks?

RQ2 Single
choice

(1) Never (2) Very
rarely (3) Rarely (4)
Occasionally (5)
Frequently (6) Very
Frequently

Q22 My framework allowed
good access to device
APIs and sensors

RQ2 Likert
scale

1-5 scale, strongly
disagree to strongly
agree

Q23 The framework allows me
to build an app with high
performance

RQ2 Likert
scale

1-5 scale, strongly
disagree to strongly

Q24 I could easily integrate my
application with a
backend/API

RQ2 Likert
scale

1-5 scale, strongly
disagree to strongly

Q25 The framework allowed
me to create good tests

RQ2 Likert
scale

1-5 scale, strongly
disagree to strongly

Q26 The framework debugging
tools allowed me to debug
with ease

RQ2 Likert
scale

1-5 scale, strongly
disagree to strongly

Q27 How easy was it to work
with the framework?

RQ2 Single
choice

(1) Very difficult (2)
Difficult (3) Neutral
(4) Easy (5) Very
easy

Q28 Would you consider using
this framework again for
your next project?

RQ2 Single
choice

(1) Definitely not (2)
Probably not (3)
Possibly (4) Very
probably (5)
Definitely

Q29 Do you consider cross-
platform mobile
application development
frameworks to be the way
of the future?

RQ2 Single
choice

(1) Strongly
disagree (2)
Disagree (3) Neither
agree or disagree
(4) Agree (5)
Strongly agree

Table of all survey questions

A2 – Image of survey

Image of survey on Google Forms

B Appendix

B1 – Survey results

Table of the average answer to all questions, separated by frameworks.

B2 – All likert scale questions

All likert scale questions, sorted by good and very good top to bottom

B3 – All questions averages

Question Average Placing
Stability (not prone to crashing) 3,878 9th
Documentation 3,795 8th
Educational material 3,737 6th
Online resources (stackoverflow, YouTube) 3,639 3rd
Libraries/packages/addons 3,763 7th
Did you consider the used framework to be a mature
framework?

3,565 2nd

The framework allowed me to create a good user
experience

4,127

The framework allowed me to create good UI
elements with ease

4,184

The framework allowed me to create custom UI
elements with ease

4,176

The framework had good premade UI elements to use 3,976
My application stayed consistent across the multiple
platforms

4,155

Did you come across any platform quirks? 3,132 1st
My framework allowed good access to device APIs
and sensors

4,061

The framework allows me to build an app with high
performance

3,957

I could easily integrate my application with a
backend/API

4,714

The framework allowed me to create good tests 3,881 10th
The framework debugging tools allowed me to debug
with ease

3,703 4th

How easy was it to work with the framework? 3,709 5th
Averages for all questions.

