
Author: Marios Gkikopouli
Author: Batjigdrel Bataa
Supervisor: Jonas Lundberg
Examiner: Faiz Ul Muram
Semester: VT 2023
Subject: Computer Science

Bachelor Degree Project

Empirical Comparison Between
Conventional and AI-based
Automated Unit Test Generation
Tools in Java

Abstract

Unit testing plays a crucial role in ensuring the quality and reliability of soft-
ware systems. However, manual testing can often be a slow and time-consuming
process. With current advancements in artificial intelligence (AI), new tools
have emerged for automated unit testing to address this issue. But how do these
new AI tools compare to conventional automated unit test generation tools?
To answer this question, we compared two state-of-the-art conventional unit
test tools (EVOSUITE and RANDOOP) with the sole commercially available
AI-based unit test tool (DIFFBLUE COVER) for Java. We tested them on 10
sample classes from 3 real-life projects provided by the Defects4J dataset to
evaluate their performance regarding code coverage, mutation score, and fault
detection. The results showed that EVOSUITE achieved the highest code cover-
age, averaging 89%, while RANDOOP and DIFFBLUE COVER achieved sim-
ilar results, averaging 63%. In terms of mutation score, DIFFBLUE COVER
had the lowest average score of 40%, while EVOSUITE and RANDOOP scored
67% and 50%, respectively. For fault detection, EVOSUITE and RANDOOP
detected a higher number of bugs (7 out of 10 and 5 out of 10, respectively)
compared to DIFFBLUE COVER, which found only 4 out of 10. Although the
AI-based tool was outperformed in all three criteria, it still shows promise by
being able to achieve adequate results, in some cases even surpassing the conven-
tional tools while generating a significantly smaller number of total assertions
and more comprehensive tests. Nonetheless, the study acknowledges its limi-
tations in terms of the restricted number of AI-based tools used and the small
number of projects utilized from Defects4J.

Keywords: Software Testing; Automatic Test Case Generation; AI; Defects4J;
Experiment;

Contents

1 Introduction 1
1.1 Background . 1
1.2 Related work . 1
1.3 Problem formulation . 2
1.4 Motivation . 2
1.5 Results . 3
1.6 Scope/Limitation . 3
1.7 Target group . 3
1.8 Outline . 3

2 Methodology 4
2.1 Research Project . 4
2.2 Research Method . 4

2.2.1 Experimental Design . 6
2.3 Reliability and Validity . 7
2.4 Ethical Considerations . 8

3 Theoretical Background 9
3.1 Introduction to Software Testing and Automated Unit Test Generation . . 9
3.2 Conventional Automated Unit Test Generation Techniques in Java 9

3.2.1 Random-based Techniques for Unit Test Generation 9
3.2.2 Search-Based Technique for Unit Test Generation 10
3.2.3 Dynamic Symbolic Execution (DSE) 10

3.3 AI-Based Unit Test Generation in Java 10
3.3.1 Reinforcement Learning Technique for Unit Test Generation . . . 10
3.3.2 Large Language Models for Unit Test Generation 11

3.4 Concepts in Test Suite Evaluation . 11
3.4.1 Mutation Score . 11
3.4.2 Code Coverage . 14
3.4.3 Fault Detection . 14

3.5 Related Research . 14

4 Research project - Implementation 16

5 Analysis of the results 20
5.1 RQ1 - Coverage of AI Tools vs Conventional Automated Tests 20
5.2 RQ2 - Mutation Score of AI Tools vs Conventional Automated Tests . . . 21
5.3 RQ3 - Faults Detected by AI Tools vs Conventional Automated Tests . . . 22

6 Discussion 27

7 Threats to validity 28

8 Conclusions and Future Work 29

References 30

A Appendix 1 A

1 Introduction

This is a 15 HEC Bachelor thesis in Computer Science with a focus on software testing
and specifically the use of AI tools for automated unit test generation in Java.

Software testing is a process or cycle of assessments aimed at evaluating a software
system or its components to ensure that the said system behaves as intended and meets
the specified requirements of its stakeholders [1]. The testing process involves the identi-
fication and detection of bugs, errors, or missing requirements within a developed system.

Unit testing is one of the fundamental steps in the software testing process that focuses
on verifying the smallest units of software, typically modules or methods. It involves test-
ing the individual units in isolation to uncover errors within the boundaries of the module
[2]. Unit testing is typically conducted after the coding phase after the program has been
reviewed and syntax errors have been corrected. Since modules are not standalone pro-
grams, mocks/stubs need to be developed to address dependencies and facilitate testing.
Designing modules with high cohesion simplifies unit testing as it reduces the number of
test cases and makes errors more predictable and detectable [2].

This chapter serves as an introduction to the thesis, covering background information,
related work, problem formulation, motivation, results, scope/limitations, target audience,
and overall outline. The background emphasizes the importance of software testing and
the challenges it faces, such as budget and time constraints. The related work discusses
previous studies on automated test generation tools as a means to address the budget and
time challenges and improve the testing process. The problem formulation addresses
the research gap and the need to evaluate AI-based tools for automated unit test gener-
ation. The motivation section explains the goals of the research and the insights to be
gained. The results present the findings of this empirical study and draw conclusions.
The scope/limitations acknowledge the study’s limitations. The target audience section
identifies who this study concerns, and the outline provides a structure for the thesis.

1.1 Background

In today’s technology-driven world, computer science and specifically software testing
plays a vital role in ensuring the quality and reliability of software systems. This is of
utmost importance to businesses because the cost of resolving bugs escalates rapidly as
the software life cycle progresses. A study conducted by Cambridge University in January
2013 estimated that debugging software globally costs $312 billion annually and that
developers spend 50% of their time on resolving errors [3]. Unit testing is an essential
process in software development that aims to identify and eliminate errors, but it also is
one of the most time-consuming and costly activities for developers and organizations [4].

1.2 Related work

To address this time-consuming nature of the testing process, many automated unit test
generation tools for Java have been developed over the last few decades [5]. Some empir-
ical studies have compared the effectiveness of manual and automated unit test generation
tools in Java. In 2008, Bacchelli et al. conducted the first analysis and found that auto-
mated test generation tools can speed up test creation and help find defects, but they do not
replace the need for manual testing to ensure thorough analysis of the tested system [6]. A
follow-up study conducted in 2019 concluded that current automated test case generation
tools are better at optimizing code coverage and mutation score than manually written
tests, but still have little improvement when it comes to defect finding [7]. Shamshiri et

1

al., in a study performed in 2015, also found that while the test suites generated automat-
ically managed to identify 55.7% of the faults in total, only 19.9% of the individual test
suites were able to detect a fault [8]. in 2020, Souza et al. conducted a study on a larger
scale that aimed to compare the effectiveness of automatically generated test suites and
manually written test suites when used as regression test suites and found that, in general,
manually written test suites were more effective than automatically generated test suites
in terms of both line coverage and mutation coverage [9]. Additionally, Almasi et al.
conducted a study involving RANDOOP and EVOSUITE, up-to-date unit test generation
tools at the time, and found that developers in the industry are troubled by the size and
readability of the test suites [10].

1.3 Problem formulation

In recent years, there have been significant advancements in AI, with various fields taking
advantage of it. As a result, new AI-based unit test generation tools have emerged, which
could potentially further improve the software testing process. To our knowledge, there
has not been any research evaluating the efficiency of these new AI tools, especially when
compared to conventional automated unit test generation tools and the improvements they
bring, if any. In this paper, we conducted an experiment to empirically evaluate the effec-
tiveness of AI-based tools in regards to unit test generation and compared them to con-
ventional tools using Defects4J, a data set that contains bugs from real word open-source
repositories [11]. We generated test suites using two state-of-the-art unit test generation
tools, EVOSUITE [12] and RANDOOP [13] [14], and one AI-based unit test generation
tool, DIFFBLUE COVER [15], for Java for projects in the Defects4J dataset and analyzed
how each of the tools performed against the developer-written tests. In more detail, we
strived to answer the following questions: 1) “What is the code coverage achieved by the
AI-generated test suite compared to the one generated by conventional tools?”, 2) “What
is the mutation score achieved by the AI-generated test suite compared to the one gener-
ated by conventional tools?”, 3) “How many faults was the AI-generated test suite able to
detect compared to the one generated by conventional tools?”

1.4 Motivation

By conducting this study, we aim to explore the potential of AI in improving the effective-
ness of test suites and contribute to the understanding of strengths and weaknesses in AI-
based software testing tools. Moreover, by understanding the strengths and weaknesses of
AI-based compared to conventional tools, developers can make informed decisions about
adopting and integrating these tools into their projects. Most importantly, identifying po-
tential weaknesses of AI tools in the context of unit testing can lead to potential future
improvement of the tools.

This study uses EVOSUITE and RANDOOP as the conventional tools for this ex-
periment providing a baseline for comparison with AI-based automated generation tools.
EVOSUITE and RANDOOP were part of the most recent Search-Based Software Test-
ing competition in 2022 (SBST), with EVOSUITE being the winner [14]. Additionally,
EVOSUITE and RANDOOP were selected due to their widespread utilization and estab-
lished presence across academia and research [7], [8], [10], and [9]. Moreover, it should
be noted that the availability of the other tools in the competition seemed to be limited,
as most of them were not publicly accessible, further supporting our decision to choose
EVOSUITE and RANDOOP.

2

1.5 Results

Our research findings show that DIFFBLUE COVER, the AI tool, was able to achieve
code coverage averaging 63%, similar to RANDOOP. However, EVOSUITE was able to
outperform both, averaging 89%. Compared to the study performed by Serra et al. (Table
I in [7]), EVOSUITE still seems to surpass RANDOOP when it comes to code coverage.
In terms of mutation score, DIFFBLUE COVER performed the worst, averaging at 40%,
while EVOSUITE and RANDOOP achieved a mutation score of 67% and 50% respec-
tively. Compared to the results achieved by Serra et al. (Table I in [7]), EVOSUITE once
more performed better than RANDOOP concerning mutation testing. In regards to fault
detection, DIFFBLUE COVER was able to detect 4 out of 10 bugs, while EVOSUITE
and RANDOOP found 7 out of 10 and 5 out of 10 respectively. In comparison to the
findings in the study by Shamshiri et al.[4], both EVOSUITE and RANDOOP identified
faults for the same subject classes used in our experiment.

1.6 Scope/Limitation

Despite the insights gained from our results, it is important to acknowledge the limitations
of our study. Unfortunately, we were unable to gain access to more than one AI-based
unit test generation tool due to them being relatively new and with limited access. MA-
CHINET was one promising AI tool that was considered, but due to restrictions on the
number of generated tests to 50 per month, we were unable to include it [16]. Another
limitation was that subject classes were only chosen from 3 different projects, due to
limited familiarity with Apache Ant builds and time constraints.

1.7 Target group

Our research targets both researchers and practitioners in the field. This paper aims to
provide valuable insights that could inform the direction of future efforts in this area, as
well as inform developers about the effectiveness of using AI-based automated testing
tools in production and the industry.

1.8 Outline

This paper is organized as follows. Section 2 provides the experiment methodology, in-
cluding the experiment process, design, validity, and reliability. Section 3, presents the
theoretical background including obstacles in the investigation area, related work, and
research gap. Section 4 includes a description of the experiment setup and the steps fol-
lowed to collect and validate the data. In addition, it gives a comprehensive report on the
selected sample projects and the respective classes under investigation. Section 5 displays
the results and analysis of the experiment and comparison with related work and Section
6 discusses our findings. Section 7 addresses the validity threats of the study, while in
Section 8, we conclude and discuss future work.

3

2 Methodology

2.1 Research Project

The goal of this study is to compare AI-based unit test generation tools with conventional
automated unit test generation tools to determine whether AI-based tools can increase
the overall effectiveness of test suites in real-life open-source projects, as well as identify
their strengths and weaknesses. This paper targets both researchers and practitioners in
the field. Researchers are interested in gaining insights into the weaknesses of AI in the
context of unit test generation, which could inform the direction of future development ef-
forts in this area. The practitioners are concerned with the effectiveness of using AI-based
automated testing tools in practical scenarios. To achieve our objective, we will perform
an experiment to measure code coverage, mutation score, and fault detection capabilities
of the generated test suites using the same methodology as Serra et al. [7]. which was
built upon the work done by Bacheli et al. [6], and follows a similar experimental setup as
the study conducted by Shamshiri et al. [8]. Additionally, we will select subject classes
from a set of real-world open-source projects and defects using the Defects4J framework
[11] same as the ones used by Shamshiri et al.

1. RQ1 - What is the code coverage of AI-generated tests compared to conventional
tools?

2. RQ2- What is the mutation score of AI-generated tests compared to conventional
tools?

3. RQ3- What are the fault detection capabilities of AI-generated tests compared to
conventional tools?

A common alternative approach to our experiment would be to only measure code
coverage. However, research shows that code coverage alone is insufficient for effectively
evaluating the quality of a test suite [17]. Similarly, mutation testing alone shows a weak
correlation with real fault detection, as stated in the literature [18]. Therefore, to make
a proper assessment, we have included three criteria: code coverage, mutation score,
and fault detection capabilities. By answering the above research questions we hope to
provide valuable insights for researchers and developers in the field regarding the potential
of AI-based automated unit test generation tools when compared to unit tests generated
by conventional tools.

2.2 Research Method

An experiment is a research method often conducted in a laboratory setting that grants
the researcher control over the study and the tasks to be performed. It can include a
comparison of various techniques, methods, or procedures to thoroughly investigate their
effects on specific variables of interest. The primary objective of such research is to
manipulate one or more independent variables, which effectively represent the diverse
treatments or conditions being studied to observe and measure the effects it has on the
dependent variables allowing the researcher to draw conclusions [19]. The data collected
from the experiment is often analyzed using statistical methods to determine the effects
of the independent variables on the dependent variables.

This study aims to compare AI-based unit test generation tools with conventional au-
tomated unit test generation tools. An experiment allows the researchers to manipulate

4

the independent variable (type of test generation tool) by assigning subjects (projects) to
different treatments (AI-based tools vs. conventional tools). Furthermore, experimenting
provides researchers with control over various factors, such as project size, programming
language, and defect types which allows for a direct comparison between the two types
of tools. Lastly, through an experiment, the study aims to measure the dependent vari-
ables, which include code coverage, mutation score, and fault detection capabilities of the
generated test suites, facilitating the collection of quantitative data and enabling statisti-
cal analysis of the results making it the ideal to method to answer this studies research
questions.

Another method that could have been considered would be performing a case study.
However, while a case study could provide insights into the effectiveness of AI-based
test generation tools, it may not offer a controlled environment for a direct comparison
with conventional tools, this is because case studies focus on in-depth investigations of a
single entity or phenomenon and may not provide the necessary control, comparability,
and generalizability required for evaluating and comparing different methods [19].

For this study, we followed the experimental procedure outlined by C. Wohlin et al.
in their paper on empirical research methods in web and software engineering (Chapter
13.4) [19]. The procedure in the specific context of our experiment is as follows:

Planning and Design:

• Sampling: Select a sample of real-world open-source projects and defects using
the Defects4J framework to consider the representativeness of the sample and its
potential impact on the generalizability of the results.

• Randomization: Randomly assign participants (e.g., subjects, projects, or defects)
to either the AI-based tool group or the conventional tool group to ensure unbiased
results and minimize the influence of confounding factors.

• Independent and Dependent Variables: Clearly define and measure the indepen-
dent variable (type of unit test generation tool) and the dependent variables (code
coverage, mutation score, and fault detection capabilities).

• Confounding Factors: Identify and account for any potential confounding factors
that may influence the dependent variables independently of the independent vari-
able such as flaky tests, false positives, and project complexity

• Standard Experimental Designs: Choose an appropriate experimental design that
suits the research objectives and variables being studied. In this study we are fol-
lowing the same experimental design performed by Serra et al., [7].

Operation:

• Ensure participants’ commitment to the experiment and provide them with clear
instructions and materials that define all the tasks to be performed and make sure
participants record relevant data for later analysis.

Analysis and Interpretation:

• Analysis: Validate the collected data, and apply descriptive statistics to gain an
overview. Choose appropriate statistical tests based on the data characteristics and
the research design.

5

• Validity Concerns: Consider the validity of the results in terms of internal, external,
conclusion, and construct validity. Address potential threats to validity, such as
confounding factors and the representativeness of the sample.

• Conclusions and Actions: Based on the analysis results, draw appropriate conclu-
sions regarding the effectiveness of AI-based unit test generation tools compared to
conventional tools. Consider the strengths and weaknesses identified in the study.

2.2.1 Experimental Design

This experiment follows the same experimental design performed by Serra et al., [7],
however, there is no need to manually identify the defective versions of classes or write
manual tests since Defects4J can provide them for this experiment. Our study involves
the following steps.

Subject classes: Defects4J[11] is a framework that includes a database and a flex-
ible structure, that offers genuine software bugs written in Java to facilitate repeatable
experiments in the field of software testing research [11]. At the time of writing, De-
fects4J contains up to 835 bugs from open-source repositories such as Collections, Lang,
Time, Math, and more. Defects4J offers both (1) faulty versions of production classes,
(2) corresponding developer-written manual tests, (3) and bug-free versions of the classes.
We randomly selected 10 sample classes with a buggy and fixed version from 3 projects
among others showcased in the study by Shamshiri et al. [8] specifically Time, Math, and
Lang. More information about the subject classes can be found in Section 4.

Automated Unit test generation tools: For their study on automated unit test gener-
ation tools, Serra et al [7]. selected three tools: EVOSUITE, RANDOOP, and JTExpert.
EVOSUITE and RANDOOP are still considered state-of-the-art tools in this field and will
be included in our controlled experiment. However, we were unable to find information
on how to obtain access to JTExpert and set it up. Automated unit test generation tools
based on AI are still relatively new, so the number of options available is limited. Cur-
rently, the only publicly available AI-based tools for generating unit tests are DIFFBLUE
COVER and MACHINET. Both of these tools offer a free version for users to try out but
due to MACHINET’s limitation of only 50 free generations per month, it was not included
in the experiment.

Generating regression tests: Once the subject classes and their defects from De-
fects4J were identified we used the three automated unit test generation tools - EVO-
SUITE, RANDOOP, DIFFBLUE COVER - on both the faulty and fixed versions of the
classes. We ran the tools for up to 180 seconds, using their default settings, and repeated
the generation 10 times for each class to account for the randomness factor of random
and search-based algorithms typically used in conventional automated unit test genera-
tion tools as mentioned by Serra et al. [7]

Flaky tests: To conduct regression tests and identify faults, it is important to have
test suites that pass successfully on the fixed version of the subject classes. However, it is
important to acknowledge that these tools have the potential to generate nondeterministic
or flaky tests, which may also fail on the fixed version [8]. For example, flaky tests
often occur in the Time project when a test case depends on the system’s time. This
dependency can cause the test to pass during generation but fail when executed at a later
time. To mitigate this, we manually eliminated any failing tests in the fixed version before
recompiling the test suite.

False positives: In certain cases, a test may fail on the buggy version, even if it is
not classified as a flaky test. Nevertheless, the failing test might not be related to the

6

actual bug under investigation. These false positives often occur due to the test breaking
encapsulation or capturing outdated mocking behavior [8]. To overcome this, we followed
the same procedure performed by Shamshiri et al. [8] and compared the failure message
of the generated test with the failing messages of the developer-written test to determine
if it was a false positive. We spend 15-20 minutes for each generated test suite depending
on the number of failing tests.

Analysis To answer our research questions, we followed the same steps as those per-
formed by Serra et al.[7] for data analysis. We started by measuring the line coverage of
each tool - AI, conventional, and manually written tests. To ensure consistency, a widely
used open-source code coverage tool, JaCoCo[20], was utilized across all tests. Next, we
computed the mutation score (RQ2) for all test groups using PIT, a well-established tool
for mutation testing [21]. To answer RQ3, we performed the same actions as Serra et al.
[7]. We first generated tools for the fixed versions of classes and ran those tests against
their faulty versions. Then we generated tests directly for the faulty versions of the classes
because, as mentioned by Serra et al., "RANDOOP generates two kinds of suites: a re-
gression suite that records the current behavior and an error-revealing suite that checks
for specific specifications or contract violations" [7]. We considered both cases in the
fault detection analysis and displayed them separately. Finally, we calculate the average
for each tool regarding code coverage, mutation score, and fault detection to compare the
performance of each tool. Additionally, we measure the recall, precision, and F-measure
to evaluate the results of the fault detection (see Section 3).

2.3 Reliability and Validity

External validity: External validity is addressed by utilizing tools that are widely used
and well-established in the field. Moreover, we followed the same methodology per-
formed in the study by Serra et al. [7] and picked a randomized sample of classes from
different real-world open-source projects provided by Defects4J, from the ones mentioned
in the study by Shamshiri et al. [8], therefore allowing us to compare our findings with
their results when applicable. The use of the Defects4J framework, which provides a
database of real-world software bugs written in Java, ensures the repeatability of the ex-
periment. In Section 4, the tables reference Bug IDs from Defects4J, which consist of
an abbreviation of the project name (e.g., Time) followed by the bug number (e.g., 8).
These Bug IDs can be used to retrieve further information about the bug and project from
Defects4J. The appendix 1.7 provides the residing source file path and a link to the bug-
specific report for convenience.

Internal validity: To ensure the validity of our results, we manually investigated any
failing tests and dismissed any false positives or flaky tests. This involved comparing the
failing error messages of the automated tests generated by the tools with the failing error
messages of manually written developer tests in the buggy version of each class in order
to accurately reflect the performance of the tools.

Construct validity: The use of established tools like JaCoCo and PIT for measuring
the coverage and mutation score variables also contributes to ensuring construct validity.
In addition, The constructs are clearly defined, aligning with established practices in the
field ([6], [7], [10], [8]). Furthermore, the study replicates previous research, ensuring
consistency and comparability ([6], [7], [8]). Moreover, confounding factors such as flaky
tests and false positives, are addressed through manual investigation and eliminated.

Reliability: The study maintains reliability by making use of the publicly available
Defects4J dataset and ensuring consistency through the utilization of publicly accessible

7

tools for data gathering and analysis across all subject classes. Additionally, the genera-
tion of tests for each subject class is repeated 10 times to address the inherent randomness
in conventional unit test generation tools, thereby improving the reliability and consis-
tency of the obtained results. This repetition helps to provide more consistent and reliable
results.

2.4 Ethical Considerations

Considering that we are conducting a controlled experiment, there are no significant ethi-
cal considerations in the project’s research design to be mentioned. The experiment solely
relies on publicly available open-source projects from Defects4J, which is licensed under
the MIT License. Furthermore, all the tools used in the experiment are also publicly
available open-source, with the exception of DIFFBLUE COVER which is a commercial
tool. Moreover, the study does not involve human participants or sensitive data. The data
collected and analyzed focuses on evaluating the effectiveness of different test generation
tools regarding code coverage, mutation score, and fault detection capabilities. As long
as the experiment adheres to the terms and conditions of Defects4J and the tools used the
experiment’s design may not introduce any direct ethical concerns.

8

3 Theoretical Background

3.1 Introduction to Software Testing and Automated Unit Test Generation

Software testing is a critical process in software development, that aims to identify defects
and errors in software systems. It involves executing the software to find any inconsis-
tencies between the expected and actual behavior of the codebase and ensure the quality
and functionality of the software. There are various types of software testing, such as unit
testing, which focuses on testing individual components in isolation. Integration testing
verifies the interaction and compatibility between different components of the system.
Regression testing involves retesting previously tested functionality to ensure that recent
changes to the software have not introduced new defects. Other types of testing include
performance testing, end-to-end testing, security testing, and mutation testing.

The creation of tests is a crucial but time-consuming process that has led to the devel-
opment of many automated test generation tools to improve developer productivity and
increase the quality of test suites. Automated unit test generation tools are tools that can
automatically generate unit tests for software components. These tools primarily aim to
assist developers in increasing code coverage and finding regressions

3.2 Conventional Automated Unit Test Generation Techniques in Java

3.2.1 Random-based Techniques for Unit Test Generation

Random-based techniques for unit test generation refer to approaches that make use of
randomization to generate unit tests such as functions, methods, or classes. These tech-
niques aim to explore different execution paths and input combinations by randomly gen-
erating test inputs.

RANDOOP, one of the conventional tools used in the experiment utilizes a technique
called feedback-directed random testing which combines random-based algorithms and
feedback mechanisms to generate tests [22]. In short, RANDOOP creates tests by putting
together small pieces of code called method calls as shown in Figure 3.1. It chooses these
method calls randomly and picks the values to use as inputs from the tests it has already
created. Once it creates a new test, it runs it and checks if any rules or agreements are
broken. If a test breaks a rule, it informs the user while if a test does something wrong or
illegal, it gets rid of that test [22].

Figure 3.1: A simplified overview of RANDOOP’s test generation process.
Source: [22]

9

3.2.2 Search-Based Technique for Unit Test Generation

A search-based technique for unit test generation refers to approaches that make use of
searching algorithms to automatically generate unit tests. This technique explores the
space of all possible test inputs and generates tests that satisfy certain criteria such as
code coverage or a specific fault.

EVOSUITE, one of the conventional tools used in this experiment utilizes a search-
based algorithm called Genetic Algorithm (GA) [23] as illustrated in Figure 3.2. In brief,
this algorithm tries to solve Problems by imitating how living things adapt in nature.
It starts with a random group of solutions and continues evolving them until it finds a
solution that meets certain criteria, (e.g. code coverage) or until it has used all resources.
For every step of the evolution, a new group is created and filled with the best solutions
from the previous group where the fittest solutions are chosen (selection). Next, some
of the solutions might be combined to create new solutions (crossover) and others might
undergo small changes (mutation). Lastly, the new solutions are added to the new group
and this process is repeated until a solution is found or resources are depleted [23].

Figure 3.2: A simplified overview of EVOSUITES’s test generation process.
Source: [24]

3.2.3 Dynamic Symbolic Execution (DSE)

Dynamic Symbolic Execution is another technique that can be used for automated unit
test generation. It works by instrumenting and running a program while exploring all
the different paths it can take and keeping track of all the input constraints, conditions,
or other rules. After the program finishes executing and all the constraints and rules are
collected, it uses an SMT (Satisfiability Modulo Theories) solver to figure out new inputs
or data to guide the program towards new execution paths [25]. Utilizing DSE can result
in high coverage percentages and is less prone to false positives. However, currently, there
are no mature tools based on DSE available outside of academia [25].

3.3 AI-Based Unit Test Generation in Java

3.3.1 Reinforcement Learning Technique for Unit Test Generation

In recent years tools utilizing AI and machine learning models for unit test generation
have emerged. DIFFBLUE COVER, the AI-based tool used in our study is an autonomous
tool that uses AI to analyze the byte code of the methods in the code base to automatically
generate tests as shown in Figure 3.3. It identifies multiple approaches to invoke each
method and employs reinforcement learning to achieve comprehensive coverage of the

10

entire codebase [26]. DIFFBLUE COVER is deterministic, meaning that each time it is
used to generate tests, it will produce the same test suite unless changes are made in the
codebase.

Figure 3.3: A simplified overview of DIFFBLUE’s test generation process.
Source: Adapted from [27]

3.3.2 Large Language Models for Unit Test Generation

Another type of AI used for test generation is using transformer-based large language
models (LLMs) such as MACHINET which we were unable to include in this study due
to usage restriction. However, such tools have certain obvious limitations such as be-
ing unpredictable with minor prompt changes leading to different results. Furthermore,
LLMs cannot reason Considering that Language Models solely offer the most probable
text completion for a given prompt without providing substantial assurances on reasoning
metrics [28].

3.4 Concepts in Test Suite Evaluation

3.4.1 Mutation Score

Mutation testing is a testing technique that creates deliberate modifications in the source
code (mutants) with every mutant representing a single alteration from the original pro-
gram. The mutants are then tested by the test suite to determine how many mutants can
pass through the tests undetected (survived) and how many are caught (killed) [29]. The
mutation score is calculated by dividing the number of killed mutants by the total number
of generated mutants (as shown in Equation 1). Table 3.1 provides a list of the most com-
mon mutation operators in object-oriented programming (OOP) languages.

Mutation Score = (
Number of Mutants Killed

Total Number of Mutants Generated
) ∗ 100 (1)

11

Table 3.1: Mutation Operations in Mutation Testing for OOP Languages

Mutation Operation Description
Arithmetic Operator Mutations Mutations that alter arithmetic operators, such as re-

placing addition (+) with subtraction (-), multiplica-
tion (*) with division (/), or vice versa.

Relational Operator Mutations Mutations that modify relational operators, such as
changing less than (<) to greater than (>) or equal to
(==) to not equal to (!=).

Conditional Operator Mutations Mutations that affect conditional operators, such as
replacing logical AND (&&) with logical OR (||) or
vice versa.

Assignment Operator Mutations Mutations that modify assignment operators, such as
replacing "=" with "+=", "-=", "*=", or "/=".

Increment/Decrement Mutations Mutations that change the increment (++) or decre-
ment (–) operators to their counterparts, or remove
them altogether.

Method Call Mutations Mutations that modify method invocations, such as
changing the method names, and adding, removing,
or changing the order of arguments

Conditional Statement Mutations Mutations that alter conditional statements, such as
changing in if/else statements, reversing the condi-
tion, or removing it entirely.

Loop Statement Mutations Mutations that affect loop statements, such as modi-
fying loop conditions, variables, or boundaries.

Exception Handling Mutations Mutations that modify exception handling code, such
as replacing a thrown exceptions, or changing their
handling strategy.

Object State Mutations Mutations that modify object state, such as modifying
the visibility of attributes and methods or removing,
adding, and changing the values of attributes.

Inheritance Mutations Mutations that affect inheritance relationships, such
as changing the superclass or modifying method over-
rides in subclasses.

Encapsulation Mutations Mutations that modify the visibility of attributes or
methods, such as changing a method from public to
private.

Interface Mutations Mutations that alter interface implementations, such
as changing method signatures or adding/removing
implemented interfaces.

Polymorphism Mutations Mutations that affect polymorphic behavior, such as
changing method calls or adding/removing method
overrides.

Object Creation Mutations Mutations that modify object creation and instantia-
tion, such as changing constructor arguments or re-
moving object creation and instantiation.

12

Null Mutations Mutations that add or remove null values, such as as-
signing null to variables or returning null from meth-
ods.

Boundary Mutations Mutations that target boundary conditions, such as
modifying loop boundaries, changing literals, or us-
ing extreme values in calculations or comparisons.

Control Flow Mutations Mutations that modify control flow structures, such as
adding/removing control flow statements or changing
loop conditions.

Resource Management Mutations Mutations that affect resource management, such as
introducing resource leaks.

Thread Safety Mutations Mutations that target thread safety issues, such as in-
troducing race conditions, changing synchronization
mechanisms, or modifying shared data access.

13

3.4.2 Code Coverage

Code coverage is a measure of how much of a software’s source code is exercised during
the execution of a test suite. Higher code coverage can be an indicator that a large portion
of the code has been tested by the test suite. However, code coverage alone does not
guarantee the absence of faults and the quality of a test suite [17]. Different types of code
coverage focus on different aspects. For example, path coverage focuses on the percentage
of unique paths through the code that are exercised during testing and is calculated as
shown in Equation 2. Branch coverage is concerned with the percentage of branches
or decision points within the code that is executed during testing. Branch coverage is
measured as displayed in Equation 3. Lastly, line coverage measures the percentage of
lines of code that are executed during testing by determining if a line of code has been
executed at least once. Line coverage can be calculated as shown in Equation 4. In this
experiment, we are measuring line coverage to align with the methodology used by Serra
et al. [7].

Path Coverage = (
Number of Unique Paths Covered

Total Number of Unique Paths
) ∗ 100 (2)

Branch Coverage = (
Number of Branches Covered

Total Number of Branches
) ∗ 100 (3)

Line Coverage = (
Number of Executed Lines

Total Number of Lines
) ∗ 100 (4)

3.4.3 Fault Detection

The ability of a test suite to detect faults or regressions directly impacts the quality of a
test suite. Fault detection in testing refers to the process of identifying defects or faults
that cause the system to deviate from its intended functionality.

This process can involve various techniques. For example, dynamic testing may
involve functional testing, integration testing, regression testing, stress testing, and ex-
ploratory testing in order to identify any existing faults in the system. Other ways of
searching for faults in the system can be done by using static code analysis tools, moni-
toring, and logging to detect issues in real-time, or user feedback.

Automated unit test generation tools can often be included to further test any scenar-
ios that might have been missed by the developers during manual testing, or to explore
boundary conditions and edge cases by generating test inputs that test the limits of input
ranges or system constraints through fuzz testing.

3.5 Related Research

In recent years, there have been several studies on automated unit test generation. In
2008, Baccheli et al. [6] performed a study in the FREENET project using EVOSUITE,
RANDOOP, and JTEXPERT to compare manually and automatically generated in the

14

tests considering code coverage, mutation score, and fault detection ability. The results
showed that automated tools could generate tests for numerous classes in a short pe-
riod. Furthermore, Baccheli et al. found that the regression tests generated by these tools
achieved high code coverage and mutation scores as well as, helped uncover unexpected
scenarios, revealing defects that other approaches might miss. However, the research also
identified several drawbacks, such as that developers were not compelled to thoroughly
study the tested code. Additionally, these tools required a significantly higher number of
test cases compared to manual tests to detect defects. Furthermore, automatically gen-
erated tests often had confusing methods and variable naming lacking self-explanation
making it hard for developers to read.

Ten years later, Serra et al [7]. reconstructed the same experiment by Baccheli et
al. with the addition of direct fault detection to measure any improvements. The results
conclude that there haven’t been any dramatic improvements since the original study.
However, both of these studies are limited to comparing conventional automated gener-
ation tools with manual tests and were conducted only in the context of the FREENET
project.

In 2015, Shamshiri et al. [8] performed a comprehensive study on a larger scale using
the Defects4J dataset using RANDOOP, EVOSUITE, and AGITA to evaluate how well
the generated test suites perform at detecting faults. The study found that test suites were
able to detect 55.7% of the faults on average, while only 19.9% of all the individual test
suites detected a fault.

In 2020, Souza et al. [9] conducted a large-scale investigation using ten open-source
projects, totaling 1,368 classes aiming to compare the effectiveness of manually writ-
ten tests and automatically generated tests using EVOSUITE and RANDOOP. The study
focused on regression tests and evaluated the test suites in terms of line coverage and mu-
tation score. Contrary to the findings reported by Bacheli et al. [6] and Serra et al. [7],
Souza et al. discovered that, overall, manual tests performed better than automatically
generated tests in terms of both line coverage and mutation score.

Another study performed by Almasi et al [10] using EVOSUITE and RANDOOP in
an industrial scale application found that EVOSUITE detected 56.40% and 38.00% of
these faults respectively. Additionally, Almasi et al highlighted that the developers in the
industry are concerned with the readability and number of tests generated by these tools
making them hard to integrate.

However, none of the above-mentioned related work explored the performance of
AI-based tools for unit test generation in any context which is what this study aims to
investigate.

15

4 Research project - Implementation

In this section, we describe the implementation of our controlled experiment. The section
highlights the setup environment, tools used, classes under investigation, and all the steps
taken to implement our method of data collection.

For the experiment, we began by randomly selecting a set of open-source projects
built with Maven from the Defects4J dataset. The selected projects are Time, Math, and
Lang.

The Defects4Js Time identifier refers to the joda-time project. A quality replacement
for the Java date and time classes for pre-Java 8 projects - its design allows for multiple
calendar systems, including, but not limited to, Gregorian, Julian, Buddhist, and Islamic
while still providing a simple API[30]. This project encases a total of 26 bugs 3 out of
which are being used in the experiment - Time 8, Time 16, and Time 20. Depending
on the bug, the overall project size ranges from 81385 Lines Of Code(LOC) to 80259.
Averaging 315 different classes.

The commons-math project can be accessed from the Defects4J framework using
Math identifier. The commons-math is a library of lightweight, self-contained mathe-
matics and statistics components addressing the most common problems not available in
the Java programming language or commons-lang [31]. From this project, which has a
total of 106 bugs, three bugs are being utilized in our experiment. Namely, Math 61, Math
35, and Math 3. Out of the 3 projects, commons-math is the largest in terms of both LOC
and the number of classes. Adjusting to developments made on the project between bugs,
the total LOC is 116735 with over nine hundred(935) different classes.

Lastly, the smallest project used in the experiment comes under 200 classes with an
average LOC of 49799. The commons-lang project is abbreviated to Lang in the dataset.
The main purpose of it is to provide extra methods to manipulate the core classes of
Java, as standard Java libraries fail to do so. Notably, String manipulation methods, basic
numerical methods, object reflection, concurrency, creation and serialization, and System
properties [31]. Regardless of the size, this project houses a total of 64 bugs. Including
bug Lang 4, Lang 34, and Lang 36 which will be used in the experiment.

All prior mentioned bugs are chosen based on a random selection. Each chosen bug
has an accompanying manually written test to showcase it. Further details concerning the
manual tests are exposed in Table 4.2 alongside the target class being tested.

16

Table 4.2: The details of the manual tests and target classes. The first column contains
Bug ID. In the following column LOC of a class containing the given bug is provided.
Next to it, is the number of methods the container class has. The last two columns have
LOC and the number of assertions each manually-written test class has.

Bug ID Container LOC Methods Test LOC Assertions
Time 16 356 43 724 227
Math 66 151 2 106 13
Lang 4 44 2 23 4
Lang 36 635 46 995 502
Time 20 1786 181 279 78
Math 3 688 43 783 160
Lang 34 803 121 74 12
Math 35 38 4 69 2
Math 61 77 7 132 11
Time 8 586 58 790 233

With the selection of the bugs done, both fixed and buggy versions of the source
project are generated. First, measurements were conducted to assess the quality of each
manual test. The metrics used are Code Coverage and Mutation score. The Code Cov-
erage is measured using JaCoCo while PIT is utilized to generate the Mutation score.
Sample results from each tool are provided in Figure 4.4, and 4.5 respectively.

Figure 4.4: Sample result of JaCoCo: Manual test for bug Time 16.

Figure 4.5: Sample result of PIT: Manual test for bug Time 16.

Afterward, we removed the manual tests completely and ran the selected automated
unit test generation tools (EVOSUITE, RANDOOP) and the AI-based tool (DIFFBLUE

17

COVER) to generate tests for the fixed versions of the classes. We used the tools’ de-
fault settings, allocated a time budget of 180 seconds, and repeated the process 10 times
for each class while calculating line coverage and mutation score simultaneously. For
illustration purposes, a small portion of the test suite generated by each mentioned tool is
attached in Listing 1, 2, and 3. For the entire test class, please see [32].

1 /**
2 * Method under test: {@link MathArrays#scaleInPlace(double, double[])}
3 */
4 @Test
5 public void testScaleInPlace() {
6 // Arrange
7 double[] arr = new double[]{10.0d, 1.0d, 10.0d, 1.0d};
8

9 // Act
10 MathArrays.scaleInPlace(10.0d, arr);
11

12 // Assert
13 assertEquals(100.0d, arr[0], 0.0);
14 assertEquals(10.0d, arr[1], 0.0);
15 assertEquals(100.0d, arr[2], 0.0);
16 assertEquals(10.0d, arr[3], 0.0);
17 }
18

Listing 1: Portion of test suite generated for bug Math 3 by DIFFBLUE COVER.

1 double[] doubleArray83 = org.apache.commons.math3.util.MathArrays.
ebeAdd(doubleArray62, doubleArray77);

2 double[] doubleArray85 = org.apache.commons.math3.util.MathArrays.
normalizeArray(doubleArray77, (-100.0d));

3 org.apache.commons.math3.util.MathArrays.scaleInPlace((-100.0d),
doubleArray85);

4 double double87 = org.apache.commons.math3.util.MathArrays.distance(
doubleArray14, doubleArray85);

5 double[] doubleArray88 = org.apache.commons.math3.util.MathArrays.scale
(2.0d, doubleArray85);

6 ...
7 org.junit.Assert.assertNotNull(doubleArray85);
8 org.junit.Assert.assertEquals(java.util.Arrays.toString(doubleArray85),

"[10000.0]");
9 org.junit.Assert.assertTrue("’" + double87 + "’ != ’" + 9965.0d + "’",

double87 == 9965.0d);
10

11 }
12

Listing 2: Portion of test suite generated for bug Math 3 by RANDOOP.

18

1 @Test(timeout = 4000)
2 public void test174() throws Throwable {
3 double[] doubleArray0 = new double[6];
4 doubleArray0[0] = 202.0;
5 doubleArray0[1] = 202.0;
6 doubleArray0[2] = (-2005.874945627);
7 doubleArray0[3] = 604.3128111436902;
8 doubleArray0[4] = 202.0;
9 doubleArray0[5] = 202.0;

10 MathArrays.scaleInPlace(202.0, doubleArray0);
11 }
12

Listing 3: Portion of test suite generated for bug Math 3 by EVOSUITE.

The test suites were manually investigated for flaky tests, and any such tests were
removed. Subsequently, we executed the generated test suites on the respective buggy
versions. The results were manually analyzed for any false positives, and if any were
found, they were removed. We spend 15-20 minutes investigating for false positives de-
pending on the number of failing tests. Finally, we directly generated test suites for the
buggy versions of the classes, following the same procedure. The Figure 4.6 illustrates
the procedure.

Figure 4.6: Summary of the experimental setup: For each subject class selected from
the Defects4J dataset, we generate tests on the fixed version of the class, measure code
coverage and mutation score, and execute the test on the buggy version.
Source: Adapted from [8]

The entire process is conducted on a system running Arch Linux with kernel version
6.3.5. Further specifications include 16 gigabytes of RAM, and 4 core CPU.

19

5 Analysis of the results

5.1 RQ1 - Coverage of AI Tools vs Conventional Automated Tests

Based on the data gathered for line coverage displayed in Table 5.3, it is evident that in
multiple instances, all tools were able to achieve line coverage comparable to or higher
than the manually written developer tests. However, there was an exception in the case
of classes containing many private methods, such as Math 66, where only EVOSUITE
outperformed the manually written tests. All three tools are unable to generate tests for
private methods directly but they may indirectly cover them by testing the public meth-
ods that make calls to those private methods. EVOSUITE seems to be the only tool that
performed well in this scenario. Overall, EVOSUITE achieved the highest coverage av-
eraging 89%, followed by the manually written developer tests averaging 79%, while
RANDOOP and DIFFBLUE COVER achieved the same coverage averaging 63%.

Our results indicate that the AI-based tool (DIFFBLUE COVER) did not surpass any
of the conventional tools or the manual tests in terms of coverage. However, it is note-
worthy that the AI-based tool generated significantly fewer tests on average, while still
achieving high coverage percentages in many cases. For example, in the bug with ID Time
8, RANDOOP generated over 150,000 assertions with a coverage of 69%, EVOSUITE
generated 3,147 assertions with a coverage of 86%, and DIFFBLUE COVER generated
128 assertions with a coverage of 70%. Additionally, DIFFBLUE COVER does not gen-
erate tests for trivial methods, which may contribute to an increase in overall coverage
without necessarily improving test quality. This strongly suggests that the AI-based tool
generates notably fewer redundant assertions.

Table 5.3: Results of line coverage achieved by the three testing tools along with the
manually written tests on a set of bugs from the Defects4J dataset. The bug IDs are listed
in the first column, followed by the coverage percentages obtained by each testing tool in
the subsequent columns. The last row displays the average line coverage for each testing
tool across all bugs.

Bug Manual Randoop Evosuite Diffblue Cover
Time 16 94% 27% 83% 83%
Math 66 95% 24% 100% 14%
Lang 4 92% 100% 100% 32%
Lang 36 97% 65% 86% 79%
Time 20 40% 30% 57% 43%
Math 3 82% 83% 96% 90%
Lang 34 23% 32% 91% 27%
Math 35 95% 100% 96% 94%
Math 61 88% 99% 98% 97%
Time 8 86% 69% 86% 70%
Overall 79% 63% 89% 63%

20

5.2 RQ2 - Mutation Score of AI Tools vs Conventional Automated Tests

In terms of mutation score, EVOSUITE achieved the highest score among the tools, aver-
aging 67%. It was followed by RANDOOP with an average score of 50%. On the other
hand, DIFFBLUE COVER had the lowest mutation score, averaging 40%. The inability
of both DIFFBLUE COVER and RANDOOP to generate tests for private methods had an
impact on the mutation score, as observed in the results for Math 66 in Table 5.4. How-
ever, DIFFBLUE COVER, the AI-based tool, was able to achieve a higher mutation score
only for Lang 36, where the class under test consisted solely of static methods. However,
among our selected test subjects, only EVOSUITE was able to outperform the manually
written tests averaging 63% in terms of mutation score.

Overall, these findings suggest that, when it comes to effectively detecting faults
through mutation testing, both manually written tests and conventional automated unit
test generation tools outperformed the AI-based tool.

Table 5.4: Results of mutation score achieved by the three testing tools along with the
manually written tests on a set of bugs from the Defects4J dataset. The bug IDs are listed
in the first column, followed by the mutation score obtained by each testing tool in the
subsequent columns. The last row displays the average mutation score for each testing
tool across all bugs.

Bug Manual Randoop Evosuite Diffblue Cover
Time 16 79% 24% 55% 43%
Math 66 82% 8% 73% 6%
Lang 4 60% 80% 72% 7%
Lang 36 79% 38% 56% 58%
Time 20 25% 19% 27% 27%
Math 3 66% 83% 49% 54%
Lang 34 4% 6% 86% 13%
Math 35 79% 79% 83% 57%
Math 61 91% 98% 79% 91%
Time 8 62% 68% 92% 46%
Overall 63% 50% 67% 40%

21

5.3 RQ3 - Faults Detected by AI Tools vs Conventional Automated Tests

Regarding the fault detection capability, Table 5.5 provides information on whether the
respective tools were able to identify the bugs. RANDOOP, which generated both re-
gression and error-revealing tests, unfortunately, didn’t generate any error-revealing tests
(E.R) for the subject classes under investigation. In terms of overall performance, EVO-
SUITE demonstrated the highest fault detection capability for regression tests, success-
fully identifying 7 out of 10 faults. RANDOOP came in second place, detecting 5 out of
10 faults, while DIFFBLUE COVER had the lowest performance, identifying 4 out of 10
faults. It’s worth noting that none of the tools were able to identify faults when generating
bugs directly for the faulty version of the classes which does not come as a surprise since
the primary usage of these tools is to identify regressions. Another possible reason could
be not all bugs are necessarily caused by coding errors, but rather by deviations from the
intended behavior or functionality.

Our results indicate that the AI-based tool, DIFFBLUE COVER, performed worse
than the conventional tools in terms of fault detection using regression tests. It is worth
mentioning that Papadakis et al. found that both the size of the test suite and the mutation
score have an impact on fault detection, but weak correlations exist between mutation
score and fault detection when controlling for test suite size [18]. DIFFBLUE COVER
generated the fewest number of assertions and achieved the lowest mutation score among
the tools, which could potentially be correlated with its lower number of detected faults.

Table 5.6 provides information on the number of flaky tests encountered when execut-
ing the test suite generated for the fixed version on the buggy version. Among the tested
tools, DIFFBLUE COVER exhibited the highest number of flaky tests during regression,
with a total of 5 cases observed across all classes, while RANDOOP had the smallest
number of cases with only 1. EVOSUITE fell in the middle, with a total of 3 cases of
flaky tests during regression testing. It is worth noting that DIFFBLUE COVER had flaky
tests for only 2 bug instances, whereas EVOSUITE had flaky tests for 3 bug instances.
Additionally, none of the tools produced any false positives. We did not investigate the
test suites generated directly for the buggy version since none of the tools were able to
identify any bugs in that case.

22

Table 5.5: Summary of fault detection achieved by three testing tools, along with manu-
ally written tests, for a set of bugs from the Defects4J dataset. The bug IDs are listed in
the first column. The subsequent columns indicate whether the bug was detected (+), not
detected (-), or if no tests were generated (*) by each testing tool. The last row displays
the number of faults detected by each testing tool across all bugs, including regression
and directly generated tests for the faulty classes.

Randoop Reg. Randoop E.R. Evosuite Diffblue Cover
Bug

Reg Direct Reg Direct Reg Direct Reg Direct
Time 16 - - * * - - - -
Math 66 + - * * + - + -
Lang 4 - - * * - - - -
Lang 36 - - * * + - - -
Time 20 - - * * - - - -
Math 3 + - * * + - - -
Lang 34 - - * * + - + -
Math 35 + - * * + - + -
Math 61 + - * * + - + -
Time 8 + - * * + - - -
Overall 5/10 0 0 0 7/10 0 4/10 0

23

Table 5.6: The number of false positives identified, i.e., the number of different types of
failing tests when executing the test suite generated on the fixed version compared to the
buggy version, is reported in the table. The term "different types" implies that if multiple
test cases fail due to the same reason, they are considered as one instance of a false
positive. It should be noted that flaky tests can technically be considered as false positives
[8], but in this context, we distinguish them because false positives primarily occur due to
the breaking of encapsulation or outdated mocking behavior as we mentioned in Section
2. Since none of the tools resulted in any false positives, the table only includes the
number of flaky tests identified.

Randoop Reg. Evosuite Diffblue Cover
Bug

Flaky Tests Flaky Tests Flaky Tests
Time 16 0 0 0
Math 66 1 1 0
Lang 4 0 1 0
Lang 36 0 0 3
Time 20 0 0 0
Math 3 0 0 0
Lang 34 0 1 0
Math 35 0 0 0
Math 61 0 0 0
Time 8 0 0 2
Overall 1 3 5

After analyzing the fault detection capabilities of the tested tools, we aimed to further
evaluate their results using recall, precision, and F-measure. These metrics provide a more
detailed assessment of the effectiveness of the tools in identifying faults and are defined
as follows:

• True Positive (TP): The number of bugs correctly identified by the testing tool.

• False Positive (FP): The number of bugs incorrectly identified by the testing tool
(i.e., flaky or false positive tests).

• False Negative (FN): The number of bugs not identified by the testing tool.

In our experiment, each class under investigation contained one bug, resulting in True
Positives (TP) being either 1 or 0. The number of False Positives (FP) for each tool
(RANDOOP, EVOSUITE, DIFFBLUE COVER) can be seen in Table 5.6. Similarly, the
False Negatives (FN) would also be either 1 or 0, as each class only contained a single
bug.

Recall (also known as Sensitivity) measures the proportion of bugs that were correctly
identified by the testing tool out of all the bugs that exist. It is calculated using Equation
5.

Recall =
TP

TP + FN
(5)

24

Precision measures the proportion of failing tests that were true bugs out of all the
failures identified. The Precision value is calculated using Equation 6.

Precision =
TP

TP + FP
(6)

To compute the F-measure, we first calculate the numerator using Equation 7, which
is the harmonic mean of Precision and Recall. Then, the denominator is calculated using
Equation 8, which is the sum of Precision and Recall. The F-measure provides a balanced
measure between Precision and Recall and is computed using Equation 9.

Numerator = 2× (Precision×Recall) (7)

Denominator = Precision+Recall (8)

F −measure =
Numerator

Denominator
(9)

The results of recall, precision, and F-measure for each of the tools can be found in
Figure 5.7. In brief, EVOSUITE demonstrated a relatively high recall rate of 0.7, indicat-
ing that it was able to identify a significant portion of the bugs and a precision rate of 0.7,
suggesting that the identified bugs were mostly true positives. The F-measure for EVO-
SUITE was also 0.7, indicating a balanced performance between recall and precision.

RANDOOP Regression tests achieved a recall rate of 0.5, meaning it successfully
identified half of the bugs and a relatively high precision rate of 0.833, suggesting a low
number of false positives. The F-measure for RANDOOP Regression was 0.625, indicat-
ing a moderate balance between recall and precision.

DIFFBLUE COVER achieved a recall rate of 0.4, indicating it identified a lower
proportion of the bugs compared to the other tools. The precision rate for DIFFBLUE
COVER was at 0.444, suggesting a relatively higher number of false positives compared
to EVOSUITE and RANDOOP. The F-measure for DIFFBLUE COVER was 0.42, indi-
cating a moderate balance between recall and precision.

These results further support the conclusion that EVOSUITE performed the best among
the tested tools in terms of fault detection, as it achieved the highest values for recall,
precision, and F-measure, while on the other hand, DIFFBLUE COVER performed the
lowest in terms of fault detection, with lower values for recall, precision, and F-measure.

25

Figure 5.7: The results for recall, precision, and F-measure for each tool.

26

6 Discussion

Our empirical study compared manually written tests by developers, two conventional
automated unit test generation tools, and one publicly available AI-based automated unit
test generation tool. By conducting experiments on the Defects4J dataset, our results
show the following: 1) In terms of code coverage, conventional tools outperformed both
manual and AI-generated tests. EVOSUITE took the first place, averaging 89%, while
the AI-based tool DIFFBLUE COVER shared the last place, averaging 63%. When com-
paring these results to the study conducted by Serra et al. (Table I in [7]), it is important
to note that, although our experiment used a different set of subject classes, our findings
indicate that EVOSUITE continues to outperform RANDOOP in terms of code coverage.
2) For mutation score, the AI-based tool performed the worst, averaging at 40%, while
EVOSUITE performed the best, averaging at 67%. Similarly to the study conducted by
Serra et al. (Table I in [7]), our results demonstrate that EVOSUITE achieved a higher
mutation score and continued to outperform RANDOOP in this criterion. 3) Regard-
ing fault detection using regression, the conventional tools surpassed the AI-based tool.
EVOSUITE detected 7 out of 10 bugs, RANDOOP detected 5 out of 10, and DIFFBLUE
COVER detected 4 out of 10. However, none of the tools were able to find any defects
when generating tests directly for the buggy version of the subject classes. Comparing the
obtained results with the findings of the study conducted by Serra et al. (Table I in [7]),
it can be observed that EVOSUITE once again outperforms RANDOOP in terms of fault
detection capabilities for regression tests. Furthermore, our findings for the subset of bugs
we selected from the study conducted by Shamshiri et al. [8] align with their reported re-
sults. Both EVOSUITE and RANDOOP identified the same faults as reported by them,
without any additional or fewer detections. Additionally, none of the tools produced any
false positives, aligning with the findings of Shamshiri et al. [8].

Our findings suggest that conventional tools still outperform the AI-based tool regard-
ing code coverage, mutation score, and fault detection. Nonetheless, it is important to
note that the AI-based tool generated a significantly smaller number of assertions and
flaky tests while still achieving high percentages of code coverage, mutation score, and
detecting an adequate number of faults. Additionally, DIFFBLUE COVER generates far
more readable tests but also includes comments. This can contribute to better integration,
debugging, maintainability, and effectively addressing the concerns raised by developers,
as mentioned by Almasi et al. [10].

27

7 Threats to validity

External validity: In our study, we selected a sample of 10 classes from 3 open-source
Java projects thus, the findings and conclusions drawn from this study may not adequately
represent the broader variety of projects, programming languages, and their specific char-
acteristics and semantic differences. Another external validity threat is the limited usage
of AI-based tools in the experiment. Due to the novelty of AI-based unit test generation
tools, we were able to get access to only one tool, DIFFBLUE COVER. Other tools were
either still under heavy development and not publicly available, or not accessible for free
use (MACHINET).

Internal Validity: Even though we manually investigated all failure reasons exhib-
ited by the generated test suites and compared them with the results from the manually
written developer test to ensure their validity, there is a chance that some test failures
may have been due to the same underlying issue as the bug, rather than a flaky test. As a
result, a failure could have potentially indirectly discovered the bug but was overlooked
by us during the investigation. Additionally, we spent approximately 15 to 20 minutes for
each class iteration, depending on the number of failing tests, in order to manually verify
whether a test failure was a false positive or not. The time constraint of this process could
potentially have impacted the results.

Construct Validity: According to Shamshiri et al., "Each bug is represented by a
minimized difference between the buggy version and a later fixed version, rather than
the actual code change that introduced the bug. Consequently, while the bugs are indeed
genuine, not all of them may accurately represent regression faults" [8]. Suggesting that
the results might underestimate the capabilities of the tools. Furthermore, it is important
to acknowledge that the primary usage of the selected automated unit testing tools is
regression testing and not discovering existing bugs in the code base.

28

8 Conclusions and Future Work

We investigated the performance of an AI-based test generation tool regarding code cov-
erage, mutation score, and fault detection by empirically comparing them to conventional
unit test generation tools. Our results showed that even though the AI tool was surpassed
in all three criteria by the conventional tools it was able to achieve satisfactory results
while generating fewer redundant test cases and generating more readable code in certain
cases, even surpassing conventional tools. This indicates that although conventional au-
tomated unit test generation tools currently hold an advantage in terms of performance,
AI-based tools demonstrate promise and offer specific advantages that make them more
attractive to developers and the industry. We hope that our findings will inspire further re-
search to improve the capabilities of AI unit test generation tools. Additionally, we hope
that our research will serve as a means to evaluate future advancements in this field.

In the future, we plan to repeat the experiment using a larger number of available AI
tools for unit test generation, alongside a larger sample of projects from the Defects4J
dataset. This will allow us to further explore and gather more comprehensive insights into
the capabilities and improvements of AI in unit test generation.

29

References

[1] M. A. Jamil, M. Arif, N. S. A. Abubakar, and A. Ahmad, “Software testing
techniques: A literature review,” in 2016 6th International Conference on
Information and Communication Technology for The Muslim World (ICT4M), 2016,
pp. 177–182. [Online]. Available: https://doi.org/10.1109/ICT4M.2016.045

[2] S. S. R. Ahamed, “Studying the feasibility and importance of software
testing: An analysis,” CoRR, vol. abs/1001.4193, 2010. [Online]. Available:
http://arxiv.org/abs/1001.4193

[3] C. University. (2013) Financial content: Cambridge university study states
software bugs cost economy $312 billion per year. [Online]. Available:
https://www.prweb.com/releases/2013/1/prweb10298185.htm

[4] M. Ellims, J. Bridges, and D. C. Ince, “The economics of unit testing,” Empirical
Software Engineering, vol. 11, no. 1, pp. 5–31, Mar 2006. [Online]. Available:
https://doi.org/10.1007/s10664-006-5964-9

[5] P. McMinn, “Search-based software test data generation: a survey,” Software
Testing, Verification and Reliability, vol. 14, no. 2, pp. 105–156, 2004. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.294

[6] A. Bacchelli, P. Ciancarini, and D. Rossi, “On the effectiveness of manual
and automatic unit test generation,” in 2008 The Third International Conference
on Software Engineering Advances, 2008, pp. 252–257. [Online]. Available:
https://doi.org/10.1109/ICSEA.2008.66

[7] D. Serra, G. Grano, F. Palomba, F. Ferrucci, H. C. Gall, and A. Bacchelli, “On the
effectiveness of manual and automatic unit test generation: Ten years later,” in 2019
IEEE/ACM 16th International Conference on Mining Software Repositories (MSR),
2019, pp. 121–125. [Online]. Available: https://doi.org/10.1109/MSR.2019.00028

[8] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri,
“Do automatically generated unit tests find real faults? an empirical study of
effectiveness and challenges (t),” in 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2015, pp. 201–211. [Online]. Available:
https://doi.org/10.1109/ASE.2015.86

[9] B. Souza and P. Machado, “A large scale study on the effectiveness of manual
and automatic unit test generation,” in Proceedings of the XXXIV Brazilian
Symposium on Software Engineering, ser. SBES ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 253–262. [Online]. Available:
https://doi.org/10.1145/3422392.3422407

[10] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds, “An industrial
evaluation of unit test generation: Finding real faults in a financial application,”
in 2017 IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP), 2017, pp. 263–272. [Online].
Available: https://doi.org/10.1109/ICSE-SEIP.2017.27

30

https://doi.org/10.1109/ICT4M.2016.045
http://arxiv.org/abs/1001.4193
https://www.prweb.com/releases/2013/1/prweb10298185.htm
https://doi.org/10.1007/s10664-006-5964-9
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.294
https://doi.org/10.1109/ICSEA.2008.66
https://doi.org/10.1109/MSR.2019.00028
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1145/3422392.3422407
https://doi.org/10.1109/ICSE-SEIP.2017.27

[11] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing faults to
enable controlled testing studies for java programs,” in Proceedings of the 2014
International Symposium on Software Testing and Analysis, ser. ISSTA 2014.
New York, NY, USA: Association for Computing Machinery, 2014, p. 437–440.
[Online]. Available: https://doi-org.proxy.lnu.se/10.1145/2610384.2628055

[12] G. Fraser and A. Arcuri, “Evosuite: Automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering, ser.
ESEC/FSE ’11. New York, NY, USA: Association for Computing Machinery,
2011, p. 416–419. [Online]. Available: https://doi.org/10.1145/2025113.2025179

[13] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed random testing for
java,” in Companion to the 22nd ACM SIGPLAN Conference on Object-Oriented
Programming Systems and Applications Companion, ser. OOPSLA ’07. New
York, NY, USA: Association for Computing Machinery, 2007, p. 815–816.
[Online]. Available: https://doi.org/10.1145/1297846.1297902

[14] A. Gambi, G. Jahangirova, V. Riccio, and F. Zampetti, “Sbst tool competition
2022,” in Proceedings of the 15th Workshop on Search-Based Software Testing, ser.
SBST ’22. New York, NY, USA: Association for Computing Machinery, 2023, p.
25–32. [Online]. Available: https://doi-org.proxy.lnu.se/10.1145/3526072.3527538

[15] Diffblue. (2020) Diffblue is a pioneering generative ai for code company
with a mission to change the way software is written. [Online]. Available:
https://www.diffblue.com/about-us

[16] (2022) Ai in java: How ai is revolutionizing soft-
ware development. [Online]. Available: https://blog.machinet.net/post/
ai-in-java-how-ai-is-revolutionizing-software-development

[17] R. Gopinath, C. Jensen, and A. Groce, “Code coverage for suite evaluation
by developers,” in Proceedings of the 36th International Conference on
Software Engineering, ser. ICSE 2014. New York, NY, USA: Association
for Computing Machinery, 2014, p. 72–82. [Online]. Available: https:
//doi-org.proxy.lnu.se/10.1145/2568225.2568278

[18] M. Papadakis, D. Shin, S. Yoo, and D.-H. Bae, “Are mutation scores correlated
with real fault detection? a large scale empirical study on the relationship
between mutants and real faults,” in Proceedings of the 40th International
Conference on Software Engineering, ser. ICSE ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 537–548. [Online]. Available:
https://doi-org.proxy.lnu.se/10.1145/3180155.3180183

[19] C. Wohlin, M. Höst, and K. Henningsson, Empirical Research Methods in Web and
Software Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.
409–430. [Online]. Available: https://doi.org/10.1007/3-540-28218-1_13

[20] A. Parsai and S. Demeyer, “Comparing mutation coverage against branch
coverage in an industrial setting,” International Journal on Software Tools
for Technology Transfer, vol. 22, pp. 1–24, 08 2020. [Online]. Available:
https://doi.org/10.1007/s10009-020-00567-y

31

https://doi-org.proxy.lnu.se/10.1145/2610384.2628055
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/1297846.1297902
https://doi-org.proxy.lnu.se/10.1145/3526072.3527538
https://www.diffblue.com/about-us
https://blog.machinet.net/post/ai-in-java-how-ai-is-revolutionizing-software-development
https://blog.machinet.net/post/ai-in-java-how-ai-is-revolutionizing-software-development
https://doi-org.proxy.lnu.se/10.1145/2568225.2568278
https://doi-org.proxy.lnu.se/10.1145/2568225.2568278
https://doi-org.proxy.lnu.se/10.1145/3180155.3180183
https://doi.org/10.1007/3-540-28218-1_13
https://doi.org/10.1007/s10009-020-00567-y

[21] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque, “Pit: A practical
mutation testing tool for java (demo),” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, ser. ISSTA 2016. New York,
NY, USA: Association for Computing Machinery, 2016, p. 449–452. [Online].
Available: https://doi-org.proxy.lnu.se/10.1145/2931037.2948707

[22] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed random testing for
java,” in Companion to the 22nd ACM SIGPLAN Conference on Object-Oriented
Programming Systems and Applications Companion, ser. OOPSLA ’07. New
York, NY, USA: Association for Computing Machinery, 2007, p. 815–816.
[Online]. Available: https://doi.org/10.1145/1297846.1297902

[23] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Transactions on
Software Engineering, vol. 39, no. 2, pp. 276–291, 2013. [Online]. Available:
https://doi.org/10.1109/TSE.2012.14

[24] H. Almulla and G. Gay, “Learning how to search: generating effective
test cases through adaptive fitness function selection,” Empirical Software
Engineering, vol. 27, no. 2, p. 38, Jan 2022. [Online]. Available: https:
//doi.org/10.1007/s10664-021-10048-8

[25] T. Chen, X. song Zhang, S. ze Guo, H. yuan Li, and Y. Wu, “State
of the art: Dynamic symbolic execution for automated test generation,”
Future Generation Computer Systems, vol. 29, no. 7, pp. 1758–1773,
2013, including Special sections: Cyber-enabled Distributed Computing for
Ubiquitous Cloud and Network Services Cloud Computing and Scientific
Applications — Big Data, Scalable Analytics, and Beyond. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X12000398

[26] Diffblue. Write java unit tests automatically with ai for code. [Online].
Available: https://info.diffblue.com/hubfs/Product/Cover%20Core%20feature%
20sheet%20100223-05.pdf

[27] A. Piper. (2022, Oct.) Copilot to cover: Why ai can’t
replace developers with robots, but can make life bet-
ter. [Online]. Available: https://www.slideshare.net/AndyPiper1/
copilot-to-cover-why-ai-cant-replace-developers-with-robots-but-can-make-like-better

[28] K. Valmeekam, A. Olmo, S. Sreedharan, and S. Kambhampati, “Large language
models still can’t plan (a benchmark for llms on planning and reasoning about
change),” 2023. [Online]. Available: https://arxiv.org/abs/2206.10498

[29] J. Možucha, e. P. Rossi, Bruno", A. Jedlitschka, A. Nguyen Duc, M. Felderer,
S. Amasaki, and T. Mikkonen, “Is mutation testing ready to be adopted
industry-wide?” in Product-Focused Software Process Improvement. Cham:
Springer International Publishing, 2016, pp. 217–232. [Online]. Available:
https://doi.org/10.1007/978-3-319-49094-6_14

[30] Joda-time. [Online]. Available: https://www.joda.org/joda-time/

[31] Apache commons. [Online]. Available: https://commons.apache.org/

[32] (2023) Sample of test suites generated by the tools used in the experiment. [Online].
Available: https://doi.org/10.6084/m9.figshare.23302085

32

https://doi-org.proxy.lnu.se/10.1145/2931037.2948707
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1007/s10664-021-10048-8
https://doi.org/10.1007/s10664-021-10048-8
https://www.sciencedirect.com/science/article/pii/S0167739X12000398
https://info.diffblue.com/hubfs/Product/Cover%20Core%20feature%20sheet%20100223-05.pdf
https://info.diffblue.com/hubfs/Product/Cover%20Core%20feature%20sheet%20100223-05.pdf
https://www.slideshare.net/AndyPiper1/copilot-to-cover-why-ai-cant-replace-developers-with-robots-but-can-make-like-better
https://www.slideshare.net/AndyPiper1/copilot-to-cover-why-ai-cant-replace-developers-with-robots-but-can-make-like-better
https://arxiv.org/abs/2206.10498
https://doi.org/10.1007/978-3-319-49094-6_14
https://www.joda.org/joda-time/
https://commons.apache.org/
https://doi.org/10.6084/m9.figshare.23302085

A Appendix 1

Table 1.7: Modified source file and Bug report of each bug report in Defects4J.

Time 16
Source org.joda.time.format.DateTimeFormatter
Report https://sourceforge.net/p/joda-time/bugs/148

Math 66
Source org.apache.commons.math.optimization.univariate.BrentOptimizer
Report https://issues.apache.org/jira/browse/MATH-395

Lang 4
Source org.apache.commons.lang3.text.translate.LookupTranslator
Report https://issues.apache.org/jira/browse/LANG-882

Lang 36
Source org.apache.commons.lang3.math.NumberUtils
Report https://issues.apache.org/jira/browse/LANG-521

Time 20
Source org.joda.time.format.DateTimeFormatterBuilder
Report https://sourceforge.net/p/joda-time/bugs/126

Math 3
Source org.apache.commons.math3.util.MathArrays
Report https://issues.apache.org/jira/browse/MATH-1005

Lang 34
Source org.apache.commons.lang3.builder.ToStringStyle
Report https://issues.apache.org/jira/browse/LANG-586

Math 35
Source org.apache.commons.math3.genetics.ElitisticListPopulation
Report https://issues.apache.org/jira/browse/MATH-776

Math 61
Source org.apache.commons.math.distribution.PoissonDistributionImpl
Report https://issues.apache.org/jira/browse/MATH-349

Time 8
Source org.joda.time.DateTimeZone
Report https://github.com/JodaOrg/joda-time/issues/42

A

	Introduction
	Background
	Related work
	Problem formulation
	Motivation
	Results
	Scope/Limitation
	Target group
	Outline

	Methodology
	Research Project
	Research Method
	Experimental Design

	Reliability and Validity
	Ethical Considerations

	Theoretical Background
	Introduction to Software Testing and Automated Unit Test Generation
	Conventional Automated Unit Test Generation Techniques in Java
	Random-based Techniques for Unit Test Generation
	Search-Based Technique for Unit Test Generation
	Dynamic Symbolic Execution (DSE)

	AI-Based Unit Test Generation in Java
	Reinforcement Learning Technique for Unit Test Generation
	Large Language Models for Unit Test Generation

	Concepts in Test Suite Evaluation
	Mutation Score
	Code Coverage
	Fault Detection

	Related Research

	Research project - Implementation
	Analysis of the results
	RQ1 - Coverage of AI Tools vs Conventional Automated Tests
	RQ2 - Mutation Score of AI Tools vs Conventional Automated Tests
	RQ3 - Faults Detected by AI Tools vs Conventional Automated Tests

	Discussion
	Threats to validity
	Conclusions and Future Work
	References
	Appendix 1

